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A grid-overlay finite difference method for the
fractional Laplacian on arbitrary bounded domains

Weizhang Huang* and Jinye Shen'

A grid-overlay finite difference method is proposed for the numerical approximation of
the fractional Laplacian on arbitrary bounded domains. The method uses an unstructured
simplicial mesh and an overlay uniform grid for the underlying domain and constructs the
approximation based on a uniform-grid finite difference approximation and a data transfer
from the unstructured mesh to the uniform grid. The method takes full advantages of
both uniform-grid finite difference approximation in efficient matrix-vector multiplication
via the fast Fourier transform and unstructured meshes for complex geometries and mesh
adaptation. It is shown that its stiffness matrix is similar to a symmetric and positive
definite matrix and thus invertible if the data transfer has full column rank and positive
column sums. Piecewise linear interpolation is studied as a special example for the data
transfer. It is proved that the full column rank and positive column sums of linear in-
terpolation is guaranteed if the spacing of the uniform grid is smaller than or equal to
a positive bound proportional to the minimum element height of the unstructured mesh.
Moreover, a sparse preconditioner is proposed for the iterative solution of the resulting lin-
ear system for the homogeneous Dirichlet problem of the fractional Laplacian. Numerical
examples demonstrate that the new method has similar convergence behavior as existing
finite difference and finite element methods and that the sparse preconditioning is effective.
Furthermore, the new method can readily be incorporated with existing mesh adaptation
strategies. Numerical results obtained by combining with the so-called MMPDE moving
mesh method are also presented.
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1 Introduction

The fractional Laplacian is a fundamental non-local operator for modeling anomalous dynamics and
its numerical approximation has attracted considerable attention recently; e.g. see [B, 24, 27] and
references therein. A number of numerical methods have been developed along the lines of various
representations of the fractional Laplacian, such as the Fourier/spectral representation, the singular
integral (including Riemann-Liouville and Caputo) representation, the Griinwald-Letnikov represen-
tation, and the heat semi-group representation. For examples, methods based on the Fourier/spectral
representation include finite difference (FD) methods [17, 23, 24, 25, 30, [31], B9], spectral element
method [35], and sinc-based method [6]. Methods based on the singular integral representation in-
clude FD methods [14], 28] 36], finite element methods [I}, 2, 3], 4l 8, 15l B37], discontinuous Galerkin
methods [12} [13], and spectral method [26]; and FD methods [11, 32, B8] based on the Griinwald-
Letnikov representation. Loosely speaking, most of the existing FD methods have been constructed
on uniform grids, have the advantage of efficient matrix-vector multiplication via the fast Fourier trans-
form (FFT), but do not work for domains with complex geometries and have difficulty to incorporate
with mesh adaptation. On the other hand, finite element methods can work for arbitrary bounded
domains and are easy to combine with mesh adaptation but suffer from slowness of matrix-vector
multiplication because the stiffness matrix is a full matrix. A sparse approximation to the stiffness
matrix and an efficient multigrid implementation have been proposed by Ainsworth and Glusa [4].
There exists special effort to apply FD and spectral methods to domains with complex geometries.
For example, Song et al. [35] construct an approximation of the fractional Laplacian based on the
spectral decomposition and the spectral element approximation of the Laplacian operator on arbi-
trary domains. Hao et al. [I7] combine a uniform-grid FD method with the penalty method of [34]
for non-rectangular domains.
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Figure 1: A sketch of an unstructured simplicial mesh 7, (in color blue) overlaid by a uniform grid
Trp (in color green) . Boundary value problem is solved on 7Tp that is not necessarily
quasi-uniform.

The objective of this work is to present a simple FD method, called the grid-overlay FD method or
GoFD, for the fractional Laplacian on arbitrary bounded domains. The method has the full advantage
of uniform-grid FD methods in efficient matrix-vector multiplication via FFT. Specifically, we consider
the homogeneous Dirichlet problem

(1)
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where (—A)? is the fractional Laplacian with the fractional order s € (0, 1), € is a bounded domain in
RY (d = 1), Q¢ = RN\, and f is a given function. Given an unstructured simplicial mesh 7, that fits
or approximately fits 2 and is not necessarily quasi-uniform, we want to approximate the solution of
on Tp. A uniform grid Tpp (with spacing hrp) that overlays Q (see Fig. [1]) is first created and a
uniform-grid FD approximation hb?]%s App for the fractional Laplacian is constructed thereon. Then,
the GoFD approximation of the fractional Laplacian on 7}, is defined as hE%SAh, where Ay, is given by

Ap = D, N (IEP)T App IEP. (2)

Here, I ,lj D is a transfer matrix from 7, to Tgp and Dy, is the diagonal matrix formed by the column
sums of 5 D Notice that the multiplication of A, with vectors can be performed efficiently since the
multiplication of Agpp with vectors can be carried out using FFT and IED is sparse. Moreover, Ay, is
invertible if 1 }f D has full column rank and positive column sums (cf. Theorem. For a special choice
of 1 ,If D piecewise linear interpolation from 7} to Trp, Theorem states that the full column rank
and positive column sums of I}ljD are guaranteed if hpp is smaller than or equal to a positive bound
proportional to the minimum element height of 7;, (cf. (40])). Stability and sparse preconditioning for
the resulting linear system are studied. Furthermore, the use of unstructured meshes in GoFD allows
easy incorporation with existing mesh adaptation strategies. As an example, the incorporation with
the so-called MMPDE moving mesh method [19] 20} 21] is discussed. Numerical examples in 1D, 2D,
and 3D are presented to demonstrate that GoFD has similar convergence behavior as existing FD and
finite element methods and that the sparse preconditioning and mesh adaptation are effective.

An outline of the paper is as follows. The construction of uniform-grid FD approximation for the
fractional Laplacian is presented in Section[2] Section [3|is devoted to the description of GoFD, studies
of its properties, and construction of sparse preconditioning. The MMPDE moving mesh method and
its combination with GoFD are discussed in Section[d Numerical examples are presented in Section
Finally, conclusions are drawn and further comments are given in Section [6]

2 Uniform-grid FD approximation of the fractional Laplacian

In this section we briefly describe the FD approximation of the fractional Laplacian on a uniform
grid through the Fourier transform. The reader is referred to, e.g., [17, 24} 30l 3], for detail. The
properties of the approximation and the computation of the stiffness matrix and its multiplication
with vectors through the fast Fourier transform (FFT) are also discussed. For notational simplicity
and without loss of generality, we restrict our discussion in 2D.

