
SOLVING BOLTZMANN EQUATION WITH NEURAL SPARSE REPRESENTATION

ZHENGYI LI∗, YANLI WANG† HONGSHENG LIU‡ ZIDONG WANG§ BIN DONG¶

Abstract. We consider the neural sparse representation to solve Boltzmann equation with BGK and quadratic colli-
sion model, where a network-based ansatz that can approximate the distribution function with extremely high efficiency
is proposed. Precisely, fully connected neural networks are employed in the time and spatial space so as to avoid the
discretization in space and time. The different low-rank representations are utilized in the microscopic velocity for the BGK
and quadratic collision model, resulting in a significant reduction in the degree of freedom. We approximate the discrete
velocity distribution in the BGK model using the canonical polyadic decomposition. For the quadratic collision model, a
data-driven, SVD-based linear basis is built based on the BGK solution. All these will significantly improve the efficiency of
the network when solving Boltzmann equation. Moreover, the specially designed adaptive-weight loss function is proposed
with the strategies as multi-scale input and Maxwellian splitting applied to further enhance the approximation efficiency
and speed up the learning process. Several numerical experiments, including 1D wave and Sod problems and 2D wave
problem, demonstrate the effectiveness of these neural sparse representation methods.

keyword: Boltzmann equation, BGK model, quadratic collision, canonical polyadic decomposition, sin-
gular value decomposition

1. Introduction. People are interested in the simulation of the kinetic theory, due to its extensive
applications in the engineering fields, such as aerospace, plasma, and micro-electro-mechanical systems.
However, Boltzamnn equation as one of the most important governing equations in kinetic theory, it
is quite difficult to solve efficiently and accurately. The main difficulty lies in the high dimensionality,
including time, spatial space and microscopic velocity space, and the complex quadratic collision with
high dimensional integral and singular collision kernel.

Nowadays, there are several kinds of methods to solve Boltzmann equation. For example, the sta-
tistical method as the direct simulation Monte Carlo (DSMC) is brought up in [3], which directly solves
Boltzmann equation with randomness. But it is limited by its low efficiency and the statistical noise.
Another kind of method is the deterministic method, such as the discrete velocity methods [34], which
solves Boltzmann equation by discreting the distribution function at several discrete velocity points.
Fourier spectral method [43, 55, 14] has also made great progress by approximating the distribution
function with trigonometric functions. Recently, Hermite spectral methods are successfully adopted to
solve the quadratic collision model [54]. Another important method is the moment method, which is
proposed by Grad [15], but it is limited by the non-hyperbolicity of the Grad moment equations, even
near Maxwellian. The asymptotic-preserving scheme [29] is also proposed for the Boltzmann equation,
and we refer [11] for a comprehensive review of these methods. The low-rank decomposition is applied
to numerically solving kinetic equations recently. The adaptive dynamic low-rank method is proposed in
[21, 31, 38] for Boltzmann equation, and a local macroscopic conservation low-rank method is brought
up for the Vlasov equation in [16]. Methods based on higher-order tensor decomposition [25, 5, 9] are
also applied for Boltzmann equation.

Recently, with the development of computers, more and more network-based methods are proposed
to solve Boltzmann and other kinetic equations. There are generally two kinds of methods. The first
one is combining neural networks and the reduced model of Boltzmann such as the moment models [15]
to learn a closed reduced model [17, 22, 48, 33]. The network-based method is first utilized to learn the
moment closure relation for Boltzmann equation in [17], and the moment closure models which preserve
several physical invariances are learned in [33]. A fast moment closure approximation based on the max
entropy method and neural networks is proposed in [48]. Other than Boltzmann equation, a neural
network-based moment closure model which preserves the hyperbolicity of radiative transfer equation is
brought up in [22]. The other kind of method is to solve Boltzmann equation directly in the framework
of PINN [45]. PINN was first utilized to solve Boltzmann equation in [37], but it is only for the BGK
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model. An asymptotic-preserving network-based method is proposed for linear transport equations in
[28]. There is also some work on the quadratic collision model. In [20], the quadratic collision terms
are first approximated by an auto-encoder. Then, with the idea of reduced order models, a new set of
basis is learned in [1], where the quadratic collision term is computed with computational effort reduced
significantly. However, only the spatially homogeneous problems are tested in both works. In [56], on the
other hand, the neural network is adopted to approximate the quadratic collision terms directly, where
spatially 1D and 2D examples are studied. DSMC method is utilized in [42] to generate the training
data, based on which the quadratic collision term used at the moment model is obtained.

Generally speaking, to solve Boltzmann equation efficiently is to find an ansatz that can approximate
the distribution function well. In this work, we propose a new ansatz, named neural sparse representation
(NSR), for the Boltzmann equation based on neural networks. NSR is a promising ansatz for the BGK
and quadratic collision model and can express the distribution function with significantly fewer degrees
of freedom compared to most traditional methods. In the framework of NSR, the network is built within
the framework of the discrete velocity method (DVM), where the input is spatial position and time,
and the output is the distribution function at the discrete velocity points. This eliminates the need for
discretization in time and space, significantly reducing the degree of freedom and overcoming the curse of
dimensionality. This makes the extension of NSR method to high dimensionality without difficulty. To
reduce the degree of freedom in the microscopic velocity space, the low-rank property of the distribution
function is explored, and different approximation methods are proposed for different collision models.
In the BGK model, it is approximated by the canonical polyadic decomposition (CPD), which is widely
used in PDE solving [4, 46] and accelerated deep learning [32, 27]. For the quadratic collision model,
due to its complexity, the BGK solution is utilized to construct a series of data-driven basis with SVD
decomposition to approximate the quadratic collision terms. Moreover, based on prior knowledge of
the Boltzmann equation, the multi-scale input is realized by scaling the time and spatial space with
parameters at different magnitudes, which can match the multi-scale property of Boltzmann equation.
The distribution function is processed using the Maxwellian splitting strategy to capture the behavior of
the macroscopic variables much easier. These two structures further improve the approximation efficiency
of NSR. An adaptive-weighted loss function is specially designed for the network. Except for the PDE
residual loss, which is usually contained in the loss function, the loss from macroscopic variables is added
into the loss function to match the property of Boltzmann equation, such as the fact that the density
of the PDE residual should be zero. In addition, since the contribution of different microscopic velocity
points is different, adaptive weights are added to the error of each microscopic velocity point. All these
techniques are employed to accelerate the process and enhance the approximation efficiency of NSR.

The effectiveness of the proposed neural network-based methods is validated through several nu-
merical experiments. These experiments comprise one-dimensional problems with both continuous and
discontinuous initial conditions, in addition to a two-dimensional wave problem. To further verify the
accuracy and efficiency of the methods, transfer learning is employed to investigate the computational
time for the two-dimensional wave problem.

The rest of this paper is organized as follows. In Sec. 2, the Boltzmann and its related properties are
introduced. In sec. 3, the general structure of the network is proposed. The neural sparse representation
of the BGK model and the quadratic collision model is discussed in Sec. 4 and 5, respectively. The
numerical experiments are presented in Sec. 6, with some concluding remarks in Sec. 7.

2. Boltzmann equation. In this section, we will introduce the Boltzmann equation, which de-
scribes a particle system from a statistical point of view. It has the form below

(2.1)
∂f(x,v, t)

∂t
+ v · ∇xf(x,v, t) = Q[f ](x,v, t), t ∈ R+, x ∈ R3, v ∈ R3,

where f(x,v, t) is the distribution function. Here, t is the time, x is the spatial coordinates, and v stands
for the microscopic velocity of the particles. Q[f ] is the collision operator which has a quadratic form

(2.2) Q[f ](x,v, t) = Q(f, f) =

∫
R3

∫
S2
B(v − v∗, σ)[f(v′∗)f(v′)− f(v∗)f(v)] dσ dv∗,

where v and v∗ are the velocities of two particles before the collision, and the velocities of v′ and v′∗ are
the velocities of the particles after the collision. From the conservation of momentum and energy during
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such a collision, we obtain the following relationship

(2.3) v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2

− |v − v∗|
2

σ,

where σ ∈ S2 is a unit vector. The collision kernel B(v − v∗, σ) > 0 is a non-negative function that
depends on v − v∗, and cosine of the derivation angle θ. It is often written as

(2.4) B (v − v∗, σ) = Φ (|v − v∗|) b(cos θ), cos θ =
σ · (v − v∗)

|v − v∗|
.

The specific form of B, which characterizes the details of the binary interactions, is determined by the
mutual potential between the particles. One of the commonly used collision kernels is the variable hard
sphere (VHS) model proposed by Bird [3] as

(2.5) B = Cα|v − v∗|α, α =
η − 5

η − 1
.

