
SENSITIVITY OF MATRIX FUNCTION BASED NETWORK
COMMUNICABILITY MEASURES: COMPUTATIONAL METHODS

AND A PRIORI BOUNDS

M. SCHWEITZER∗

Abstract. When analyzing complex networks, an important task is the identification of those
nodes which play a leading role for the overall communicability of the network. In the context of
modifying networks (or making them robust against targeted attacks or outages), it is also relevant
to know how sensitive the network’s communicability reacts to changes in certain nodes or edges.
Recently, the concept of total network sensitivity was introduced in [O. De la Cruz Cabrera, J. Jin, S.
Noschese, L. Reichel, Communication in complex networks, Appl. Numer. Math., 172, pp. 186–205,
2022], which allows to measure how sensitive the total communicability of a network is to the addition
or removal of certain edges. One shortcoming of this concept is that sensitivities are extremely costly
to compute when using a straight-forward approach (orders of magnitude more expensive than the
corresponding communicability measures). In this work, we present computational procedures for
estimating network sensitivity with a cost that is essentially linear in the number of nodes for many
real-world complex networks. Additionally, we extend the sensitivity concept such that it also covers
sensitivity of subgraph centrality and the Estrada index, and we discuss the case of node removal.
We propose a priori bounds for these sensitivities which capture well the qualitative behavior and
give insight into the general behavior of matrix function based network indices under perturbations.
These bounds are based on decay results for Fréchet derivatives of matrix functions with structured,
low-rank direction terms which might be of independent interest also for other applications than
network analysis.

Key words. complex networks, total communicability, Estrada index, matrix exponential,
Fréchet derivative, decay bounds

AMS subject classifications. 05C50, 05C82, 15A16, 65F60

1. Introduction. Complex networks—mathematically modeled by graphs con-
sisting of nodes and edges—occur as models in a wide range of application areas,
including, but not limited to, biology, chemistry, life sciences, social sciences and hu-
manities [5, 17, 28, 44]. Central tasks in analyzing complex networks are identifying
the most important (or central) nodes in the network and measuring the overall com-
municability of the network. Additionally, in particular when designing networks, it
can be of interest to investigate how centrality and communicability react to modifi-
cations of the network. This helps, e.g., to answer questions of robustness or vulner-
ability of a network with respect to outages or targeted attacks [20], or it can help
to decide how to best enhance/augment (by introducing additional connections) or
optimize/trim (by removing unneeded edges) the network [2, 3].

Many important network centrality indices and communicability measures are
based on matrix functions, in particular the matrix exponential [11, 12, 25, 26, 31,
29, 30] and the resolvent [40], but sometimes also more general functions [4, 13];
see also the recent survey [10]. In the last few years, many different approaches
have been developed which are intimately related to the question how these matrix
function based centrality indices react to changes in the network. These include,
e.g., algorithms for (near-)optimally up/downdating networks based on well-chosen
heuristics [2, 3], algorithms for efficiently updating matrix functions under general low-
rank changes [7, 6], stability estimates based on decay bounds for matrix functions [47]
as well as sensitivity measures defined in terms of the Fréchet derivative [24].

∗School of Mathematics and Natural Sciences, Bergische Universität Wuppertal, 42097 Wuppertal,
Germany, marcel@uni-wuppertal.de.

1

ar
X

iv
:2

30
3.

01
33

9v
3

 [
m

at
h.

N
A

]
 4

 J
un

 2
02

3

mailto:marcel@uni-wuppertal.de

2 M. SCHWEITZER

In this work, we develop computational procedures for approximating the Fréchet
derivative based sensitivities that are asymptotically much more efficient than the
methods originally proposed in [24], thus making it feasible to use the sensitivity
for ranking the importance of edges also in large-scale networks. In particular, by
leveraging an approach from [35] for estimating the largest elements of an implicitly
given matrix in combination with a Krylov subspace method proposed in [38, 41], we
demonstrate how one can efficiently identify the edges with respect to which the net-
work is most sensitive also in situations where it is not possible to explicitly compute
or store all edge sensitivities.

We then extend the sensitivity concept by generalizing the measures from [24] in
several ways. On the one hand, we generalize from total communicability to other fre-
quently used measures like subgraph centrality and the Estrada index, and on the other
hand, we extend it to also cover node modifications in addition to edge modifications.

Additionally, we derive bounds for the decay in Fréchet derivatives with struc-
tured, low-rank direction terms and use these to obtain a priori bounds for network
sensitivity measures, similar in spirit to the results of [47]. These bounds mathemat-
ically confirm the intuition that nodes which are nearby a modified edge or node are
more sensitive to the modification than nodes which are farther away.

The remainder of the paper is organized as follows. In Section 2 we recall some
basic facts about graphs, matrix functions and communicability measures and we
briefly review the concept of total network sensitivity introduced in [24]. Additionally,
we prove our first main result (Theorem 2.3 and Corollary 2.4), which forms the basis
for a large part of the developments in this manuscript. In Section 3, we propose an
algorithm for approximating network sensitivities, analyze its computational cost and
demonstrate its viability on real-world networks. Section 4 deals with the extension
of the sensitivity concept to subgraph centrality and the Estrada index and to node
modifications. In Section 5 we first derive results about the nonzero pattern of Fréchet
derivatives of polynomial matrix functions with structured, low-rank direction terms
and then use these to obtain a priori bounds on network sensitivity. Concluding
remarks are given in Section 6. Some technical proofs are collected in Appendix A.

2. Basics & Notation. In this section, we recall some basic definitions and fix
our notation.

2.1. Notation. We denote by ei ∈ Rn the ith canonical unit vector and by
1 = [1, . . . , 1]T ∈ Rn the vector of all ones. The (i, j)th entry of a matrix function
f(A) is denoted by [f(A)]ij and the trace of f(A), i.e., the sum of its diagonal entries,
is denoted by tr(f(A)). By ∥ ·∥ we denote the Euclidean vector norm and the spectral
matrix norm it induces. The spectrum of a matrix A, i.e., the set of all its eigenvalues,
is denoted by spec(A).

2.2. Graphs and matrices. A graph G = (V, E) is defined by a set V of nodes
and a set E ⊆ V × V of edges. For simplicity, we will assume in the following that
V = {1, . . . , n}. A graph is called weighted if it is equipped with a weight function
w : E −→ R+ that assigns a weight wij > 0 to each edge (i, j) ∈ E . An unweighted
graph can be interpreted as a weighted graph with all edge weights equal to 1. If the
set E is such that (i, j) ∈ E if and only if (j, i) ∈ E , and wij = wji, then G is called
undirected graph, otherwise it is called directed graph (or digraph). In the following,
we always tacitly assume that G contains no self loops (i.e., edges connecting a node
to itself) and no multiple edges with the same direction between any two nodes. By
d(u, v), we denote the geodesic distance in G, i.e., the smallest number of edges on

SENSITIVITY OF COMMUNICABILITY MEASURES 3

any path connecting node u to node v.
A (weighted) graph G can be represented by the (weighted) adjacency matrix

AG ∈ Rn×n defined via

aij =

{
wij if (i, j) ∈ E
0 otherwise.

Clearly, when G is undirected, the adjacency matrix AG is symmetric.
Note that for naming nodes in a graph, we adopt the following convention: When

an edge is at the center of attention, then we denote its end nodes by i and j. When
nodes themselves are at the center of attention, we denote them by u or v.

2.3. Functions of matrices and the Fréchet derivative. Matrix functions
can be defined in many different ways. The three most popular ones are based on the
Jordan canonical form, Hermite interpolating polynomials and the Cauchy integral
formula; see [34, Section 1.2] for a thorough treatment.

As we are mostly interested in the exponential function in this work, we only recall
the third of the above alternatives, which applies to functions f which are analytic
on a region that contains spec(A). In this case f(A) can be defined via the Cauchy
integral formula,

f(A) :=
1

2πi

∫
Γ

f(ζ)(ζI −A)−1 dζ,

where Γ is a path that winds around spec(A) exactly once. For a matrix function f ,
the Fréchet derivative at the matrix A is an operator Lf (A, ·) which is linear (in the
second argument) and satisfies

f(A+ E)− f(A) = Lf (A,E) + o(∥E∥), for all E ∈ Rn×n.

A sufficient condition for Lf (A, ·) to exist is that f is 2n − 1 times continuously
differentiable on a region containing spec(A) (see [34, Theorem 3.8]), and if the Fréchet
derivative exists, it is unique. In particular, the Fréchet derivative of a matrix function
is guaranteed to exist if f is analytic on a region containing spec(A), and in this case
it has the integral representation

(2.1) Lf (A,E) =
1

2πi

∫
Γ

f(ζ)(ζI −A)−1E(ζI −A)−1 dζ,

where Γ is again a path that winds around spec(A); see, e.g., [34, 39]. Clearly,
the Fréchet derivative of the exponential function, Lexp(A, ·), which is of particular
importance for this work, is guaranteed to exist for any matrix A.

Related is the Gâteaux (or directional) derivative of f at A, defined as

Gf (A,E) = lim
h→0

f(A+ hE)− f(A)
h

.

If Lf (A, ·) exists, then it is equal to Gf (A, ·), but the converse is not necessarily
true; even when all directional derivatives of f at A exist, f does not need to be
Fréchet differentiable at A. However, for the exponential function, both derivatives
are guaranteed to exist and coincide, i.e.,

(2.2) Lexp(A,E) = Gexp(A,E), for all A,E ∈ Rn×n.

4 M. SCHWEITZER

The following important identity for the Fréchet derivative reduces its computa-
tion to that of a (block triangular) matrix function of twice the size:

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)
0 f(A)

]
.

Associated with the Fréchet derivative is its Kronecker form Kf (A) ∈ Rn2×n2

,
the matrix which fulfills

(2.3) Kf (A) vec(E) = vec(Lf (A,E)) for all E ∈ Rn×n,

where vec(M) stacks the columns of M ∈ Rn×n into a vector of length n2. Due to
its very large size, the Kronecker form is seldomly used in actual computations, but
it can be a useful theoretical tool.

2.4. Communicability measures and total network sensitivity. In many
applications, it is important to measure how well information can spread through a
network. A frequently used measure for this is total communicability [12], defined as

(2.4) CTN(AG) = 1T exp(AG)1.