2.1 FD approximation on a uniform grid

Consider an absolutely integrable function u in R?. Recall that its Fourier transform is defined as
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and the inverse Fourier transform is given by
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Applying the Laplacian operator to the above equation, we have

(—A)u(z, + 7)A€, n)e " eV d dn.

This implies
(=A)u(&n) = (€ +1°)a(En).
Based on this, the Fourier transform of the fractional Laplacian can be defined as

(—A)su(&,n) = (€ + n*)*a(E,n). (5)

Accordingly, the fractional Laplacian is given by

~arlL e

A uniform-grid FD approximation for the fractional Laplacian can be defined in a similar manner.

(—A)u(z,y) w(€,m)e ™ eVndgdn. (6)

Consider an infinite uniform grid (lattice)
(xja yk) = (thD) khFD)v j7 ke Za

where hpp is a given positive number. The discrete Fourier transform (DFT) on this grid is defined
as

o0 e}
3D wwe e, (7)
Jj=—0k=—00

where u;, = u(z;, yx). Here, we use @ to denote the DFT of u to avoid confusion with the continuous
Fourier transform (cf. (3))). The inverse DFT is given by

h
u(xj,yk) = FD f JhFD (&, m)e™iC e dedn

hFD

a(—>_
)

U - hFD hrp

YeliEetkndedn. (8)

Now we consider a central FD approximation to the Laplacian on {(x;,yx)},

(—Ap)u(zj, yr) = 73 (wjpr ke — 2ujp + uj—1 k) + 7 (W) k1 — 2uj ks + Ujp—1)- 9)
FD FD

Applying the DFT to the above equation, we get

(“Bnultn) = g (45 2) + asit(T2) Y e ),
FD

From this, the DFT of the FD approximation of the fractional Laplacian can be defined as

Bt = g (4 () + st (TR ) ), (10)
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hFD



Then, the FD approximation of the fractional Laplacian reads as

(—=Ap)*u(zy, y) = f f hE hn Vet etk dedn
-7 FD NFD
1 OO —-m i(k—n
= W Z “mnf W(&, n)e'TmE kT gedy (1)
FD m=—own=—w —TJT
where
(€, n) = <4sin2(§) +4sin2(727)> . (12)
If we define
1 T T Z Z
To= gz || vtemeriemacan, (13)
A(]vk)7(mvn) = j—jj_mak:_n” (14)
we can rewrite into
(_Ah)su(xpyk h28 Z Z A (4,k),(m,n)Um,n, —0 < j7k < Q0. (15)

FD m=—on=-—w
Notice that Aj ) (mn) is the entry of an infinite matrix A at the (j,k)-th row and the (m,n)-th
column with the understanding that the 2D indices (j, k) and (m,n) are converted into linear indices
using a certain ordering (such as the natural ordering). Moreover, T, ,’s are the coefficients of the
Fourier series of ¥(&,n). From ([L3), it is not difficult to show

T—p,—q = Tp,qv T—p7q = Tp,qv Tp,—q = Tp,q- (16)

Furthermore, implies that A is a Toeplitz matrix of infinite order in 1D and a block Toeplitz
matrix of Toeplitz blocks in multi-dimensions.

Lemma 2.1 (Parseval’s equality). If Z;Ozfoo DI ujzk < o0, then

(2717)2fr fﬂ Whi o) dédn = Z Z uj (17)

Jj=—00k=—00

Proof. can be proved using and direct calculation. O

Next, we consider functions with compact support in 2 for solving the homogeneous Dirichlet
problem . More specifically, we consider a square (—R, R) x (—R, R), where R is a positive number
such that Q is covered by the square (cf. Fig. . For a given positive integer N, we choose hpp = %
Let Tep = {(zj,yx), —N < j,k < N} (a finite unifrom grid) and urp = {ux, j,k = —N,...,N}.
Notice that the right-hand side of becomes a finite double sum for the current situation since
uj = 0 for any (z;,y;) ¢ (—R,R) x (—R, R).

For notational convenience, we denote the restriction of the infinite matrix A on 7gp by Arp, i.e.,

o | 18
FD ( (J’k)’(m’”))(2N+1)2X(2N+1)2 v

Notice that hE%SAFD is an FD approximation matrix of the fractional Laplacian on Tgp. Recall from
(14) (now with —N < j,k,m,n < N) that App is a block Toeplitz matrix of Toeplitz blocks.



Lemma 2.2 (The fractional Poincaré inequality). For any function u with support in (—R, R) X
(=R, R), there holds

| el Py taE hin?dgdn (19)

2s 2
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where C' is a positive constant independent of u, hpp, and N.

Proof. The proof of the continuous fractional Poincaré inequality can be found, for example, in [7,
Proposition 1.55, p. 39]. is different from the continuous one since it uses DFT instead of the
continuous Fourier transform. Nevertheless, it can be proved by following the proof of the continuous
version and using Lemma d

We remark that the left-hand and right-hand sides of can be viewed as the H?* semi-norm and
L? norm of u, respectively.

Proposition 2.1. The matric Arpp = (A(j,k),(m,n)) is symmetric and positive definite. Particu-
larly,

UFDAFDUFD C hFD UED’U,FD, VUFD € R(2N+1)2 (20)

where C' is a positive constant.

Proof. From and , we can see that App is symmetric. Moreover, from and we have

UFDAFDUFD_ Z Z Z Z A]k (m,n) Ui kUm,n

—Nk=—Nm=—Nn=—N

¢ f 77 Z Z u; kezj§+zk:n Z Z um’ne—img—inndé—dn

—mJ= —Nk=—N m=—Nn=—N
" ; i BUERNP
] ety g ) Pdgdn,
Since
. 3 . n ° 2 2 2 2\ 8
vl = (4sit () asn(D) > (2) (P + ) vewe (-mm)
we get

oroiien > 5t (2) [ [ 06+ ey G 2 pasan

Combining this with Lemmas and |2 - 2.2| we obtain , which implies that App is positive definite.
O

When Q = (—R, R) x (—R, R), an FD approximation of the homogeneous Dirichlet problem on

Trp is given by
1

2s
hFD

where f}D = {f(xjayk)v Jik = _Na"'aN}'

——AppiFD = fFD, (21)



Proposition 2.2 (Stability). The solution of satisfies

UFDAFDUFD Ch hFD fFDfFDa (22)

@hpiirp < Co finfrp, (23)
where C7 and Cy are constants.

