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Abstract

We explore the relationship between the dual of a weighted minimum-energy control problem,
a special case of linear-quadratic optimal control problems, and the Douglas–Rachford (DR)
algorithm. We obtain an expression for the fixed point of the DR operator as applied to
solving the optimal control problem, which in turn devises a certificate of optimality that
can be employed for numerical verification. The fixed point and the optimality check are
illustrated in two example optimal control problems.
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1 Introduction

Linear–quadratic (LQ) optimal control problems constitute an important class encountered
in many theoretical studies and areas of applications—see for example [1,2,11–13,22,24,25].
These problems are typically concerned with the minimization of a quadratic functional sub-
ject to linear differential equations and further affine constraints. In this paper, we consider
control-constrained weighted minimum-energy control problems1, which are a special class of
LQ optimal control problems.

The Douglas–Rachford (DR) algorithm is an operator splitting method which has recently
been applied to solving this special class of optimal control problems [5, 10]. In this paper,
we explore the relationship between the dual of the optimal control problem and the DR
algorithm. In particular, we find an expression for the fixed point of the DR operator as
applied to solving the optimal control problem (see Theorem 2), which devises a certificate
of optimality for a numerical solution.

∗Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia. E-mail:
regina.burachik@unisa.edu.au, bethany.caldwell@mymail.unisa.edu.au, and yalcin.kaya@unisa.edu.au .

†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada. E-mail: walaa.moursi@uwaterloo.ca .

1From a physics viewpoint, it is not neccessary to minimize the “true” energy of a dynamical system here.
The main concern is rather to minimize the “energy of the control or signal” or the “energy of the force.”
Elaborations of this subtle difference in terminology can also be found in [3, Section 6.17], [20, Section 5.5], [21,
Section 2.9] and [33, page 118].
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A traditional approach to solving an LQ optimal control problem is to discretize the prob-
lem via some Runge–Kutta scheme and then apply a finite-dimensional large-scale optimiza-
tion software, for example the AMPL–Ipopt suite [10, 15, 35]. The studies in [5, 10] have
shown that the application of the DR algorithm to the original infinite-dimensional problem
(even for relatively simple instances) outperforms the traditional direct discretization ap-
proach. Previously the DR algorithm has also been applied to solving discrete-time optimal
control problems [27]; however, our main focus here will be the continuous-time (i.e., infinite
dimensional) optimal control problem.

Duality theory for optimal control problems has been studied since the 1970s by Rock-
afellar [29–31]. In particular, [31] deals with general LQ control problems with state and
control constraints. Later [17] and [9] used the classical Lagrangian function to derive the
dual problem for optimal control problems. Relatively recently the Fenchel dual of general
LQ control problems has been derived in [11] in view of directly discretizing the dual problem
and then applying the AMPL–Ipopt suite. Most of our theoretical framework is similar to
the duality approach in [11], except that our formulation of the primal and dual problems is
slightly modified so as to have primal and dual variables belonging to the same Hilbert space.

To apply the DR splitting algorithm we write the primal problem as the problem of mini-
mizing the sum of two convex functions. The DR algorithm is employed to solve the monotone
inclusion of finding a zero of the sum of the subdifferential operators of these functions. Of
particular interest from a duality perspective is the fact that the DR splitting operator is
self-dual, i.e., the splitting operator for the primal problem is the same as that for the dual
problem (see [16, Lemma 3.6 on page 133]).

In the present paper, we consider the application of the DR algorithm to the dual of the
control-constrained weighted minimum-energy control problem. We derive an expression for
the fixed point of the DR operator specific to optimal control (see Theorem 2). Then we use
this expression in the verification of the optimality condition on the numerical solutions of two
problems: one involving the double integrator, which is a simple but rich enough instance,
and the machine tool manipulator, which is a more challenging instance. To the authors’
best knowledge this interplay between the DR algorithm and duality of (infinite dimensional)
optimal control problems has not been previously explored.

The paper is organized as follows. In Section 2 we provide the preliminaries, where we
introduce the mathematical model of the optimal control problem, split the constraints into
an affine set and a box, and prove results about the projection onto the affine set. We also
present in this section the optimality conditions for the control problem. In Section 3, we
introduce the dual of the optimal control problem and transform it into a new form suitable
for our remaining analysis. We derive the proximity operators and deduce that the new form
is the Fenchel dual of the primal problem. In Section 4, we introduce the DR operator, derive
its fixed point, and provide the algorithm we propose to use for the optimal control problem.
The latter algorithm generates both primal and dual sequences. In Section 5 we perform
computations to illustrate the algorithm and the convergence of the primal and dual iterates,
via problems involving the double integrator and a machine tool manipulator. Furthermore
we verify the optimality conditions using the certificate we devised in Section 4, for the same
problems. Finally, in Section 6 we provide some concluding remarks.
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2 Preliminaries

In the weighted minimum-energy control problem, the aim is to find a control u which mini-
mizes the quadratic objective functional

1

2

∫ 1

0
r(t)u2(t) dt , (1)

subject to the linear differential equation constraints

ẋ(t) = A(t)x(t) + bT (t)u(t) , for a.e. t ∈ [0, 1] , (2)

with ẋ := dx/dt, and the boundary conditions

ψ(x(0), x(1)) = 0 . (3)

We define the state variable vector x : [0, 1] → IRn x(t) := (x1(t), . . . , xn(t)) ∈ IRn and the
control variable u : [0, 1] → IR with u(t) ∈ IR. The time-varying matrices A : [0, 1] → IRn×n

and b : [0, 1] → IRn×1 are continuous, and b is not the zero vector. We also assume that
r : [0, 1] → IR++ is continuous. The vector function ψ : IR2n → IRs, with ψ(x(0), x(1)) :=
(ψ1(x(0), x(1)), . . . , ψs(x(0), x(1))) ∈ IRs, is affine. Without loss of generality the time horizon
in (1)–(3) is set to be [0, 1] unless stated otherwise.