For judging the importance/centrality of an individual node v in the network, one
often uses (exponential) subgraph centrality [31], defined as

(2.5) cSC(v) := eTv exp(AG)ev.

A related measure for the overall communicability of the network—and thus an alter-
native to total communicability (2.4)—is the Estrada index, the sum of all subgraph
centralities, i.e.,

(2.6) EE(AG) =

n∑
v=1

cSC(v) = tr(exp(AG));

see, e.g., [28, 29].
It is also often of interest how strongly the communicability of a network is affected

by modifications of the network [2, 3, 24, 47]. The type of network modification that is
most frequently considered in this context is the addition or removal of edges. In [24]
the concept of total network sensitivity is introduced, which measures how sensitive
total communicability (2.4) is with respect to modification of one specific edge.

Definition 2.1. Let G = (V, E , w) be a weighted (di)graph with adjacency matrix
AG ∈ Rn×n and let Eij := eie

T
j ∈ Rn×n. Then the total network sensitivity of G with

respect to changes in wij is defined in terms of the Fréchet derivative Lexp(AG, Eij)
as

(2.7) STN
ij (AG) := 1TLexp(AG, Eij)1.

Remark 2.2. When G is undirected, it seems natural to define the sensitivity
with respect to changes in wij using the Fréchet derivative with respect to the sym-
metric rank-two direction term E = eie

T
j + eje

T
i . However, as the Fréchet derivative

is linear in its second argument, we have Lexp(AG, eie
T
j + eje

T
i) = Lexp(AG, eie

T
j) +

Lexp(AG, eje
T
i). Further, by elementary properties, Lexp(AG, E) = Lexp(AG, E

T)T

when AG is symmetric. We thus have

(2.8) 1T · Lexp(AG, eie
T
j + eje

T
i) · 1 = 2 · 1T · Lexp(AG, eie

T
j) · 1

SENSITIVITY OF COMMUNICABILITY MEASURES 5

Thus, in light of (2.8) it also suffices to consider rank-one direction terms in the
undirected case. ⋄

The following relationship opens the door for efficiently computing total network
sensitivity for large scale networks; cf. Section 3. We first formulate it for general
analytic f , as it might be of independent interest also in other application areas and
then state the formulation as needed in our setting.

Theorem 2.3. Let A ∈ Rn×n,u , v ∈ Rn, let f be Fréchet differentiable at A and
denote Eij = eie

T
j . Then

(2.9) uTLf (A,Eij)v = [Lf (A
T ,uvT)]ij .

Proof of Theorem 2.3. We start by vectorizing the left-hand side of (2.7), noting
that vec(α) = α for any scalar α ∈ R, which yields

(2.10) uTLf (A,Eij)v = vec(uTLf (A,Eij)v) = (vT ⊗ uT) vec(Lf (A,Eij)),

where we have used the well-known relation vec(BCD) = (DT ⊗ B) vec(C) for the
second equality. Now, by inserting the definition (2.3) of the Kronecker form of the
Fréchet derivative into (2.10), we further have

(2.11) uTLf (A,Eij)v = (vT ⊗ uT)Kf (A) vec(Eij) = (vT ⊗ uT)Kf (A)e(j−1)n+i,

as the vectorization of a matrix Eij with just a single entry 1 results in a canonical
unit vector. Further, vec(uvT) = (v ⊗ u), and αT = α for any scalar α, so that by
taking the transpose of (2.11) and noting that Kf (A)

T = Kf (A
T), we obtain

uTLf (A,Eij)v = eT(j−1)n+iKf (A
T)(v ⊗ u)

= eT(j−1)n+i vec(Lf (A
T ,uvT))

= [Lf (A
T ,uvT)]ij ,

which concludes the proof.

Corollary 2.4. Let STN
ij (AG) denote total network sensitivity, defined in (2.7).

Then

(2.12) STN
ij (AG) = [Lexp(A

T
G,11

T)]ij .

Proof. The result directly follows by applying Theorem 2.3 to f(A) = exp(AG)
and u = v = 1.

The advantage of (2.12) over (2.7) is that it characterizes the network sensitivities
STN
ij (AG) with respect to all possible edge modifications as entries of a single Fréchet

derivative, while in the original formulation, the direction term changes depending on
the edge under consideration.

3. Efficiently computing sensitivity measures. In this section, we discuss
an algorithm for approximating total network sensitivity and in particular how to
efficiently find the edge modifications with respect to which the network is most
sensitive.

We begin by recapitulating a Krylov subspace method for approximating Fréchet
derivatives with low-rank direction terms from [38, 41] in Section 3.1. This method
forms a basic building block of our final algorithm (as well as of the original algorithm
for network sensitivity from [24]).

6 M. SCHWEITZER

3.1. A basic Krylov subspace scheme for Fréchet derivatives. As it does
not complicate the exposition, we consider the case of approximating the Fréchet
derivative with respect to a general rank-one direction term E = bcT in the following,
although we are mostly interested in direction terms with very specific structure.
Without loss of generality, we further assume that ∥b∥ = ∥c∥ = 1.

By Corollary 2.4, total network sensitivity (2.12) with respect to all possible edge
modifications can be obtained by computing a Fréchet derivative at ATG with respect
to a rank-one direction term.

To approximate Lexp(A
T
G, bc

T), the method introduced in [38, 41] first computes
orthonormal bases Vm, Wm of the two Krylov subspaces Km(ATG, b) and Km(AG, c)
by the Arnoldi method [1], yielding Arnoldi decompositions

ATGVm = VmGm + gm+1,mvm+1e
T
m,(3.1)

AGWm = WmHm + hm+1,mwm+1e
T
m,(3.2)

where we assume that no breakdown occurs. Note that it is also possible to build two
Krylov spaces of different dimensions m1 ̸= m2, respectively. An approximation for
Lexp(A

T
G, bc

T) is then extracted from the tensorized Krylov subspace Km(AG, c) ⊗
Km(ATG, b) as

(3.3) Lm = VmXmW
T
m,

where Xm is obtained as the upper right block of a 2m× 2m matrix function,

(3.4) exp

([
Gm e1e

T
1

0 HT
m

])
=

[
exp(Gm) Xm

0 exp(HT
m)

]
.

Algorithm 3.1 Krylov method for computing the Fréchet derivative Lexp(A
T , bcT)

Input: AG ∈ Rn×n, b, c ∈ Rn,m ∈ N
Output: Low-rank factors Vm,Wm ∈ Rn×m, Xm ∈ Rm×m according to (3.3)

1: Compute Vm, Gm by m steps of Arnoldi for ATG and b
2: Compute Wm, Hm by m steps of Arnoldi for AG and c

3: Cm ← exp

([
Gm e1e

T
1

0 HT
m

])
4: Xm ← Cm(1 : n, n+ 1 : 2n)

We summarize this procedure in Algorithm 3.1. Let us briefly comment on its
computational cost: For each of the two Arnoldi decompositions (3.1)–(3.2),mmatrix-
vector products need to be computed. Assuming that G is a sparse graph with O(n)
edges, this requires O(nm) arithmetic operations. Additionally, a modified Gram–
Schmidt orthogonalization for the m+1 basis vectors is necessary, requiring O(nm2)
operations. If G is undirected, so that AG is symmetric, this cost reduces to O(nm) if
no reorthogonalization is performed. Evaluating the matrix function (3.4) has a cost
of O(m3). For m≪ n, the overall computational cost for the Krylov method outlined
above is therefore given by O(nm2) if G is directed and O(nm) if G is undirected.
Note that we have so far omitted the cost for explicitly forming Lm via (3.3), as
this is typically prohibitively expensive: In general, Lm is a dense matrix of size
n×n, so explicitly forming it requires O(n2) storage and has a computational cost of
O(n2m+ nm2), both of which are not feasible for large scale networks.

SENSITIVITY OF COMMUNICABILITY MEASURES 7

If only a few individual entries of Lm are required, these can be cheaply computed
at a cost of O(m2) per entry, as summarized in the following proposition.

Proposition 3.1. Let Vm,Wm, Xm be computed as explained above and let Lm
be defined via (3.3). Then, the entries of Lm are given by

[Lm]uv =

m∑
i=1

m∑
j=1

[Vm]ui[Xm]ij [Wm]vj .

Consequently, given Vm,Wm, Xm, computing an individual entry of Lm has compu-
tational complexity O(m2).

Proof. The result follows directly from the formula (3.3) for the approximation
Lm and the rules of matrix-matrix multiplication.

3.2. Finding the top few sensitivities. As already commented at the end
of the preceding section, it is not possible to compute or store sensitivities with re-
spect to all possible edge modifications when G is large. While it is indeed cheaply
possible to recover individual entries of Lm according to Proposition 3.1, there is a
fundamental flaw in this approach: typical use cases for computing sensitivities are
finding a (close to) optimal update of a network or identifying the most vulnerable
parts of the network, both of which require identifying a few edges with very high
sensitivity values. Thus, while it is sufficient to know just a few sensitivity values, it
is not known a priori which ones.

If storage of the dense n × n matrix Lm is the main concern, then one can use
Proposition 3.1 to compute all individual sensitivities one after the other, keeping
track of the p largest or smallest values (and their locations), discarding all other
sensitivities. This way, the top p sensitivities can be found consuming only a fixed
amount of storage, but at the very high computational cost of O(m2n2).

We therefore now highlight a better approach for tackling this problem, leveraging
a method from [35] for computing the largest elements of an implicitly given matrix
S, accessing it only via matrix-vector products. We briefly outline this method in
its most basic form, closely following the presentation in [35]. For further details and
more sophisticated variants, we refer the reader to [35, Sections 2, 4 and 5].

Assume we want to find the single largest element (in modulus) of the matrix S.
A first observation is that this can be interpreted as a mixed subordinate norm,

(3.5) max
i,j=1,...,n

|sij | = max
x ̸=0

∥Sx∥∞
∥x∥1

.

Finding the maximum on the right-hand side of (3.5) can be phrased as the optimiza-
tion problem

max F (x) := ∥Sx∥∞
s.t. x ∈ E := {x : ∥x∥1 ≤ 1}.

