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A grid-overlay finite difference method is proposed for the numerical approximation of

the fractional Laplacian on arbitrary bounded domains. The method uses an unstructured

simplicial mesh and an overlay uniform grid for the underlying domain and constructs the

approximation based on a uniform-grid finite difference approximation and a data transfer

from the unstructured mesh to the uniform grid. The method takes full advantages of

both uniform-grid finite difference approximation in efficient matrix-vector multiplication

via the fast Fourier transform and unstructured meshes for complex geometries and mesh

adaptation. It is shown that its stiffness matrix is similar to a symmetric and positive

definite matrix and thus invertible if the data transfer has full column rank and positive

column sums. Piecewise linear interpolation is studied as a special example for the data

transfer. It is proved that the full column rank and positive column sums of linear in-

terpolation is guaranteed if the spacing of the uniform grid is smaller than or equal to

a positive bound proportional to the minimum element height of the unstructured mesh.

Moreover, a sparse preconditioner is proposed for the iterative solution of the resulting lin-

ear system for the homogeneous Dirichlet problem of the fractional Laplacian. Numerical

examples demonstrate that the new method has similar convergence behavior as existing

finite difference and finite element methods and that the sparse preconditioning is effective.

Furthermore, the new method can readily be incorporated with existing mesh adaptation

strategies. Numerical results obtained by combining with the so-called MMPDE moving

mesh method are also presented.
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1 Introduction

The fractional Laplacian is a fundamental non-local operator for modeling anomalous dynamics and

its numerical approximation has attracted considerable attention recently; e.g. see [5, 24, 27] and

references therein. A number of numerical methods have been developed along the lines of various

representations of the fractional Laplacian, such as the Fourier/spectral representation, the singular

integral (including Riemann-Liouville and Caputo) representation, the Grünwald-Letnikov represen-

tation, and the heat semi-group representation. For examples, methods based on the Fourier/spectral

representation include finite difference (FD) methods [17, 23, 24, 25, 30, 31, 39], spectral element

method [35], and sinc-based method [6]. Methods based on the singular integral representation in-

clude FD methods [14, 28, 36], finite element methods [1, 2, 3, 4, 8, 15, 37], discontinuous Galerkin

methods [12, 13], and spectral method [26]; and FD methods [11, 32, 38] based on the Grünwald-

Letnikov representation. Loosely speaking, most of the existing FD methods have been constructed

on uniform grids, have the advantage of efficient matrix-vector multiplication via the fast Fourier trans-

form (FFT), but do not work for domains with complex geometries and have difficulty to incorporate

with mesh adaptation. On the other hand, finite element methods can work for arbitrary bounded

domains and are easy to combine with mesh adaptation but suffer from slowness of matrix-vector

multiplication because the stiffness matrix is a full matrix. A sparse approximation to the stiffness

matrix and an efficient multigrid implementation have been proposed by Ainsworth and Glusa [4].

There exists special effort to apply FD and spectral methods to domains with complex geometries.

For example, Song et al. [35] construct an approximation of the fractional Laplacian based on the

spectral decomposition and the spectral element approximation of the Laplacian operator on arbi-

trary domains. Hao et al. [17] combine a uniform-grid FD method with the penalty method of [34]

for non-rectangular domains.

Figure 1: A sketch of an unstructured simplicial mesh Th (in color blue) overlaid by a uniform grid

TFD (in color green) . Boundary value problem (1) is solved on Th that is not necessarily

quasi-uniform.

The objective of this work is to present a simple FD method, called the grid-overlay FD method or

GoFD, for the fractional Laplacian on arbitrary bounded domains. The method has the full advantage

of uniform-grid FD methods in efficient matrix-vector multiplication via FFT. Specifically, we consider

the homogeneous Dirichlet problem
#

p´∆qsu “ f, in Ω

u “ 0, in Ωc
(1)
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where p´∆qs is the fractional Laplacian with the fractional order s P p0, 1q, Ω is a bounded domain in

Rd (d ě 1), Ωc ” RdzΩ, and f is a given function. Given an unstructured simplicial mesh Th that fits

or approximately fits Ω and is not necessarily quasi-uniform, we want to approximate the solution of

(1) on Th. A uniform grid TFD (with spacing hFD) that overlays Ω̄ (see Fig. 1) is first created and a

uniform-grid FD approximation h´2s
FD AFD for the fractional Laplacian is constructed thereon. Then,

the GoFD approximation of the fractional Laplacian on Th is defined as h´2s
FD Ah, where Ah is given by

Ah “ D´1
h pIFDh qTAFDI

FD
h . (2)

Here, IFDh is a transfer matrix from Th to TFD and Dh is the diagonal matrix formed by the column

sums of IFDh . Notice that the multiplication of Ah with vectors can be performed efficiently since the

multiplication of AFD with vectors can be carried out using FFT and IFDh is sparse. Moreover, Ah is

invertible if IFDh has full column rank and positive column sums (cf. Theorem 3.1). For a special choice

of IFDh , piecewise linear interpolation from Th to TFD, Theorem 3.2 states that the full column rank

and positive column sums of IFDh are guaranteed if hFD is smaller than or equal to a positive bound

proportional to the minimum element height of Th (cf. (40)). Stability and sparse preconditioning for

the resulting linear system are studied. Furthermore, the use of unstructured meshes in GoFD allows

easy incorporation with existing mesh adaptation strategies. As an example, the incorporation with

the so-called MMPDE moving mesh method [19, 20, 21] is discussed. Numerical examples in 1D, 2D,

and 3D are presented to demonstrate that GoFD has similar convergence behavior as existing FD and

finite element methods and that the sparse preconditioning and mesh adaptation are effective.

An outline of the paper is as follows. The construction of uniform-grid FD approximation for the

fractional Laplacian is presented in Section 2. Section 3 is devoted to the description of GoFD, studies

of its properties, and construction of sparse preconditioning. The MMPDE moving mesh method and

its combination with GoFD are discussed in Section 4. Numerical examples are presented in Section 5.

Finally, conclusions are drawn and further comments are given in Section 6.

2 Uniform-grid FD approximation of the fractional Laplacian

In this section we briefly describe the FD approximation of the fractional Laplacian on a uniform

grid through the Fourier transform. The reader is referred to, e.g., [17, 24, 30, 31], for detail. The

properties of the approximation and the computation of the stiffness matrix and its multiplication

with vectors through the fast Fourier transform (FFT) are also discussed. For notational simplicity

and without loss of generality, we restrict our discussion in 2D.

2.1 FD approximation on a uniform grid

Consider an absolutely integrable function u in R2. Recall that its Fourier transform is defined as

ûpξ, ηq “

ż 8

´8

ż 8

´8

upx, yqe´ixξe´iyηdxdy, (3)

and the inverse Fourier transform is given by

upx, yq “
1

p2πq2

ż 8

´8

ż 8

´8

ûpξ, ηqeixξeiyηdξdη. (4)
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Applying the Laplacian operator to the above equation, we have

p´∆qupx, yq “
1

p2πq2

ż 8

´8

ż 8

´8

pξ2 ` η2qûpξ, ηqeixξeiyηdξdη.

This implies
{p´∆qupξ, ηq “ pξ2 ` η2qûpξ, ηq.

Based on this, the Fourier transform of the fractional Laplacian can be defined as

{p´∆qsupξ, ηq “ pξ2 ` η2qsûpξ, ηq. (5)

Accordingly, the fractional Laplacian is given by

p´∆qsupx, yq “
1

p2πq2

ż 8

´8

ż 8

´8

{p´∆qsupξ, ηqeixξeiyηdξdη. (6)

A uniform-grid FD approximation for the fractional Laplacian can be defined in a similar manner.