Although a vast majority of the studies on LQ control in the optimal control literature deal
with the above problem with no constraints imposed on the control variable u, it is much
more realistic, especially in practical situations, to consider restrictions on the values that u
is allowed to take. In many applications, it is common practice to impose simple bounds on
the components of u(t); namely,

a(t) ≤ u(t) ≤ a(t) , for a.e. t ∈ [0, 1] , (4)

where, respectively, the lower and upper bound functions a, a : [0, 1] → IR are continuous and
a(t) < a(t), for all t ∈ [0, 1]. In other words, we formally state

u(t) ∈ U(t) := [a(t), a(t)] ⊂ IR, for a.e. t ∈ [0, 1] ,

as an expression alternative but equivalent to (4).

The objective functional in (1) and the constraints in (2)–(4) can be put together to present
the control-constrained weighted minimum-energy control problem as follows.

(P)





min
u(·)

1

2

∫ 1

0
r(t)u2(t) dt

subject to ẋ(t) = A(t)x(t) + bT (t)u(t) , for a.e. t ∈ [0, 1] ,

ψ(x(0), x(1)) = 0 ,

a(t) ≤ u(t) ≤ a(t) , for a.e. t ∈ [0, 1] .

We pose the primal variable in (P) as u, since every given u generates a unique x via the
ODE system.

In Problem (P), the control variable u can in general be a vector, namely u : [0, 1] → IRm

with m components, u(t) = (u1(t), . . . , um(t)) ∈ IRm, with lower and upper bounds imposed
on each of the m control variables. For clarity and neatness of the expressions, we only
consider a single (or scalar) control variable u (for m = 1). Otherwise, the results in this
paper easily extend to the case of multiple control variables, thanks to the separability of the
projections.
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2.1 Constraint splitting

We split the constraints of Problem (P) into two sets:

A :=
{
u ∈ L2([0, 1]; IR) | ∃x ∈W 1,2([0, 1]; IRn) which solves

ẋ(t) = A(t)x(t) + bT (t)u(t) , for a.e. t ∈ [0, 1] , and

ψ(x(0), x(1)) = 0
}
,

B :=
{
u ∈ L2([0, 1]; IR) | a(t) ≤ u(t) ≤ a(t) , for a.e. t ∈ [0, 1]

}
,

where W 1,2([0, 1]; IRn) is the Sobolev space of absolutely continuous functions, namely,

W 1,2([0, 1]; IRn) =
{
z ∈ L2([0, 1]; IRn) | ż = dz/dt ∈ L2([0, 1]; IRn)

}
.

We assume that the control system ẋ(t) = A(t)x(t)+ bT (t)u(t) is controllable [32]. The latter
means that there exists a (possibly not unique) u(·) such that, when this u(·) is substituted,
the boundary-value problem given in A has a solution x(·). In other words, controllability is
equivalent to A 6= ∅. Also, clearly, B 6= ∅. We observe that the constraint set A is an affine
subspace and B a box, constituting two convex sets in a Hilbert space. In particular, we note
that B is closed in L2([0, 1]; IR).

In the following we set
a⊥ = PA0, (5)

where PC is the orthogonal projection onto the nonempty closed and convex set C.

We now prove the following useful lemma which we shall use in the sequel.

Lemma 1 The following hold:

1. A = a⊥ + (A−A).

2. a⊥ ∈ (A−A)⊥.

3. PA = a⊥ + PA−A.

Proof. (1): Because A is an affine subspace, we can simply write it as A = s + (A−A) for
any s ∈ A and observe that A−A is a linear subspace. In particular, we can set s := a⊥ ∈ A.

(2): To see this we note that a⊥ = PA(0) = Pa⊥+(A−A)(0) = a⊥ + PA−A(0 − a⊥) =
a⊥ − PA−A(a

⊥) = (Id−PA−A)(a
⊥) = P(A−A)⊥(a

⊥), where we use part 1, the translation
formula [8, Proposition 3.19], the linearity of PA−A, and the fact that Id−PA−A = P(A−A)⊥

(see [8, Corollary 3.24(iii) and (v)]).

(3): Indeed, we have PA = Pa⊥+(A−A) = a⊥ +PA−A(·−a
⊥) = a⊥+PA−A(·)−PA−A(a

⊥) =
(Id−PA−A)(a

⊥) + PA−A(·) = P(A−A)⊥(a
⊥) + PA−A(·) = a⊥ + PA−A(·), where, besides from

part 2, we used again the translation formula [8, Proposition 3.19], the linearity of PA−A,
and the fact that Id−PA−A = P(A−A)⊥ . ✷

2.2 Optimality conditions

In what follows we will derive the necessary conditions of optimality for Problem (P), using
the maximum principle. Various forms of the maximum principle and their proofs can be
found in a number of reference books—see, for example, [28, Theorem 1], [18, Chapter 7], [34,
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Theorem 6.4.1], [26, Theorem 6.37], and [14, Theorem 22.2]. We will state the maximum
principle suitably utilizing these references for our setting and notation.