(3.6)

This is a convex optimization problem, and for any x ∈ E there exists at least one
subgradient, i.e., a vector g for which F (y) ≥ F (x) + gT (y − x) for all y ∈ E. The
set of all subgradients of F at x is denoted by ∂F (x). Further, we denote the dual
set of a vector x by

dual∞(x) := {y : yTx = ∥x∥∞, ∥y∥1 = 1}.

8 M. SCHWEITZER

Then clearly, a vector y∗ that maximizes gT (y − x) must fulfill y∗ ∈ dual∞(g)
and the set of subgradients at x fulfills ∂F (x) ⊇ STdual∞(Sx). By some alge-
braic manipulations, one can show that for maximizing F one can always select a
subgradient g ∈ STdual∞(Sx). These observations directly give rise to a method for
solving (3.6), which alternatingly selects a subgradient g ∈ STdual∞(Sx) and a point
x ∈ dual∞(g). This requires performing two matrix-vector products per iteration,
one with S and one with ST . We give an algorithmic description of this method as
Algorithm 3.2.

Algorithm 3.2 Power method for finding largest modulus element of a matrix

Input: S ∈ Rn1×n2

Output: γ ∈ R,x ∈ Rn2 s.t. γ ≤ maxi,j sij and ∥Sx∥∞ = γ∥x∥1
1: x ← (1/n2)1

2: for k = 1, 2, . . . do

3: y ← Sx

4: if k > 1 then

5: if ∥y∥∞ ≤ ∥g∥∞ then

6: γ = ∥g∥∞
7: quit

8: end if

9: end if

10: Select smallest i such that |yi| = ∥y∥∞
11: g ← STei

12: if ∥y∥∞ ≤ ∥g∥∞ then

13: γ = ∥g∥∞
14: quit

15: end if

16: Select smallest j such that |gj | = ∥g∥∞
17: x ← ej

18: end for

Let us note that Algorithm 3.2 was (in a similar form) already proposed in [18, 50]
before [35]. However, in [35], the concept is extended in several ways, by introducing
a blocked version of the algorithm and (by using deflation) a version which allows to
estimate more than just the single largest element of the matrix S. Without going into
details of the derivation, we note that [35, Algorithm 5.2] approximates the p largest
elements of S at a cost of 2αp matrix vector products per iteration (half of them with
S and half of them with ST), where α ∈ N is a moderate constant (typically, α = 3
suffices). While the number of matrix-vector products per iteration of the algorithm
might seem high, theoretical results and extensive numerical evidence show that the
algorithm typically converges within just two iterations; see [35, Sections 3 and 6].
We note that the algorithm might fail, although this is rarely encountered in practice,
barring some academic example matrices.

Returning to our setting, assume we want to find the p edges with respect to
which the network is most sensitive. From the Krylov subspace method outlined in

SENSITIVITY OF COMMUNICABILITY MEASURES 9

Section 3.1, we obtain the factor matrices Vm,Wm, Xm at a cost of O(nm2) opera-
tions. Given these matrices, matrix-vector products with Lm ≈ Lexp(A

T
G,11

T) can
be efficiently carried out in factored form,

Lmx = Vm(Xm(WT
mx)),

requiring 2nm + m2 arithmetic operations. Thus, subsequently applying [35, Algo-
rithm 5.2] given the factored matrices (assuming two iterations are required for conver-
gence) will require an overall computational cost of 4αp(2nm+m2) = 8αpnm+4αpm2.
For many real-world networks, a small number m = O(1) of Krylov steps is sufficient,
in particular as only rough estimates of the actual sensitivities are required, as long
as their relative ordering is captured accurately. In this case, the complexity of the
Krylov method for approximating the Fréchet derivative is O(n) and the subsequent
estimation of the largest p elements has asymptotic cost O(αpn), so that the cost of
the overall method scales linearly in the number n of nodes in G, making it feasible
also for very large-scale problems, as long as p ∈ O(1).

The approach outlined above allows to estimate the p largest sensitivities STN
ij

at cost that is linear in n. Whether the entries that the algorithm returns belong to
existing edges {i, j} ∈ E or to “virtual” edges {i, j} /∈ E is outside of the control of the
user. If one is interested in updating the network by adding virtual edges such that
the communicability increases but the algorithm only returns sensitivities of edges
already present in the network, nothing is gained. A simple, heuristic safety measure
would be to estimate the q > p top sensitivities and check a posteriori which of those
correspond to virtual edges. This is not satisfactory for several reasons. In particular,
it is not clear how much larger than p the value q must be chosen (and this is highly
problem dependent), and additionally, the cost of algorithms scales with the number
of sensitivities that one estimates. Another problem is that, occasionally, “diagonal”
sensitivities Sii might be returned by the algorithm, although one will typically not
want to introduce self-loops.

In order to resolve these problems, instead of applying the maximum element
estimator to Lm, one wants to apply it to a “masked” version of the matrix, Lmasked

m :=
M ⊙ Lm, where M is a binary mask that marks candidate edges and ⊙ denotes the
Hadamard (or element-wise) matrix product. Typical choices for the binary mask
are given either by (the unweighted version of) the adjacency matrix AG if only
sensitivities of existing edges are required, or by an “inverted” version of AG (with
zero diagonal to prevent self-loops), if only sensitivities of virtual edges are required.

This approach requires forming matrix vector products with Lmasked
m instead of

Lm, which complicates the computation due to the presence of the Hadamard product.
It is well-known that if one of the factors in the Hadamard product is a low-rank
matrix BCT with thin B,C ∈ Rn×r, r ≪ n, then an efficient matrix vector product
is possible via

(3.7) (A⊙BCT)x =

r∑
i=1

DbiADcix ,

where bi, ci, i = 1, . . . , r are the columns of B and C, respectively, and Dy is a
diagonal matrix with the entries of the vector y on the diagonal. The right-hand side
of (3.7) can be evaluated essentially at a cost of r matrix vector products with A.
This approach thus gives rise to an efficient matrix vector under the two conditions
that r is small and that A exhibits a fast matrix-vector product.

10 M. SCHWEITZER

When trying to estimate the largest entries in Lmasked
m , we are exactly in such a

situation, as Lm is of rankm≪ n, where we typically even havem = O(1). Therefore,
the matrix-vector product with the maskM scales linearly with n for “typical” masks:
If we are interested in all existing edges, then M = AG and a matrix vector product
has cost O(n), as G is a sparse graph by assumption. If we are interested in all virtual
edges, thenM = 11T −(AG+I), with which we can efficiently compute matrix vector
products via x 7→ (1Tx)1 − AGx − x , also at cost linear in n. We summarize the
final procedure in Algorithm 3.3.

Algorithm 3.3 Estimating the top p edge sensitivities

Input: AG ∈ Rn×n, virtual ∈ {true, false}
Output: p [existing/virtual] edges in G with highest total sensitivity

1: Compute Vm, Xm,Wm by Algorithm 3.1 with b = c = 1

2: Compute singular value decomposition UXΣXV
T
X = Xm

3: Set B ← VmUXΣ
1/2
X

4: Set C ←WmVXΣ
1/2
X

5: if virtual = false then

6: Set M ← AG

7: else

8: Set M ← 11T − (AG + I)

9: end if

10: Estimate top p sensitivities using [35, Algorithm 5.2] for the matrix M ⊙BCT

Remark 3.2. Let us note that when we are interested in the top p sensitivities
of existing edges, it will often be preferable to simply evaluate all those sensitivities
via Proposition 3.1 at a cost of O(nm2). This is the same asymptotic cost as that
of the Hadamard masking approach, but the constant hidden in the O will typically
be much larger for the latter approach. Additionally, the approach based on [35,
Algorithm 5.2] might fail in rare situations. ⋄

Remark 3.3. When G is undirected, effort can be saved by including only the
upper (or only the lower) triangle of AG in the definition of the binary mask, as the
sensitivity with respect to changes in (i, j) is the same as the sensitivity with respect
to changes in (j, i). ⋄

3.3. Numerical experiments. In this section, we perform numerical experi-
ments to illustrate the performance of Algorithm 3.3. All experiments are carried out
in MATLAB R2022a on a PC with an AMD Ryzen 7 3700X 8-core CPU with clock
rate 3.60GHz and 32 GB RAM.

Example 3.4. Our first example is inspired by [24, Example 5.2] and uses the
network Air500 [42], which contains the top n = 500 airports in the world as nodes
(based on passenger volume between July 2007 and June 2008) and models flights
between these airports as edges (which gives |E| = 24009 edges in total). The graph
is directed and unweighted. Figure 3.1 contains a visualization of a large part of the
network (in which we left out most edges for improved clarity). The color and size of
nodes encode their total communicability (2.4).

Similar to what was done in [24, Example 5.2], we try to find the top p = 10

SENSITIVITY OF COMMUNICABILITY MEASURES 11

Fig. 3.1. Visualization of the Air500 network. The blue, solid edges are existing edges with
highest sensitivity STN

ij , while the green, dashed edges are non-existing/virtual edges with highest

sensitivity STN
ij (according to Algorithm 3.3); see the text for details. All other edges are omitted.

The size and color of nodes encode their total communicability (with lighter colors corresponding to
larger values). Note that a few nodes (with low communicability) of the network are not included in
the excerpt, as they lie farther to the north or south (world map generated with the Python basemap

package).

Table 3.1
Run time and number of Krylov iterations for the compared algorithms applied to the Air500

network. For the algorithm from [24], we report the average number of Krylov iterations across all
calls to Algorithm 3.1.

method run time Krylov it. calls of Alg. 3.1

existing edges
Algorithm 3.3 0.1s 11 1

Method from [24] 50.5 s 9.4 24009

virtual edges
Algorithm 3.3 0.1 s 11 1

Method from [24] 482.2 s 9.73 225491

existing and the top p = 10 virtual edges in the network according to the sensitiv-
ity of total communicability. We compare our method, Algorithm 3.3, to the basic
Krylov method used in [24], which essentially computes all individual sensitivities
by evaluating one Fréchet derivative per edge and then selects the edges with the p
largest values. To make comparisons as fair as possible, we also use Algorithm 3.1 as
backbone for this method (in [24], several different Krylov methods were introduced,
but the method from [38, 41] turned out to be among those giving the best balance
between speed and accuracy). As stopping criterion for the Krylov method, we com-
pute the norm of the difference between consecutive iterates (which can be computed
without explicitly forming the iterates; cf. [38, Section 5]) and check whether it is
below a prescribed tolerance tol. Note that in our method, the accuracy requirement
applies to the matrix containing all sensitivities, while in the method from [24], it is
applied to each individual sensitivity. Thus, to obtain a fair comparison, we reduce the
tolerance to tol/n in our method. As a rather crude accuracy is typically sufficient
(as we are mainly interested in the ranking of the nodes, not the precise sensitivity
values), we use tol = 10−3 in this experiment. For the maximum element estimator,
we choose α = 3.