Here, constant Cα is empirically determined [55]. η is the index in the power of distance. The case η > 5
corresponds to the “hard potential” and the case η < 5 corresponds to the “soft potential”. The collision
kernel B(v−v∗, σ) is independent of |v−v∗| when η = 5, and is called “Maxwell molecules” in this case.
However, in the VHS model, the differential cross-section Cα|v − v∗|α−1 is independent of the deflection
angle. Then, the following anisotropic collision kernel with θ included in the cross-section is suggested in
[43, 55] as

(2.6) B = C ′α sinα−1
(
θ

2

)
|v − v∗|α,

where C ′α is a constant as

(2.7) C ′α =
(α+ 3)(α+ 5)

24
Cα.

Model (2.6) is utilized in the numerical simulations in this work.
Due to the complicity of the quadratic collision model (2.2), several simplified collision models are

proposed, such as the BGK collision model [2]

(2.8) QBGK[f ] =
1

τ
(M− f).

Here, τ is the mean relaxation time, andM is the local equilibrium which is called Maxwellian [41], and
has the form below

(2.9) M =
ρ

√
2πT

3 exp

(
−|v − u|2

2T

)
.

Here, ρ,u, T is the density, macroscopic velocity, and temperature, respectively. Their relationship with
the distribution function is

(2.10)
ρ(x, t) = 〈f〉 , m(x, t) , ρu(x, t) = 〈vf〉 ,

E(x, t) ,
3

2
ρT (x, t) +

1

2
ρ|u|2 =

1

2

〈
|v|2f

〉
,

where 〈·〉 is defined as

(2.11) 〈·〉 =

∫
R3

· dv.

The norm for a vector | · | is defined as

(2.12) |g|2 =

N∑
i=1

g2i , ∀g ∈ R1×M or g ∈ RM , M ∈ N+.
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m(x, t) and E(x, t) is the momentum and total energy respectively. Moreover, the total energy E(x, t)
is separated into energy in three directions as

(2.13) Ei(x, t) =
1

2

〈
(v(i))2f

〉
, i = 1, 2, 3.

The collision terms have some mathematical and physical properties that apply to arbitrary forms of
collision terms, such as the conservation of mass, momentum, and energy as

(2.14)

〈 1
v
|v|2

Q[f ]

〉
= 0.

For now, we have introduced the Boltzmann equation. There are several classical numerical methods
to solve it, such as the fast Fourier spectral method [43, 14], the moment method [50], the discrete
velocity method [34], and DSMC method [3]. But, it is still a challenge to solve Boltzmann equation
numerically due to its high dimensionality, quadratic collision operator, etc. In the following sections, a
neural sparse representation which is a high-quality ansatz of the distribution function is proposed, and
several strategies in the network-based method are brought up to solve Boltzmann equation efficiently.

3. Neural representation for Boltzmann equation. In this section, the general framework
of the neural representation for the Boltzmann equation will be introduced. When solving Boltzmann
equation using neural network, we first discretize Boltzmann equation in the microscopic velocity space
to obtain a semi-discrete system which is discussed in Sec. 3.1. Then, a fully connected neural network
is utilized to serve as a parameterized ansatz for the semi-discrete system, and the general network
architecture is introduced in Sec. 3.2. To optimize the network parameters, a specially designed loss
function is proposed, which is discussed in Sec. 3.3.

3.1. Discretization in the microscopic velocity space. In this section, we will introduce the
discretization in the microscopic velocity space, and the semi-discrete system is proposed. The discrete
velocity method [34] is utilized here to discrete the Boltzmann equation. Assuming the series of points
in each direction of the microscopic velocity space are

(3.1) V (i) =
[
v
(i)
1 , v

(i)
2 , · · · , v(i)Ni

]
∈ R1×Ni , i = 1, 2, 3,

with weights

(3.2) W (i) = [ω
(i)
1 , ω

(i)
2 , · · · , ω(i)

Ni
] ∈ R1×Ni , i = 1, 2, 3.

Then, all the points

(3.3)
(
v
(1)
l1
, v

(2)
l2
, v

(3)
l3

)T
, 1 6 li 6 Ni, i = 1, 2, 3,

make up the full discrete points in the microscopic velocity

(3.4) V , [v1,v2, · · · ,vN ] ∈ R3×Nv , vl =
(
v
(1)
l1
, v

(2)
l2
, v

(3)
l3

)T
,

with Nv =
∏3
i=1Ni and the corresponding weight

(3.5) W , [ω1, ω2, · · · , ωN ] ∈ R1×Nv , ωl =

3∏
i=1

ω
(i)
li
.

We want to emphasize that there exists a one-to-one mapping between l and (l1, l2, l3), and it will be not
listed explicitly. Thus, the discrete distribution functions are

(3.6) f(x, t) , [f1(x, t), f2(x, t), · · · , fNv (x, t)] ∈ R1×Nv , fi(x, t) = f(x,vi, t).

4



The macroscopic variables (2.10) and (2.13) can be expressed as
(3.7)
ρ[f ] = WfT , m[f ] = V (W × f)T , E[f ] = |V |2(W × f)T , Ei[f ] = |Vi|2(W × f)T , i = 1, 2, 3.

where

(3.8) (W × f)ij = Wijfij ,

and |V |2 = (|v1|2, |v2|2, · · · , |vNv
|2) ∈ R1×Nv . Vi ∈ R1×Nv is the i-th row of V . For the collision term

(2.2), the fast Fourier spectral method [43] is utilized here, and the discrete collision term is labeled as

(3.9) Qi = Q[f1, · · · , fNv ](x,vi, t).

Then, the Boltzmann equation (2.1) is reduced into

(3.10)


∂f1(x,t)

∂t + v1 · ∇xf1(x, t) = Q1,
...

∂fNv (x,t)
∂t + vn · ∇xfNv (x, t) = QNv ,

Let

(3.11) Q[f ] , [Q1,Q2, · · · ,QNv
]T .

For the BGK collision model, substituting f into (2.8), the discrete collision term is derived directly,
which is also denoted as (3.11). Thus, the system (3.10) is rewritten as

(3.12)
∂f(x, t)

∂t
+ V · ∇xf(x, t) = Q[f ].

In the solving process, a neural network is utilized to approximate the discrete distribution function
f , whose input is the spatial position x and time t, and the output is the distribution function value at
the fixed discrete velocity. The system (3.12) is adopted as the governing equation in the loss function,
the details of which will be introduced in the following sections.

3.2. Network architecture. In this section, the architecture of the network is introduced, where
a fully connected neural network is utilized. The general structure of the L-layer fully connected neural
network is composed of L fully connected layers, each of which consists of a linear transformation F (l)

and an activation function σ(l). The whole form of the network has the form below

(3.13) y(·) := y(L) = σ(L) ◦ F (L) ◦ σ(L−1) ◦ F (L−1) ◦ · · · ◦ σ(1) ◦ F (1)(y(0)),

where the l-th layer is a mapping from Rml−1 to Rml as

(3.14) y(l) = σ(l) ◦ F (l)
(
y(l−1)

)
, y(l−1) ∈ Rml−1 , y(l) ∈ Rml .

Substituting the specific form of F (l) into (3.14), it could be rewritten as

(3.15) y
(l)
j = σ(l)

(
ml−1∑
i=1

W
(l)
ji y

(l−1)
i + b

(l)
j

)
, j = 1, ...,ml,

where y(l) is the output of the l-th layer, y(0) is the input and y(L) is the output of the network. ml is
the dimension of the l-th layer, m0 is the dimension of the input and mL is the dimension of the output.
σ(l), l = 1, · · ·L here is the activation function in the l-th layer, and we will choose σ(L) as the identity
and the rest as some nonlinear activation function. Specially, the sine activation function

(3.16) σ(x) = sin(x)
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is utilized here. This is because sin activation functions are thought to exhibit better representation
[49] in implicit neural expression than activation functions such as tanh or softplus. W(l), which is a
Rml×ml−1 matrix, is the weight of the l-th layer and b(l) ∈ Rml is the bias of the l-th layer. {W(l), b(l)}Ll=1

constitutes the parameter sets of the neural network.
Solving PDE using a neural network is the process to determine parameters {W (l), b(l)}Ll=1 using

the optimization algorithms with proper loss functions. Here, the input is the spatial space and time
as y(0) = (x, t) ∈ R4 and the output is the discrete distribution function f in (3.6). For now, the
general form of the neural network to approximate Boltzmann equation is proposed. To improve the
approximation efficiency, two strategies as multi-scale input and Maxwellian splitting are utilized.

Multi-scale input. Multi-scale neural networks are always utilized when approximating problems
with high frequency [35, 23], whose main idea is to convert the learning of data with high frequency
to that with low frequency. Related studies show that using multi-scale networks or multi-scale inputs
[51] to change the function frequency can improve the convergence speed of networks. Due to the multi-
scale property of Boltzmann equation, the strategy of multi-scale input is adopted here to improve the
approximation efficiency of the network. Precisely, a relatively straightforward process is utilized by
multiplying the inputs of the network by a sequence of constants as

(3.17) y
(0)
multi =


c1
c2
...
cnc

 y(0) =


c1
c2
...
cnc

 (x, t) ∈ Rnc × R4.