Proof. Multiplying uFD with from left and using the Cauchy-Schwarz inequality, we have

1

—_—= =

Upp Arpiirp = hEhitn fep = i (Afpirp)” (Apd frp)
= 1 7 1
hFD(UFDAFDuFD) (JEI?DAF]l)fFD) 2.

Thus, we have
iitp ArniiEp < hih fipAph fip.
Notice that Proposition implies |App| < Chpls. Combining these results gives .
The inequality follows from and Proposition O

Remark 2.1. Error estimates and convergence order for the FD approximation of the fractional
Laplacian have been established for sufficiently smooth solutions by a number of researchers; e.g., see
[14, 17, 24]. Unfortunately, the existing analysis does not apply to solutions of with the optimal
regularity H**1/27¢(Q) for any ¢ > 0 [9]. Nevertheless, for those solutions it has been observed
numerically (e.g., see [14, I7]) that the FD approximation converges at O(hfp) in L® norm. This
is confirmed by our numerical results (cf. Example - Our results also suggest that the error is

(’)(hglf)n(l SH/Q)) in L? norm. O

2.2 Computation of the multiplication of Arp with vectors using FFT

For the moment, we assume that 7T}, ,’s have been computed. The process of computing the multipli-
cation of App with vectors starts with computing the DFT of T}, ;’s, i.e.,

2N—-1 2N-1 ) )
_i2n(m+2N)(p+2N) 2w (n+2N)(qg+2N)
E E N - N

p q€ e s
p=—2N q=—2N

for m,n = —2N,...,2N — 1. The inverse DFT is

2N—-1 2N-1 )
22Tr(m+2N)(p+2N) 27 (n+2N)(q+2N)
S s e

prq
m——2N n=—2N

for p,g = —2N,...,2N — 1. Then, from we have

N
(ArDUFD) (j k) = Z > Tiomk—ntimn
—Nn=—N
N N 2N—-1 2N-1 ) )
227r(p+2N)(]7m+2N) 27w (q+2N)(k—n+2N)
= 2 ZUmuN PIDIN W e
—Nn=—N p=—2N q=—2N



2N—-1 2N-1

27 (p+2N)(+N) 27 (q+2N)(k+N)
S g e g sy
p,q

p——2N q=—2N

N N i2m(p+2N)(m+N) _ i2m(¢+2N)(n+N)

_2n(p m _127(g n

Z Z U, n€ N e N . (24)

=—Nn=—N

If we expand u into
B Ump, for —N<m,n<N
Umn = .
0, otherwise

we can rewrite the inner double sum in (24]) into

N N

_27(p+2N)(m+N) _ i27(q+2N)(n+N)
55 e
=—Nn=—N
3N—-1 3N-1 ) )
i2m(p+2N)(m+N) 2w (q+2N)(n+N)
_ 2 Ty e TR e,
—Nn=—N

which is the DFT of @ (denoted by ). Then,

2N—-1 2N-1

(AFDUFD) (j k) Z Z P q“p q )p+2N(_1)

p——2N q=—2N

i2m(p+2N)(j+N)  2m(q+2N)(k+N)
a+2N IN e IN .

Thus, Appirp can be obtained as the inverse DFT of T}, 4t o(—1)PF2N (—1)2+2V,

In summary, Arppipp can be carried out by performing three FFTs. From the complexity of FFT,
we can estimate the cost of computing Appirp (in d-dimensions) as O(N%log(N?)). It is worth
mentioning that the number of grid points of Tpp and length of vector iipp are O(N9). Thus, the
cost is almost linear about the number of grid points.

2.3 Computation of matrix T’

We rewrite into

1,1 ] )
Tp,q — (_1)p+q fo L w(& 77)6227Tp6612mmd§d17, (25)

where
w(E,n) = (4 cos2(7rf) + 4cos2(7r17))5. (26)
Recall from that we only need to compute 7}, , for 0 < p,q < 2N. We first consider the composite
trapezoidal rule (2rd-order). For any given integer M > 2N + 1, let
J ko
== = — k=0,1,..., M.
g] M7 nk M7 ja 07 9 9

Then,

M—AM—1 ~&i00 resr ) )
Ipg = Z ZJ f B(E,m) - PP IdEd

=0 k=0 Y& Yk



Z Z D(&me) e T T 0<p,q<2N. (27)

Thus, T}, ,’s can be obtained with the inverse FFT.

It should be pointed out that M should be chosen much larger than 2N + 1 in the above procedure
for accurate computation of T' due to the highly oscillatory nature of the factor e?2™¢e?2747 in (25)). As
a result, the computation of T' can be very expensive in terms of CPU time and memory for large N.

To avoid this difficulty, we use Filon’s approach [16] designed for highly oscillatory integrals including
(25). We explain this in 1D,

5J+

T, = Jw £)ei2mPE g _ ZJ B(€)e2m e,

The key idea of Filon’s approach is to approximate 1;(5 ) with a polynomial on each subinterval and then
carry out the resulting integrals analytically. Here, we approximate 1;(5) with a linear polynomial
on each subinterval. In this situation, we can first perform integration by parts and then do the
approximation, i.e.,

M— .
rS (el - gy [ Foeae).
. z27rp 127p ¢

The sum of the first term in the bracket vanishes since &(5 )e??™P¢ is periodic. Then,

(P 9

£J+1
_\ ) / 127mp€
Ty 2 |, @

(=t SO (&) = D(E) o £
~ o j ’ 1/M et

j=0 Y&

M-1
_ p+1 Z w §]+1 (gj) (ei27rp§j+1 i €i27rp£j> )
227rp ) 1/M

Thus,

—1PIS () — 20(8) + D(E1) e
pr @) JZ;) J 1/]\; = e, p=0,...,2N. (28)

Notice that lj can be computed using FFT. Moreover, the error of the quadrature is O(ﬁ),
independent of N.

In our computation, we combine the Filon approach with Richardson’s extrapolation. We use
M = 2" and 2! for the finest level of Richardson’s extrapolation for 2D and 3D computation,
respectively. For 1D computation, we use the analytical formula (e.g., see [31]),

(—1)PI'(2s + 1)
Fp+s+1I(s—p+1)’

= p=0,..,2N (29)



where T'(+) is the I-function.