The run time and number of Krylov iterations required by the different methods
are depicted in Table 3.1 and the edges that both algorithms select are listed in
Table 3.2. Note that the method from [24] requires one call to Algorithm 3.1 for each
existing/virtual edge, and we report the average number of Krylov iterations over all

12 M. SCHWEITZER

Table 3.2
Existing and virtual edges with highest sensitivity according to our method and the method

from [24] (with highest sensitivity at the top). Edges are identified with flight connections, using
the three-character IATA codes of the corresponding airports. For existing edges, both methods yield
exactly the same result, while for virtual edges they differ slightly (edges that are selected by just one
of the algorithms are marked in bold). Updating the graph using the edges selected by the method
from [24] increases the total communicability of the network by 13.21% while using the edges selected
by our new method increases it by 12.19%.

existing edges virtual edges

Algorithm 3.3 Method from [24] Algorithm 3.3 Method from [24]

JFK – ATL JFK – ATL JFK – LGA JFK – LGA

ORD – JFK ORD – JFK LHR – ATL LGA – JFK

JFK – ORD JFK – ORD AMS – DFW LHR – ATL

ATL – JFK ATL – JFK JFK – MDW AMS – DFW

JFK – LAX JFK – LAX ORD – MDW ATL – LHR

EWR – JFK EWR – JFK FRA – MSP MDW – JFK

JFK – EWR JFK – EWR LGW – ORD JFK – MDW

ORD – ATL ORD – ATL FRA – BWI ABQ – JFK

LAX – JFK LAX – JFK OAK – EWR DFW – AMS

ATL – ORD ATL – ORD FRA – STL ORD – LGW

these calls in Table 3.1.
As one would expect, both methods yield very similar results (for existing edges,

both results are actually identical). In case of deviations, one can expect the results
of the method from [24] to be closer to the “ground truth ranking”, as all sensitivities
are explicitly computed. In Algorithm 3.3, it might happen that a few top edges
are missed by the maximum element estimator, in particular if sensitivity scores of
multiple edges are very close to each other (as it is the case here). Still, in this setting,
the update suggested by our method will also be sensible from an application point
of view. To confirm this, we compute the actual effect that both updates have on the
total communicability of the network. Introducing the edges selected by the method
from [24] increases the total communicability of the network by 13.21%, while the
update computed by Algorithm 3.3 increases it by 12.19%. Thus, we find an update
which is almost as good as the “ground truth update”, but at a cost which is several
orders of magnitude smaller.

It is interesting to note that the top p = 10 existing edges connect five large
US airports (John F. Kennedy, Newark, Chicago O’Hare, Atlanta, Los Angeles),
while many of the virtual edges that our method selects for greatly improving the
total communicability of the network connect large European airports (Amsterdam,
Frankfurt, London Heathrow, London Gatwick) to US airports.

The run time of Algorithm 3.3 is much lower than that of the method from [24],
as we only need to approximate one Fréchet derivative, instead of 24009 (existing
edges) or 500 · 499 − 24009 = 225491 (virtual edges). To reduce run time of the
method from [24], one could of course only compute sensitivities of edges between
nodes with high total communicability (e.g., the top 10%, similar to what is done in
up/downdating heuristics for large scale networks in [2, 3]), as it is very likely that

SENSITIVITY OF COMMUNICABILITY MEASURES 13

Fig. 3.2. Illustration of random geometric graph with n = 400 nodes. The size and color of
nodes encodes their total communicability (with lighter colors corresponding to larger values).

Table 3.3
Results obtained for random geometric graphs of varying size. “Kryl. it.” refers to number of

iterations in Algorithm 3.1, while ”HR it.” refers to number of iterations in [35, Algorithm 5.2].
Entries marked with * indicate that the method did not finish running within a limit of two hours.

n 200 400 800 1600 3200 6400 12800

avg. deg. 9.88 10.0 10.4 10.9 11.0 11.2 11.2

Alg. 3.3

Kryl. it. 14 17 18 22 22 23 25

HR it. 4 2 4 2 3 5 2

time 0.02s 0.03s 0.06s 0.08s 0.26s 0.70s 0.73s

Alg. from [24]
Kryl. it. 12.7 14.8 15.7 14.9 * * *

time 40s 216s 1049s 5417s * * *

the edges with highest sensitivity belong to this set. Even then, the run time of our
new method can be expected to still be orders of magnitude smaller.

We note that it is crucial for the efficient applicability of our method that the
number of required Krylov iterations is quite small (and independent of the network
size n, if we want to obtain linear scaling), as it also directly influences the cost of the
second stage of the method, as matrix-vector products with VmXmW

T
m become more

expensive as m grows; see also the discussion in Section 3.2. It is observable from the
results in Table 3.1, that a small number of iterations, m = 11, is sufficient to reach
the desired accuracy 2 · 10−6 for this example network. ⋄

Example 3.5. We now perform an experiment in which we use artificially con-
structed graphs in order to illustrate the scaling behavior of Algorithm 3.3. Specif-
ically, we construct a random geometric graph by sampling n uniformly distributed
points in the unit square and then connecting all pairs with distance below some
threshold d by an edge. We vary the size of the graph from n = 200 to n = 12800
and choose the distance threshold d in dependence on n such that the average degree

14 M. SCHWEITZER

Table 3.4
Number of nodes, number of edges and total communicability of test networks from the SuiteS-

parse collection.

Network n |E| CTN

Pajek/Erdos972 5488 14170 8.4 · 108

Pajek/Erdos982 5822 14750 1.2 · 109

Pajek/Erdos992 6100 15030 1.5 · 109

SNAP/ca-GrQc 5242 28980 4.6 · 1021

SNAP/ca-HepTh 9877 51971 1.0 · 1015

SNAP/as-735 7716 26467 2.8 · 1023

in the resulting graph is roughly 10 (such that it is sensible to consider all graphs as
different-sized instances of the same problem). As an example, the graph resulting for
n = 400 is depicted in Figure 3.2. We use the same Krylov accuracies and the same
value of α as in the previous experiment. Detailed results are reported in Table 3.3.
We observe that the number of Krylov iterations necessary to satisfy the tolerance
requirement slightly increases when increasing the problem size. As expected, the
number of iterations in the maximum element estimator is consistently small, in line
with theoretical and numerical evidence reported in [35]. Precisely, it ranges from 2
to 5, with no clear dependence on the matrix size. Concerning execution times, it is
clearly visible that Algorithm 3.3 indeed scales linearly in the problem size, while the
cubic scaling of the method from [24] leads to enormous run times which exceed two
hours for the problem of size n = 3200, while Algorithm 3.3 stays below one second
also for the largest problem instance with n = 12800. ⋄

Example 3.6. In a last example, we demonstrate the performance of our method
on several real-world networks from the SuiteSparse matrix collection (https://sparse.
tamu.edu/) which are frequently used when investigating total communicability; see,
e.g., [10, 12]. We summarize the most important properties of the data set in Table 3.4.
In this experiment, we do not perform a comparison to the original method from [24],
as the results of the previous experiment already clearly indicate that run times would
be extremely high for the network sizes under consideration.

For each of the networks, we perform updates by introducing p = 10, 50, 100
virtual edges and report the iteration numbers, run times and the increase of total
communicability that is achieved by the update. The parameters of the method are
again chosen as in the previous experiments. The results are given in Table 3.5. We
can observe that (as expected) the execution time of the method also scales almost
perfectly linear with p, with a few exceptions in those cases where a larger number
of iterations of Algorithm 3.2 is needed for some values of p (e.g., for the SNAP/ca-
GrQc network and p = 50). In all cases, the introduced updates clearly benefit the
total communicability substantially, although the ratios by which it increases greatly
vary. In particular for the three Erdős collaboration networks, enormous increases
are achieved for p = 100. Still, even the worst result for p = 100 (the SNAP/as-
735 network) more than doubles the total communicability, although the number of
newly introduced edges is less than 1% of the number of existing edges. Thus, while
we cannot give precise guarantees for how well our updates approximate the “best”
update with p edges, the results clearly indicate that very good updates are produced

https://sparse.tamu.edu/
https://sparse.tamu.edu/

SENSITIVITY OF COMMUNICABILITY MEASURES 15

Table 3.5
Results obtained for test networks from the SuiteSparse collection (see Table 3.4 for details on

their properties). “Kryl. it.” refers to number of iterations in Algorithm 3.1, while ”HR it.” refers
to number of iterations in [35, Algorithm 5.2].

Network p Kryl. it. HR. it. time incr. of CTN

Pajek/Erdos972

10

18

3 0.21s 45%

50 3 0.78s 488%

100 3 1.66s 4026%

Pajek/Erdos982

10

18

3 0.18s 43%

50 3 0.97s 408%

100 3 2.08s 1981%

Pajek/Erdos992

10

18

2 0.16s 43%

50 3 0.89s 470%

100 3 1.82s 2612%

SNAP/ca-GrQc

10

16

2 0.14s 33%

50 4 1.21s 95%

100 2 1.37s 288%

SNAP/ca-HepTh

10

18

2 0.28s 26%

50 3 1.32s 532%

100 2 2.00s 941%

SNAP/as-735

10

15

3 0.24s 13%

50 3 1.19s 93%

100 4 3.43s 224%

also for larger real-world networks. ⋄

4. Some extensions of the network sensitivity concept. In this section,
we first show how the sensitivity concept from Definition 2.1 can be extended to
subgraph centrality and the Estrada index, and then we briefly discuss how sensitivity
with respect to removal (or outage) of certain nodes can be incorporated into the
framework. For all considered cases, computational procedures similar to the one
introduced in Section 3 can be derived in a straightforward fashion. We therefore do
not go into detail concerning this topic.