Here, we want to emphasize that the constants ci, i = 1, · · ·nc are problem dependent, and chosen
empirically in the numerical tests. Besides, there is no theoretical evidence right now to show how this
strategy will affect the convergence speed of the neural network when approximating the PDE model, it
is adopted here following the results in [35].

Maxwellian splitting. Another strategy we adopt here is Maxwellian splitting, which is also called
Micro-Macro decomposition [29, 26], where the distribution function is split into the equilibrium whose
form is the Maxwellian (2.9) and the non-equilibrium residual. This splitting corresponds to a first-order
Chapman-Enskog expansion [7], which is also utilized when using a neural network to approximate kinetic
equations [37, 28]. Precisely, the distribution (3.6) is decomposed into two parts as

(3.18) f(x, t) =Meq(x, t) + Cfneq(x, t),

where C is a problem-dependent constant. Different from the general Micro-Macro decomposition, the
equilibrium and non-equilibrium parts in (3.18) are chosen as

(3.19) Meq
i (x, t) =

ρ̃(x, t)

(πT̃ (x, t))3/2
exp

(
−(vi − ũ(x, t))2

T̃ (x, t)

)
, fneqi (x, t) =

√
Mi(x, t)f̃i(x, t).

Two neural networks are utilized the equilibrium to learnMeq and the non-equilibrium fneq, respectively

ρ̃(x, t), ũ(x, t), T̃ (x, t) = NN1(x, t; ·),(3.20)

f̃(x, t) = NN2(x, t; ·).(3.21)

For Meq, the neural network outputs are only ρ̃, ũ, T̃ , and then generates the distribution function
according to (3.19). For the distribution function, the outputs are f̃i. We want to emphasize that this
strategy is only inspired by the Micro-Macro decomposition to design such a neural network structure
for training purposes, and there is no guarantee that ρ̃(x, t), ũ(x, t), T̃ (x, t) learned is the exact density,
velocity, and temperature of f . Moreover, this splitting method is enlightened by the experiments and
there is no theoretical evidence right now. We have observed that with the splitting form (3.19), the
learning process will be accelerated and a lower error of the loss function will be achieved.

With these two strategies, the efficiency of the neural network to approximate Boltzmann equation
can be greatly improved. The total structure of the neural network is shown in Fig. 3.1. Once the
network is set up, the loss function will be constructed to solve the PDE. It is always built by combining
the residuals for the equations as well as the initial and boundary conditions, which we will introduce in
detail in the next section.
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Neural network

Fig. 3.1: Network architecture. In the neural network, the inputs are the spatial space x and time t,
and the Monte Carlo sampling is utilized to decide the specific points. The multi-scale inputs and the
Maxwellian splitting of the distribution function is adopted to improve the approximation efficiency of
the network.

3.3. Loss function. In this section, we will discuss the specially designed loss function to solve the
Boltzmann equation. Generally speaking, the loss function for a PDE should contain three parts, namely
LIC concerning the initial condition, LBC for the boundary condition, and LPDE to the residual of PDE

(3.22) Lloss = LfIC + LfBC + LfPDE.

In (3.13), the input variables are the spatial position x, and time t, which should be discretized first to
derive the loss function. Here, Monte Carlo random sampling is utilized, and uniform random points are
generated. Assuming the point sizes for the initial, boundary condition, and interior of the computed
region are NIC, NBC, and NPDE, then the expression for the loss function can be written as

(3.23)

LfIC =
1

NIC

NIC∑
s=1

L[f(xs, 0)− f0(xs)],

LfBC =
1

NBC

NBC∑
s=1

L[f(xs, ts)− f b(xs, ts)],

LfPDE =
1

NPDE

NPDE∑
s=1

L[r(xs, ts)].

Here, f0(xs) and f b(xs, ts) are the discrete initial and boundary conditions, respectively, and r(xs, ts)
is the residual of Boltzmann equation with

(3.24) r(x, t) =
∂f(x, t)

∂t
+ v · ∇xf(x, t)−Q[f ].

In (3.23), L[·] is the distance function, and the simplest option is the l2 norm

(3.25) Ll2 [s] = ‖s‖22,

where s is a vector with any length [37].
However, the numerical experiments show that results obtained using l2-norm as a distance function

are not satisfactory. When training with distance function (3.25) directly in supervised learning, there
is still a relatively large error in the macroscopic variables at the end of the training process. This may
be due to that this distance function does not behave well. For example, in this distance function, each
point has the same weight, while the distribution function at smaller relative velocity should be more
important compared to that at larger because they have a greater impact on the macroscopic variables.
Therefore, the specially designed distance function is utilized here, and we will introduce it below.
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Macroscopic variable loss. The macroscopic variable plays quite an important role in the sim-
ulation of Boltzmann equation, and one should try their best to obtain them more exactly. However,
the numerical simulations show that with the simple l2-norm distance function (3.25), they can not be
derived correctly. Therefore, the conserved variable (3.7) is added to the distance function. Precisely,
since the energy in each direction may vary greatly, the energy in each direction Ei, i = 1, 2, 3 instead of
the total energy is utilized in the macroscopic variables, and then the macroscopic variables considered
are

(3.26) C[f ] = (ρ[f ],m[f ]T , E1[f ], E2[f ], E3[f ])T ∈ R7.

The distance function for the conserved variable is defined as

(3.27) LC[f ] = ‖C[f ]‖22.

For the loss function of these conserved variables, the IC, BC, and PDE all have their corresponding
conserved variable loss function as

(3.28) LCS =
1

NS

NS∑
s=1

LC[g(xs, ts)],

where S = IC,BC and PDE, g(x, t) = (f(x, 0)− f0(x)), (f(x, t)− f b(x, t)) and r(x, t). Thus, the loss
function is combined by two parts as

(3.29) LS = LfS + LCS , S = IC, BC, PDE.

Adaptive weight loss. In the loss function (3.23), if the distance function (3.25) is utilized, then
each entry of f has the same weight. However, it is obvious that the distance function with a smaller
relative velocity is more important. Therefore, how to balance the weight of the distribution function
at different velocities is quite important. The lower bound constrained uncertainty weighting [10, 23] is
adopted here to assign the weight functions. In particular, instead of simply taking l2 norm, the relative
error at each microscopic velocity point vi is considered, and the loss function in (3.23) is changed into

L̃f
IC =

1

NIC

NIC∑
s=1

Nv∑
i=1

(
1

(wf
IC)i + ε

(
fi(xs, 0)− f0

i (xs)
)2

+ log(1 + (wf
IC)i)

)
,(3.30a)

L̃f
BC =

1

NBC

NBC∑
s=1

Nv∑
i=1

(
1

(wf
BC)i + ε

(
fi(xs, ts)− fb

i (xs, ts)
)2

+ log(1 + (wf
BC)i)

)
,(3.30b)

L̃f
PDE =

1

NPDE

NPDE∑
s=1

Nv∑
i=1

(
1

(wf
PDE)i + ε

(ri(xs, ts))
2 + log(1 + (wf

PDE)i)

)
,(3.30c)

where (wfs )i > 0, s = IC,BC,PDE, i = 1, · · ·Nv are the weights for point vi in different loss functions, and
ε is a small positive number preventing division by zero. Here, we want to emphasize that different from
the integral weight (3.5), (wfs )i are the parameters in the neural network, and their values are changing
adaptively during the training process. Moreover, the loss function for the macroscopic variables (3.28)
is also revised similarly as

L̃C
IC =

1

NIC

NIC∑
s=1

7∑
i=1

(
1

(wC
IC)i + ε

(Ci[f(xs, 0)− f0(xs)])
2 + log(1 + (wC

IC)i)

)
,(3.31a)

L̃C
BC =

1

NBC

NBC∑
s=1

7∑
i=1

(
1

(wC
BC)i + ε

(Ci[f(xs, ts)− f b(xs, ts)])
2 + log(1 + (wC

BC)i)

)
,(3.31b)

L̃C
PDE =

1

NPDE

NPDE∑
s=1

7∑
i=1

(
1

(wC
PDE)i + ε

(Ci[r(xs, ts)])
2 + log(1 + (wC

PDE)i)

)
,(3.31c)

where (wCs )i > 0, s = IC,BC,PDE, i = 1, · · · 7, are also weight parameters in the neural network.
Combining (3.30) and (3.31), we will derive the final loss function for the Boltzmann equation with the
sketch shown in Fig. 3.2

(3.32) Lloss = L̃IC + L̃BC + L̃PDE, L̃S = L̃fS + L̃CS , S = IC, BC, PDE.
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Fig. 3.2: Sketch of the loss function. Here, the input variables are the spatial space x and time t, the
specific points of which are decided by Monte Carlo. The loss function contains three parts the initial
condition, boundary condition, and residual of PDE, and each part is composed of the microscopic part
and the macroscopic variables part.