It is interesting to point out that the cost of computing the matrix 7' via FFT is O(M%log(M?)).
Assuming that a computer can perform 10? floating-point operations per second, computing the matrix
T takes about (M%log(M?))/10° = 5.2 seconds in 2D (with M = 2'4) and 196 seconds in 3D (with
M =2,

3 The grid-overlay FD method

In this section we describe GoFD for solving (|1)) in d-dimensions (d > 1) on arbitrary bounded domain
Q). We also study the choice of hpp that guarantees the column full rank and positive column sums
of the transfer matrix and therefore the solvability of the linear system resulting from the GoFD
discretization of . Furthermore, the iterative solution and sparse preconditioning for the linear
system are discussed.

3.1 GoFD for arbitrary bounded domains

For a given bounded domain © € R%, we assume that an unstructured simplicial mesh 7, has been
given that fits or approximately fits 2. Then, we take a d-dimensional cube, (=R, R)¢, such that it
covers 2 and T,. An overlaying uniform grid (denoted by Tpp) is created with 2N + 1 nodes in each
axial direction for some positive integer N and the spacing is given by

R

hFD = N

See Fig. [1] for a sketch of Tgp and 7.

Then, a uniform-grid FD approximation hp® App (of size (2N + 1)% x (2N + 1)9) of the fractional
Laplacian can be obtained on Tgpp as described in the previous section. We define hE%SAh as the
GoFD approximation of the fractional Laplacian on §2, where Ay, is defined in .

Remark 3.1. The matrix D, '(IFP)7 represents a data transfer from grid 7pp to mesh 7. It
is taken as a transpose of I,IjD so that Ay, is similar to a symmetric and positive definite matrix (cf.
Theorem [3.1| below). Moreover, D; ' is included in the definition so that the row sums of D, !(1FP)”
are equal to one and, thus, the transfer preserves constant functions. This inclusion is necessary for
the data transfer D;l(IED)T to be consistent. O

Theorem 3.1. If I,]L:D has full column rank and positive column sums, then Ay, defined in (@) 18
similar to a symmetric and positive definite matriz, i.e.,

Ay = D;,

S

1 1 1
(IfPD, )" App(I£PD, ?) - D} . (30)
As a consequence, Ay, is invertible.

Proof. When [ ED has positive column sums, Dy, is invertible and thus, the definition is meaningful.
Moreover, it is straightforward to rewrite into , indicating that Ay is similar to

Ay = (152D, ) App (1P D, 7). (31)

10



It is obvious that Aj is symmetric and positive semi-definite. If we can show it to be nonsingular,

then Ay, is positive definite. Assume that there is a vector @), such that ﬁ%[lhﬁh = (. Since App is
_1

symmetric and positive definite (Proposition , this implies IEDDh 24p, = 0. The full column rank

assumption of I ,f D and Dy, being diagonal mean @), = 0. Thus, A, is nonsingular and, therefore, Ay,

is symmetric and positive definite. O

Remark 3.2. The full column rank assumption of IED in Theorem implies that I }If D has at
least as many rows as columns, i.e. (2N +1)? > N,,. In other words, Trp should have as many vertices

as Ty, does. O

We now consider a special choice of ,lj D: linear interpolation. Denote the vertices of 7;, by Tj, ] =
1,..., N,, and the vertices of Tgp by :Bl,iD, k=1,..,NF D Consider the piecewise linear interpolation

on Ty,
Ny

Iu(z) = ) ujb;(@), (32)

j=1
where u; = u(x;) and ¢; is the Lagrange-type linear basis function associated with vertex ;. Here
we assume that all of the basis functions vanish outside Q. Recall that

N,
0<¢j(®) <1 ¢i(@) =0, Vog¢w; > ¢i(x)=1 Yzel
j=1

where wj; is the patch of elements that have x; as one of their vertices. When restricted on an element
K of T, the linear interpolation can be expressed as

d
Iyulg(x) = Y uf ¢ (), VaekK. (33)
j=0

Let iy, = {u(x;),j = 1,..., Ny}. Then, for k = 1,..., NP,

Ny
(IFPin)k = Tnu(xfP) = D ujd;(xfP). (34)
j=1
This gives
(IFP)kj = ¢5(xkP), k=1,...,NP j=1,., N, (35)

It is worth pointing out that I; conforms with the homogeneous Dirichlet boundary condition.
Consider an arbitrary vertex a:l,jD € Tep. When a:ED ¢ (), it is obvious that Ihu(ng) = 0. When

:BED € ), on the other hand, there exists a mesh element K € 7T, containing mED since T is a

boundary-fitted mesh for 2. In this case, [yu(z} ") is determined by the values of u at the vertices of
K (cf. ) Particularly, Iu(z}P) is affected by the values of u on the boundary of  when K is
a boundary element. In this sense, I;, and thus I} P (cf. ) and Ay (cf. ) feel the homogeneous
Dirichlet boundary condition.

In the following analysis, we need the following quantities,

h FD _
Nya =  max_ #wj;, Npp = max#{x; € K},
KeTy,

=1,..,Ny

11



where # stands for the number of members in a set. N4 is usually referred to as the valence of 7y,.
N{%D can be estimated as

where |K|;q: denotes the volume of the largest element of 7. We assume that both N, and N}’ED
are finite and small.

Lemma 3.1. The transfer matriz I }Ij D associated with piecewise linear interpolation has the fol-
lowing properties.

i) Nonnegativity and boundedness: 0 < (IFP),; < 1 for all k, j.
h 7]

(ii) Sparsity: (I'P)y; = 0 when xtP ¢ w;.

(iii) The row sums of IFP are either 0 or 1, i.e.,
Ny FD - O
1, or x7” € Q)
DIy = for @ Vk=1,.., NP
izl 0, otherwise

: NSP 2 FD '
(iv) The column sums, Dy j = >0% (I; ")k, § = 1,..., Ny, are bounded by

r;lDax gbj(w]]jD) < Dhjj < NvalNl};LuD. (36)
:Uk Ewj
(v)
Amaz (IEP)TTEP) < NoatNpp,  Amaz (IEFP(IFP)T) < Ny Npp. (37)

Proof. (i), (ii), and (iii) follow from and the properties of linear basis functions. For (iv), we have

NEP

Dpj= >, ¢j@®) = >, oi@") = D>, D, ¢i(xi).
k=1

xfPew; Kew;j xfPek

Then, follows from the above equation, the definition of N, and NQD, and the nonnegativity of
the basis functions.

