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Abstract

A model of genomic sequence evolution on a species tree should include not only a se-
quence substitution process, but also a coalescent process, since different sites may evolve on
different gene trees due to incomplete lineage sorting. Chifman and Kubatko initiated the
study of such models, leading to the development of the SVDquartets methods of species
tree inference. A key observation was that symmetries in an ultrametric species tree led to
symmetries in the joint distribution of bases at the taxa. In this work, we explore the implica-
tions of such symmetry more fully, defining new models incorporating only the symmetries of
this distribution, regardless of the mechanism that might have produced them. The models
are thus supermodels of many standard ones with mechanistic parameterizations. We study
phylogenetic invariants for the models, and establish identifiability of species tree topologies
using them.

1 Introduction

The SVDquartets method of Chifman and Kubatko [CK14, CK15] initiated a novel frame-
work for species tree inference from genomic-scale data. Recognizing that individual sites may
evolve along different “gene trees” due to the population-genetic effect of incomplete lineage
sorting, their method is designed to work with site pattern data generated by the multispecies
coalescent model of this process combined with a standard model of site-substitution. How-
ever, rather than try to associate particular gene trees to sites, they regard the observed site
pattern distribution as a coalescent mixture. This effectively integrates the individual gene
trees out of the analysis and allows them to formulate statistical tests based on an algebraic
understanding of the site pattern frequencies. These tests detect the unrooted species tree
topology in the case of four taxa. For a larger set of taxa, species trees can be found by
inferring each quartet and then applying some method of quartet amalgamation. This leads
to their SVDquartets method of species tree inference, which is implemented in PAUP*
[Swo16] and which continues to be an important tool for practical phylogenetic inference
(e.g., [JHP+20, RRDV+20, CFT+22]).

The inference of unrooted 4-taxon species tree topologies in the SVDquartets approach
is based on an algebraic insight that a certain flattening matrix built from the site pattern
distribution should have low rank on a distribution exactly arising from the model. The
mathematical arguments for this in [CK15] are based on the existence of a rooted cherry
(i.e., a 2-clade) on an ultrametric species tree, leading to a symmetry in the site pattern
distribution. Since any rooted 4-taxon tree with unrooted topology ab|cd must display at
least one of the clades {a, b} or {c, d}, detecting that one or both of these clades is present is
equivalent to determining the unrooted tree. The SVDquartets method tests precisely this,
without determining which of the clades is present.
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In this work, we examine the algebraic framework underlying the work of Chifman and
Kubatko and its subsequent extensions. We observe that the symmetry conditions implied by
the Chifman-Kubatko model are key to their inference approach. Based on this observation,
we formulate several statistical models, encompassing those of [CK15] as well as several more
general mechanistic models, which capture the fundamental assumptions needed to justify
SVDquartets. In contrast with the sorts of models generally used in empirical phylogenetics,
which have a mechanistic interpretation (e.g., generation of gene trees by the coalescent
process, generation of sequences by site-substitution models on the gene trees), the models
here have only a descriptive interpretation, as they are defined algebraically by constraints
on site pattern distributions.

One consequence of defining our models in this way is that it becomes more clear that
SVDquartets can give consistent species tree inference for mechanistic mixture models more
general than that described in [CK15] (as hinted by results in [LK18, LK19]). In fact, it is
easy to formulate plausible mechanistic models with many parameters (e.g. mixtures with
many different base substitution processes) for which many of the numerical parameters
must be non-identifiable, but for which SVDquartets inference of the species tree topology
is statistically consistent. Such generality can be viewed as a strength of SVDquartets, as
model misspecification arising from assumption of a simple substitution process across the
entire genome is avoided.