Right now, we have completed the description of this network-based method for Boltzmann equation,
where the strategy multi-scale input and Maxwellian splitting are utilized to improve the approximation
efficiency, and the specially designed loss in Sec. 3.3 are adopted to achieve the final results. This method
is then applied to solve Boltzmann equation with BGK and quadratic collision model in Sec. 6, and we
call it NR (NRBGK and NRQuad) for short.

However, due to the high dimensionality of the distribution function, and the complex form of the
quadratic collision model, using the NR method directly is still quite expensive. Therefore, NSR to the
distribution function is proposed, where the low-rank property of the distribution function is explored,
with several sparse expressions introduced to greatly reduce the degree of freedom.

4. Neural sparse representation for BGK equation. When using a neural network to approx-
imate a discrete distribution function (DDF), most of the parameters in the network are concentrated
in the last layer, which increases the computational cost and decreases the approximation efficiency.
Moreover, for high-dimensional PDEs, such as Boltzmann equation, the high-order tensor obtained after
discretization is one of the important sources for the huge computational cost. To reduce the number
of parameters and the computational complexity, the tensor decomposition [4, 46], which can effectively
alleviate the curse of dimensionality, is exploited for the discrete distribution function.

In this section, we will first focus on the BGK model, and the low-rank property of the distribution
function is utilized to reduce the number of parameters. We will begin with the introduction to the tensor
low-rank decomposition, and then its implication in the neural representation is proposed.

4.1. Tensor low-rank decomposition. Tensor decomposition represents the higher-order tensor
with a series of lower-order tensors. For matrix, the second-order tensor, SVD decomposition is the most
popular tool. For the higher order, there is Canonical polyadic decomposition (CPD) [6, 18] and Tucker
decomposition (TD) [19, 52] which can be seen as a generalization of SVD from two dimensions to higher
dimensions. CDP is utilized here to reduce the degrees of freedom in the discrete distribution function.
Precisely, the third-order tensor CPD can be expressed as

Canonical polyadic decomposition (CPD). Assuming F ∈ RN1×N2×N3 is a third-order tensor,
then T ∈ RN1×N2×N3 is the CDP factorization of F , if it is the solution to the optimization problem

(4.1)

min
T ∈RN1×N2×N3

‖T −F‖F ,

s.t. Tijk =

K∑
r=1

U
(1)
ir U

(2)
jr U

(3)
kr ,

where U(k), k = 1, 2, 3 are second-order tensors, with K ∈ N+. The factorization is called exact if the
distance in (4.1) is zero, or approximated if it is larger than 0.

It is always expected that K � Nk, k = 1, 2, 3 in (4.1) to greatly reduce the computational cost.
Generally speaking, it is not easy to solve this optimization problem, and for most tensors, we can only
derive the approximated factorization. There are several classical methods for CPD, such as ALS [6], et al.
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Tensor low-rank decomposition is already widely utilized to solve Boltzmann equation in the framework
of discrete velocity method. Precisely, assuming the discrete grid points in the microscopic velocity space
are chosen as (3.4), the obtained discrete distribution function (3.6) can be considered as a third-order
tensor

(4.2) F (x, t) ∈ RN1×N2×N3 , Fl1l2l3 = fl(x, t), 1 6 li 6 Ni, i = 1, 2, 3,

where the one-to-one mapping of l and l1, l2, l3 is the same as that in (3.4). This is an O(Nv) tensor,
which is quite memory-consuming, and also the main reason for the extensive computational effort. CPD
is utilized here to reduce the memory cost. The discrete distribution function (4.2), is a third-order tensor
and can be approximated using CPD as

(4.3) Fijk(x, t) := f(x, t, v
(1)
i , v

(2)
j , v

(3)
k ) ≈

K∑
r=1

Pir(x, t)Qjr(x, t)Rkr(x, t),

where

(4.4) P ∈ RN1×K , Q ∈ RN2×K , R ∈ RN3×K .

For convenience, we will write (4.3) as

(4.5) F = JP ,Q,RK.

Here, we want to emphasize that P ,Q,R in (4.3) can be derived using ALS [6], which is also employed
in [5]. Since that in the framework of neural network method, the process of obtaining these components
will be completed automatedly in the learning process, we will not focus on this. Moreover, the CPD of
the distribution function has several useful properties, and we list them in the following lemma.

Lemma 4.1. The following operations of a tensor with CPD still keep the form of CPD.
1. Addition and subtraction

Assuming F (1),F (2) ∈ RN1×N2×N3 are two third-order tensors with the same size, whose CPD
are

(4.6) F (1) = JP (1),Q(1),R(1)K, F (2) = JP (2),Q(2),R(2)K,

where

(4.7) P (i) ∈ RN1×K(i)

, Q ∈ RN2×K(i)

, R ∈ RN3×K(i)

, i = 1, 2,

and there is no requirement that K(1) equals K(2). Then, it holds that

(4.8) F (1) ±F (2) = JP (1),Q(1),R(1)K± JP (2),Q(2),R(2)K , JP ,Q,RK,

where
(4.9)
P = [P (1),±P (2)] ∈ RN1×K , Q = [Q(1),Q(2)] ∈ RN2×K , R = [R(1),R(2)] ∈ RN3×K ,

with K = K(1) +K(2).
2. Derivatives

Assuming F (x) ∈ RN1×N2×N3 is a third-order tensor, whos CPD is

(4.10) F (x) = JP (x),Q(x),R(x)K,

where

(4.11) P (x) ∈ RN1×K , Q(x) ∈ RN2×K , R(x) ∈ RN3×K .

Then, it holds that

(4.12) (F (x))′ = (J(P (x),Q(x),R(x)K)′ , JP ,Q,RK,
10



where

(4.13)

P = [P ′(x),P (x),P (x)] ∈ RN1×3K ,

Q = [Q(x),Q′(x),Q(x)] ∈ RN2×3K ,

R = [R(x),R(x),R′(x)] ∈ RN3×3K .

The proof of this lemma is obvious, and we will omit it here. This lemma shows that the summation
of two third-order tensors with the same size, whose CPD ranks are K1 and K2, respectively, can be
written into a tensor with CPD rank K1 +K2. The derivative of a tensor with CPD rank K, can also be
written into a tensor with CPD rank 3K. These two properties are quite important when building loss
function and in the learning process. For now, the low-rank decomposition of the distribution function is
completed, and the detailed implementation in the NRBGK method to the BGK model will be introduced
in the next section.

4.2. Implementation of low-rank network. With the low-rank decomposition of the discrete
distribution function, the degrees of freedom will be greatly reduced, and then the computational cost
will decrease. The calculation of the macroscopic variables (3.7) and the loss function (3.31) will all
become much easier based on CPD (4.3).

Computation of the macroscopic variables. Once the discrete distribution function is written into
CDP form (4.3), the computation of the macroscopic variables can be calculated more easily. Define the
moments as

(4.14) Mi1i2i3 [f ] =

∫
R3

(v(1))i1(v(2))i2(v(3))i3f dv.

Then, the macroscopic variables can be express by Mi1i2i3 . For example, the density ρ corresponds to
(i1, i2, i3) = (0, 0, 0), and Ei in (2.13) corresponds to 2ei.

Since the full discrete points V defined in (3.4) and the weight (3.5) can be treated as tensors
with CPD rank one, when approximating the discrete distribution function with CPD factorization, the
moments (4.14) can be calculated as

(4.15)

Mi1i2i3 [F ] =

N1∑
l1

N2∑
l2

N3∑
l3

ω
(1)
l1
ω
(2)
l2
ω
(3)
l3

(v
(1)
l1

)i1(v
(2)
l2

)i2(v
(3)
l3

)i3Fl1l2l3

=

K∑
r=1

( N1∑
l1

ω
(1)
l1

(v
(1)
l1

)i1Pl1r
)( N2∑

l2

ω
(2)
l2

(v
(2)
l2

)i2Ql2r

)( N3∑
l3

ω
(3)
l3

(v
(3)
l3

)i3Rl3r

)
.

We can find that the computational cost for the moments is reduced from O(Nv) to O(KNv
1
3 ) with the

assumption N1, N2, N3 at the same order, which is greatly reduced especially when K is small.
Approximation of BGK collision term. To approximate the BGK collision term, we mainly

need to approximate the equilibrium M in the low-rank form. Its CPD factorization is

(4.16) Mijk(x, t) :=M(x, t, v
(1)
i , v

(2)
j , v

(3)
k ) = M

(1)
i M

(2)
j M

(3)
k ,

where

(4.17) M(l) ∈ RNl , M
(l)
i =

ρ1/3√
2πT

exp

(
− (v

(l)
i − u(l))2

2T

)
, i = 1, · · · , Nl, l = 1, 2, 3.

It shows that the CPD rank of the Maxwellian is one, which will make the approximation to the BGK
collision term much easier.