First, define the Hamiltonian function H : IRn × IR× IRn × [0, 1] → IR for Problem (P) as

H(x, u, λ, t) :=
1

2
r(t)u2 +

〈
λ,A(t)x+ bT (t)u

〉
,

where λ(t) := (λ1(t), . . . , λn(t)) ∈ IRn is the adjoint variable (or costate) vector such that

λ̇(t) := −
∂H

∂x
(x(t), u(t), λ(t), t) ,

i.e.,
λ̇(t) = −AT (t)λ(t) , (6)

where the transversality conditions involving λ(0) and λ(1) depend on the boundary condition
ψ(x(0), x(1)) = 0, but are not needed for our purposes and therefore omitted.

Maximum Principle. Suppose that u ∈ L2([0, 1]; IR) is optimal for Problem (P). Then
there exists a continuous adjoint variable vector λ ∈ W 1,2([0, 1]; IRn) as defined in (6), such
that λ(t) 6= 0 for any t ∈ [0, 1], and that, for a.e. t ∈ [0, 1],

u(t) = argmin
w∈[a(t),a(t)]

H(x(t), w, λ(t), t) = argmin
w∈[a(t),a(t)]

r(t)

2
w2 + bT (t)λ(t)w . (7)

Condition (7) in turn yields the optimal control as

u(t) =





a(t) , if − bT (t)λ(t) > r(t) a(t) ,

−bT (t)λ(t)/r(t) , if r(t) a(t) ≤ −bT (t)λ(t) ≤ r(t) a(t) ,

a(t) , if − bT (t)λ(t) < r(t) a(t) ,

(8)

for all t ∈ [0, 1].

3 Reformulation of the Dual Problem

In what follows, we suppress/omit the dependence on t of the specified data in the problem
whenever it is convenient for clarity. For example we write r(t) as r, A(t) as A, and so on.

3.1 Dual Problem

The dual of a control-constrained LQ control problem was first given in [11] for a single control
variable. Then a generalization to multiple control variables was carried out in a straightfor-
ward manner in [1]. For simplicity of exposition, suppose that the boundary condition vector
ψ(x(0), x(1)) = 0 is given as

x(0) = x0 and x(1) = xf , (9)

where x0, xf ∈ IRn. All theoretical results below can be easily extended to the case of a
general affine function ψ; for example as in [1]. Now, using [11], the dual of Problem (P) can
subsequently be presented as follows.

(D1)





min
p(·)

∫ 1

0
θ(p(t), t) dt−

(
xTf p(1)− xT0 p(0)

)

subject to ṗ(t) = −AT p(t) , for all t ∈ [0, 1] ,
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where

θ(p, t) :=





a bT p− r a2/2 , if bT p > r a ,

(bT p)2/(2 r) , if r a ≤ bT p ≤ r a ,

a bT p− r a2/2 , if bT p < r a ,

(10)

for all t ∈ [0, 1]. In the case of multiple controls, θ(p(t), t) in the dual objective functional
is replaced by

∑m
i=1 θi(p(t), t), θ(p, t) in (10) by θi(p, t), and (a, a, b, r) by (ai, ai, bi, ri), i =

1, . . . ,m.

We note that p ∈W 1,2([0, 1]; IRn) is the optimization variable of Problem (D1). We recall
that the saddle-point property and the strong duality results given in [11, Theorem 2], as well
as the hypothesis in the same theorem, imply that p = −λ, where λ(·) is the adjoint variable
of Problem (P) satisfying (6).

For the analysis of the dual problem (D1), we need the gradient of θ, which we consider
next.

Remark 1 Let the gradient of θ w.r.t. p be denoted as ∇pθ := ∂θ/∂p. The definition (10)
directly yields

∇pθ(p, t) =





a b , if bT p > r a ,

b bT p/r , if r a ≤ bT p ≤ r a ,

a b , if bT p < r a .

(11)

By comparing (8) and (11), and using the fact that p = −λ, one obtains a relationship with
the control variable of Problem (P) as follows.

∇pθ(p(t), t) = ∇pθ(−λ(t), t) = b u(t) . (12)

✷

The objective functional in Problem (D1) is in the so-called Bolza form, which contains
both an integral term and a term involving endpoints, and can be converted into the Lagrange
form, which contains only an integral term. In the following proposition, we convert the initial
and terminal costs in the objective function into the Lagrange form, by using the differential
equations for x and p in Problems (P) and (D1), respectively.

Proposition 1 Consider the notation of problem (D1). Fix u ∈ A and take x as the corre-
sponding solution of the ODE system in A with boundary conditions (9). Let p be such that
it verifies the constraints of (D1) (i.e., ṗ = −AT p). Then,

xTf p(1)− xT0 p(0) = 〈u, bT p〉 . (13)

In particular, we have that

xTf p(1)− xT0 p(0) = 〈a⊥, bT p〉 , (14)

for every p s.t. ṗ = −AT p. Consequently, the objective functional of (D1) can be rewritten
as ∫ 1

0
[θ(p(t), t) − 〈∇pθ(p(t), t), p〉] dt , (15)

where

〈∇pθ(p, t), p〉 =





a bT p , if bT p > r a ,

(bT p)2/r , if r a ≤ bT p ≤ r a ,

a bT p , if bT p < r a .