For (v), we notice that both (I'°P)TIFD and IFP(IFP)T are nonnegative matrices. Using (iii) and
(iv), we can show that their row sums are bounded above by Ny N&,. Then, follows from [18]
Theorem 8.1.22] about the spectral radius of nonnegative matrices. O

Next we study how small hpp should be (or, equivalently, how large N should be) to guarantee that
Dy, is invertible and IED has full column rank. To this end, we need a few properties of simplexes
in R?. For a simplex K, we denote the facet formed by all of its vertices except mJK by S; and the
distance (called the height or altitude) from a:JK to S; by a;. The minimum height of K is denoted by
ag,i.e., ag = min; a; and the minimum element height of 7}, is denoted by ay, i.e., a;, = ming ax.

2a

(d+1)vVd"

Lemma 3.2. Any simplex K € R? contains a cube of side length at least

12



Proof. Tt is known from geometry (e.g., see [29, Theorem 1]) that the radius of the largest ball inscribed

in any simplex K is related to the heights of K as

1 dil 1
Tin =1 Qaj
From this, we have
aK
Tin 2 0T

Since the length of the diagonals of the largest cube inscribed in the ball is equal to the diameter of
the ball, i.e., vVda = 2r;,, where a is the side length of the cube, we get
2’/“m < 2(1}(

T VAT drvd

O]

Lemma 3.3. The j-th barycentric coordinate of an arbitrary point x on K, ¢ (x), is equal to

the ratio of the distance from x to facet Sj, to the height a;
Ky =1, ¢K|g = 0, and the linearity of gi)K O

Proof. The conclusion follows from qSK (z;
=0,....,d, and define

Lemma 3.4. Consider a simplex K < K with vertices Y, k

ZuK% (yr), k=0,..4d.

v = Inu| i (yy)
7=0

Then,
(38)

K[ d o2 <
|K|QZ g J d+1 Z

(d+1)d =

where | K| and |K| denote the volume of K and K, respectively.
>0 and 2?20 qzij(:B) =1, we have

Proof. Recalling that gij (x) =
d d d 2 d d d
Dk <), (Z IUflqbf(yk)) <)) <Z IUfl%f((yk)) <(d+1) ) [uf?,
k=0 k=0 k=0 Jj=0

J=0

which gives the right inequality of .
To prove the left inequality of , from

d d
= > afof(x), 1= Zoebf(m),
=

§=0
we have
0
: _ gl x o a:é( :B{< a:ff
" 1]’ 1 1 1
bq

13



It is known that det(E) = d!|K|. Using this and letting &% = (uf’, ...,u)T, we have

T
sz:Z(ﬁK)TE—l Yk [yk Tk
k=0 k=0 1 1

d T
KT 7—1 Ye | | Yk —T -K
E E
e S ] e
k=0
= (@TE'BBTETaK, (39)
where

B—|Y Y1 Y

1 1 1

The right inequality of implies that
Amaz(E"'BBTE™T) < (d +1).

On the other hand, B
_ det(B)? B |K|?
Cdet(B)?|K|*

Since the determinant of a matrix is equal to the product of its eigenvalues, we get

det(E~'BBTE-T)

det(E"'BBTE™T) _ |K|?

Amin(E'BBTE™T) > > :
min( )2 e (BEBBTETY (04 1)K

Combining this with we obtain the left inequality of . O

Theorem 3.2. If we choose
ap

hpp < —
=+ )vd

where ay, is the minimum element height of Ty, then the transfer matriz I{D associated with piecewise

(40)

linear interpolation has the following properties.

(1)

I S}
(d+1)Vd h

and thus, Dy, is invertible. Here, h is the maximum element diameter of Tp,.

< Dyj < NyuNPEp, Vj=1,..,N, (41)

(ii) The minimum eigenvalue of (IFP)TTEP is bounded below by

Amin (IFD)TIFP) = € (%)Qd, (42)

where C' is a positive constant.

(iii) IfP has full column rank.

14



(d+1)vd

Proof. (i) Lemma implies that any element K of 7;, contains a cube of side length —2% . Thus,
40), K contains at least a cubic cell of Trp. As a consequence, for any vertex (say

when hpp satisfies (40
z;) of K, there is a node (say ;") of Tpp that is in K and its distance to the facet opposing x; is
at least hpp. From Lemma the barycentric coordinate of :J:ED at x; is greater than or equal to
hep/a; = ap/(h(d + 1)v/d). Then, (41) follows from (36)) and Dy, is invertible.

(ii) For any function @ = {u(x;),j = 1,..., Ny},

AP =YY (Ihulx(xEP)) (43)

KeTnh xfPek

As mentioned in the proof of (i), each element of 7;, contains at least a cubic cell of Tpp. We can take
K in Lemma [3.4]as a simplex formed by any d+ 1 vertices of the cubic cell. Then |K|/|K| = C(ax/h)*
for some constant C. From Lemma we have

S (@) > 0 ()" S

xiPeK J=0
which yields .
(iii) is a consequence of (ii). O

Remark 3.3. The choice is needed for the theoretical guarantee of the full column rank of
IED and the invertibility of Dj. However, the requirement is only a sufficient condition. Numerical
experiment shows that we can use much larger hyp, for instance, hpp = ay, which works well for the
examples we have tested. O

3.2 Linear systems, stability, and convergence

The GoFD discretization of the homogeneous Dirichlet problem on the unstructured mesh 7} is

defined as 1

%Dﬁ (I; ) App I}, i, = Dy N(IEP)T fe, (44)

where

Uy = {u; ~ u(x;), j=1,...,Ny;u; = 0, for x; € Q°Y,

fro = {F(2), k=1, NP f(akP) = 0, for 2} € Q°}.
Notice that u is approximated on the vertices of 7; while the right-hand side function f is calculated
on the vertices of Tpp. We can also use the values of f at the vertices of 7j. In this case, we have

1

e D (IR) App I Py = o (45)
FD

Numerical experiment shows that and produce comparable results. Since provides some
convenience in defining the local truncation error (cf. ), we use (44)) in this work.
The system can be simplified into

(IF™)T App IE Py = Wi (IEP)T fep. (46)
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One may notice that D,:l does not appear in the above equation. This is due to the special choice
of the right-hand side function of . It appears in for a different choice of the right-hand side
function. Moreover, since [ ,lj D js sparse and the multiplication of Agp with vectors can be carried out
efficiently using FFT (cf. Section , is amenable to iterative solution with Krylov subspace
methods. The conjugate gradient method (CG) is used in our computation. Recall that the cost
for each iteration of CG is proportional to the cost of computing the matrix-vector multiplication
(IFPYT AppIFPiiy, which can be estimated as O(N%log(N%)) + O(N,), where (2N + 1) is the number
of grid points of Tgp in each axial direction and N, is the number of vertices of 7,. When 7}, is
quasi-uniform, the choice hpp = O(ay,) leads to N¢ = O(N,) = O(N,), where N, denotes the number
of elements of 7. This gives the cost of each CG iteration for solving as O(N.log N.). When
Tr is not quasi-uniform, it is difficult to estimate the cost since, in this case, ap can be very different
from h.