Consider an infinite uniform grid (lattice)

pxj , ykq “ pjhFD, khFDq, j, k P Z,

where hFD is a given positive number. The discrete Fourier transform (DFT) on this grid is defined

as

ǔpξ, ηq “

8
ÿ

j“´8

8
ÿ

k“´8

uj,ke
´ixjξe´iykη, (7)

where uj,k “ upxj , ykq. Here, we use ǔ to denote the DFT of u to avoid confusion with the continuous

Fourier transform (cf. (3)). The inverse DFT is given by

upxj , ykq “
h2FD

p2πq2

ż π
hFD

´ π
hFD

ż π
hFD

´ π
hFD

ǔpξ, ηqeixjξeiykηdξdη

“
1

p2πq2

ż π

´π

ż π

´π
ǔp

ξ

hFD
,
η

hFD
qeijξeikηdξdη. (8)

Now we consider a central FD approximation to the Laplacian on tpxj , ykqu,

p´∆hqupxj , ykq “
1

h2FD
puj`1,k ´ 2uj,k ` uj´1,kq `

1

h2FD
puj,k`1 ´ 2uj,k ` uj,k´1q. (9)

Applying the DFT (7) to the above equation, we get

p´∆hqupξ, ηq “
1

h2FD

ˆ

4 sin2p
ξhFD
2

q ` 4 sin2p
ηhFD
2

q

˙

ǔpξ, ηq.

From this, the DFT of the FD approximation of the fractional Laplacian can be defined as

p´∆hqsupξ, ηq “
1

h2sFD

ˆ

4 sin2p
ξhFD
2

q ` 4 sin2p
ηhFD
2

q

˙s

ǔpξ, ηq. (10)
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Then, the FD approximation of the fractional Laplacian reads as

p´∆hqsupxj , ykq “
1

p2πq2

ż π

´π

ż π

´π

p´∆hqsup
ξ

hFD
,
η

hFD
qeijξeikηdξdη

“
1

p2πq2h2sFD

8
ÿ

m“´8

8
ÿ

n“´8

um,n

ż π

´π

ż π

´π
ψpξ, ηqeipj´mqξeipk´nqηdξdη, (11)

where

ψpξ, ηq “

ˆ

4 sin2p
ξ

2
q ` 4 sin2p

η

2
q

˙s

. (12)

If we define

Tp,q “
1

p2πq2

ż π

´π

ż π

´π
ψpξ, ηqeipξeiqηdξdη, (13)

Apj,kq,pm,nq “ Tj´m,k´n, (14)

we can rewrite (11) into

p´∆hqsupxj , ykq “
1

h2sFD

8
ÿ

m“´8

8
ÿ

n“´8

Apj,kq,pm,nqum,n, ´8 ă j, k ă 8. (15)

Notice that Apj,kq,pm,nq is the entry of an infinite matrix A at the pj, kq-th row and the pm,nq-th

column with the understanding that the 2D indices pj, kq and pm,nq are converted into linear indices

using a certain ordering (such as the natural ordering). Moreover, Tp,q’s are the coefficients of the

Fourier series of ψpξ, ηq. From (13), it is not difficult to show

T´p,´q “ Tp,q, T´p,q “ Tp,q, Tp,´q “ Tp,q. (16)

Furthermore, (14) implies that A is a Toeplitz matrix of infinite order in 1D and a block Toeplitz

matrix of Toeplitz blocks in multi-dimensions.

Lemma 2.1 (Parseval’s equality). If
ř8

j“´8

ř8
k“´8 u2j,k ă 8, then

1

p2πq2

ż π

´π

ż π

´π
|ǔp

ξ

hFD
,
η

hFD
q|2dξdη “

8
ÿ

j“´8

8
ÿ

k“´8

u2j,k. (17)

Proof. (17) can be proved using (8) and direct calculation.

Next, we consider functions with compact support in Ω for solving the homogeneous Dirichlet

problem (1). More specifically, we consider a square p´R,Rq ˆ p´R,Rq, where R is a positive number

such that Ω is covered by the square (cf. Fig. 1). For a given positive integer N , we choose hFD “ R
N .

Let TFD “ tpxj , ykq, ´N ď j, k ď Nu (a finite unifrom grid) and u⃗FD “ tuj,k, j, k “ ´N, ..., Nu.

Notice that the right-hand side of (17) becomes a finite double sum for the current situation since

uj,k “ 0 for any pxj , ykq R p´R,Rq ˆ p´R,Rq.

For notational convenience, we denote the restriction of the infinite matrix A on TFD by AFD, i.e.,

AFD “

´

Apj,kq,pm,nq

¯

p2N`1q2ˆp2N`1q2
. (18)

Notice that h´2s
FD AFD is an FD approximation matrix of the fractional Laplacian on TFD. Recall from

(14) (now with ´N ď j, k,m, n ď N) that AFD is a block Toeplitz matrix of Toeplitz blocks.
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Lemma 2.2 (The fractional Poincaré inequality). For any function u with support in p´R,Rq ˆ

p´R,Rq, there holds
ż π

´π

ż π

´π

`

|ξ|2 ` |η|2
˘s

|ǔp
ξ

hFD
,
η

hFD
q|2dξdη (19)

ě C h2sFD

ż π

´π

ż π

´π
|ǔp

ξ

hFD
,
η

hFD
q|2dξdη,

where C is a positive constant independent of u, hFD, and N .

Proof. The proof of the continuous fractional Poincaré inequality can be found, for example, in [7,

Proposition 1.55, p. 39]. (19) is different from the continuous one since it uses DFT instead of the

continuous Fourier transform. Nevertheless, it can be proved by following the proof of the continuous

version and using Lemma 2.1.

We remark that the left-hand and right-hand sides of (19) can be viewed as the H2s semi-norm and

L2 norm of u, respectively.

Proposition 2.1. The matrix AFD “
`

Apj,kq,pm,nq

˘

is symmetric and positive definite. Particu-

larly,

u⃗TFDAFDu⃗FD ě C h2sFD u⃗TFDu⃗FD, @u⃗FD P Rp2N`1q2 (20)

where C is a positive constant.

Proof. From (14) and (16), we can see that AFD is symmetric. Moreover, from (13) and (14) we have

u⃗TFDAFDu⃗FD “

N
ÿ

j“´N

N
ÿ

k“´N

N
ÿ

m“´N

N
ÿ

n“´N

Apj,kq,pm,nquj,kum,n

“
1

p2πq2

ż π

´π

ż π

´π
ψpξ, ηq ¨

N
ÿ

j“´N

N
ÿ

k“´N

uj,ke
ijξ`ikη ¨

N
ÿ

m“´N

N
ÿ

n“´N

um,ne
´imξ´inηdξdη

“
1

p2πq2

ż π

´π

ż π

´π
ψpξ, ηq|ǔp

ξ

hFD
,
η

hFD
q|2dξdη.

Since

ψpξ, ηq “

ˆ

4 sin2p
ξ

2
q ` 4 sin2p

η

2
q

˙s

ě

ˆ

2

π

˙2
`

|ξ|2 ` |η|2
˘s
, @ξ, η P p´π, πq

we get

u⃗TFDAFDu⃗FD ě
1

p2πq2

ˆ

2

π

˙2 ż π

´π

ż π

´π

`

|ξ|2 ` |η|2
˘s

|ǔp
ξ

hFD
,
η

hFD
q|2dξdη.

Combining this with Lemmas 2.1 and 2.2 we obtain (20), which implies that AFD is positive definite.