Loss function. In this part, we will introduce how to build the adaptive weight loss function (3.32)
with the CPD of the discrete distribution function. For the discrete distribution function part (3.30),
assume the adaptive weight (wfs )l, l = 1, · · ·Nv, s = IC,BC,PDE in (3.30) is rank one, which means that

(4.18) (wfs )l = (wfs )
(1)
l1

(wfs )
(2)
l2

(wfs )
(3)
l3
,
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where the mapping of l and l1, l2, l3 is the same as that in (3.5). Based on this, the loss function for
the distribution function can be written into the matrix form. Let (3.30c) as an example. With the
properties in Lemma 4.1, r(x, t) in (3.24) can be CP decomposed. Suppose its CPD factorization is

(4.19) R(x, t) = JR(x, t),S(x, t),T(x, t)K.

Let the first part of (3.30c) be

(4.20) F (xs, ts) ,
Nv∑
i=1

ri(xs, ts)
2

(wfPDE)2 + ε
,

with (4.18) and (4.19), it can be expressed into the CPD form as
(4.21)

F (xs, ts) ≈
∑
l1l2l3

(
Rl1l2l3(xs, ts)

Wl1l2l3 + ε

)2

≈
∑
l1l2l3

 K∑
r=1

(
Rl1r(xs, ts)

w
(1)
l1

+ ε

)(
Sl2r(xs, ts)

w
(2)
l2

+ ε

)(
Tl3r(xs, ts)

w
(3)
l3

+ ε

)2

,

where
∑
l1l2l3

=
N1∑
l1=1

N2∑
l2=1

N3∑
l3=1

, and K is the CPD rank of R. Here, the subscripts f and PDE of (wfs )
(i)
li

are

omitted. Assuming there exists a third-order tensor G , whose CPD factorization satisfies that

(4.22) Gl1l2l3(xs, ts) :=
K∑
r=1

(
Rl1r(xs, ts)

w
(1)
l1

+ ε

)(
Sl2r(xs, ts)

w
(2)
l2

+ ε

)(
Tl3r(xs, ts)

w
(3)
l3

+ ε

)
,

the adaptive weight loss function (3.30c) is changed into

(4.23) L̂fPDE =
1

NPDE

NPDE∑
s=1

(‖G (xs, ts)‖F )2 +
∑
l1l2l3

log(1 + (w
(1)
l1
w

(2)
l2
w

(3)
l3

)),

where ‖G ‖F is the Frobenius norm of G . Moreover, the loss function (3.30a) and (3.30b) can be revised
similarly. To calculate the F-norm of a third-order tensor, we present the lemma below.

Lemma 4.2. Assuming F ∈ RN1×N2×N3 is a third-order tensor, which has a CPD factorization of
rank K as

(4.24) F = JPl1r,Ql2r,Rl3rK,

then it holds for its F-norm that

(4.25) ‖F‖2F =

K∑
r=1

K∑
r′=1

Hrr′ ,

where H = (PTP)× (QTQ)× (RTR), and × is defined in (3.8).

Proof. From the definition of the F-norm and the CPD factorization (4.24), it holds that

(4.26) ‖F‖2F =
∑
l1l2l3

(
K∑
r=1

Pl1rQl2rRl3r

)2

=
∑
l1l2l3

[( K∑
r=1

Pl1rQl2rRl3r

)( K∑
r′=1

Pl1r′Ql2r′Rl3r′
)]
.

Changing the order of summation, we derive (4.25), and the proof is completed.

For the macroscopic variables part of the adaptive weight function (3.31), the calculation of the
macroscopic variables in (3.26) can be derived using the CPD form of the moment (4.15), where the

computational cost will be reduced from O(Nv) to O(KN
1
3
v ). For now, the implementation of CPD on

the neural representation for the BGK model is completed, and we call it neural sparse representation
method (NSRBGK

LR for short). When solving BGK model using NSRBGK
LR , the CPD factorization of the
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distribution function (4.3) is utilized instead of the discrete distribution function (3.6) as the outputs, in
which case the parameter number of outputs will be greatly reduced. Moreover, compared to NRBGK,
whose computational cost of the loss function is O(NsNv), where Ns = NIC +NBC +NPDE is the total

grid number in the spatial space, that in NSRBGK
LR is O(NsN

1
3
v K2 + Nv). Moreover, memory usage can

be decreased by a large amount as well.
However, NSRBGK

LR can not be extended to the full Boltzmann equation, since the quadratic collision
term can not be expressed in the CPD form. A data-driven quadratic collision model is proposed to reduce
the computational cost of the full Boltzmann equation, which we will introduce in the next section.

5. Neural sparse representation for Boltzmann equation with quadratic collision. Due
to the complex form of the quadratic collision model, NSRBGK

LR can not be utilized directly for the full
Boltzmann equation. To build the neural sparse representation of the quadratic collision model, a series
of basis vectors for the collision term are obtained from the BGK solution in the framework of the discrete
system (3.12), with which the degree of freedom for the collision term can be greatly reduced.

5.1. Approximating the quadratic collision term. Inspired by the spectral methods, we want
to find a series of basis vectors to approximate the quadratic collision term in the framework of the
discrete system (3.12). We begin from the continuous form. Supposing there are two sets of standard
basis functions {gr(v)}Na

r=1, {hr(v)}Nb
r=1 for the distribution function and the collision term, respectively.

Thus, it holds that

f(x,v, t) ≈ f̃(x,v, t) =

Na∑
r=1

f̃r(x, t)gr(v),(5.1a)

Q[f ](x,v, t) ≈ Q̃(x,v, t) =

Nb∑
r=1

Q̃r(x, t)hr(v).(5.1b)

By the orthogonality of the basis functions, the expansion coefficients are obtained as

(5.2) f̃r(x, t) = 〈fgr〉 , Q̃r(x, t) = 〈Q[f ], hr〉 = 〈Q(f, f)hr〉 ,

where 〈·〉 is defined in (2.11). Substituting (5.1a) into (5.2), the coefficient Qr can be obtained as

(5.3) Q̃r =
〈
Q(f̃ f̃)hr

〉
=

Na∑
i=1

Na∑
j=1

f̃if̃j 〈Q(gi, gj)hr〉 .

Defining the third-order tensor K ∈ RNa×Na×Nb as

(5.4) Kijr = 〈Q(gi, gj)hr〉 ,

the quadratic collision term can be approximated as

(5.5) Q̃(x, t) =

Na∑
i=1

Na∑
j=1

Nb∑
r=1

Kijr(x, t)f̃i(x, t)f̃j(x, t)hr(v).

Here, Kijr can be treated as the expansion coefficients of the collision kernel, which is independent of
the distribution function, and can be pre-computed offline once the basis functions are decided.

Remark 1. In the Hermite spectral method [54], the distribution function and the quadratic collision
term are also approximated in the form (5.1), where both basis functions gr, hr are the Hermite functions,
and the expansion order is the same as Na = Nb. For the Fourier spectral method [43], the basis functions
are the trigonometric functions.

This inspires us that if we can find a series of basis vectors in the framework of discrete system
(3.12) which can approximate the collision term with high efficiency, then the computational cost for
the quadratic collision model can be greatly reduced. Assume we already have a series of basis vectors
for the discrete distribution function and the quadratic collision term as gr ∈ RNv , r = 1, · · ·Na, and
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hr ∈ RNv , r = 1, · · · , Nb, in the whole spatial and time space. Then, the discrete distribution function f
and discrete collision term Q[f ] can be approximated as

(5.6) fs , f(xs, ts) ≈
Na∑
r=1

f̂rgr, Q[fs] ≈
Nb∑
r=1

q̂rhr, f̂r, q̂r ∈ R,

with

(5.7) f̂r = 〈fs, gr〉 , q̂r = 〈Q[fs],hr〉 ,

where 〈·, ·〉 is the inner-product of two vectors. Without loss of generality, we scale the weight (3.5) to 1
here. With the similar process of (5.3), the expansion coefficient qr is calculated as

(5.8) q̂r = 〈Q(fs,fs),hr〉 =

Na∑
i=1

Na∑
j=1

f̂if̂j 〈Q(gi, gj),hr〉 ,
Na∑
i=1

Na∑
j=1

f̂if̂jK̂ijr,

with

(5.9) K̂ijr = 〈Q(gi, gj),hr〉

the expansion coefficients of the collision kernel under the discrete basis function. Similarly, K̂ijr depends
only on the basis vectors gr and hr, which only need to compute once. The discrete collision term can
be approximated as

(5.10) Q[fs] ≈
Na∑
i=1

Na∑
j=1

Nb∑
r=1

K̂ijrf̂if̂jhr.

This shows that the more efficient the basis vectors are, the smaller the degree of freedom Na and Nb
are. Therefore, the last problem we have is finding the proper basis vectors.

5.2. Choosing data-driven basis vectors. Rather than producing a large amount of data and
then learning the bases from them, it seems a shortcut to derive the bases from rough solutions to the
same problem. To find proper basis vectors for the discrete Boltzmann equation, the main idea here is to
build the data-driven-based basis function using the BGK solution, with which the discrete distribution
function is well represented and the quadratic collision term is constructed based on it.