(16)
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Proof. Equation (14) will follow from (13) and the fact that, by its definition (see (5)),
a⊥ ∈ A. Thus, we proceed now to establish (13). Indeed, using (9) and the Fundamental
Theorem of Calculus gives

xTf p(1)− xT0 p(0) = xT (1) p(1) − xT (0) p(0) =

∫ 1

0

d

dt
〈x(t), p(t)〉 dt

=

∫ 1

0

(
〈ẋ(t), p(t)〉 + 〈x(t), ṗ(t)〉

)
dt

=

∫ 1

0

(
〈A(t)x(t) + b(t)u(t), p(t)〉 + 〈x(t),−AT (t) p(t)〉

)
dt

=

∫ 1

0

(
〈A(t)x(t), p(t)〉 + 〈b(t)u(t), p(t)〉 − 〈A(t)x(t), p(t)〉

)
dt

=

∫ 1

0
〈b(t)u(t), p(t)〉 dt = 〈b u, p〉 = 〈u, bT p〉 ,

where we used the fact that u ∈ A, the definition of x, and the fact that p verifies the con-
straints of (D1). This proves (13). Now, using (12), the objective functional of (D1) can
equivalently be written in the Lagrange form as in (15). Finally (16) follows from (11). ✷

Next we collect the previous results to derive a simple form for the dual, where the min in
(D1) was replaced by max in order to avoid negative signs in the objective function.

Corollary 1 Problem (D1) in the so-called Lagrange form is

(D1neat)





max
p(·)

∫ 1

0
φ(p(t), t) dt

subject to ṗ(t) = −AT p(t) , for all t ∈ [0, 1] ,

where

φ(p, t) :=





r a2/2 , if bT p > r a ,

(bT p)2/(2 r) , if r a ≤ bT p ≤ r a ,

r a2/2 , if bT p < r a .

Proof. This follows from the substitution of (10) and (16) into (15) and subsequent cancel-
lations. ✷

The optimization variable p(·) of Problems (D1) or (D1neat) is not the dual variable per se
since it does not live in the same space as u. We propose as the dual variable w ∈ L2([0, 1]; IR)
(in the same space as u) such that

w := bT p . (17)

Corollary 2 We can re-write the dual problem (D1) as

(D)





min
w(·)

∫ 1

0
ϑ(w(t), t) dt −

(
xTf p(1)− xT0 p(0)

)

subject to ṗ(t) = −AT (t) p(t) , w(t) = bT (t) p(t) , for all t ∈ [0, 1] ,

where, after omitting dependence on t again for clarity in appearance, gives

ϑ(w, t) :=





aw − r a2/2 , if w > r a ,

w2/(2 r) , if r a ≤ w ≤ r a ,

aw − r a2/2 , if w < r a .

(18)
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Proof. Substitution of (17) into (D1) furnishes the corollary. ✷

3.2 Proximity operators and verification of (D) as the dual of (P)

Let C be a nonempty closed convex subset of L2([0, 1]; IR). Recall that ιC is the indicator
function of C given by

ιC(x) :=

{
0 , if x ∈ C ,
∞ , otherwise,

and the normal cone to C is given by NC := ∂ιC , the subdifferential of ιC . The shortest
distance from a point y ∈ H to the set C is given by dC(y) := ‖y − PC(y)‖.

Observe that problem (P) can be written in a concise form as

min
u∈L2([0,1];IR)

f(u) + g(u) , (19)

where
f =

r

2
‖·‖2L2 + ιB and g = ιA , (20)

Let f∗ (respectively g∗) denote the Fenchel conjugate of f (respectively g), defined by

f∗(w) = sup
u∈L2([0,1];IR)

(〈u,w〉 − f(u)). (21)

Recall that the Fenchel dual of Problem (P) is (see, e.g., [8, Definition 15.10])

min
w∈L2([0,1];IR)

f∗(w) + g∗(−w), (22)

where
f∗(v) = 1

2r‖v‖
2
L2 − r

2d
2
B(v/r), g∗ = ι(A−A)⊥ + 〈·, a⊥〉 , (23)

a⊥ = PA0. The formula for f∗ can be deduced from [8, Examples 12.21 and 13.4], while the
formula for g∗ can be deduced from [8, Example 13.3(iii) and Proposition 13.23(iii)].

Recall that the proximity operator, or proximity mapping, of a functional h is defined
by [8, Definition 12.23]:

Proxh(u) := argmin
y∈L2([0,1];IR)

(
h(y) +

1

2
‖y − u‖2L2

)
(24)

for any u ∈ L2([0, 1]; IR).

The next lemma extends [5, Proposition 2.1]. The quoted proposition addresses the par-
ticular case of the double integrator, i.e., when n := 2, and the ODE system has A := [ 0 1

0 0 ]
and b := [ 01 ].

Lemma 2 Suppose that Problem (P) is written in the form in (19). Then

Proxf (u)(t) =





a , if u(t) > (r + 1) a ,

u(t)/(r + 1) , if (r + 1) a ≤ u(t) ≤ (r + 1) a ,

a , if u(t) < (r + 1) a ;

(25)

and
Proxg(u)(t) = −bTλ(t) + u(t) , (26)

where λ solves λ̇(t) = −ATλ(t).
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Proof.
Using the functional f in (20) and the definition in (24),

Proxf (u) = argmin
y∈L2([0,1];IR)

(
r

2
‖y‖2L2 + ιB(y) +

1

2
‖y − u‖2L2

)
.

In other words, finding Proxf (u) is finding y that solves the problem

(Pf)





min
y(·)

1

2

∫ 1

0

(
r(t) y2(t) + (y(t)− u(t))2

)
dt

subject to y ∈ B .