When Ω “ p´R,Rq ˆ p´R,Rq, an FD approximation of the homogeneous Dirichlet problem (1) on

TFD is given by
1

h2sFD
AFDu⃗FD “ f⃗FD, (21)

where f⃗FD “ tfpxj , ykq, j, k “ ´N, ..., Nu.
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Proposition 2.2 (Stability). The solution of (21) satisfies

u⃗TFDAFDu⃗FD ď C1 h
2s
FD f⃗

T
FDf⃗FD, (22)

u⃗TFDu⃗FD ď C2 f⃗
T
FDf⃗FD, (23)

where C1 and C2 are constants.

Proof. Multiplying u⃗TFD with (21) from left and using the Cauchy-Schwarz inequality, we have

u⃗TFDAFDu⃗FD “ h2sFDu⃗
T
FDf⃗FD “ h2sFDpA

1
2
FDu⃗FDqT pA

´ 1
2

FD f⃗FDq

ď h2sFDpu⃗TFDAFDu⃗FDq
1
2 pf⃗TFDA

´1
FDf⃗FDq

1
2 .

Thus, we have

u⃗TFDAFDu⃗FD ď h4sFDf⃗
T
FDA

´1
FDf⃗FD.

Notice that Proposition 2.1 implies }A´1
FD} ď Ch´2s

FD . Combining these results gives (22).

The inequality (23) follows from (22) and Proposition 2.1.

Remark 2.1. Error estimates and convergence order for the FD approximation of the fractional

Laplacian have been established for sufficiently smooth solutions by a number of researchers; e.g., see

[14, 17, 24]. Unfortunately, the existing analysis does not apply to solutions of (1) with the optimal

regularity Hs`1{2´ϵpΩq for any ϵ ą 0 [9]. Nevertheless, for those solutions it has been observed

numerically (e.g., see [14, 17]) that the FD approximation converges at OphsFDq in L8 norm. This

is confirmed by our numerical results (cf. Example 5.1). Our results also suggest that the error is

Oph
minp1,s`1{2q

FD q in L2 norm.

2.2 Computation of the multiplication of AFD with vectors using FFT

For the moment, we assume that Tp,q’s have been computed. The process of computing the multipli-

cation of AFD with vectors starts with computing the DFT of Tp,q’s, i.e.,

Ťm,n “

2N´1
ÿ

p“´2N

2N´1
ÿ

q“´2N

Tp,qe
´

i2πpm`2Nqpp`2Nq

4N e´
i2πpn`2Nqpq`2Nq

4N ,

for m,n “ ´2N, ..., 2N ´ 1. The inverse DFT is

Tp,q “
1

p4Nq2

2N´1
ÿ

m“´2N

2N´1
ÿ

n“´2N

Ťm,ne
i2πpm`2Nqpp`2Nq

4N e
i2πpn`2Nqpq`2Nq

4N ,

for p, q “ ´2N, ..., 2N ´ 1. Then, from (14) we have

pAFDu⃗FDqpj,kq “

N
ÿ

m“´N

N
ÿ

n“´N

Tj´m,k´num,n

“

N
ÿ

m“´N

N
ÿ

n“´N

um,n
1

p4Nq2

2N´1
ÿ

p“´2N

2N´1
ÿ

q“´2N

Ťp,qe
i2πpp`2Nqpj´m`2Nq

4N e
i2πpq`2Nqpk´n`2Nq

4N
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“
1

p4Nq2

2N´1
ÿ

p“´2N

2N´1
ÿ

q“´2N

Ťp,qp´1qp`2N p´1qq`2Ne
i2πpp`2Nqpj`Nq

4N e
i2πpq`2Nqpk`Nq

4N

¨

N
ÿ

m“´N

N
ÿ

n“´N

um,ne
´

i2πpp`2Nqpm`Nq

4N e´
i2πpq`2Nqpn`Nq

4N . (24)

If we expand u into

ũm,n “

#

um,n, for ´N ď m,n ď N

0, otherwise

we can rewrite the inner double sum in (24) into

N
ÿ

m“´N

N
ÿ

n“´N

um,ne
´

i2πpp`2Nqpm`Nq

4N e´
i2πpq`2Nqpn`Nq

4N

“

3N´1
ÿ

m“´N

3N´1
ÿ

n“´N

ũm,ne
´

i2πpp`2Nqpm`Nq

4N e´
i2πpq`2Nqpn`Nq

4N ,

which is the DFT of ũ (denoted by ˇ̃u). Then,

pAFDu⃗FDqpj,kq “
1

p4Nq2

2N´1
ÿ

p“´2N

2N´1
ÿ

q“´2N

Ťp,q ˇ̃up,qp´1qp`2N p´1qq`2Ne
i2πpp`2Nqpj`Nq

4N e
i2πpq`2Nqpk`Nq

4N .

Thus, AFDu⃗FD can be obtained as the inverse DFT of Ťp,q ˇ̃up,qp´1qp`2N p´1qq`2N .

In summary, AFDu⃗FD can be carried out by performing three FFTs. From the complexity of FFT,

we can estimate the cost of computing AFDu⃗FD (in d-dimensions) as OpNd logpNdqq. It is worth

mentioning that the number of grid points of TFD and length of vector u⃗FD are OpNdq. Thus, the

cost is almost linear about the number of grid points.

2.3 Computation of matrix T

We rewrite (13) into

Tp,q “ p´1qp`q

ż 1

0

ż 1

0
ψ̃pξ, ηqei2πpξei2πqηdξdη, (25)

where

ψ̃pξ, ηq “
`

4 cos2pπξq ` 4 cos2pπηq
˘s
. (26)

Recall from (16) that we only need to compute Tp,q for 0 ď p, q ď 2N . We first consider the composite

trapezoidal rule (2rd-order). For any given integer M ě 2N ` 1, let

ξj “
j

M
, ηk “

k

M
, j, k “ 0, 1, ...,M.

Then,

Tp,q “ p´1qp`q
M´1
ÿ

j“0

M´1
ÿ

k“0

ż ξj`1

ξj

ż ηk`1

ηk

ψ̃pξ, ηq ¨ ei2πpξei2πqηdξdη

8



«
p´1qp`q

M2

M´1
ÿ

j“0

M´1
ÿ

k“0

ψ̃pξj , ηkq ¨ e
i2πpj
M e

i2πqk
M , 0 ď p, q ď 2N. (27)

Thus, Tp,q’s can be obtained with the inverse FFT.

It should be pointed out that M should be chosen much larger than 2N ` 1 in the above procedure

for accurate computation of T due to the highly oscillatory nature of the factor ei2πpξei2πqη in (25). As

a result, the computation of T can be very expensive in terms of CPU time and memory for large N .

To avoid this difficulty, we use Filon’s approach [16] designed for highly oscillatory integrals including

(25). We explain this in 1D,

Tp “ p´1qp
ż 1

0
ψ̃pξqei2πpξdξ “ p´1qp

M´1
ÿ

j“0

ż ξj`1

ξj

ψ̃pξqei2πpξdξ.

The key idea of Filon’s approach is to approximate ψ̃pξq with a polynomial on each subinterval and then

carry out the resulting integrals analytically. Here, we approximate ψ̃pξq with a linear polynomial

on each subinterval. In this situation, we can first perform integration by parts and then do the

approximation, i.e.,

Tp “ p´1qp
M´1
ÿ

j“0

˜

1

i2πp
ψ̃pξqei2πpξ|

ξj`1

ξj
´

1

i2πp

ż ξj`1

ξj

ψ̃1pξqei2πpξdξ

¸

.