Remark 3.4. It is worth noting that only the block of the system corresponding to the interior
vertices is solved in the actual computation since the unknown variables on 0f2 are known. ]

Theorem 3.3 (Stability). If hpp satisfies (@, then the solution of satisfies

o h 4d R
u;‘fw < CNvalNl}JL‘D <ah> f-pTDfFD; (47)

where h and ay, are the mazimum diameter and minimum height of elements of Tp,.

Proof. Multiplying ﬁf from left with and using the Cauchy-Schwarz inequality and Lemma
we get

i (IF°)" App IE iy, = hgh (I Piin)” fep
. 1.2 pe 1
< hgp (I3 Pan) "I, P@n)? ((frp) " frp)?
71 2 1
< C ¥y (Noa NEip) 2 (@ )2 (i) frp)2.
Moreover, from Proposition [2.1] and Theorem [3.2] we have
2d
@ (IEP)T AppIE P, > Chinay ()T IEPay > Oy (1) @l

Combining the above results, we get

which gives rise to . O

Denote the exact solution of by u = uf(x). We define the local truncation error as

D = fFD — h%SD App I Py, (48)

where
uy, = {u®(zj), j =1,..., Ny;u®(x;) = 0, for x; € Q°Y}.
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TFp can be rewritten into
D = ft — L gy + 4 (dgp — I P i) (49)
TFD = JFD 125 FDUFD 525 “FD Upp — dp " Up)-
FD FD
Thus, TFp can be viewed as a combination of the discretization error on the uniform grid 7gp and the
interpolation error from 7, to Tpp. From (48]), we have

(IFP)" App IR = hE (IE°) fep — hgh (IE°) Fep.
Subtracting from the above equation, we obtain the error equation as
(Ih )" ArpI}; P&, = —hh (1, °) T, (50)
where the error is defined as €}, = 4, — 4;. From Theorem we have the following corollary.

Corollary 3.1 (Convergence). If hrp satisfies (@), the error for the GoFD scheme is
bounded by

N R\
egeh < CNvalN}@D <ah> T]Z:DTFD- (51>

Remark 3.5. Here we do not attempt to give a rigorous analysis of the local truncation error since
it is still challenging to do so for the uniform FD discretization for solutions of optimal regularity (see
Remark. Instead, we provide some intuitions here. From we see that the local truncation error
consists of two parts, one from the uniform FD discretization and the other from linear interpolation.
It is known [9, Proposition 1.2] that the linear interpolation error in L? norm is Q(h™n(1s+1/2=€))
for functions in H**1/27¢(Q) for any € > 0. Moreover, it can be proved that hpg’ App is bounded in
H*(Q2). Thus, we can expect that the local truncation error (and thus the error by Corollary for
the GoFD scheme is O(hmin(Ls+1/2=6)) in L2 norm if the local truncation error of the uniform
FD discretization is in the same order (cf. Remark [2.1)). O

Remark 3.6. Interestingly, Borthagaray et al. [0] and Acosta et al. [2] show that the error
of the linear finite element approximation of in L? norm is O(hmin(l’sﬂ/ 2)_6) for quasi-uniform

meshes and O(h'**) for graded meshes. Here, h = N,
used to measure convergence order in mesh adaptation. The convergence order, O(h!*#), has also

=

is the average element diameter commonly

been established by Ainsworth and Glusa [3] for adaptive finite element approximations. Numerical
results in Section [5| show that GoFD has similar convergence behavior for quasi-uniform meshes and
second-order convergence (in L? norm) for adaptive meshes. O

3.3 Preconditioning with sparse matrices

Various types of preconditioners have been developed for App, including circulant preconditioners
[10] and the direct use of the Laplacian [28]. In principle, we can use these preconditioners to replace
App in the stiffness matrix (I E T AppI }j D and obtain a preconditioner for 1) Here we consider
preconditioners based on sparse matrices. Notice that the fractional Laplacian approaches to the
Laplacian operator as s — 1 and the identity operator as s — 0. Thus, it is reasonable to build
an efficient preconditioner based on the Laplacian at least when s is close to 1. First, we choose a
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sparsity pattern based on the FD discretization of the Laplacian. For example, we can take the 5-point
pattern (cf. @) or the 9-point pattern. Then, we form a sparse matrix using the entries of App at
the positions specified by the pattern. We denote these matrices by Ag% and A%QI%, respectively. Next,
we define

A = (IO AREP, A = @) AR, (52)

Finally, the preconditioners for are obtained using the incomplete Cholesky decomposition of Agf)

and AELQ) with level-1 fill-ins. Notice that all of A%% and A{% and therefore, AS) and Agg) are sparse
and they can be computed economically. Effectiveness of these preconditioners will be demonstrated
in numerical examples.

4 Mesh adaptation

It is known (e.g. see [9, [33]) that the solution of has low regularity especially near the boundary
of Q. Thus, it is useful to use mesh adaptation in the numerical solution of to improve accuracy
and convergence order. We recall that GoFD described in the previous section uses unstructured
meshes for €2, which not only works for arbitrary geometry of €2 but also allows easy incorporation
with existing mesh adaptation algorithms.

Algorithm 1 Adaptive mesh grid-overlay finite difference method

- Given an initial mesh 7;50) for Q.

-Forl=1,..., 04z
- Solve on ’7;50 for ugf).
- Generate a new mesh ’775“1) using the MMPDE method based on u,(f) and 7;50.

- end /¢

We use here the MMPDE moving mesh method for mesh adaptation. The procedure for combining
GoFD with the MMPDE method is given in Algorithm [l We use ¢,4; = 5 in our computation.
Numerical experiment shows that this is sufficient.