The solution to Problem (Pf) is simply given by

y(t) = argmin
a≤v≤a

(
r v2 + (v − u(t))2

)
,

which then, after straightforward manipulations, yields (25). The proximity operator of g
can similarly be computed, using the functional g in (20) and (24):

Proxg(u) = argmin
y∈L2([0,1];IR)

(
ιA(y) +

1

2
‖y − u‖2L2

)
,

for any u ∈ L2([0, 1]; IR). In this case, finding Proxg(u) is finding y that solves the problem

(Pg)





min
y(·)

1

2

∫ 1

0
(y(t)− u(t))2 dt

subject to ẋ(t) = Ax(t) + b y(t) , x(0) = x0 , x(1) = xf .

Problem (Pg) is a classical optimal control problem with x the state variable vector and u
the scalar control variable. Define the Hamiltonian function:

H(x, y, λ, t) :=
1

2
(y − u(t))2 + λT (Ax(t) + b y(t)) ,

where λ is the adjoint variable, defined as in Section 2.2 as λ̇(t) = −ATλ(t). The necessary
and sufficient condition of optimality for Problem (Pg) is then given by

∂H

∂y
(x, y, λ, t) = y − u(t) + bTλ = 0 ,

which, when solved for y, yields (26). ✷

Remark 2 We note that Problem (Pg) is nothing but the problem of finding a projection
of u onto A; namely that Proxg(u) = PA(u). We also note from (25) that

Proxf (u) = PB(u/(r + 1)) . (27)

Therefore, with r = 0, one recovers the projection onto the L∞-ball; namely,

PB(u)(t) =





a , if u(t) > a ,

u(t) , if a ≤ u(t) ≤ a ,

a , if u(t) < a .

(28)

We also observe that Proxf (u) is piecewise-C
1, namely piecewise-linear and continuous, in u.

✷



Optimal Control Duality and DR Algorithm by R. S. Burachik, B. I. Caldwell, C. Y. Kaya & W. M. Moursi 10

We start by providing an alternative formula for f∗ which will be useful in the sequel.

Lemma 3 We have

f∗(w) =

∫ 1

0
ϑ(w, t) dt , (29)

where ϑ is defined as in (18).

Proof. It follows from (23) that

f∗(w) = 1
2r‖w‖

2 − r
2d

2
B(w/r) (30a)

= 1
2r‖w‖

2 − r
2‖w/r − PB(w/r)‖

2 (30b)

= 1
2r‖w‖

2 − r
2(‖w/r‖

2 + ‖PB(w/r)‖
2 − 2 〈w/r,PB(w/r)〉) (30c)

= r
2(2 〈w/r,PB(w/r)〉 − ‖PB(w/r)‖

2) (30d)

= 〈w,PB(w/r)〉 −
r
2‖PB(w/r)‖

2, (30e)

and the conclusion follows in view of (28) and (18). ✷

In the next result, we provide a concrete formula for g∗. As a byproduct, we obtain a
formula for (A−A)⊥.

Theorem 1 Set

S :=
{
w ∈ L2([0, 1]; IR) | w(t) = bT (t) p(t) , for all t ∈ [0, 1] ,

where p ∈W 1,2([0, 1]; IRn) solves ṗ(t) = −AT (t) p(t)
}
, (31)

and set
g̃(w) = ιS(w) +

(
xTf p(1)− xT0 p(0)

)
, (32)

where p solves ṗ(t) = −AT (t) p(t), and w(0) = bT (0) p(0) and w(1) = bT (1) p(1). Then the
following hold:

1. (∀w ∈ S) we have
〈a⊥, w〉 = xTf p(1)− xT0 p(0) . (33)

2. S = (A−A)⊥.

3. g∗ = g̃.

Proof. (1): Note that (33) follows directly from (14) and the definition of w.
(2): Using the functional g̃ in (32) and the definition in (24) we write

Proxg̃(w) = argmin
y∈L2([0,1];IR)

g̃(y) +
1

2

∫ 1

0
(y(t)− w(t))2 dt

= argmin
y∈L2([0,1];IR)

ιS(y) + xTf p(1)− xT0 p(0) +
1

2

∫ 1

0
(y(t)− w(t))2 dt .

So, by using the definition of S in (31), finding Proxg̃(w) becomes finding y that solves the
problem

(Proxg̃)





min
y(·)

xTf p(1)− xT0 p(0) +
1

2

∫ 1

0
(y(t)− w(t))2 dt

subject to ṗ(t) = −AT (t) p(t) , y(t) = bT (t) p(t) , for all t ∈ [0, 1] .
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Hence,
Proxg̃(w)(t) = y(t) = bT (t) p(t) = w(t)− (−bT (t) p(t) + w(t))

= w(t)− Proxg(w)(t) = Proxg∗(w)(t) ,

where ṗ(t) = −AT (t) p(t), and Lemma 2 was used with λ replaced by p in the second to
last equality. In the last equality, we used [8, Equation (24.4)]. Therefore, we deduce that
Proxg̃ = Proxg∗ and by [8, Corollary 24.7] we obtain

g∗ = g̃ + c, (34)

where c is a constant. Consequently, we deduce that dom g∗ = dom g̃. Combining this fact
with (23) then (32) yields

S = (A−A)⊥. (35)

(3): It follows from (34), (33) and (35) that

g∗ = g̃ + c = ι(A−A)⊥ + 〈·, a⊥〉+ c. (36)

We claim that c = 0. Indeed, since 0 = g∗(0) = g̃(0) + c = c. Hence our claim holds. This
completes the proof. ✷

As a consequence, we have the following proposition which verifies that (D) is the Fenchel
dual of (P).