The sum of the first term in the bracket vanishes since ψ̃pξqei2πpξ is periodic. Then,

Tp “
p´1qp`1

i2πp

M´1
ÿ

j“0

ż ξj`1

ξj

ψ̃1pξqei2πpξdξ

«
p´1qp`1

i2πp

M´1
ÿ

j“0

ż ξj`1

ξj

ψ̃pξj`1q ´ ψ̃pξjq

1{M
ei2πpξdξ

“
p´1qp`1

pi2πpq2

M´1
ÿ

j“0

ψ̃pξj`1q ´ ψ̃pξjq

1{M

´

ei2πpξj`1 ´ ei2πpξj
¯

.

Thus,

Tp «
p´1qp`1

p2πpq2

M´1
ÿ

j“0

ψ̃pξj`1q ´ 2ψ̃pξjq ` ψ̃pξj´1q

1{M
e

i2πpj
M , p “ 0, ..., 2N. (28)

Notice that (28) can be computed using FFT. Moreover, the error of the quadrature is Op 1
M2 q,

independent of N .

In our computation, we combine the Filon approach with Richardson’s extrapolation. We use

M “ 214 and 211 for the finest level of Richardson’s extrapolation for 2D and 3D computation,

respectively. For 1D computation, we use the analytical formula (e.g., see [31]),

Tp “
p´1qpΓp2s` 1q

Γpp` s` 1qΓps´ p` 1q
, p “ 0, ..., 2N (29)
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where Γp¨q is the Γ-function.

It is interesting to point out that the cost of computing the matrix T via FFT is OpMd logpMdqq.

Assuming that a computer can perform 109 floating-point operations per second, computing the matrix

T takes about pMd logpMdqq{109 “ 5.2 seconds in 2D (with M “ 214) and 196 seconds in 3D (with

M “ 211).

3 The grid-overlay FD method

In this section we describe GoFD for solving (1) in d-dimensions (d ě 1) on arbitrary bounded domain

Ω. We also study the choice of hFD that guarantees the column full rank and positive column sums

of the transfer matrix and therefore the solvability of the linear system resulting from the GoFD

discretization of (1). Furthermore, the iterative solution and sparse preconditioning for the linear

system are discussed.

3.1 GoFD for arbitrary bounded domains

For a given bounded domain Ω P Rd, we assume that an unstructured simplicial mesh Th has been

given that fits or approximately fits BΩ. Then, we take a d-dimensional cube, p´R,Rqd, such that it

covers Ω and Th. An overlaying uniform grid (denoted by TFD) is created with 2N ` 1 nodes in each

axial direction for some positive integer N and the spacing is given by

hFD “
R

N
.

See Fig. 1 for a sketch of TFD and Th.
Then, a uniform-grid FD approximation h´2s

FD AFD (of size p2N ` 1qd ˆ p2N ` 1qd) of the fractional

Laplacian can be obtained on TFD as described in the previous section. We define h´2s
FD Ah as the

GoFD approximation of the fractional Laplacian on Ω, where Ah is defined in (2).

Remark 3.1. The matrix D´1
h pIFDh qT represents a data transfer from grid TFD to mesh Th. It

is taken as a transpose of IFDh so that Ah is similar to a symmetric and positive definite matrix (cf.

Theorem 3.1 below). Moreover, D´1
h is included in the definition so that the row sums of D´1

h pIFDh qT

are equal to one and, thus, the transfer preserves constant functions. This inclusion is necessary for

the data transfer D´1
h pIFDh qT to be consistent.

Theorem 3.1. If IFDh has full column rank and positive column sums, then Ah defined in (2) is

similar to a symmetric and positive definite matrix, i.e.,

Ah “ D
´ 1

2
h ¨

`

IFDh D
´ 1

2
h

˘T
AFD

`

IFDh D
´ 1

2
h

˘

¨D
1
2
h . (30)

As a consequence, Ah is invertible.

Proof. When IFDh has positive column sums, Dh is invertible and thus, the definition (2) is meaningful.

Moreover, it is straightforward to rewrite (2) into (30), indicating that Ah is similar to

Ãh “
`

IFDh D
´ 1

2
h

˘T
AFD

`

IFDh D
´ 1

2
h

˘

. (31)
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It is obvious that Ãh is symmetric and positive semi-definite. If we can show it to be nonsingular,

then Ãh is positive definite. Assume that there is a vector u⃗h such that u⃗Th Ãhu⃗h “ 0. Since AFD is

symmetric and positive definite (Proposition 2.1), this implies IFDh D
´ 1

2
h u⃗h “ 0. The full column rank

assumption of IFDh and Dh being diagonal mean u⃗h “ 0. Thus, Ãh is nonsingular and, therefore, Ãh

is symmetric and positive definite.

Remark 3.2. The full column rank assumption of IFDh in Theorem 3.1 implies that IFDh has at

least as many rows as columns, i.e. p2N`1qd ě Nv. In other words, TFD should have as many vertices

as Th does.

We now consider a special choice of IFDh : linear interpolation. Denote the vertices of Th by xj , j “

1, ..., Nv, and the vertices of TFD by xFD
k , k “ 1, ..., NFD

v . Consider the piecewise linear interpolation

on Th,

Ihupxq “

Nv
ÿ

j“1

ujϕjpxq, (32)

where uj “ upxjq and ϕj is the Lagrange-type linear basis function associated with vertex xj . Here

we assume that all of the basis functions vanish outside Ω̄. Recall that

0 ď ϕjpxq ď 1; ϕjpxq “ 0, @x R ω̄j ;
Nv
ÿ

j“1

ϕjpxq “ 1, @x P Ω̄

where ωj is the patch of elements that have xj as one of their vertices. When restricted on an element

K of Th, the linear interpolation can be expressed as

Ihu|Kpxq “

d
ÿ

j“0

uKj ϕ
K
j pxq, @x P K. (33)

Let u⃗h “ tupxjq, j “ 1, ..., Nvu. Then, for k “ 1, ..., NFD
v ,

pIFDh u⃗hqk “ IhupxFD
k q “

Nv
ÿ

j“1

ujϕjpx
FD
k q. (34)

This gives

pIFDh qk,j “ ϕjpx
FD
k q, k “ 1, ..., NFD

v , j “ 1, ..., Nv. (35)

It is worth pointing out that Ih conforms with the homogeneous Dirichlet boundary condition.

Consider an arbitrary vertex xFD
k P TFD. When xFD

k R Ω, it is obvious that IhupxFD
k q “ 0. When

xFD
k P Ω, on the other hand, there exists a mesh element K P Th containing xFD

k since Th is a

boundary-fitted mesh for Ω. In this case, IhupxFD
k q is determined by the values of u at the vertices of

K (cf. (33)). Particularly, IhupxFD
k q is affected by the values of u on the boundary of Ω when K is

a boundary element. In this sense, Ih and thus IFDh (cf. (34)) and Ah (cf. (2)) feel the homogeneous

Dirichlet boundary condition.

In the following analysis, we need the following quantities,

Nval “ max
j“1,...,Nv

#ωj , Nh
FD “ max

KPTh
#txFD

k P K̄u,

11



where # stands for the number of members in a set. Nval is usually referred to as the valence of Th.
Nh

FD can be estimated as

Nh
FD «

|K|max

hdFD
,

where |K|max denotes the volume of the largest element of Th. We assume that both Nval and N
h
FD

are finite and small.

Lemma 3.1. The transfer matrix IFDh associated with piecewise linear interpolation has the fol-

lowing properties.

(i) Nonnegativity and boundedness: 0 ď pIFDh qk,j ď 1 for all k, j.

(ii) Sparsity: pIFDh qk,j “ 0 when xFD
k R ωj.

(iii) The row sums of IFDh are either 0 or 1, i.e.,

Nv
ÿ

j“1

pIFDh qk,j “

#

1, for xFD
k P Ω̄

0, otherwise
@k “ 1, ..., NFD

v .