4.1. Sensitivity of subgraph centrality and the Estrada index. The con-
cept of total network sensitivity from [24] can straightforwardly be extended to the in-
fluence of edge modifications on subgraph centrality (2.5) and the Estrada index (2.6)
instead of total communicability, yielding the following analogue of Definition 2.1.
Sensitivity of subgraph centrality is especially relevant if one wants to judge the in-
fluence of network modifications on the centrality of a particular node instead of the
communicability of the network as a whole.

Definition 4.1. Let G = (V, E , w) be a weighted (di)graph with adjacency matrix
AG ∈ Rn×n and let Eij := eie

T
j ∈ Rn×n. Then, the sensitivity of subgraph centrality

16 M. SCHWEITZER

of node v with respect to changes in wij is defined as

(4.1) SSC
ij (v) := eTv Lexp(AG, Eij)ev

and the sensitivity of the Estrada index with respect to changes in wij is defined as

(4.2) SEE
ij (AG) := tr (Lexp(AG, Eij)) .

Remark 4.2. Note that of course (2.8) also holds with 1 replaced by ev, so that
again, for undirected graphs, it is sensible to define sensitivity of subgraph centrality
using just rank-one terms. ⋄

The following elementary result (which follows directly from the multivariate
chain rule) shows that the quantities defined in Definition 4.1 do indeed measure
sensitivity of the respective network indices.

Proposition 4.3. The sensitivity of subgraph centrality and the Estrada index
defined in Definition 4.1 are the rates of change of the respective quantities w.r.t.
changes in the weight wij, i.e.,

∂

∂wij
cSC(v;w) = SSC

ij (v) and
∂

∂wij
EE(AG;w) = SEE

ij (AG),

where the notations cSC(· ;w) and EE(· ;w) are meant to explicitly show the de-
pendence of the corresponding network indices on the underlying weight function.

Next, we give an alternative characterization of the sensitivities introduced above.
We again start by introducing a rather general result and then state a corollary for
our specific setting, which is similar in spirit to Corollary 2.4 for total sensitivity.

Theorem 4.4. Let A ∈ Cn×n and let f be analytic on a region that contains
spec(A). Then

tr(Lf (A,Eij)) = [f ′(AT)]ij .

Proof. First note that due to the definition of the trace, Theorem 2.3 and the
linearity of the Fréchet derivative, we have
(4.3)

tr(Lf (A,Eij)) =

n∑
v=1

eTv [Lf (A
T , Eij)]ijev = [Lf (A

T ,
n∑
v=1

eve
T
v)]ij = [Lf (A

T , In)]ij ,

where In denotes the identity matrix of size n × n. Now, because f is analytic on
a region containing spec(A), we can use the integral formula (2.1) for the Fréchet
derivative, which gives
(4.4)

Lf (A
T , In) =

1

2πi

∫
Γ

f(ζ)(ζI−AT)−1In(ζI−AT)−1 dζ =
1

2πi

∫
Γ

f(ζ)(ζI−AT)−2 dζ.

The right-hand side of (4.4) corresponds to the Cauchy integral formula for the de-
rivative of f , so that we find

(4.5) Lf (A
T , In) =

1

2πi

∫
Γ

f(ζ)(ζI −AT)−2 dζ = f ′(AT).

Inserting (4.5) into (4.3) concludes the proof.

SENSITIVITY OF COMMUNICABILITY MEASURES 17

Table 4.1
Virtual edges (i, j) with highest total sensitivity STN

ij and highest sensitivity of the Estrada index

SEE
ij for the Florentine family network.

Total sensitivity Estrada index

Edge STN
ij Edge SEE

ij

Medici – Strozzi 42.22 Medici – Guadagni 2.73

Medici – Guadagni 39.40 Bischeri – Castellani 2.46

Medici – Bischeri 36.20 Tornabuoni – Albizzi 2.36

Medici – Peruzzi 35.33 Medici – Strozzi 2.10

Medici – Castellani 34.26 Guadagni – Ridolfi 2.02

Corollary 4.5. Let SSC
ij (v) and SEE

ij (AG) denote the sensitivities of subgraph
centrality and the Estrada index defined in (4.1)–(4.2). Then

(4.6) SSC
ij (v) = [Lexp(A

T
G, eve

T
v)]ij .

and

(4.7) SEE
ij (AG) = [exp(ATG)]ij .

Proof. Relation (4.6) follows by applying Theorem 2.3 to f(A) = exp(AG) and
u = v = ev. Similarly, (4.7) follows by applying Theorem 4.4 to tr(Lexp(AG, Eij),
noting that f = f ′ for f = exp.

Remark 4.6. We briefly comment on formula (4.7) for the sensitivity of the
Estrada index, as it reveals a quite curious connection. The entry [exp(ATG)]ij =
[exp(AG)]ji is determined by the number and lengths of walks in G that start at node j
and end at i (for an undirected graph, this quantity was introduced as communicability
of nodes i and j in [29]). It is quite interesting that this number single-handedly
controls how sensitive the Estrada index reacts to modifications in the edge (i, j). ⋄
We now illustrate on a small example that it is indeed worthwhile to consider sensi-
tivity of subgraph centrality instead of total sensitivity, as it can give quite different
results.

Example 4.7. We consider a simple unweighted, undirected example network
taken from [19]; see also [10]. The network consists of 15 nodes, representing Floren-
tine families in the 15th century, and 20 edges, representing marriages between the
families.

Assume we want to add five edges to the network with the goal to increase its
communicability as much as possible. To find suitable edges, we compute the sen-
sitivities STN

ij and SEE
ij for all virtual edges (i, j) and then add the five edges with

highest sensitivity to the network. Depending on whether we use total sensitivity or
sensitivity of the Estrada index, different edges are selected. The results are sum-
marized in Table 4.1. Interestingly, the approach based on total communicability
selects five edges all involving the Medici family (which is the family with by far high-
est total communicability), while the approach based on the Estrada index selects
only two edges involving Medici and three edges involving other families, thus leading
to a more “balanced” update of the network. Figure 4.1 depicts the network, the
communicability scores of the nodes and the updates resulting from both approaches.

18 M. SCHWEITZER

Peruzzi
BischeriLamberteschi

StrozziGuadagni

Castellani
Ridolfi

Tornabuoni
Albizzi

Medici
Barbadori

Pazzi

Salviati

Acciaiuoli

Ginori

Before modification

Peruzzi
BischeriLamberteschi

StrozziGuadagni

Castellani
Ridolfi

Tornabuoni
Albizzi

Medici
Barbadori

Pazzi

Salviati

Acciaiuoli

Ginori

After modification
Modification using total communicability

Peruzzi
BischeriLamberteschi

StrozziGuadagni

Castellani
Ridolfi

Tornabuoni
Albizzi

Medici
Barbadori

Pazzi

Salviati

Acciaiuoli

Ginori

Before modification

Peruzzi
BischeriLamberteschi

StrozziGuadagni

Castellani
Ridolfi

Tornabuoni
Albizzi

Medici
Barbadori

Pazzi

Salviati

Acciaiuoli

Ginori

After modification
Modification using Estrada index

Fig. 4.1. Florentine family network before and after edge modification. Top row: Edge mod-
ification according to total sensitivity STN

ij . The size and coloring of the nodes indicate the total

communicability of each node before (left) and after the modification (right), with lighter colors in-
dicating higher values. Bottom row: Edge modification according to sensitivity of the Estrada index
SEE
ij . The size and coloring of the nodes indicate the subgraph centrality of each node before (left)

and after the modification (right). Note that we deliberately do not use the same color scale in the
left and right plots, but instead have the color be determined by the relative importance of the node
in its specific network.

This example clearly illustrates that network modifications based on total com-
municability and subgraph centrality can lead to quite different results. Which result
is more appropriate for efficiently updating the network at hand of course depends on
the specific application. For the above example, one could argue that the “balanced”
update obtained by using the Estrada index might be preferable to the “Medici-
focused” update (e.g., because there might be too few Medici descendants for so
many marriages). ⋄

4.2. Network sensitivity with respect to node removal. When investigat-
ing robustness of networks, another modification that is certainly of interest besides
edge addition/removal is the removal of a node from the network. This modification
fits into our framework by modeling it as the removal of all in-/outgoing edges of the
node, isolating it from the rest of the network.

For easier notation, we denote the vth row and column of AG by av: := eTv AG
and a:v := AGev, respectively, and define

(4.8) AG(h) = AG − hEv where Ev = −(evav: + a:ve
T
v).

SENSITIVITY OF COMMUNICABILITY MEASURES 19

This way, AG(0) = AG, while AG(1) is the adjacency matrix of the graph in
which all edges incident to node v are removed and all other edges remain unchanged.
Thus, in light of (4.8), it is natural to define the sensitivities with respect to removal
of node v via

STN
v (AG) := 1TLexp(AG, Ev)1,

SSC
v (u) := eTu Lexp(AG, Ev)eu,(4.9)

SEE
v (AG) := tr(Lexp(AG, Ev)).

Clearly, Ev is a linear combination of those Eiv and Evj for which (i, v) ∈ E or
(v, j) ∈ E . By the linearity of the Fréchet derivative, analogous relations to those in
Corollary 2.4 and Corollary 4.5 therefore also hold for the measures (4.9), characteriz-
ing them as the (possibly weighted) sum of a few entries of the matrices in (2.12), (4.6)
and (4.7), respectively. We refrain from explicitly stating all of the corresponding for-
mulas, as they are completely straightforward. Just as an example, for sensitivity of
total communicability, we find

STN
v (AG) =

∑
(i,v)∈E

STN
i,v (AG) +

∑
(v,j)∈E

STN
v,j (AG)

=
∑

(i,v)∈E

[Lexp(A
T
G,11

T)]iv +
∑

(v,j)∈E

[Lexp(A
T
G,11

T)]vj ,

which can also be evaluated by forming just a single Fréchet derivative.