Proposition 2 The dual problem (D) is the Fenchel dual of Problem (P).

Proof. The statement follows directly by combining (22), Lemma 3 and Theorem 1. ✷

4 Douglas–Rachford Algorithm

In this section, we introduce the Douglas–Rachford operator and derive its fixed point for
the optimal control problem. We also present the DR algorithm generating both the primal
and dual sequences for an optimal control problem.

4.1 Douglas–Rachford operator and its fixed point

Let u ∈ L2(0, 1; IR). The Douglas–Rachford operator associated with the ordered pair (f, g)
is defined by

Tu = u− Proxf u+ Proxg(2Proxf u− u). (37)

Set γ := 1/(1 + r). Then it follows from, e.g., [8, Example 24.8(i) and Example 23.4] that
Proxf = PB ◦ (γ Id) and Proxg = PA. Therefore, (37) becomes

Tu = u− PB(γu) + PA

(
2PB(γu)− u

)
. (38)

Observe that under appropriate constraint qualifications, e.g., A∩ intB 6= ∅, it is well-known
that solving (19) is equivalent to solving the inclusion:

Find u ∈ L2(0, 1; IR) such that 0 ∈ u+NBu+NAu = u+NBu+ (A−A)⊥. (39)
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Similarly, solving (22) is equivalent to solving the Attouch–Théra dual problem of (39);
namely

Find w ∈ L2(0, 1; IR) such that 0 ∈ a⊥+PB(−w)+N(A−A)⊥w = a⊥+PB(−w)+A−A. (40)

Set
Z :=

{
u ∈ L2(0, 1; IR)

∣∣ 0 ∈ u+NBu+ (A−A)⊥
}
, (41)

and set
K :=

{
w ∈ L2(0, 1; IR)

∣∣ 0 ∈ a⊥ + PB(−w) +A−A
}
. (42)

We use Fix T to denote the fixed point set of T defined by Fix T =
{
x ∈ L2(0, 1; IR)

∣∣ x = Tx
}
.

Interestingly, the fixed point set of T can be expressed using the sets Z and K. This is
summarized in the following fact.

Fact 1 Let T be the Douglas–Rachford operator defined in (38). Then

FixT = Z +K. (43)

Proof. See [7, Corollary 5.5(iii)]. ✷

The following fact provides a sufficient condition for the existence of a fixed point of the
DR operator.

Fact 2 Let f and g be defined as in (20). Then f is strongly convex. Suppose that A∩intB 6=
∅. Then

Z 6= ∅ ⇐⇒ K 6= ∅ ⇐⇒ Fix T 6= ∅. (44)

Moreover, if Z 6= ∅ then Z is a singleton.

Proof. The claim that f is strongly convex is clear. We now turn to (44). The first equivalence
follows from combining [8, Corollary 16.48(ii)] and [4, Corollary 3.2] or [6, Theorem 7.1]. The
second equivalence is a direct consequence of (43) and the first equivalence. Finally, suppose
that Z 6= ∅. Because f is strongly convex, the result now follows from, e.g., [8, Corol-
lary 28.3(v)]. ✷

Fact 1 describes the structure of the set of fixed points of the Douglas–Rachford operator.
Together with Fact 2, these two results imply that the sum of a primal solution and a dual
solution produce a fixed point of T , as long as a primal solution exists. The following theorem
provides the particular structure of Fix T for the case of Problem (P). It also reconfirms the
result in Fact 1.

Theorem 2 If ϕ is a fixed point of T , then

ϕ(t) = u(t) + w(t) =





a− bT (t)λ(t) , if − bT (t)λ(t) > r a ,

−(1 + r) bT (t)λ(t)/r , if r a ≤ −bT (t)λ(t) ≤ r a ,

a− bT (t)λ(t) , if − bT (t)λ(t) < r a .

(45)

where u is the (unique) solution of the primal problem (P) and w is a solution of the dual
problem (D).
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Proof. Suppose that ϕ is a fixed point of T . Then Tϕ = ϕ and (38) can be re-written as

PB(γϕ) = PA

(
2PB(γϕ)− ϕ

)
.

In other words, the problem is one of finding the fixed point ϕ which solves the system of
equations

PA

(
2PB(γϕ) − ϕ

)
= β , (46)

PB(γϕ) = β . (47)

Note we can rewrite Equation (46) using (47) as PA(2β − ϕ) = β. From (26) in Lemma 2
and Remark 2 we have PA(u)(t) = u(t)− bT (t)λ(t), with λ̇(t) = −AT (t)λ(t). Therefore,

PA(2β − ϕ)(t) = (2β(t) − ϕ(t))− bT (t)λ(t) = β(t) ,

and, re-arranging,
ϕ(t) = β(t)− bT (t)λ(t) . (48)

It is straightforward to write down the projection in Equation (47) onto the box B as

β(t) =





a , if γ ϕ(t) > a ,

γ ϕ(t) , if a ≤ γ ϕ(t) ≤ a ,

a , if γ ϕ(t) < a .

Using γ = 1/(1 + r), β becomes

β(t) =





a , if ϕ(t) > (1 + r) a ,

ϕ(t)/(1 + r) , if (1 + r) a ≤ ϕ(t) ≤ (1 + r) a ,

a , if ϕ(t) < (1 + r) a .