(iv) The column sums, Dh,j “
řNFD

v
k“1 pIFDh qk,j, j “ 1, ..., Nv, are bounded by

max
xFD

k Pωj

ϕjpx
FD
k q ď Dh,j ď NvalN

h
FD. (36)

(v)

λmax

`

pIFDh qT IFDh

˘

ď NvalN
h
FD, λmax

`

IFDh pIFDh qT
˘

ď NvalN
h
FD. (37)

Proof. (i), (ii), and (iii) follow from (35) and the properties of linear basis functions. For (iv), we have

Dh,j “

NFD
v

ÿ

k“1

ϕjpx
FD
k q “

ÿ

xFD
k Pωj

ϕjpx
FD
k q “

ÿ

KPωj

ÿ

xFD
k PK

ϕjpx
FD
k q.

Then, (36) follows from the above equation, the definition of Nval and N
h
FD, and the nonnegativity of

the basis functions.

For (v), we notice that both pIFDh qT IFDh and IFDh pIFDh qT are nonnegative matrices. Using (iii) and

(iv), we can show that their row sums are bounded above by NvalN
h
FD. Then, (37) follows from [18,

Theorem 8.1.22] about the spectral radius of nonnegative matrices.

Next we study how small hFD should be (or, equivalently, how large N should be) to guarantee that

Dh is invertible and IFDh has full column rank. To this end, we need a few properties of simplexes

in Rd. For a simplex K, we denote the facet formed by all of its vertices except xK
j by Sj and the

distance (called the height or altitude) from xK
j to Sj by aj . The minimum height of K is denoted by

aK , i.e., aK “ minj aj and the minimum element height of Th is denoted by ah, i.e., ah “ minK aK .

Lemma 3.2. Any simplex K P Rd contains a cube of side length at least 2aK
pd`1q

?
d
.
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Proof. It is known from geometry (e.g., see [29, Theorem 1]) that the radius of the largest ball inscribed

in any simplex K is related to the heights of K as

1

rin
“

d`1
ÿ

j“1

1

aj
.

From this, we have

rin ě
aK
d` 1

.

Since the length of the diagonals of the largest cube inscribed in the ball is equal to the diameter of

the ball, i.e.,
?
d a “ 2rin, where a is the side length of the cube, we get

a “
2rin
?
d

ě
2aK

pd` 1q
?
d
.

Lemma 3.3. The j-th barycentric coordinate of an arbitrary point x on K, ϕKj pxq, is equal to

the ratio of the distance from x to facet Sj, to the height aj.

Proof. The conclusion follows from ϕKj pxK
j q “ 1, ϕKj |Sj “ 0, and the linearity of ϕKj .

Lemma 3.4. Consider a simplex K̃ Ă K with vertices yk, k “ 0, ..., d, and define

vk “ Ihu|Kpykq “

d
ÿ

j“0

uKj ϕ
K
j pykq, k “ 0, ..., d.

Then,

|K̃|2

pd` 1qd|K|2

d
ÿ

j“0

puKj q2 ď

d
ÿ

j“0

v2j ď pd` 1q

d
ÿ

j“0

puKj q2, (38)

where |K| and |K̃| denote the volume of K and K̃, respectively.

Proof. Recalling that ϕKj pxq ě 0 and
řd

j“0 ϕ
K
j pxq “ 1, we have

d
ÿ

k“0

v2k ď

d
ÿ

k“0

˜

d
ÿ

j“0

|uKj |ϕKj pykq

¸2

ď

d
ÿ

k“0

˜

d
ÿ

j“0

|uKj |2ϕKj pykq

¸

ď pd` 1q

d
ÿ

j“0

|uKj |2,

which gives the right inequality of (38).

To prove the left inequality of (38), from

x “

d
ÿ

j“0

xK
j ϕ

K
j pxq, 1 “

d
ÿ

j“0

ϕKj pxq,

we have
»

—

–

ϕK0
...

ϕKd

fi

ffi

fl

“ E´1

«

x

1

ff

, E “

«

xK
0 xK

1 ¨ ¨ ¨ xK
d

1 1 ¨ ¨ ¨ 1

ff

.
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It is known that detpEq “ d!|K|. Using this and letting u⃗K “ puK0 , ..., u
K
d qT , we have

d
ÿ

k“0

v2k “

d
ÿ

k“0

pu⃗KqTE´1

«

yk

1

ff «

yk

1

ffT

E´T u⃗K

“ pu⃗KqTE´1
d

ÿ

k“0

«

yk

1

ff «

yk

1

ffT

E´T u⃗K

“ pu⃗KqTE´1BBTE´T u⃗K , (39)

where

B “

«

y0 y1 ¨ ¨ ¨ yd

1 1 ¨ ¨ ¨ 1

ff

.

The right inequality of (38) implies that

λmaxpE´1BBTE´T q ď pd` 1q.

On the other hand,

detpE´1BBTE´T q “
detpBq2

detpEq2
“

|K̃|2

|K|2
.

Since the determinant of a matrix is equal to the product of its eigenvalues, we get

λminpE´1BBTE´T q ě
detpE´1BBTE´T q

λmaxpE´1BBTE´T qd
ě

|K̃|2

pd` 1qd|K|2
.

Combining this with (39) we obtain the left inequality of (38).

Theorem 3.2. If we choose

hFD ď
ah

pd` 1q
?
d
, (40)

where ah is the minimum element height of Th, then the transfer matrix IFDh associated with piecewise

linear interpolation has the following properties.

(i)
1

pd` 1q
?
d

¨
ah
h

ď Dh,j ď NvalN
h
FD, @j “ 1, ..., Nv (41)

and thus, Dh is invertible. Here, h is the maximum element diameter of Th.

(ii) The minimum eigenvalue of pIFDh qT IFDh is bounded below by

λmin

`

pIFDh qT IFDh

˘

ě C
´ah
h

¯2d
, (42)

where C is a positive constant.

(iii) IFDh has full column rank.
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Proof. (i) Lemma 3.2 implies that any element K of Th contains a cube of side length 2ah
pd`1q

?
d
. Thus,

when hFD satisfies (40), K contains at least a cubic cell of TFD. As a consequence, for any vertex (say

xj) of K, there is a node (say xFD
k ) of TFD that is in K and its distance to the facet opposing xj is

at least hFD. From Lemma 3.3, the barycentric coordinate of xFD
k at xj is greater than or equal to

hFD{aj ě ah{phpd` 1q
?
dq. Then, (41) follows from (36) and Dh is invertible.

(ii) For any function u⃗ “ tupxjq, j “ 1, ..., Nvu,

u⃗T pIFDh qT IFDh u⃗ “
ÿ

KPTh

ÿ

xFD
k PK

`

Ihu|KpxFD
k q

˘2
. (43)

As mentioned in the proof of (i), each element of Th contains at least a cubic cell of TFD. We can take

K̃ in Lemma 3.4 as a simplex formed by any d`1 vertices of the cubic cell. Then |K̃|{|K| ě Cpah{hqd

for some constant C. From Lemma 3.4, we have

ÿ

xFD
k PK

`

Ihu|KpxFD
k q

˘2
ě C

´ah
h

¯2d d
ÿ

j“0

puKj q2,

which yields (42).

(iii) is a consequence of (ii).

Remark 3.3. The choice (40) is needed for the theoretical guarantee of the full column rank of

IFDh and the invertibility of Dh. However, the requirement is only a sufficient condition. Numerical

experiment shows that we can use much larger hFD, for instance, hFD “ ah, which works well for the

examples we have tested.