Remark 4.8. The sensitivity measures (4.9) can be used for analyzing robustness
of a network with respect to outages, targeted attacks etc. of certain nodes. This might
be particularly interesting for directed networks: in contrast to undirected networks,
it is rather difficult to find a good approach for assigning a single centrality score to
a node. For example, it turns out that the diagonal entries of exp(AG) do not need
to carry any meaningful information in the directed case; see, e.g., [11]. Instead, it is
more appropriate to assign two scores to a node, one which measures the importance as
broadcaster and one which measures the importance as receiver of information. These
measures give information on the nature of information flow and the roles of nodes in
the network, but they do not straightforwardly answer questions about vulnerability
of the network to outage of certain nodes. For example, it is not clear whether a
network would be most strongly affected by the removal of an important broadcaster,
an important receiver, or a node which is not at the top of any of the two categories,
but takes on both roles reasonably well. For this question, the measures (4.9), in
particular STN

v (AG), could thus potentially yield meaningful additional information.
⋄

5. Decay bounds for the Fréchet derivative and a priori bounds for
sensitivity to edge or node modifications. It is well-known that the entries of
matrix functions f(A) often exhibit an exponential or even super-exponential decay
away from the sparsity pattern of A: The larger the geodesic distance d(u, v) of node
u and v in the graph of A, the smaller the entry [f(A)]uv can be expected to be. This
was first studied for the inverse of banded matrices in [27] and later extended to other
functions and matrices with more general sparsity pattern in numerous works; see,
e.g., [14, 9, 15, 16, 32, 33, 46, 48, 49] and the references therein; Specifically, in [47]
such an approach was applied in the context of network modifications.

20 M. SCHWEITZER

5.1. Sparsity structure of Fréchet derivatives. In this section, we investi-
gate decay properties of the Fréchet derivative Lf (A,E), when the direction term is
of the special form E = Eij or E = Ev considered in this work.

In order to apply techniques similar to those often used for proving decay in f(A),
we start by investigating the sparsity pattern of Fréchet derivatives of polynomial
matrix functions. In the following, we denote the set of all polynomials of degree at
most m by Πm. The following elementary result forms the basis of our derivations.

Proposition 5.1. Let A,E ∈ Rn×n and let pm(z) =
∑m
k=0 αkz

k ∈ Πm. Then
the Fréchet derivative of pm at A in direction E is given by

(5.1) Lpm(A,E) =

m∑
k=1

αk

k∑
ℓ=1

Aℓ−1EAk−ℓ.

Proof. The result is, e.g., a special case of [34, Problem 3.6].

With help of Proposition 5.1, we can prove the following result about the nonzero
structure of Lpm(A,Eij).

Lemma 5.2. Let pm ∈ Πm, let A ∈ Rn×n and let Eij = eie
T
j ∈ Rn×n. Then

[Lpm(A,Eij)]uv = 0 if d(u, i) + d(j, v) ≥ m.

Proof. We begin by recalling that [Aℓ]rs = 0 if d(r, s) > ℓ. Now consider for-
mula (5.1) for the special case E = Eij , giving

[Lpm(A,Eij)]uv = eTu

(
m∑
k=1

αk

k∑
ℓ=1

Aℓ−1EijA
k−ℓ

)
ev

=

m∑
k=1

αk

k∑
ℓ=1

eTu A
ℓ−1eie

T
j A

k−ℓev

=

m∑
k=1

αk

k∑
ℓ=1

[Aℓ−1]ui[A
k−ℓ]jv.

It suffices to consider the term for k = m. A term in the inner sum can only be nonzero
if both [Aℓ−1]ui and [Am−ℓ]jv are nonzero, i.e., if d(u, i) ≤ ℓ− 1 and d(j, v) ≤ m− ℓ.
If d(u, i) + d(j, v) ≥ m, these two inequalities cannot both be satisfied at the same
time for any ℓ, so that all terms appearing in the sum are zero. The assertion of the
lemma directly follows.

Similarly, the special structure of the direction term Ev from (4.8) allows to
conclude about the sparsity pattern of the Fréchet derivative Lpm(A,Ev).

Lemma 5.3. Let pm ∈ Πm, let A ∈ Rn×n and let Ev = −(evav:+a:ve
T
v) ∈ Rn×n.

Then

[Lpm(A,Ev)]u1u2 = 0 if d(u1, v) + d(v, u2) ≥ m+ 1.

Proof. As the Fréchet derivative is linear in its second argument, we have

(5.2) [Lpm(A,Ev)]u1u2
= −Lpm(A, evav:)− Lpm(A,a:ve

T
v).

SENSITIVITY OF COMMUNICABILITY MEASURES 21

In particular, Lpm(A,Ev)]u1u2
is zero when both individual terms on the right-hand

side of (5.2) are zero. Using Proposition 5.1 and proceeding analogously to the proof
of Lemma 5.2, we find

(5.3) [Lpm(A, evav:)]u1u2
=

m∑
k=1

αk

k∑
ℓ=1

[Aℓ−1]u1v[A
k−ℓ+1]vu2

and

(5.4) [Lpm(A,a:ve
T
v)]u1u2 =

m∑
k=1

αk

k∑
ℓ=1

[Aℓ]u1v[A
k−ℓ]vu2 .

Clearly, when d(u1, v)+d(v, u2) ≥ m+1, then all terms appearing in the sums in (5.3)
and (5.4) are zero, from which the assertion of the lemma follows.

5.2. A priori bounds for network sensitivity. Using the results from Sec-
tion 5.1, together with a recent result from [21], we can obtain bounds for the entries
of Lf (AG, Eij) and Lf (AG, Ev) from best polynomial approximation of f ′ on the
numerical range (or field of values) of AG,

W (AG) = {xTAGx : ∥x∥ = 1}.

Theorem 5.4. Let AG ∈ Rn×n, Eij = eie
T
j ∈ Rn×n and denote by W (AG) the

numerical range of AG. Then

|[Lf (AG, Eij)]uv| ≤ C · min
p∈Πm(u,v)−1

max
z∈W (AG)

|f ′(z)− p(z)|

where m(u, v) = d(u, i) + d(j, v) and

(5.5) C =

{
1 if A is normal,(
1 +
√
2
)2

otherwise.

Remark 5.5. If one replaces Eij with Ev, by following similar steps as in the
proof of Theorem 5.4, one finds the bound

|[Lf (AG, Ev)]u1u2
| ≤ C ·

√
deg(v) min

p∈Πm(u1,u2)−1

max
z∈W (AG)

|f ′(z)− p(z)|

where deg(v) :=
∑n
u=1 wvu denotes the “weighted degree” of node v (also known as

the “strength” of v) and m(u1, u2) := d(u1, v) + d(v, u2) + 1. ⋄
In the special case of the exponential function f(z) = ez that we are most inter-

ested in, we have f ′(z) = f(z), so that any polynomial approximation result for f can
directly be used to obtain decay bounds for the Fréchet derivative. We demonstrate
one specific bound obtained this way in the following corollary, which results from
combining Theorem 5.4 with [38, Lemma 2]. Note that of course any other polyno-
mial approximation result for the exponential function, like, e.g., [8, Corollary 4.1,
Corollary 4.2] could also be used in conjunction with Theorem 5.4 to obtain explicit
bounds for the Fréchet derivative. The proof of this result is presented in Appendix A.

Corollary 5.6. Let G be an undirected graph with adjacency matrix AG and
denote the smallest and largest eigenvalue of AG by λmin and λmax, respectively. Fur-
ther, let Eij = eie

T
j ∈ Rn×n and denote m(u, v) := d(u, i) + d(j, v).

22 M. SCHWEITZER

Then, if
√
λmax − λmin ≤ m(u, v) ≤ λmax − λmin

2
, we have the bound

(5.6) |[Lexp(AG, Eij)]uv| ≤ 2
λmax − λmin

m(u, v)
e
λmax− 4m(u,v)2

5(λmax−λmin)

and if m(u, v) >
λmax − λmin

2
, we have the bound

(5.7) |[Lexp(AG, Eij)]uv| ≤ 8
eλmax ·m(u, v)

λmax − λmin

(
e · (λmax − λmin)

4m(u, v) + 2(λmax − λmin)

)m(u,v)

.

Remark 5.7. The result of Corollary 5.6 can be used to obtain a priori estimates
for the sensitivity of individual nodes with respect to modifications in an edge (i, j). In
particular, for the sensitivity of subgraph centrality, an estimate is directly obtained
by setting v = u in (5.6) or (5.7). This mathematically confirms the intuition that
nodes are more sensitive to the modification of “nearby” edges than to modifications
of edges in other parts of the network. It is very similar in spirit to the analysis
performed in [47], where analogous bounds were obtained directly for the change of
centrality scores instead of for their sensitivity. ⋄

Remark 5.8. If the extremal eigenvalues λmin, λmax of AG are not known, one
can still obtain decay estimates by inserting suitable bounds. As a simple example,
by Geršgorin’s disk theorem we have for any adjacency matrix of an undirected graph
that spec(AG) ⊂ [− degmax,degmax], where degmax denotes the maximum degree of
any node in G. Thus λmax − λmin ≤ 2 degmax, and for graphs where all nodes have
similar degrees (which is, e.g., the case for grid-like graphs and many road networks),
the decay estimates obtained from using this bound might still carry meaningful
information. In graphs with highly varying degrees, the estimates obtained this way
will typically not accurately capture the actual decay behavior. ⋄

It is also possible to obtain decay bounds for Lexp(AG, Eij) in the nonsymmetric
case, i.e., for directed graphs. In this case, W (AG) is not an interval but an arbitrary
convex set in the complex plane. Depending on the shape of this set (or the shape of
a larger set containing it), many different bounds can be obtained, typically in terms
of conformal mappings and Faber polynomials; see, e.g., [47, 8, 36] for examples of
this technique (mostly in the context of analyzing convergence of Krylov subspace
methods instead of finding decay bounds).

In the following corollary, we demonstrate the bounds arising from the assumption
that W (AG) is contained in a disk of radius r. One can always take a disk centered
at the origin and choose r = ν(AG), the numerical radius of AG, i.e., the largest
eigenvalue of the Hermitian matrix 1

2 (AG + ATG). When the extent of W (AG) is
not (close to) symmetric to the imaginary axis, better bounds might be achieved by
choosing the center of the disk to be different from the origin. The result is stated in
terms of the lower incomplete gamma function

γ(a, x) =

∫ x

0

ta−1e−t dt.