The solution to BGK model can be treated as an approximation to the full Boltzmann equation,
we will derive a series of the basis vectors from the discrete distribution function of the BGK so-
lution. Precisely, supposing the discrete distribution function derived for the BGK model (3.12) is
fBGK(xs, ts), s = 1, · · ·Ns, we write it into the matrix form as

(5.11) ABGK = [f1, · · · ,fNs
] ∈ RNv×Ns , fs = fBGK(xs, ts).

The corresponding discrete quadratic collision model of these distribution functions can be written as

(5.12) QBGK = [Q[f ]1, · · · ,Q[f ]Ns
] ∈ RNv×Ns , Q[f ]s = Q[f ](xs, ts).

Then, performing truncated singular value decomposition (SVD) on ABGK and QBGK, it holds that

(5.13)
ABGK ≈ GS1V

T
1 , G ∈ RNv×Na , S1 ∈ RNa×Na , VT

1 ∈ RNa×Ns ,

QBGK ≈ HS2V
T
2 , H ∈ RNv×Nb , S2 ∈ RNb×Nb , VT

2 ∈ RNb×Ns ,

where Na and Nb are the truncated order, which can be unequal.

Remark 2. It is obvious that the larger Na, Nb are, the more accurate the approximation will be, but
also the greater the computational consumption is. The truncation error utilized here is

(5.14) e =
‖ABGK −GS1V

T
1 ‖F

‖ABGK‖F
.

A moderately sized quantity is chosen to balance the truncation error and the computational cost. In
the simulation, the number is set as Na = Nb = 40, in which case the truncation error (5.14) is at the
magnitude of O(10−3).
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Then, the orthogonal matrices

(5.15) G = [g1, · · · gNa
], H = [h1, · · ·hNb

]

satisfy that

(5.16) 〈gi, gj〉 = δij , i, j = 1, · · ·Na, 〈hi,hj〉 = δij , i, j = 1, · · · , Nb.

Consequently, we choose gi, i = 1, · · · , Na and hj , j = 1, · · ·Nb as the basis vectors of the discrete
distribution function, and the discrete quadratic collision term, respectively.

Conservation basis. Since the quadratic collision term keeps the conservation of density, momen-
tum, and energy, it is expected that the reduced collision model still maintains this property. To achieve
this, we let each basis vector of the collision term have the property below

(5.17) ρ[hj ] = 0, m[hj ] = 0, E[hj ] = 0, ∀ j = 1, · · · , Nb.

Precisely, define the matrix M as

(5.18) M = [1,V , |V |2]T ∈ RNv×5.

First, orthogonalize M into M̃, which satisfies

(5.19) (M̃)TM = I, span(M) = span(M̃).

Let

(5.20) H = H− M̃M̃TH,

and it is easy to verify that H satisfies (5.17). Finally, re-orthogonalize H, and we obtain the final set of
basis vectors

(5.21) H̃ = Ortho(H).

Remark 3. The process to obtain H̃ from H is completed by the scipy.linalg.orth function in scipy
[53].

In the learning process, since the collision kernel (5.9) is pre-computed, the main computational cost
is to obtain the collision term (5.10), which is O(N2

aNb + (Na +Nb)Nv). Compared to the initial cost of
the DVM method O(MN2

v ) where M is the number of points on the unit-sphere, this is greatly reduced.

In the simulation, the method proposed in Sec. 4 is first adopted to obtain the BGK solution, which
is then utilized to form the information matrix (5.11). With this matrix, the series of basis vectors for
the discrete distribution function and the quadratic collision term are derived. These two sets of basis
vectors only need to derive once and are fixed during the learning process, which is also independent of
the spatial and time variables.

This method presents a neural sparse representation for the quadratic collision term, and we call it
NSRQuad

LA for short. For completeness, the algorithms to derive (5.9) and (5.10) are presented in the next
section, where all the operations are finished by simple calculation between matrix and vectors, which
can also speed up this method.

5.3. Algorithm for the quadratic collision model. In the implementation, we use NRBGK to
obtain the BGK solution. Once the BGK solution fBGK is obtained, Alg. 5.1 will be utilized to derive
the two sets of basis vectors and to obtain the collision kernel (5.9). Then, Alg. 5.2 will be used in

NSRQuad
LA to compute the quadratic collision term (5.10).
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Algorithm 5.1 Obtain the data-driven collision kernel

Data: ABGK = [f1, ...,fNs ] ∈ RNv×Ns ,M = [1,V , |V |2]T ∈ RNv×5

Result: K̂ ∈ RNa×Na×Nb , G = [g1, ..., gNa
] ∈ RNv×Na , H = [h1, ...,hNb

] ∈ RNv×Nb

for i = 1 : Ns do
qi = Q[fi]

end

QBGK = [q1, ..., qNs
]

G,S1,V
T
1 = truncatedSVD(ABGK)

H,S2,V
T
2 = truncatedSVD(QBGK)

Obtain H through (5.19), (5.20), and (5.21)
for k = 1 : Nb do

for i = 1 : Na do
for j = 1 : Na do

K̂ijk =
〈
Q(gi, gj), h̄k

〉
end

end

end

Algorithm 5.2 Collision term for a given distribution function

Data: K̂ ∈ RNa×Na×Nb , G ∈ RNv×Na , H ∈ RNv×Nb ,f ∈ RNv

Result: Q ∈ RNv

a = GTf for k = 1 : Nb do

qk =
Na∑
i=1

Na∑
j=1

K̂ijkaiaj

end
Q = Hb

6. Numerical Experiment. In this section, several numerical examples are studied to validate the
numerical methods proposed in this work, where the spatially 1-dimensional wave and Sod tube problem,
and spatially 2-dimensional periodic problem are tested. In each example, the Adam optimizer with
learning rate η0 = 0.005 and the cosine annealing learning rate decay algorithm [36] are utilized. For the
cosine annealing learning rate decay algorithm, the learning rate at i-th step is

(6.1) ηi =
1

2
η0

(
1 + cos

(
i

Tmax

))
.

This optimizer is widely adopted in learning PDEs with neural network [37, 28], and we refer [30] for
more details. All the tests are performed on a machine with Intel(R) Xeon(R) Gold 6240 and 4 Tesla
V100 SXM2 16GB. Unless otherwise specified, all the experiments are conducted under the MindSpore1

and code will be available online2. At the end of this section, some tentative work on the efficiency of
the NSR method (NSRBGK

LR and NSRQuad
LA ) with transfer learning is studied.

6.1. 1D wave problem. In this section, the 1D3V wave problem with periodic boundary condition
is studied. The initial condition is Maxwellian with the macroscopic variables as below

(6.2) ρ(x) = 1 + 0.5 sin(2πx), u(x) = 0, T (x) = 1 + 0.5 sin(2πx+ 0.2),

with the spatial space x ∈ [−0.5, 0.5]. This is a problem with the smooth initial condition, and a similar
one is also studied in [12, 33].

In the simulation, the BGK and quadratic collision term with Knudsen number Kn = 0.01, 0.1 and
1.0 is considered. The time region is t ∈ [0, 0.1]. The computational domain in the microscopic velocity

1https://www.mindspore.cn
2https://gitee.com/mindspore/mindscience/tree/master/MindFlow/applications/physics driven/boltzmann
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neural network

layer number 5

neurons 80

steps 10, 000

optimizer

method Adam

learning rate 0.005

decay algorithm cosine annealing

sampling points

NIC 100

NBC 200

NPDE 500

computational parameters

time t ∈ [0, 0.1]

Knudsen number (Kn) 0.01, 0.1, 1.0

microscopic velocity space v ∈ [−10, 10]3

grid number 24× 24× 24

Table 6.1: (1D wave problem in Sec. 6.1) Parameters of the NR/NSR methods.

space is [−10, 10]3, with the grid number 24 × 24 × 24. In the neural representation, both networks of
Meq and fneq consist of a 5 layer fully connected network. Each layer has 80 neurons. The parameters
in (3.31) are set as NIC = 100, NBC = 200, and NPDE = 500. This means that we randomly sample 100
points in x ∈ [−0.5, 0.5] at t = 0 for the initial condition, 200 points in x = 0 and t ∈ [0, 0.1] for the
boundary condition, and 500 points in the spatial space and time region x× t ∈ [−0.5, 0.5]× [0, 0.1]. The
total training step is 10, 000. The detailed parameters are listed in Tab. 6.1.
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(e) Kn = 0.1, t = 0.1
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(f) Kn = 1.0, t = 0.1

Fig. 6.1: (1D wave problem in Sec. 6.1) Numerical solution of 1D3V wave problem with BGK model by
NRBGK and NSRBGK

LR . The first row corresponds to t = 0.0, and the second row corresponds to t = 0.1.
The dashed line is the numerical solution of NRBGK, the solid line is that of NSRBGK

LR , and the dot-dash
line is the reference solution by DVM.