Substituting this into (48),

ϕ(t) =





a− bT (t)λ(t) , if ϕ(t) > (1 + r) a ,

ϕ(t)/(1 + r)− bT (t)λ(t) , if (1 + r) a ≤ ϕ(t) ≤ (1 + r) a ,

a− bT (t)λ(t) , if ϕ(t) < (1 + r) a .

Solving for ϕ in the second equation above, we derive

ϕ(t) =





a− bT (t)λ(t) , if ϕ(t) > (1 + r) a ,

−bT (t)λ(t)/r − bT (t)λ(t) , if (1 + r) a ≤ ϕ(t) ≤ (1 + r) a ,

a− bT (t)λ(t) , if ϕ(t) < (1 + r) a ,

and substituting ϕ(t) in the domain expressions,

ϕ(t) =





a− bT (t)λ(t) , if − bT (t)λ(t) > r a ,

−bT (t)λ(t)/r − bT (t)λ(t) , if r a ≤ −bT (t)λ(t) ≤ r a ,

a− bT (t)λ(t) , if − bT (t)λ(t) < r a ,

where λ̇(t) = −AT (t)λ(t). Then a minor manipulation yields the right-hand side expression
in (45). The fact that p = −λ and w(t) = −bT (t)λ(t) facilitates ϕ(t) = u(t) + w(t), u the
(unique) solution of the primal problem (P) and w a solution of the dual problem (D), as the
left-hand side expression in (45). ✷



Optimal Control Duality and DR Algorithm by R. S. Burachik, B. I. Caldwell, C. Y. Kaya & W. M. Moursi 14

4.2 The Algorithm

Suppose that A∩ intB 6= ∅. The DR operator in (38) can be employed in an algorithm with
clear steps (see Fact (3) below). Each time the operator is applied it results in the primal
iterate (update) in Step 5. The dual iterate (update) is given in Step 4.

Algorithm 1 (Douglas–Rachford)

Step 1 (Initialization) Choose a parameter γ ∈ (0, 1) and the initial iterate u0 arbitrarily.
Choose a small parameter ε > 0, and set k = 0.

Step 2 (Projection onto B) Set u− = γuk. Compute ũ = PB(u
−).

Step 3 (Projection onto A) Set u− := 2ũ− uk. Compute û = PA(u
−).

Step 4 (Dual update) wk := uk − ũ.

Step 5 (Primal update) Set uk+1 := wk + û.

Step 6 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then RETURN ũ and STOP. Otherwise,
set k := k + 1 and go to Step 2.

The following fact establishes strong convergence of the primal iterates and weak conver-
gence of the dual iterates in Algorithm 1.

Fact 3 Suppose that A∩ intB 6= ∅. Let Z and K be defined as in (41) and (42) respectively.
Let (uk)k∈N and (wk)k∈N be defined as in Algorithm 1. Then (∃u, w ∈ L2([0, 1]; IR)) such that
Z = {u}, w ∈ K, uk → u, and wk ⇀w.

Proof. Combine Fact 2 and, e.g., [8, Theorem 28.3(iv)&(v)(b)]. ✷

Remark 3 The iterates in Algorithm 1 are functions, and in a numerical implementation
of the algorithm, it is not possible to perform addition or scalar multiplication of functions.
Therefore these function iterates are represented by their discrete approximations, where
each iterate, for example, uk, is given as a vector in IRN , with components uk,i ≈ uk(ti),
and ti+1 = ti + i h, t0 = 0, h = 1/N , i = 0, 1, . . . , N − 1. One should note however that
this is different from the direct discretization of the problem, where the problem itself is
discretized and the discretized problem is dealt with as a finite-dimensional one, instead of
the infinite-dimensional one here. In Step 6 of the algorithm the L∞ norm is used to measure
the closeness of two consecutive iterates as the L∞ norm is a better (or realistic) norm to use
for example than the L2 norm in measuring the closeness of functions. ✷

Remark 4 Controllability of the dynamical system subject to the bounds on the control
variable ensures that a solution exists from any point to any other point in the state space.
This implies that the intersection of the sets A and the interior of B is nonempty. In the case
when the bounds on the control are too restricted, this intersection will be empty, which is
also a realistic situation encountered in engineering problems, for example the motor torque
being too small to achieve a target state, which requires a special treatment in finding a
control approximate in some sense. The latter (i.e., the infeasible case) is a subject of future
investigation. ✷
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5 Numerical Experiments

5.1 Double integrator

The double integrator is modelled as a special instance of (2) with

A =

[
0 1
0 0

]
, b =

[
0
1

]
,

x0 = (s0, v0) and xf = (sf , vf ). Although Problem (P) appears in a simple form with these
choices for A and b, since the control variable is constrained, it is not possible to get a solution
analytically. Indeed, numerical methods, such as the one we discuss in this paper, are needed
to obtain an approximate solution. The double integrator problem is simple and yet rich
enough to study when introducing and illustrating many basic and new concepts or when
testing new numerical approaches in optimal control—see, for example [5, 19], including the
text book [23].

The following two facts provide the projectors onto A and B for the minimum-energy
control of the double integrator (see [5, Proposition 2.1 and Proposition 2.2]).

Fact 4 (Projection onto A) The projection PA of u− ∈ L2([0, 1]; IR) onto the constraint
set A is given by

PA(u
−)(t) = u−(t) + c1 t+ c2 ,

for all t ∈ [0, 1], where

c1 := 12

(
s0 + v0 − sf +

∫ 1

0
(1− τ)u−(τ)dτ

)
− 6

(
v0 − vf +

∫ 1

0
u−(τ)dτ

)
,

c2 := −6

(
s0 + v0 − sf +

∫ 1

0
(1− τ)u−(τ)dτ

)
+ 2

(
v0 − vf +

∫ 1

0
u−(τ)dτ

)
.