The MMPDE method is used to generate the new mesh 7;1(“1) for . The method has been
developed (e.g., see [19, 20} 21]) for general purpose of mesh adaptation and movement. It uses the
moving mesh PDE (or moving mesh equations in discrete form) to move vertices continuously in time
and in an orderly manner in space. A key idea of the MMPDE method is viewing any nonuniform
mesh as a uniform one in some Riemannian metric specified by a tensor M = M(z). The metric
tensor provides the information needed to control the size, shape, and orientation of mesh elements
throughout the domain. Various metric tensors have been developed in [22]. For the current work,
we employ a Hessian-based metric tensor

1
1 T d+4 1
My = det (I + ayHng@)) (I +— \HK(uﬁf))O , vKeT" (53)
h h
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where det(-) denotes the determinant of a matrix, H K(uff)) is a recovered Hessian of ug) on the element

K (through quadratic least squares fitting), |H K(ug)ﬂ =1/ H K(ugf))Q, and «y, is a regularization
parameter defined through the following algebraic equation:
2
1 Oy )
YUIK| det ( I+ —|Hi(Hg(uy,))l = 2|9
ap
K
This metric tensor is known to be optimal for the L?-norm of linear interpolation error [22].

It is known (e.g., see [19, 21]) that a uniform simplicial mesh 7 in metric M satisfies the following
equidistribution and alignment conditions,

Vdet(Mx) K| = 3F VK eTh (54)
%trace (Fi) "M (F) ™) = det (FR) "M (FR)T)?, VK eT, (55)

where N, denotes the number of elements in 73, Fj, is the Jacobian matrix of the affine mapping
Fr:K—>K , K is the reference element taken as an equilateral simplex with unit volume, and

o = Y +/det(Mg) |K].
K

The condition (H4)) requires all elements to have the same size while (55| requires every element K to
be similar to K, in metric Mx. An energy function associated with these conditions is given by

3d

I :é Z \/m | K |trace ((F}()_IM}I(F}()_T)T
K

+ L3 e |1 (v/et (Vi) det(Fie)) (56)
K

This function is a Riemann sum of a continuous functional developed based on mesh equidistribution
and alignment (e.g., see [21]).

The energy function Iy, is a function of the coordinates of the vertices of T, i.e., I, = Iy (x1, ..., N, ).
An approach for minimizing this function is to integrate the gradient system of I. Thus, we define
the moving mesh equations as

de; _ detMi(@)) ol (57)

dt T ox;’

where 7 > 0 is a parameter used to adjust the time scale of mesh movement. The analytical expression
of the derivative of Ij, with respect to «; can be found using scalar-by-matrix differentiation [19]. Using
this expression, we can rewrite as

dai _ +/det(M(w:)) SUKPE,  i=1,..,N, (58)

dt LK’

Kewq;

K
iK

is referred to [19, Equations (38), (40), and (41)] for the analytical expression of vff{ .

where v;* is the local mesh velocity contributed by element K to the vertex x;. The interested reader
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The nodal velocity needs to be modified at boundary vertices. For fixed boundary vertices, dfﬁi
d

:1:- .
g in the

should be set to be zero. If x; is allowed to slide along the boundary, the component of
normal direction of the boundary should be set to be zero.

In our computation, the Matlab ODE solver odel5s (a variable-step, variable-order solver based on
the numerical differentiation formulas of orders 1 to 5) is used to integrate (58)), with the Jacobian
matrix approximated by finite differences, over ¢ € (0, 1] with 7 = 1072 and the initial mesh 7;56). The

obtained mesh is 7;(“1). Notice that the mesh connectivity is kept fixed during the time integration.
Thus, 771(“1) has the same connectivity as 7;1(5).

5 Numerical examples

In this section we present numerical results obtained with GoFD described in the previous sections
for one 1D, three 2D, and one 3D examples. Three of those examples come from problem with
the following setting in different dimensions,

22T +s+ k(5 +5+k)
K'T(4 + k)

s,%—l

Q=DB(0,1), f P2z - 1), (59)

a_
where Pks 2 1() is the Jacobi polynomial of degree k with parameters (s, 4 — 1) and B(0,1) is a unit
ball centered at the origin. Notice that f is constant for £ = 0. This problem has an analytical exact

solution .,
2 s5—1 2
w=(1—|2?)s P (21l - 1). (60)
In this section, the solution error is plotted against IV, the number of elements in 7. The con-
vergence order is measured in terms of h = N, Y d, the average element diameter for both fixed and

adaptive meshes. For a fixed (and almost uniform) mesh, h is equivalent to h, the maximum element
diameter while for an adaptive mesh, h makes more sense since the elements can have very different
diameters. Moreover, we take R (half of the size of the overlay cube) as 1.1 times of half of the
diameter of 2. We have tried 1.0 and 1.2 times and found no significant difference in the computed
solution. Furthermore, we take hrp = aj. This is larger than what is given in the condition but
works well for all examples we have tested. This relation also implies that 7; will become finer when
Tn is refined. Particularly, hpp can become very small for a highly adaptive mesh 7; with a small
element height ay,.

Example 5.1. The first example is the 1D version of problem . For this problem, the FD
scheme described in Section [2] can be used for uniform meshes but not for adaptive ones.

We consider the case with k = 0. The solution error in L® and L? norm is plotted in Fig. [2| for
fixed and adaptive meshes. For fixed (uniform) meshes, the error behaves like O(h®) in L* norm
and O(h™n(1,0-5+5)) in 1,2 norm. This is consistent with the observations made by other researchers;
cf. Remark [2.I] The solution error is also shown for adaptive meshes. Mesh adaptation improves
accuracy and convergence order significantly. Indeed, the error decreases like O(h%®*%) in L® norm
and O(h?) in L? norm for adaptive meshes.

Results for £ > 0 show similar behavior. They are not included here to save space. O
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(a) s =0.25, with FM (b) s = 0.5, with FM (c) s =0.75, with FM (d) s =0.95, with FM

== =

(e) s =0.25, with AM (f) s = 0.5, with AM (g) s =0.75, with AM (h) s =0.95, with AM

Figure 2: Example The solution error is plotted as a function of N, (the number of elements of
Tp) for k= 0. FM stands for Fixed Mesh and AM stands for Adaptive Mesh.

Example 5.2. The second example is the 2D version of . We consider two cases with k£ = 0
and 5 and s = 0.5. Fig. 3| shows computed solutions. The convergence histories are shown in Fig.
The L? norm of the solution error converges like O(h) for fixed meshes. This is consistent with finite
element approximations (cf. Remark [3.6) since in this case with s = 0.5, O(R™»(LO5+5)) — O(h). On
the other hand, the error is second oder, i.e., O(h?), for adaptive meshes. This is higher than the
expected rate O(h!*%) = O(h!®) (cf. Remark . Higher accuracy with mesh adaptation can also
be observed from the computed solutions. For instance, oscillations are visible in Fig. c) but not in
Fig. 3[d). Examples of adaptive mesh are shown in Fig.