The numerical results of BGK model using NRBGK and NSRBGK
LR are plotted in Fig. 6.1, where the

density ρ, macroscopic velocity u1, and temperature T are studied. Since the initial condition should also
be approximated by the neural network, there can be a small deviation between the numerical solution
and the reference solution. The numerical solution at t = 0 and t = 0.1 are listed in Fig. 6.1. It illustrates
that the numerical solution matches well with the reference solution at both time for the three Knudsen
numbers. Here, the reference solution is obtained by DVM method, where the grid number in spatial
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space Nx = 400 with linear reconstruction and the upwind numerical flux utilized. The computational
domain in the microscopic velocity space is [−10, 10]3 with 24 grids in each direction.

The numerical results of the quadratic collision model using NRQuad and NSRQuad
LA is provided in

Fig. 6.2, where the same macroscopic variables ρ, u1 and T at t = 0 and 0.1 with Kn = 0.01, 0.1 and 1.0
are shown. It is clear that for the quadratic collision model, the numerical solution also agrees well with
the reference solution, where the reference solution is obtained by fast Fourier method with 24 modes in
each microscopic velocity direction.

Define the relative error between the numerical solution and the reference solution as

(6.3) error =
‖snum − sref‖2
‖snum‖2

, s = ρ, T,

for the density and temperature and

(6.4) error =
‖unum − uref‖2
1 + ‖unum‖2

,

for the macroscopic velocity to avoid the case u = 0. The relative error of the four methods with different
Knudsen numbers at t = 0, and 0.1 are shown in Tab. 6.2. It illustrates that the error of all the neural
representation methods for both BGK and quadratic collision model reach the magnitude O(10−3). In

particular, the error of the sparse representation-based methods NSRBGK
LR and NSRQuad

LA is also at the
same level compared to the direct neural representation methods NRBGK and NRQuad, which means that
NSRBGK

LR and NSRQuad
LA can reach a similar accuracy of NRBGK and NRQuad.

0.50 0.25 0.00 0.25 0.50
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
NRQuad- NSRQuad

LA - Ref-

(a) Kn = 0.01, t = 0

0.50 0.25 0.00 0.25 0.50
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
NRQuad-u NSRQuad

LA -u Ref-u
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(c) Kn = 1.0, t = 0

0.50 0.25 0.00 0.25 0.50
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(d) Kn = 0.01, t = 0.1
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(e) Kn = 0.1, t = 0.1

0.50 0.25 0.00 0.25 0.50
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(f) Kn = 1.0, t = 0.1

Fig. 6.2: (1D wave problem in Sec. 6.1) Numerical solution of 1D3V wave problem with quadratic collision

model by NRQuad and NSRQuad
LA . The first row corresponds to t = 0.0, and the second row corresponds

to t = 0.1. The dashed line is the numerical solution of NRQuad, the solid line is that of NSRQuad
LA , and

the dot-dash line is the reference solution by fast Fourier method.

6.2. 1D Sod tube problem. In this section, the classical 1D3V Sod tube problem is studied, where
the initial condition is Maxwellian, with the macroscopic variables as below

(6.5) [ρ(x), u1(x), T (x)] =

{
[ρl, ul, Tl], x < 0,

[ρr, ur, Tr], x > 0.
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Kn 0.01 0.1 1.0

t ρ u1 T ρ u1 T ρ u1 T

NRBGK
0.0 1.64e-03 6.23e-04 1.60e-03 1.80e-03 1.06e-04 1.64e-03 2.08e-03 4.09e-04 1.90e-03

0.1 1.63e-03 1.98e-03 2.97e-03 1.08e-03 2.17e-03 1.89e-03 2.30e-03 4.62e-03 4.14e-03

NSRBGK
LR

0.0 1.63e-03 3.67e-04 1.67e-03 1.66e-03 2.78e-04 2.26e-03 1.66e-03 8.44e-04 4.92e-03

0.1 1.13e-03 1.57e-03 1.24e-03 1.13e-03 1.79e-03 1.35e-03 1.26e-03 4.98e-03 4.85e-03

NRQuad
0.0 1.61e-03 2.08e-04 1.75e-03 1.82e-03 2.20e-04 2.07e-03 2.01e-03 3.72e-04 2.04e-03

0.1 1.07e-03 1.73e-03 1.46e-03 1.58e-03 3.84e-03 2.59e-03 2.30e-03 4.74e-03 4.71e-03

NSRQuad
LA

0.0 1.60e-03 1.84e-04 1.84e-03 1.86e-03 1.48e-04 1.80e-03 1.98e-03 2.02e-04 2.06e-03

0.1 1.33e-03 2.99e-03 3.48e-03 1.57e-03 3.79e-03 2.99e-03 2.23e-03 5.11e-03 4.10e-03

Table 6.2: (1D wave problem in Sec. 6.1) The relative error between the numerical solution by NR/NSR
and the reference solution for the density ρ, macroscopic velocity u1 and the temperature T with Kn =
0.01, 0, 1 and 1 at t = 0 and 0.1.
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(c) Kn = 1.0, t = 0
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Fig. 6.3: (1D Sod tube problem in Sec. 6.2) Numerical solution of 1D3V Sod tube problem with BGK
model by NRBGK and NSRBGK

LR . The first row corresponds to t = 0.0, and the second row corresponds
to t = 0.1. The dashed line is the numerical solution of NRBGK, solid line is that of NSRBGK

LR , and the
dot-dash line is the reference solution by DVM.

with

(6.6) ρl = 1.0, ρr = 0.125, ul = ur = 0, Tl = 1.0, Tr = 0.8.

This is a problem with discontinuous initial condition, and a similar one is also studied in [33, 44]. Since
the neural network can not represent the discontinuous functions as well as the smooth functions, which
is a common problem for network-based methods when solving PDEs, and there did not exist a generally
effective method to solve this yet [13, 39], the smoothing technique is utilized for this discontinuous initial
condition problem. Precisely, the smoothing function is

(6.7) ρ(x) =
ρr − ρl

1 + e−x/b
+ ρl, u(x) =

ur − ul
1 + e−x/b

+ ul, T (x) =
Tr − Tl

1 + e−x/b
+ Tl,

with the smoothing factor b = 0.005.
The BGK and quadratic collision model are studied, where the parameters here are the same as in

Tab. 6.1. The numerical solution by NRBGK, NSRBGK
LR is shown in Fig. 6.3, with the reference solution
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obtained by DVM. Due to the discontinuous property here, the grid points in the microscopic velocity
space of DVM are increased to [96, 24, 24]. In Fig. 6.3, we can see that there is a little discrepancy for the
initial condition, even though it has been smoothed. Compared to the initial condition, the numerical
solution and reference solution agree well with each other at t = 0.1. The numerical solution of the
quadratic collision model by NSRQuad

LA is plotted in Fig. 6.4, while that of NRQuad is not presented due
to memory limitation. The behavior of the quadratic collision model is similar to that of BGK model,
where there is a relatively larger error in the initial condition while they are almost on top of each other
at t = 0.1.

This example shows that even though the neural network can not approximate the discontinuous
initial condition well, the error does not rise monotonically with time increasing. This phenomenon also
appeared in [40, 47]. A possible reason for this is that the solution is gradually getting smoother, which
causes the error to decrease as well.

Tab. 6.3 shows the relative error defined in (6.3) and (6.4) between the numerical solution and the
reference solution. As stated, the neural network can not approximate the discontinuous functions well,
and the error at t = 0 for the temperature is increased to O(10−2), though the smoothing technique is
utilized. Moreover, the numerical solution is becoming smoother with time increasing, and the error is
decreasing, which is different from the traditional numerical method.
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Fig. 6.4: (1D Sod tube problem in Sec. 6.2) Numerical solution of 1D3V Sod tube problem with quadratic

collision model by NSRQuad
LA . The first row corresponds to t = 0.0, and the second row corresponds to

t = 0.1. The solid line is the numerical solution of NSRQuad
LA , and the dot-dash line is the reference

solution by fast Fourier spectral method.

6.3. Two-dimensional case. In this section, the 2D3V problem with continuous initial condition
is studied. The initial distribution function is Maxwellian with the macroscopic variables as follows

(6.8) ρ(x, y) = 1 + 0.5 sin(2πx) sin(2πy), u(x, y) = 0, T (x, y) = 1,

with the computational domain in the spatial space [−0.5, 0.5]2. Here, the periodic boundary condition
is utilized, and macroscopic variables such as the density ρ, macroscopic velocity u, and temperature T
will evolve periodically as some trigonometric functions.