We note that the integrals appearing in the expressions for c1 and c2 can only be evaluated
numerically.

Fact 5 (Projection onto B) The projection PB of u− ∈ L2([0, tf ]; IR) onto the constraint
set B is given by

PB(u
−)(t) =





a , if u−(t) ≥ a ,

u−(t) , if a ≤ u−(t) ≤ a ,

a , if u−(t) ≤ a ,

for all t ∈ [0, 1].

Using w = bT (t) p(t) = −bT (t)λ(t) in (8), one can re-write the optimal control u (the
primal variable) in terms of the dual variable w for the double integrator problem as

u(t) =





a , if w(t) > r a ,

w(t)/r , if r a ≤ w(t) ≤ r a ,

a , if w(t) < r a ;

(49)

in other words, u = PB(w/r).

Consider the case (as in [5]) when s0 = sf = vf = 0, v0 = 1, a = −2.5, a = 2.5, r = 1/3
(i.e., γ = 0.75). From empirical evidence in Figure 1.3(a) in [5] γ = 0.75 provides optimal
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Figure 1: Double integrator—The solid (blue) plot is the optimal primal control solution u,
the dashed (orange) plot is the dual solution w and the dotted (yellow) plot is the fixed point
ϕ of the DR operator.

performance for this problem. Application of Algorithm 1 yields the graphical solutions as
shown in Figure 1. With u0 = 0 and ε = 10−8, the algorithm has converged in 127 iterations.
The solid (blue) plot in Figure 1 is the optimal primal control solution denoted by u and the
dotted (yellow) plot is the fixed point of the DR operator denoted by ϕ. Recall by Theorem 2
that ϕ = u + w, which is reconfirmed by the solution curves in Figure 1. Finally, a close
inspection of the plots reveals that the optimality condition (49) is verified, reconfirming the
optimality of u. This check is something that was not possible to do in [5].

We note that the optimal primal solution u is unique, no matter what the value of r ∈
(0,∞), or γ = 1/(1+r) ∈ (0, 1), is, of course (see Fact 2). On the other hand, the optimal dual
solution w depends on the parameter r: as r changes the slope of the line representing the
graph of w changes with the t-intercept remaining the same. The fixed point ϕ also evolves to
obey ϕ = u+w. For a fixed r we cannot prove that w is unique but after running Algorithm 1
with r = 1/3 using 100, 000 randomly generated starting points we always converged to the
same w.

5.2 Machine tool manipulator

A machine tool manipulator is a machine used to simulate human hand movements usually
found in manufacturing. In [11, 13] this is modelled as an optimal control problem of the
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Figure 2: Machine tool manipulator—The solid (blue) plot is the optimal primal control
solution u, the dashed (orange) plot is the dual solution w and the dotted (yellow) plot is the
fixed point ϕ of the DR operator.

form in (2) with

A =




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−4.441 × 107/450 0 0 −8500/450 0 0 −1/450

0 0 0 0 0 0 1/750

0 0 −8.2× 106/40 0 0 −1800/40 0.25/40

0 0 0 0 0 0 −1/0.0025




,

b =
[
0 0 0 0 0 0 1/0.0025

]T
,

x0 = (0, 0, 0, 0, 0, 0, 0), xf = (0, 2.7 × 10−3, 0, 0, 0.1, 0, 0), tf = 0.522. We alter the objective
function given in the previously mentioned references to be the minimum-energy control as
in [10]. As with the double integrator problem we cannot solve this problem analytically
hence the need for a numerical method such as the one in this paper. The projector onto B
is as given in Fact 5 with tf = 0.0522. Due to the large number of state variables involved in
this problem it is not feasible to give the projector onto A in closed form so we implement a
numerical approach to approximate the projector. The numerical algorithm and expression
for the projector onto A are given in [10].

For this problem let a = −2000, a = 2000, r = 1/0.55 − 1 (i.e., γ = 0.55). The value
of r will not impact the solution but from experiments in [10], γ = 0.55 had the fastest
performance. With u0 = 0 and ε = 10−4 Algorithm 1 converged in 249 iterations. From
Figure 2 we can again observe that, as stated in Theorem 2, ϕ = u+w. We can also see that
Condition (49) is verified by the plots in Figure 2 which once more confirms the optimality
of u.
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6 Conclusion

We have explored relationships between the primal and dual optimal control problems as
the DR algorithm is applied to solve them. We derived the Fenchel dual to the primal
problem. We provided an explicit expression of the set of fixed points of the DR operator
as the Minkowski sum of the sets of primal and dual solutions. We showed that the fixed
point expression can be used as a certificate of optimality in that the optimality conditions
for optimal control obtained numerically can be checked.

As an example, we first chose the minimum-energy control of the double integrator, which is
simple yet rich enough to illustrate the concepts we developed and the results we obtained. We
also applied our methodology to the minimum-energy control of a machine tool manipulator
model which is numerically more challenging to solve than the double integrator.

In the future, the work we did here should be extended to general LQ optimal control
problems, also involving constraints on the state variables. We considered only constraints
on the control variables in the present paper. The inclusion of state variable constraints is
well known to create theoretical and numerical challenges. The derivation of the dual of LQ
control problems, albeit in a space different to that of the primal, done in [1,11] involves only
constraints on the control variables, so the work there needs to be extended first.
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