3.2 Linear systems, stability, and convergence

The GoFD discretization of the homogeneous Dirichlet problem (1) on the unstructured mesh Th is

defined as
1

h2sFD
D´1

h pIFDh qTAFDI
FD
h u⃗h “ D´1

h pIFDh qT f⃗FD, (44)

where

u⃗h “ tuj « upxjq, j “ 1, ..., Nv;uj “ 0, for xj P Ωcu,

f⃗FD “ tfpxFD
k q, k “ 1, ..., NFD

v ; fpxFD
k q “ 0, for xFD

k P Ωcu.

Notice that u is approximated on the vertices of Th while the right-hand side function f is calculated

on the vertices of TFD. We can also use the values of f at the vertices of Th. In this case, we have

1

h2sFD
D´1

h pIFDh qTAFDI
FD
h u⃗h “ f⃗h. (45)

Numerical experiment shows that (44) and (45) produce comparable results. Since (44) provides some

convenience in defining the local truncation error (cf. (48)), we use (44) in this work.

The system (44) can be simplified into

pIFDh qTAFDI
FD
h u⃗h “ h2sFDpIFDh qT f⃗FD. (46)
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One may notice that D´1
h does not appear in the above equation. This is due to the special choice

of the right-hand side function of (44). It appears in (45) for a different choice of the right-hand side

function. Moreover, since IFDh is sparse and the multiplication of AFD with vectors can be carried out

efficiently using FFT (cf. Section 2.2), (46) is amenable to iterative solution with Krylov subspace

methods. The conjugate gradient method (CG) is used in our computation. Recall that the cost

for each iteration of CG is proportional to the cost of computing the matrix-vector multiplication

pIFDh qTAFDI
FD
h u⃗h, which can be estimated as OpNd logpNdqq `OpNvq, where p2N ` 1q is the number

of grid points of TFD in each axial direction and Nv is the number of vertices of Th. When Th is

quasi-uniform, the choice hFD “ Opahq leads to Nd “ OpNeq “ OpNvq, where Ne denotes the number

of elements of Th. This gives the cost of each CG iteration for solving (46) as OpNe logNeq. When

Th is not quasi-uniform, it is difficult to estimate the cost since, in this case, ah can be very different

from h.

Remark 3.4. It is worth noting that only the block of the system (46) corresponding to the interior

vertices is solved in the actual computation since the unknown variables on BΩ are known.

Theorem 3.3 (Stability). If hFD satisfies (40), then the solution of (44) satisfies

u⃗Th u⃗h ď C NvalN
h
FD

ˆ

h

ah

˙4d

f⃗TFDf⃗FD, (47)

where h and ah are the maximum diameter and minimum height of elements of Th.

Proof. Multiplying u⃗Th from left with (46) and using the Cauchy-Schwarz inequality and Lemma 3.1,

we get

u⃗Th pIFDh qTAFDI
FD
h u⃗h “ h2sFDpIFDh u⃗hqT f⃗FD

ď h2sFDppIFDh u⃗hqT IFDh u⃗hq
1
2 ppf⃗FDqT f⃗FDq

1
2

ď C h2sFDpNvalN
h
FDq

1
2 pu⃗Th u⃗hq

1
2 ppf⃗FDqT f⃗FDq

1
2 .

Moreover, from Proposition 2.1 and Theorem 3.2 we have

u⃗Th pIFDh qTAFDI
FD
h u⃗h ě Ch2sFDu⃗

T
h pIFDh qT IFDh u⃗h ě Ch2sFD

´ah
h

¯2d
u⃗Th u⃗h.

Combining the above results, we get

u⃗Th u⃗h ď C pNvalN
h
FDq

1
2

ˆ

h

ah

˙2d

pu⃗Th u⃗hq
1
2 ppf⃗FDqT f⃗FDq

1
2 ,

which gives rise to (47).

Denote the exact solution of (1) by u “ uepxq. We define the local truncation error as

τ⃗FD “ f⃗FD ´
1

h2sFD
AFDI

FD
h u⃗ e

h , (48)

where

u⃗ e
h “ tuepxjq, j “ 1, ..., Nv;u

epxjq “ 0, for xj P Ωcu.
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τ⃗FD can be rewritten into

τ⃗FD “ f⃗FD ´
1

h2sFD
AFDu⃗

e
FD `

1

h2sFD
AFD

`

u⃗ e
FD ´ IFDh u⃗ e

h

˘

. (49)

Thus, τ⃗FD can be viewed as a combination of the discretization error on the uniform grid TFD and the

interpolation error from Th to TFD. From (48), we have

pIFDh qTAFDI
FD
h u⃗ e

h “ h2sFDpIFDh qT f⃗FD ´ h2sFDpIFDh qT τ⃗FD.

Subtracting (46) from the above equation, we obtain the error equation as

pIFDh qTAFDI
FD
h e⃗h “ ´h2sFDpIFDh qT τ⃗FD, (50)

where the error is defined as e⃗h “ u⃗h ´ u⃗ e
h . From Theorem 3.3, we have the following corollary.

Corollary 3.1 (Convergence). If hFD satisfies (40), the error for the GoFD scheme (44) is

bounded by

e⃗Th e⃗h ď CNvalN
h
FD

ˆ

h

ah

˙4d

τ⃗TFDτ⃗FD. (51)

Remark 3.5. Here we do not attempt to give a rigorous analysis of the local truncation error since

it is still challenging to do so for the uniform FD discretization for solutions of optimal regularity (see

Remark 2.1). Instead, we provide some intuitions here. From (49) we see that the local truncation error

consists of two parts, one from the uniform FD discretization and the other from linear interpolation.

It is known [9, Proposition 1.2] that the linear interpolation error in L2 norm is Ophminp1,s`1{2´ϵqq

for functions in Hs`1{2´ϵpΩq for any ϵ ą 0. Moreover, it can be proved that h´2s
FD AFD is bounded in

HspΩq. Thus, we can expect that the local truncation error (and thus the error by Corollary 3.1) for

the GoFD scheme (44) is Ophminp1,s`1{2´ϵqq in L2 norm if the local truncation error of the uniform

FD discretization is in the same order (cf. Remark 2.1).

Remark 3.6. Interestingly, Borthagaray et al. [9] and Acosta et al. [2] show that the error

of the linear finite element approximation of (1) in L2 norm is Ophminp1,s`1{2q´ϵq for quasi-uniform

meshes and Oph̄1`sq for graded meshes. Here, h̄ ” N
´ 1

d
e is the average element diameter commonly

used to measure convergence order in mesh adaptation. The convergence order, Oph̄1`sq, has also

been established by Ainsworth and Glusa [3] for adaptive finite element approximations. Numerical

results in Section 5 show that GoFD has similar convergence behavior for quasi-uniform meshes and

second-order convergence (in L2 norm) for adaptive meshes.

3.3 Preconditioning with sparse matrices

Various types of preconditioners have been developed for AFD, including circulant preconditioners

[10] and the direct use of the Laplacian [28]. In principle, we can use these preconditioners to replace

AFD in the stiffness matrix pIFDh qTAFDI
FD
h and obtain a preconditioner for (46). Here we consider

preconditioners based on sparse matrices. Notice that the fractional Laplacian approaches to the

Laplacian operator as s Ñ 1 and the identity operator as s Ñ 0. Thus, it is reasonable to build

an efficient preconditioner based on the Laplacian at least when s is close to 1. First, we choose a
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sparsity pattern based on the FD discretization of the Laplacian. For example, we can take the 5-point

pattern (cf. (9)) or the 9-point pattern. Then, we form a sparse matrix using the entries of AFD at

the positions specified by the pattern. We denote these matrices by A
p5q

FD and A
p9q

FD, respectively. Next,

we define

A
p5q

h “ pIFDh qTA
p5q

FDI
FD
h , A

p9q

h “ pIFDh qTA
p9q

FDI
FD
h . (52)

Finally, the preconditioners for (46) are obtained using the incomplete Cholesky decomposition of A
p5q

h

and A
p9q

h with level-1 fill-ins. Notice that all of A
p5q

FD and A
p9q

FD and therefore, A
p5q

h and A
p9q

h are sparse

and they can be computed economically. Effectiveness of these preconditioners will be demonstrated

in numerical examples.