The BGK and quadratic collision models are tested, where the network and the computational
parameters are the same as in Sec. 6.1, while the sampling number is changed to NIC = NBC = 500, and
NPDE = 2000. The numerical solution with NRBGK, NSRBGK

LR , NRQuad and NSRQuad
LA for Kn = 0.01 at
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Kn 0.01 0.1 1.0

t ρ u T ρ u T ρ u T

NRBGK
0.0 4.55e-04 1.87e-03 1.79e-03 1.56e-03 2.42e-03 7.15e-03 2.90e-03 4.56e-03 1.02e-02

0.1 1.12e-03 2.31e-03 1.93e-03 1.95e-03 6.02e-03 4.42e-03 1.15e-03 3.53e-03 4.02e-03

NSRBGK
LR

0.0 2.38e-04 7.79e-04 1.19e-03 3.05e-03 8.97e-03 8.76e-03 5.92e-03 6.18e-03 1.75e-02

0.1 1.42e-03 1.53e-03 1.40e-03 3.07e-03 4.83e-03 5.47e-03 1.36e-03 3.64e-03 3.09e-03

NSRQuad
LA

0.0 1.73e-03 3.83e-03 6.12e-03 3.61e-03 5.30e-03 1.22e-02 5.00e-03 5.77e-03 1.41e-02

0.1 3.31e-03 8.16e-03 4.76e-03 1.23e-03 5.03e-03 5.92e-03 1.17e-03 4.78e-03 5.23e-03

Table 6.3: (Sod tube problem in Sec. 6.2) The relative error between the numerical solution by NR/NSR
and the reference solution for the density ρ, macroscopic velocity u1 and the temperature T with Kn =
0.01, 0, 1 and 1 at t = 0 and 0.1.
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Fig. 6.5: (2D case in Sec. 6.3) The numerical solution of the NR/NSR method for Kn = 0.01 at
= 0.1, where the three columns are the density ρ, the macroscopic velocity u1, and the temperature T ,
respectively. The top row is the solution for the BGK model, and the bottom row is for the quadratic
model.

t = 0.1 are shown in Fig. 6.5, where the density ρ, the macroscopic velocity in the x direction u1, and
the temperature T are plotted. For the BGK model and the quadratic model, these three variables all
agree well with the reference solution. The reference solution of BGK model is derived by the discrete
velocity method, with the spatial mesh Nx = Ny = 80, and 24 grids in each direction of the microscopic
velocity space. The reference solution of the quadratic model is obtained by the fast Fourier spectral
method, with the spatial mesh Nx = Ny = 80, and 24 modes in each velocity direction. The numerical
solution for Kn = 0.1 and 1.0 at t = 0.1 is shown in Fig. 6.6 and 6.7, where the reference solution is
obtained with the same parameters as in Kn = 0.01. When Kn = 0.1, we find the numerical solution and
the reference are still on top of each other. However, when Kn is increased to 1.0, for the density ρ, and
the macroscopic velocity u1, they match well with the reference solution, but there is a small distance
for the temperature T . This may be due to that the reference solution is not accurate enough, but this
parameter setting has already the maximum memory we can afford.

To exhibit the numerical error quantitatively, the relative error (6.3) and (6.4) of the four methods
with different Knudsen numbers at t = 0, and 0.1 are shown in Tab. 6.4. It shows that for the initial
data, this error is relatively small, most at the order of O(10−4), and at t = 0.1, this error is increased
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Fig. 6.6: (2D case in Sec. 6.3) The numerical solution of the NR/NSR method for Kn = 0.1 at t =
0.1, where the three columns are the density ρ, the macroscopic velocity u1, and the temperature T ,
respectively. The top row is the solution for the BGK model, and the bottom row is for the quadratic
model.
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Fig. 6.7: (2D case in Sec. 6.3) The numerical solution of the NR/NSR method for Kn = 1.0 at t =
0.1, where the three columns are the density ρ, the macroscopic velocity u1, and the temperature T ,
respectively. The top row is the solution for the BGK model, and the bottom row is for the quadratic
model.

to O(10−3), but all at the same order.

6.4. Transfer learning. One limitation of the network-based method to solve PDEs is the slow
training speed, and there is some work to improve this, such as the transfer learning [8] and manifold
learning [24]. For the Boltzmann equation, especially for the BGK model, the classical methods such as
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Kn 0.01 0.1 1.0

t ρ u T ρ u T ρ u T

NRBGK
0.0 3.05e-04 1.70e-04 3.83e-04 2.00e-04 1.74e-04 2.35e-04 4.08e-04 2.28e-04 6.14e-04

0.1 3.20e-03 2.44e-03 1.39e-03 3.29e-03 2.23e-03 1.45e-03 3.45e-03 2.25e-03 3.11e-03

NSRBGK
LR

0.0 2.03e-04 2.20e-04 2.76e-04 1.26e-03 4.02e-04 1.33e-03 1.27e-03 3.12e-04 1.39e-03

0.1 4.20e-03 3.10e-03 6.87e-03 1.27e-03 3.12e-04 1.39e-03 3.55e-03 3.00e-03 4.70e-03

NRQuad
0.0 3.40e-04 1.41e-04 5.28e-04 3.58e-04 2.06e-04 4.82e-04 5.20e-04 2.12e-04 7.26e-04

0.1 3.24e-03 2.88e-03 2.18e-03 3.30e-03 2.29e-03 1.30e-03 3.62e-03 2.41e-03 4.81e-03

NSRQuad
LA

0.0 2.85e-04 1.42e-04 2.09e-04 2.80e-04 2.21e-04 3.14e-04 6.12e-04 2.38e-04 5.01e-04

0.1 3.22e-03 2.73e-03 2.22e-03 3.31e-03 2.50e-03 2.09e-03 3.69e-03 2.36e-03 5.37e-03

Table 6.4: (2D case in Sec. 6.3) The relative error between the numerical solution by NR/NSR and the
reference solution for the density ρ, macroscopic velocity u1 and the temperature T with Kn = 0.01, 0.1
and 1 at t = 0 and 0.1.

DVM are always more efficient than the network-based method, even when transfer learning is utilized.
But for high dimensional problems, the network-based method is more competitive.

To explore the efficiency of the NR/NSR method, we studied the computational time utilized for the
2-dimensional problems with transfer learning. Generally speaking, transfer learning is to transfer the
network trained on one task to another similar new task as the initial network [8]. Thus, it is expected
that the learning process can be speeded up, which is also verified by the numerical experiments. The
initial condition for the new 2D3V problem is

(6.9) ρ(x) = 1 + 0.4 sin(2πx+ 0.3)) sin(2π(y + 0.4)), u(x, y) = 0, T (x, y) = 1,

with the computational domain [−0.5, 0.5]2. In the learning process, instead of initializing the neural
network randomly, the well-trained network in Sec 6.3 is adopted. The other parameters including those
for the reference solution are the same as in Sec. 6.3.

Case 1 2 3

Nx 20 30 40

Err 8.43e-03 4.54e-03 2.71e-03

Ref-BGK 58 210 595

NRBGK 33 148 -

NSRBGK
LR 32 93 -

Err 8.45e-03 4.55e-03 2.72e-03

Ref-FSM 300 1086 2549

NRQuad 139 406 -

NSRQuad
LA 86 213 -

Table 6.5: (Transfer learning in Sec. 6.4) Computational time of the classical methods and the network-
based methods to achieve similar accuracy. “ -” indicates that precision could not be achieved. The time
for NSRQuad

LA includes that to obtain the collision kernel and to train the neural network.

We first set the mesh number as Nx = Ny = 20, 30 and 40, and record the error between the
numerical solution with different grid numbers using DVM for BGK model and fast Fourier spectral for
the quadratic model. These errors are shown in the third and seventh rows of Tab. 6.5. Then, the
simulations with NR/NSR are carried out to reach the same accuracy. The computational time for the
classical methods and the network-based methods are all illustrated in Tab. 6.5. The reference solver of
the classical methods is a Fortran program, running on a server with 72 cores (2 Intel(R) Xeon(R) Gold
6240 CPUs @ 2.60GHz) and 256GB of RAM. NR/NSR are Python programs running on the same server
with a single RTX 3090 (with 24Gb of video memory) based on pytorch. Tab. 6.5 exhibits that to arrive
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at the same accuracy, the computational time of the network-based methods is much shorter compared
to the classical methods. Moreover, the neural sparse representation (NSRBGK

LR and NSRQuad
LA ) are much

faster than the general neural representation methods, especially for the quadratic collision model. These
indicate that the neural sparse representation is more efficient for high-dimensional problems, and can
be quite promising for solving the 3D3V full Boltzmann equations. However, the network-based methods
fail to achieve high precision for the moment, which we will work on in the future.

7. Conclusion. The neural network-based approach is utilized to solve the Boltzmann equation.
Neural sparse representation for the distribution function is proposed, which is a high-quality ansatz
to the Boltzmann equation. The low-rank property of the discrete distribution function is adopted
in the BGK model, and a network structure whose output is the CPD factorization of the discrete
distribution function is proposed, which effectively reduces the complexity of the network parameters.
For the quadratic collision model, the data-driven basis vectors are constructed with the BGK solution
through SVD. The quadratic collision term can be approximated with this series of linear basis vectors
with much less freedom. Adaptive weight loss function, which includes the initial, boundary conditions
and residual of PDE and the loss from the macroscopic variables, is designed for the learning process and
has greatly improved the approximating efficiency of the network. Numerical examples of the 1D and
2D cases are studied to validate the accuracy and efficiency of these neural representation methods. The
effect of transfer learning is studied to show the efficiency of these methods, and more work will be done
in the future.
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