We now examine the effectiveness of the preconditioner described in Section The convergence
history for the conjugate gradient method (CG) with/without preconditioning is shown in Fig. []
We can see that the preconditioner reduces the number of iterations significantly. Moreover, the
preconditioner is more effective when s is closer to 1. Meanwhile, a smaller number of iterations is
required to reach the same accuracy for s = 0.5 than s = 0.9. These observations are consistent with
the fact that the fractional Laplacian approaches to the Laplacian as s — 1 and the identity operator
as s — 0. As a result, the stiffness matrix of the FD approximation has a smaller condition number
and the corresponding linear system is easier to solve for smaller s. Moreover, the preconditioner,
whose pattern is based on that of the FD discretion of the Laplacian, can be expected to be more
effective when the fractional Laplacian is closer to the Laplacian.

The CG convergence history is also plotted in Fig. [7] for the preconditioner based on the 5-point
pattern. This preconditioner is slightly less effective than that based on the 9-point pattern. O

Example 5.3. Next we consider the 3D version of for k = 0 and s = 0.5. Fig. [8(a) shows
the convergence history in L? norm. The solution error converges slightly lower than O(h) for fixed
meshes and O(h'®) for adaptive meshes. For this example, we take the 27-point pattern to build the
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v

(a) k =0, with FM (b) k = 0, with AM (c) k = 5, with FM (d) k = 5, with AM

Figure 3: Example Computed solutions obtained with meshes of N, = 27130 for s = 0.5. FM:
fixed mesh and AM: adaptive mesh.

Figure 4: Example The L? norm of the solution error is plotted as a function of N, for k = 0 and
5 and s = 0.5 with and without mesh adaptation.

(a) k=0 (b) k=5

Figure 5: Example Adaptive meshes of N, = 11886 for s = 0.5.

preconditioner. The CG convergence histories shown in Fig. [§[(b) and (c) demonstrate the effectiveness
of the preconditioner. O

Example 5.4. This example is with f = 1 and Q as shown in Fig. 1| with s = 0.75. The
geometry of € is complex, with the wavering outside boundary and two holes inside. An analytical
exact solution is not available for this example. A computed solution with an adaptive mesh of
N, = 250948 is used as the reference solution. Numerical results are shown in Fig. [l The solution
error in L? norm is about O(h) for fixed meshes and O(h?) for adaptive meshes. This example
demonstrates that GoFD works well with complex geometries. O
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A,

.

(a) k=0,s=0.5 (b) k=5,5s=0.5 (c) k=0,5=09 (d) k=5,5s=0.9

Figure 6: Example The CG convergence history is plotted for a fixed mesh of N, = 27130 and
with/without preconditioning (9-point pattern).

~ey

(a) k=0 (b) k=5

Figure 7: Example The CG convergence history is plotted for k = 0 and 5 and s = 0.9 with a
non-adaptive mesh of N, = 27130 and with/without preconditioning (5-point pattern).

Heration umber

(a) s = 0.5, soln error (b) s = 0.5, CG convg, (¢) s =0.9, CG convg.

Figure 8: Example (a): The solution error as function of N and (b) and (c¢): CG convergence
histories for a fixed mesh of N, = 116054 with and without preconditioning.

Example 5.5. This example is with f =1 and 2 being L-shaped with s = 0.5. An analytical
exact solution is not available for this example. A computed solution obtained with an adaptive mesh
of N, = 417508 is used as the reference solution. Numerical results are shown in Figs. The solution
error in L? norm is about O(h) for fixed meshes and O(h?) for adaptive meshes. O

6 Conclusions and further comments

In the previous sections we have studied a grid-overlay finite difference method (GoFD) for the numer-
ical approximation of the fractional Laplacian on arbitrary bounded domains. The method uses an
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v - x . w00 2000 30000

(a) Adaptive mesh (b) Computed solution (c) Solution error

Figure 9: Example (a): An adaptive mesh of N, = 9850, (b) the corresponding computed solution,
and (c) the solution error as function of N, for s = 0.75.

(a) Adaptive mesh (b) Computed solution (¢) Solution error

Figure 10: Example [5.5. (a): An adaptive mesh of N, = 2728, (b) the corresponding computed
solution, and (c) the solution error as function of N, for s = 0.5.

unstructured mesh and an overlaying uniform grid and constructs the approximation matrix Ay (cf.
(2)) based on the uniform-grid FD approximation App (cf. (13) and ) and the transfer matrix IED
from the unstructured mesh to the uniform grid. The multiplication of A, with vectors can be car-
ried out efficiently using FFT and sparse-matrix-vector multiplication. A main result is Theorem
stating that Ay, is similar to a symmetric and positive definite matrix (and thus invertible) if I} © has
full column rank and positive column sums. A special choice of I,IfD is piecewise linear interpolation.
Theorem states that the full column rank and positive column sums are guaranteed for this special
choice if the spacing of the uniform grid satisfies . Stability and preconditioning for the resulting
linear system have been discussed.

GoFD retains the efficient matrix-vector multiplication advantage of uniform-grid FD methods for
the fraction Laplacian while being able to work for domains with complex geometries. Meanwhile, the
method can readily be combined with existing adaptive mesh strategies due to its use of unstructured
meshes. We have discussed in Section [ how to combine GoFD with the MMPDE moving mesh
method.

Numerical results have been presented for a selection of 1D, 2D and 3D examples. They have
demonstrated that GoFD is feasible and convergent and has a convergence order of (’)(hmin(l’o'5+s))
in L? norm for fixed meshes. This is consistent with observations known for existing uniform-grid
FD and finite element methods. With adaptive meshes, the method shows second-order convergence
in 1D and 2D and close to O(h'*¥) in 3D. The numerical results have also demonstrated that the
preconditioners based on the sparsity pattern of the Laplacian (cf. Section are effective in terms
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of reducing the number of iterations required to reach the commensurate accuracy.

Finally we comment that we have used unstructured simplicial meshes for €2 in this work. The use
of simplicial meshes makes it relatively simpler to prove the full column rank of ,lf D and implement
the transfer. However, it is not necessary to use simplicial meshes. We can use any other boundary
fitted meshes or even meshless points. Particularly, we can take 7 as a graded mesh. Moreover, we
can use data transfer schemes other than linear interpolation that has been considered in this work.
These are interesting topics worth future investigations.
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