4 Mesh adaptation

It is known (e.g. see [9, 33]) that the solution of (1) has low regularity especially near the boundary

of Ω. Thus, it is useful to use mesh adaptation in the numerical solution of (1) to improve accuracy

and convergence order. We recall that GoFD described in the previous section uses unstructured

meshes for Ω, which not only works for arbitrary geometry of Ω but also allows easy incorporation

with existing mesh adaptation algorithms.

Algorithm 1 Adaptive mesh grid-overlay finite difference method

- Given an initial mesh T p0q

h for Ω.

- For ℓ “ 1, . . . , ℓmax

- Solve (46) on T pℓq
h for u

pℓq
h .

- Generate a new mesh T pℓ`1q

h using the MMPDE method based on u
pℓq
h and T pℓq

h .

- end ℓ

We use here the MMPDE moving mesh method for mesh adaptation. The procedure for combining

GoFD with the MMPDE method is given in Algorithm 1. We use ℓmax “ 5 in our computation.

Numerical experiment shows that this is sufficient.

The MMPDE method is used to generate the new mesh T pℓ`1q

h for Ω. The method has been

developed (e.g., see [19, 20, 21]) for general purpose of mesh adaptation and movement. It uses the

moving mesh PDE (or moving mesh equations in discrete form) to move vertices continuously in time

and in an orderly manner in space. A key idea of the MMPDE method is viewing any nonuniform

mesh as a uniform one in some Riemannian metric specified by a tensor M “ Mpxq. The metric

tensor provides the information needed to control the size, shape, and orientation of mesh elements

throughout the domain. Various metric tensors have been developed in [22]. For the current work,

we employ a Hessian-based metric tensor

MK “ det

ˆ

I `
1

αh
|HKpu

pℓq
h q|

˙´ 1
d`4

ˆ

I `
1

αh
|HKpu

pℓq
h q|

˙

, @K P T pℓq
h (53)
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where detp¨q denotes the determinant of a matrix, HKpu
pℓq
h q is a recovered Hessian of u

pℓq
h on the element

K (through quadratic least squares fitting), |HKpu
pℓq
h q| “

b

HKpu
pℓq
h q2, and αh is a regularization

parameter defined through the following algebraic equation:

ÿ

K

|K| det

ˆ

I `
1

αh
|HKpHKpu

pℓq
h qq|

˙
2

d`4

“ 2|Ω|.

This metric tensor is known to be optimal for the L2-norm of linear interpolation error [22].

It is known (e.g., see [19, 21]) that a uniform simplicial mesh Th in metric M satisfies the following

equidistribution and alignment conditions,

a

detpMKq |K| “
σh
Ne

, @K P Th (54)

1

2
trace

`

pF 1
Kq´1M´1

K pF 1
Kq´T

˘

“ det
`

pF 1
Kq´1M´1

K pF 1
Kq´T

˘

1
2 , @K P Th (55)

where Ne denotes the number of elements in Th, F 1
K is the Jacobian matrix of the affine mapping

FK : K̂ Ñ K, K̂ is the reference element taken as an equilateral simplex with unit volume, and

σh “
ÿ

K

a

detpMKq |K|.

The condition (54) requires all elements to have the same size while (55) requires every element K to

be similar to K̂, in metric MK . An energy function associated with these conditions is given by

Ih “
1

3

ÿ

K

a

detpMKq |K|trace
`

pF 1
Kq´1M´1

K pF 1
Kq´T

˘

3d
4

`
d

3d
4

3

ÿ

K

a

detpMKq |K|

´

a

detpMKqdetpF 1
Kq

¯´ 3d
4
. (56)

This function is a Riemann sum of a continuous functional developed based on mesh equidistribution

and alignment (e.g., see [21]).

The energy function Ih is a function of the coordinates of the vertices of Th, i.e., Ih “ Ihpx1, ...,xNvq.

An approach for minimizing this function is to integrate the gradient system of Ih. Thus, we define

the moving mesh equations as

dxi

dt
“ ´

a

detpMpxiqq

τ

BIh
Bxi

, i “ 1, . . . , Nv (57)

where τ ą 0 is a parameter used to adjust the time scale of mesh movement. The analytical expression

of the derivative of Ih with respect to xi can be found using scalar-by-matrix differentiation [19]. Using

this expression, we can rewrite (57) as

dxi

dt
“

a

detpMpxiqq

τ

ÿ

KPωi

|K|vK
iK
, i “ 1, ..., Nv (58)

where vK
iK

is the local mesh velocity contributed by element K to the vertex xi. The interested reader

is referred to [19, Equations (38), (40), and (41)] for the analytical expression of vK
iK
.
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The nodal velocity needs to be modified at boundary vertices. For fixed boundary vertices, dxi
dt

should be set to be zero. If xi is allowed to slide along the boundary, the component of dxi
dt in the

normal direction of the boundary should be set to be zero.

In our computation, the Matlab ODE solver ode15s (a variable-step, variable-order solver based on

the numerical differentiation formulas of orders 1 to 5) is used to integrate (58), with the Jacobian

matrix approximated by finite differences, over t P p0, 1s with τ “ 10´2 and the initial mesh T pℓq
h . The

obtained mesh is T pℓ`1q

h . Notice that the mesh connectivity is kept fixed during the time integration.

Thus, T pℓ`1q

h has the same connectivity as T pℓq
h .

5 Numerical examples

In this section we present numerical results obtained with GoFD described in the previous sections

for one 1D, three 2D, and one 3D examples. Three of those examples come from problem (1) with

the following setting in different dimensions,

Ω “ Bp0, 1q, f “
22sΓp1 ` s` kqΓpd2 ` s` kq

k! Γpd2 ` kq
¨ P

s, d
2

´1

k

`

2|x|2 ´ 1
˘

, (59)

where P
s, d

2
´1

k p¨q is the Jacobi polynomial of degree k with parameters ps, d2 ´ 1q and Bp0, 1q is a unit

ball centered at the origin. Notice that f is constant for k “ 0. This problem has an analytical exact

solution

u “ p1 ´ |x|2qs`P
s, d

2
´1

k

`

2|x|2 ´ 1
˘

. (60)

In this section, the solution error is plotted against N , the number of elements in Th. The con-

vergence order is measured in terms of h̄ ” N
´1{d
e , the average element diameter for both fixed and

adaptive meshes. For a fixed (and almost uniform) mesh, h̄ is equivalent to h, the maximum element

diameter while for an adaptive mesh, h̄ makes more sense since the elements can have very different

diameters. Moreover, we take R (half of the size of the overlay cube) as 1.1 times of half of the

diameter of Ω. We have tried 1.0 and 1.2 times and found no significant difference in the computed

solution. Furthermore, we take hFD “ ah. This is larger than what is given in the condition (40) but

works well for all examples we have tested. This relation also implies that Th will become finer when

Th is refined. Particularly, hFD can become very small for a highly adaptive mesh Th with a small

element height ah.

Example 5.1. The first example is the 1D version of problem (59). For this problem, the FD

scheme described in Section 2 can be used for uniform meshes but not for adaptive ones.