Its proof is given in Appendix A.

Corollary 5.9. Let G be a digraph with adjacency matrix AG and assume that
W (AG) is contained in a disk of radius r centered at c. Further, let Eij = eie

T
j ∈

SENSITIVITY OF COMMUNICABILITY MEASURES 23

Rn×n and denote m(u, v) := d(u, i) + d(j, v). Then

(5.8) |Lexp(A,Eij)uv| ≤ 2
(
1 +
√
2
)2
er+c

γ(m(u, v), r)

(m(u, v)− 1)!
.

Remark 5.10. For a ≥ 1, the lower incomplete gamma function fulfills

γ(a, x) ≤
(
1− e−x

) xa−1

a
;

see, e.g., [45, eq. 8.10.2]. Thus, when m(u, v) ≥ 1, we can replace (5.8) by the easier
to grasp bound

|Lexp(A,Eij)uv| ≤ 2
(
1 +
√
2
)2 (

er+c − 1
) rm(u,v)−1

m(u, v)!
.(5.9)

Note, however, that the bound (5.9) is actually increasing in m(u, v) as long as
m(u, v) ≤ r, which is not the case for (5.8). ⋄

Next, we state two results with a priori bounds for sensitivity with respect to
node removal, which are essentially analogues of Corollary 5.6 and 5.9 based on the
modification given in Remark 5.5. As the lines of argument are analogous to before
we just state the final results and refrain from providing all details.

Corollary 5.11. Let G be an undirected graph with adjacency matrix AG and
denote the smallest and largest eigenvalue of AG by λmin and λmax, respectively. Fur-
ther, let Ev = −(evav:+a:ve

T
v) ∈ Rn×n and denote m(u1, u2) := d(u1, v)+d(v, u2)+1.

Then, if
√
λmax − λmin + 1 ≤ m(u1, u2) ≤

λmax − λmin

2
+ 1, we have the bound

(5.10) |[Lexp(AG, Ev)]u1u2 | ≤ 2
√
deg(v)

λmax − λmin

m(u1, u2)− 1
e
λmax− (m(u1,u2)−1)2

5
4
(λmax−λmin)

and if m(u1, u2) >
λmax − λmin

2
+ 1, we have the bound

|[Lexp(AG, Ev)]u1u2 |

≤ 8
√
deg(v)

eλmax(m(u1, u2)− 1)

λmax − λmin
·
(

e · (λmax − λmin)

4(m(u1, u2)− 1) + 2(λmax − λmin)

)m(u1,u2)−1

.(5.11)

Corollary 5.12. Let G be a digraph with adjacency matrix AG and assume
that W (AG) is contained in a disk of radius r centered at c. Further, let Ev =
−(evav: + a:ve

T
v) ∈ Rn×n and denote m(u1, u2) := d(u1, v) + d(v, u2) + 1. Then

|Lexp(AG, Ev)u1u2
| ≤ 2

(
1 +
√
2
)2√

deg(v)er+c
γ(m(u, v), r)

(m(u1, u2)− 1)!
.

To conclude this section, we compare the quality of our decay bounds to the
actual sensitivity values for a real-world network.

Example 5.13. This example illustrates the result of Corollary 5.11, using a
graph representing the London city transportation network [22, 23]. Each node of
the network corresponds to a station and edges between stations indicate train, metro
or bus connections. The original dataset [22] is actually a multilayer network, from

24 M. SCHWEITZER

Fig. 5.1. Bounds for the sensitivity of nodes in the London transportation network with re-
spect to the removal of the node corresponding to Moorgate station (depicted in white), obtained
from (5.10) and (5.11). Light colors correspond to high sensitivity, while dark colors correspond to
low sensitivity (street map generated with cartopy [43], map data © OpenStreetMap).

0 50 100 150 200 250 300 350
10−53

10−24

105

bound (5.10)–(5.11)

actual sensitivity

Fig. 5.2. Comparison of the bounds (5.10) and (5.11) to the actual sensitivity of the nodes
subgraph centrality. Nodes are reordered according to their sensitivity (descendingly).

which we obtain an undirected graph by aggregating the different layers. The maxi-
mum degree of any node in the resulting network is 7, and its adjacency matrix has
spectrum spec(AG) = [−3.24, 3.79] (rounded to two decimal digits).

We consider the network modification resulting from the removal of the node
corresponding toMoorgate station near the center of London and bound the sensitivity
of the nodes’ subgraph centrality by using (5.10) and (5.11) for u1 = u2. The resulting
sensitivity bounds are illustrated by the color-coding in Figure 5.1 (the node depicted
in white is the removed node, Moorgate station). Only nodes in the direct surrounding
of Moorgate station are sensitive to this modification, while the influence rapidly drops
off with increasing distance (as one would also intuitively expect). Note that for nodes
u with a distance of one to Moorgate station, m(u, u) fulfills neither of the inequalities
in Corollary 5.11, so that no bound can be obtained. Whenever this happens, one can
of course expect the corresponding nodes to be highly sensitive to the modification at
hand (and therefore, we also depict those nodes in light colors in Figure 5.1). Thus,
if one is only interested in finding all sensitive nodes, then this is no limitation, but
one does not obtain an actual bound for quantifying the influence.

To gauge how accurately the bounds (5.10) and (5.11) capture the actual sensi-

SENSITIVITY OF COMMUNICABILITY MEASURES 25

tivity of the nodes’ subgraph centralities, we explicitly compute the sensitivities of
subgraph centrality of all nodes and compare the obtained values to our bounds; see
Figure 5.2, where we have sorted the nodes decreasingly by their actual sensitivity for
better visualization. We can observe that our bounds capture the qualitative behavior
of the sensitivity very well, but that the magnitude of the sensitivities is overestimated
by some margin (a phenomenon that is also well-known for similar decay bounds for
entries of matrix functions). Clearly, the bounds (5.10) and (5.11) attain the same
value for all nodes having the same distance from Moorgate station, leading to a
“staircase-like” shape of the bound in Figure 5.2. Interestingly, we observe a similar
pattern, although a little less pronounced, in the actual sensitivities, showing that
this is not simply an artifact of the technique used for finding the decay bounds, but
a feature that is actually observable in the exact values. ⋄

6. Concluding remarks. We have proposed a computational procedure for
identifying network modifications to which the communicability of the network is
most sensitive. For typical real-world networks, the computational complexity of the
method scales linearly with the number of nodes, making it feasible also for large scale
networks.

We have also extended the concept of network sensitivity with respect to edge
modifications from total communicability to subgraph centrality and the Estrada
index and we have demonstrated how sensitivity with respect to removal of nodes fits
into the framework.

Additionally, we have derived a priori bounds for the sensitivities (based on spar-
sity patterns of the Fréchet derivative of polynomial matrix functions with structured
direction terms), which predict the actual qualitative behavior of sensitivity quite
well and give some further intuitive insight into the concept of network sensitivity.
These decay bounds might also be of independent interest in other applications where
Fréchet derivatives with structured direction terms occur.

It is an interesting topic for future research to compare the edge and node rank-
ings obtained with the sensitivity concept to those obtained by other means for actual
analysis of real-world networks (e.g., in the context of vulnerability analysis) and iden-
tify the practical advantages and disadvantages of each approach. Another research
avenue, which is not related to the analysis of complex networks, is identifying further
application areas in which Fréchet derivatives with respect to structured, low-rank di-
rection terms play an important role, which could, e.g., benefit from the decay bounds
developed in Section 5.

Acknowledgments. The author wishes to thank the anonymous referees for their
helpful comments which helped improve the manuscript.

Appendix A. Technical proofs.

Proof of Theorem 5.4. Let u and v be fixed arbitrarily and let p be any polyno-
mial of degree at most m(u, v). Then, by Lemma 5.2, we have [Lp(AG, Eij)]uv = 0.
Consequently,

(A.1) [Lf (AG, Eij)]uv = [Lf (AG, Eij)]uv − [Lp(AG, Eij)]uv = [Lg(AG, Eij)]uv,

where g = f − p. We now bound the absolute value of the right-hand side of (A.1) as

(A.2) |[Lg(AG, Eij)]uv| ≤ ∥Lg(AG, Eij)∥ ≤ ∥Lg(AG, ·)∥ · ∥Eij∥.

26 M. SCHWEITZER

By [21, Section 1 and Corollary 5.1], we have

∥Lg(AG, ·)∥ ≤ C · max
z∈W (AG)

|g′(z)|,

where C is defined in (5.5). As g′ = f ′ − p′ and p′ ∈ Πm(u,v)−1, we obtain

(A.3) ∥Lg(AG, ·)∥ ≤ C · min
p∈Πm(u,v)−1

max
z∈W (AG)

|f ′(z)− p(z)|,

as p can be chosen arbitrarily. Combining (A.1), (A.2) and (A.3) and using ∥Eij∥ = 1
proves the result.

Proof of Corollary 5.6. It is well known that exp(AG + σI) = exp(σ) · exp(AG)
for any σ, and this relation readily carries over to the Fréchet derivative, so that we
also have

(A.4) Lexp(AG + σI,Eij) = eσ · Lexp(AG, Eij).

Define the negative semidefinite matrix ÃG := AG−λmaxI with spectrum in [−λmax+
λmin, 0]. By (A.4), we then have

(A.5) [Lexp(AG, Eij)]uv = eλmax · [Lexp(ÃG, Eij)]uv.

The entries of Lexp(ÃG, Eij) can now be bounded via Theorem 5.4, using the polyno-
mial approximation result of [38, Lemma 2] for positive semidefinite matrices. This
result states that

min
p∈Πm−1

max
z∈[−4ρ,0]

| exp(z)− p(z)| ≤

8 ρme

−m2

5ρ , if
√
4ρ ≤ m ≤ 2ρ,

2mρ

(
eρ

m+2ρ

)m
, if m > 2ρ.

Inserting ρ = (λmax − λmin)/4 and combining with (A.5) proves the result.

Proof of Corollary 5.9. Let ∆ := ∆r,c denote the closed disk of radius r > 1
centered at c. Denote by ϕ the conformal mapping from the exterior of ∆ onto
the exterior of the unit disk and by ψ its inverse. Clearly, ϕ(z) = (z − c)/r and
ψ(w) = rw + c. As W (AG) ⊆ ∆, it follows from Theorem 5.4 that

(A.6) |Lexp(AG, Eij)uv| ≤
(
1 +
√
2
)2
· min
p∈Πm(u,v)−1

max
z∈∆
|ez − p(z)|.