We consider the case with k “ 0. The solution error in L8 and L2 norm is plotted in Fig. 2 for

fixed and adaptive meshes. For fixed (uniform) meshes, the error behaves like Ophsq in L8 norm

and Ophminp1,0.5`sqq in L2 norm. This is consistent with the observations made by other researchers;

cf. Remark 2.1. The solution error is also shown for adaptive meshes. Mesh adaptation improves

accuracy and convergence order significantly. Indeed, the error decreases like Oph̄0.5`sq in L8 norm

and Oph̄2q in L2 norm for adaptive meshes.

Results for k ą 0 show similar behavior. They are not included here to save space.
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Figure 2: Example 5.1. The solution error is plotted as a function of Ne (the number of elements of

Th) for k “ 0. FM stands for Fixed Mesh and AM stands for Adaptive Mesh.

Example 5.2. The second example is the 2D version of (59). We consider two cases with k “ 0

and 5 and s “ 0.5. Fig. 3 shows computed solutions. The convergence histories are shown in Fig. 4.

The L2 norm of the solution error converges like Ophq for fixed meshes. This is consistent with finite

element approximations (cf. Remark 3.6) since in this case with s “ 0.5, Ophminp1,0.5`sqq “ Ophq. On

the other hand, the error is second oder, i.e., Oph̄2q, for adaptive meshes. This is higher than the

expected rate Oph̄1`sq “ Oph̄1.5q (cf. Remark 3.6). Higher accuracy with mesh adaptation can also

be observed from the computed solutions. For instance, oscillations are visible in Fig. 3(c) but not in

Fig. 3(d). Examples of adaptive mesh are shown in Fig. 5.

We now examine the effectiveness of the preconditioner described in Section 3.3. The convergence

history for the conjugate gradient method (CG) with/without preconditioning is shown in Fig. 6.

We can see that the preconditioner reduces the number of iterations significantly. Moreover, the

preconditioner is more effective when s is closer to 1. Meanwhile, a smaller number of iterations is

required to reach the same accuracy for s “ 0.5 than s “ 0.9. These observations are consistent with

the fact that the fractional Laplacian approaches to the Laplacian as s Ñ 1 and the identity operator

as s Ñ 0. As a result, the stiffness matrix of the FD approximation has a smaller condition number

and the corresponding linear system is easier to solve for smaller s. Moreover, the preconditioner,

whose pattern is based on that of the FD discretion of the Laplacian, can be expected to be more

effective when the fractional Laplacian is closer to the Laplacian.

The CG convergence history is also plotted in Fig. 7 for the preconditioner based on the 5-point

pattern. This preconditioner is slightly less effective than that based on the 9-point pattern.

Example 5.3. Next we consider the 3D version of (59) for k “ 0 and s “ 0.5. Fig. 8(a) shows

the convergence history in L2 norm. The solution error converges slightly lower than Ophq for fixed

meshes and Oph̄1.5q for adaptive meshes. For this example, we take the 27-point pattern to build the
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(a) k “ 0, with FM (b) k “ 0, with AM (c) k “ 5, with FM (d) k “ 5, with AM

Figure 3: Example 5.2. Computed solutions obtained with meshes of Ne “ 27130 for s “ 0.5. FM:

fixed mesh and AM: adaptive mesh.
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Figure 4: Example 5.2. The L2 norm of the solution error is plotted as a function of Ne for k “ 0 and

5 and s “ 0.5 with and without mesh adaptation.
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Figure 5: Example 5.2. Adaptive meshes of Ne “ 11886 for s “ 0.5.

preconditioner. The CG convergence histories shown in Fig. 8(b) and (c) demonstrate the effectiveness

of the preconditioner.

Example 5.4. This example is (1) with f “ 1 and Ω as shown in Fig. 1 with s “ 0.75. The

geometry of Ω is complex, with the wavering outside boundary and two holes inside. An analytical

exact solution is not available for this example. A computed solution with an adaptive mesh of

Ne “ 250948 is used as the reference solution. Numerical results are shown in Fig. 9. The solution

error in L2 norm is about Ophq for fixed meshes and Oph̄2q for adaptive meshes. This example

demonstrates that GoFD works well with complex geometries.
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(b) k “ 5, s “ 0.5
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(c) k “ 0, s “ 0.9
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Figure 6: Example 5.2. The CG convergence history is plotted for a fixed mesh of Ne “ 27130 and

with/without preconditioning (9-point pattern).
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Figure 7: Example 5.2. The CG convergence history is plotted for k “ 0 and 5 and s “ 0.9 with a

non-adaptive mesh of Ne “ 27130 and with/without preconditioning (5-point pattern).
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Figure 8: Example 5.3. (a): The solution error as function of N and (b) and (c): CG convergence

histories for a fixed mesh of Ne “ 116054 with and without preconditioning.

Example 5.5. This example is (1) with f “ 1 and Ω being L-shaped with s “ 0.5. An analytical

exact solution is not available for this example. A computed solution obtained with an adaptive mesh

of Ne “ 417508 is used as the reference solution. Numerical results are shown in Figs. 10. The solution

error in L2 norm is about Ophq for fixed meshes and Oph̄2q for adaptive meshes.

6 Conclusions and further comments

In the previous sections we have studied a grid-overlay finite difference method (GoFD) for the numer-

ical approximation of the fractional Laplacian on arbitrary bounded domains. The method uses an
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Figure 9: Example 5.4. (a): An adaptive mesh ofNe “ 9850, (b) the corresponding computed solution,

and (c) the solution error as function of Ne for s “ 0.75.
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Figure 10: Example 5.5. (a): An adaptive mesh of Ne “ 2728, (b) the corresponding computed

solution, and (c) the solution error as function of Ne for s “ 0.5.

unstructured mesh and an overlaying uniform grid and constructs the approximation matrix Ah (cf.

(2)) based on the uniform-grid FD approximation AFD (cf. (13) and (14)) and the transfer matrix IFDh

from the unstructured mesh to the uniform grid. The multiplication of Ah with vectors can be car-

ried out efficiently using FFT and sparse-matrix-vector multiplication. A main result is Theorem 3.1

stating that Ah is similar to a symmetric and positive definite matrix (and thus invertible) if IFDh has

full column rank and positive column sums. A special choice of IFDh is piecewise linear interpolation.

Theorem 3.2 states that the full column rank and positive column sums are guaranteed for this special

choice if the spacing of the uniform grid satisfies (40). Stability and preconditioning for the resulting

linear system have been discussed.

GoFD retains the efficient matrix-vector multiplication advantage of uniform-grid FD methods for

the fraction Laplacian while being able to work for domains with complex geometries. Meanwhile, the

method can readily be combined with existing adaptive mesh strategies due to its use of unstructured

meshes. We have discussed in Section 4 how to combine GoFD with the MMPDE moving mesh

method.

Numerical results have been presented for a selection of 1D, 2D and 3D examples. They have

demonstrated that GoFD is feasible and convergent and has a convergence order of Ophminp1,0.5`sqq

in L2 norm for fixed meshes. This is consistent with observations known for existing uniform-grid

FD and finite element methods. With adaptive meshes, the method shows second-order convergence

in 1D and 2D and close to Oph̄1`sq in 3D. The numerical results have also demonstrated that the

preconditioners based on the sparsity pattern of the Laplacian (cf. Section 3.3) are effective in terms
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of reducing the number of iterations required to reach the commensurate accuracy.

Finally we comment that we have used unstructured simplicial meshes for Ω in this work. The use

of simplicial meshes makes it relatively simpler to prove the full column rank of IFDh and implement

the transfer. However, it is not necessary to use simplicial meshes. We can use any other boundary

fitted meshes or even meshless points. Particularly, we can take Th as a graded mesh. Moreover, we

can use data transfer schemes other than linear interpolation that has been considered in this work.

These are interesting topics worth future investigations.
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