It is well-known (see, e.g., [8, Section 2, 3]) that the right-hand side of (A.6) can be
bounded in terms of the Faber coefficients of the exponential function, which gives

(A.7) |Lexp(AG, Eij)uv| ≤ 2
(
1 +
√
2
)2 ∞∑

k=m(u,v)

|fk|

where

fk =
1

2πi

∫
|w|=R

eψ(w)

wk+1
dw.

for any R > 1. Due to the simple nature of ψ, we can explicitly compute the Faber
coefficients by the residue theorem, which gives

(A.8) fk =
1

2πi

∫
|w|=R

eψ(w)

wk+1
dw =

rkec

k!
.

SENSITIVITY OF COMMUNICABILITY MEASURES 27

Further, we have the following relation for the lower incomplete gamma function,

(A.9)

∞∑
k=a

xk

k!
= ex

γ(a, x)

(a− 1)!
.

which can, e.g., be obtained from [37, eq. (1.7)–(1.8)] by simple algebraic manipula-
tions. Inserting (A.8) and (A.9) into (A.7) then yields

|Lexp(AG, Eij)uv| ≤ 2
(
1 +
√
2
)2 ∞∑

k=m(u,v)

rkec

k!
= 2

(
1 +
√
2
)2
er+c

γ(m(u, v), r)

(m(u, v)− 1)!
,

which completes the proof.

REFERENCES

[1] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue
problem. Q. Appl. Math., 9:17–29, 1951.

[2] F. Arrigo and M. Benzi. Edge modification criteria for enhancing the communicability of
digraphs. SIAM J. Matrix Anal. Appl., 37(1):443–468, 2016.

[3] F. Arrigo and M. Benzi. Updating and downdating techniques for optimizing network commu-
nicability. SIAM J. Sci. Comput., 38(1):B25–B49, 2016.

[4] F. Arrigo and F. Durastante. Mittag–Leffler functions and their applications in network science.
SIAM J. Matrix Anal. Appl., 42(4):1581–1601, 2021.

[5] A.-L. Barabási. Linked: The new science of networks, 2003.
[6] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer. Low-rank updates of matrix

functions II: Rational Krylov methods. SIAM J. Numer. Anal., 59(3):1325–1347, 2021.
[7] B. Beckermann, D. Kressner, and M. Schweitzer. Low-rank updates of matrix functions. SIAM

J. Matrix Anal. Appl., 39(1):539–565, 2018.
[8] B. Beckermann and L. Reichel. Error estimation and evaluation of matrix functions via the

Faber transform. SIAM J. Numer. Anal., 47:3849–3883, 2009.
[9] M. Benzi. Localization in Matrix Computations: Theory and Applications. In M. Benzi and

V. Simoncini, editors, Exploiting Hidden Structure in Matrix Computations: Algorithms
and Applications, volume 2173 of C.I.M.E. Foundation Subseries, pages 211–317. Springer,
New York, 2016.

[10] M. Benzi and P. Boito. Matrix functions in network analysis. GAMM-Mitteilungen,
43(3):e202000012, 2020.

[11] M. Benzi, E. Estrada, and C. Klymko. Ranking hubs and authorities using matrix functions.
Linear Algebra Appl., 438(5):2447–2474, 2013.

[12] M. Benzi and C. Klymko. Total communicability as a centrality measure. J. Complex Netw.,
1(2):124–149, 2013.

[13] M. Benzi and C. Klymko. On the limiting behavior of parameter-dependent network centrality
measures. SIAM J. Matrix Anal. Appl., 36(2):686–706, 2015.

[14] M. Benzi and N. Razouk. Decay bounds and O(n) algorithms for approximating functions of
sparse matrices. Electron. Trans. Numer. Anal., 28:16–39, 2007.

[15] M. Benzi and M. Rinelli. Refined decay bounds on the entries of spectral projectors associated
with sparse Hermitian matrices. Linear Algebra Appl., 647:1–30, 2022.

[16] M. Benzi and V. Simoncini. Decay bounds for functions of Hermitian matrices with banded or
Kronecker structure. SIAM J. Matrix Anal. Appl., 36(3):1263–1282, 2015.

[17] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Struc-
ture and dynamics. Physics reports, 424(4-5):175–308, 2006.

[18] D. W. Boyd. The power method for ℓp norms. Linear Algebra Appl., 9:95–101, 1974.
[19] R. L. Breiger and P. E. Pattison. Cumulated social roles: The duality of persons and their

algebras. Soc. Netw., 8(3):215–256, 1986.
[20] R. Cohen and S. Havlin. Complex networks: structure, robustness and function. Cambridge

university press, 2010.
[21] M. Crouzeix and D. Kressner. A bivariate extension of the Crouzeix-Palencia result with an

application to Fréchet derivatives of matrix functions. arXiv preprint arXiv:2007.09784,
2020.

[22] M. De Domenico. Multilayer network dataset. https://comunelab.fbk.eu/data.php.

https://comunelab.fbk.eu/data.php
https://comunelab.fbk.eu/data.php

28 M. SCHWEITZER

[23] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas. Navigability of interconnected
networks under random failures. Proc. Natl. Acad. Sci., 111(23):8351–8356, 2014.

[24] O. De la Cruz Cabrera, J. Jin, S. Noschese, and L. Reichel. Communication in complex
networks. Appl. Numer. Math., 172:186–205, 2022.

[25] O. De la Cruz Cabrera, M. Matar, and L. Reichel. Analysis of directed networks via the matrix
exponential. J. Comput. Appl. Math., 355:182–192, 2019.

[26] O. De la Cruz Cabrera, M. Matar, and L. Reichel. Centrality measures for node-weighted
networks via line graphs and the matrix exponential. Numer. Algorithms, 88(2):583–614,
2021.

[27] S. Demko, W. F. Moss, and W. Smith. Decay rates for inverses of banded matrices. Math.
Comp., 43:491–499, 1984.

[28] E. Estrada. The structure of complex networks: theory and applications. Oxford University
Press, 2012.

[29] E. Estrada and N. Hatano. Communicability in complex networks. Phys. Rev. E, 77(3):036111,
2008.

[30] E. Estrada and D. J. Higham. Network properties revealed through matrix functions. SIAM
Rev., 52(4):696–714, 2010.

[31] E. Estrada and J. A. Rodriguez-Velazquez. Subgraph centrality in complex networks. Phys.
Rev. E, 71(5):056103, 2005.

[32] A. Frommer, C. Schimmel, and M. Schweitzer. Bounds for the decay of the entries in inverses
and Cauchy–Stieltjes functions of certain sparse, normal matrices. Numer. Linear Algebra
Appl., 25(4):e2131, 2018.

[33] A. Frommer, C. Schimmel, and M. Schweitzer. Non-Toeplitz decay bounds for inverses of
Hermitian positive definite tridiagonal matrices. Electron. Trans. Numer. Anal., 48:362–
372, 2018.

[34] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, 2008.
[35] N. J. Higham and S. D. Relton. Estimating the largest elements of a matrix. SIAM J. Sci.

Comput., 38(5):C584–C601, 2016.
[36] M. Hochbruck and Ch. Lubich. On Krylov subspace approximations to the matrix exponential

operator. SIAM J. Numer. Anal., 34(5):1911–1925, October 1997.
[37] W. B. Jones and W. Thron. On the computation of incomplete gamma functions in the complex

domain. J. Comput. Appl. Math., 12:401–417, 1985.
[38] P. Kandolf, A. Koskela, S. D. Relton, and M. Schweitzer. Computing low-rank approximations

of the Fréchet derivative of a matrix function using Krylov subspace methods. Numer.
Linear Algebra Appl., page e2401, 2021.

[39] P. Kandolf and S. D. Relton. A block Krylov method to compute the action of the Fréchet de-
rivative of a matrix function on a vector with applications to condition number estimation.
SIAM J. Sci. Comput., 39(4):A1416–A1434, 2017.

[40] L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
1953.

[41] D. Kressner. A Krylov subspace method for the approximation of bivariate matrix functions.
In Structured matrices in numerical linear algebra, pages 197–214. Springer, 2019.

[42] J. Marcelino and M. Kaiser. Critical paths in a metapopulation model of H1N1: Efficiently
delaying influenza spreading through flight cancellation. PLoS currents, 4, 2012.

[43] Met Office. Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon,
2010 - 2015.

[44] M. Newman. Networks. second edition, 2018.
[45] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST handbook of mathematical

functions. Cambridge university press, 2010.
[46] S. Pozza and V. Simoncini. Functions of rational Krylov space matrices and their decay prop-

erties. Numer. Math., 148(1):99–126, 2021.
[47] S. Pozza and F. Tudisco. On the stability of network indices defined by means of matrix

functions. SIAM J. Matrix Anal. Appl., 39(4):1521–1546, 2018.
[48] C. Schimmel. Bounds for the decay in matrix functions and its exploitation in matrix compu-

tations. PhD thesis, Bergische Universität Wuppertal, 2019.
[49] M. Schweitzer. Decay bounds for Bernstein functions of Hermitian matrices with applications

to the fractional graph Laplacian. Electron. Trans. Numer. Anal., 55:438–454, 2022.
[50] P. D. Tao. Convergence of a subgradient method for computing the bound norm of matrices.

Linear Algebra Appl., 62:163–182, 1984.

	Introduction
	Basics & Notation
	Notation
	Graphs and matrices
	Functions of matrices and the Fréchet derivative
	Communicability measures and total network sensitivity

	Efficiently computing sensitivity measures
	A basic Krylov subspace scheme for Fréchet derivatives
	Finding the top few sensitivities
	Numerical experiments

	Some extensions of the network sensitivity concept
	Sensitivity of subgraph centrality and the Estrada index
	Network sensitivity with respect to node removal

	Decay bounds for the Fréchet derivative and a priori bounds for sensitivity to edge or node modifications
	Sparsity structure of Fréchet derivatives
	A priori bounds for network sensitivity

	Concluding remarks
	Appendix A. Technical proofs
	References