A second consequence is that our models highlight a symmetry in the site pattern dis-
tribution that reflects the rooted species tree, a symmetry that is present even for 3-taxon
trees. Methods for inference of the species tree root in the same framework were proposed in
[GK16, TK17], but both of these works considered four taxa at a time, which is the smallest
unrooted tree size in which topologies may differ. Since rooted trees are determined by their
rooted triples, focusing on the 3-taxon case offers clear advantages for developing new infer-
ence methods. Unfortunately, in doing so, we lose the ability to naturally base statistical
inference on rank conditions on matrices of the sort that underlie SVDquartets. Indeed, the
possible flattening matrices for DNA site pattern data from the Chifman-Kubatko model in
the 3-taxon case are all 4 × 16 with full rank, so rank alone cannot distinguish them. As
a consequence, the matrix Singular Value Decomposition (SVD) of the flattening matrix,
which is used to determine approximate rank in the SVDquartets method, has no obvious
role. However, we present an alternative matrix that must satisfy certain rank conditions in
the 3-taxon case, which suggests it may be possible to develop a 3-taxon method analagous
to SVDquartets.

Our work here is theoretical, dealing primarily with model definitions and algebraic con-
sequences of those models. We suggest its implications for data analysis, but do not explore
possible methods based on these results in depth. We begin the next section with a review
of the model of [CK15] and use it to motivate the introduction of our first model, the ul-
trametric exchangeable model. We then discuss a number of its submodels on ultrametric
trees, and show in Section 3 that the species tree parameter of these models is generically
identifiable and species tree inference by SVDquartets is justified for all. In Section 4, we
give a recursive formula for computing the dimension of the ultrametric exchangeable model,
in terms of the dimensions of its subtree models joined at the root. This indicates that the
dimension depends on the topology of the tree, which has implications for inference methods.
In Section 5, we drop the assumption of an ultrametric species tree, reviewing the model of
[LK19] in this setting and using it to motivate our second model, the extended exchangeable
model. In Section 6, we explore the extended exchangeable model in more depth by restrict-
ing to 3-taxon trees and determining several algebraic invariants of this model. Finally, in
Section 7, we show that the species tree parameter of the extended exchangeable model, as
well as those of several mechanistic models that it contains, are generically identifiable.
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2 A genomic model of site patterns on ultrametric trees

We begin by reviewing the simplest mechanistic model of Chifman and Kubatko [CK15]. For
emphasis, we call this model (and others) mechanistic since it incorporates models of both in-
complete lineage sorting and of site substitution (e.g., GTR) in its formulation. Many mech-
anistic models, including that of [CK15], will be included as submodels of the more general
non-mechanistic models we define below and for which the theory underlying SVDquartets
applies more broadly.

Specifically, let σ+ = (ψ+, λ) be an ultrametric rooted species tree on a set of taxa X ,
with rooted leaf-labelled topology ψ+ and edge lengths λ in number of generations. Let N
be a single constant population size for all populations (i.e., edges) in the species tree, and
µ a single scalar mutation rate for all populations. For a DNA substitution model fix some
GTR rate matrix Q with associated stable base distribution π.

These parameters determine a DNA site pattern distribution as follows: a site is first
assigned a leaf-labelled ultrametric gene tree T sampled under the multispecies coalescent
model on σ+ with populations size N , with one gene lineage sampled per taxon. Then a
site evolves on T according to the base substitution model with root distribution π and rate
matrix µQ. Site patterns thus have a distribution which is a coalescent independent mixture
of site pattern distributions arising from the same GTR model on individual gene trees. We
denote this model by CK = CK(σ+, N, µ,Q, π). (While CK has a mild non-identifiability
issue in that λ, N , and µ are not separately identifiable, this will not be of concern in this
work since our focus is on inferring the topology ψ+.)

A key feature of the CK model is an exchangeability property that it inherits from the
multispecies coalescent, due to the nature of the substitution model. Specifically, suppose
{a, b} ⊆ X is a 2-clade displayed on σ+. Then for any metric gene tree T , let T ′ be the
gene tree obtained from T by switching the labels a and b. Then the ultrametricity of
σ+ together with exchangeability of lineages under the coalescent model implies T and T ′

are equiprobable. Now consider any site pattern z = (z1, z2, . . . , zn) for X , where zi ∈
{A,G,C, T } is the base for taxon xi ∈ X , and let z′ be the site pattern with the a and
b entries interchanged. Then under the base substitution model the probability of z on T
equals the probability of z′ on T ′. Thus, with T denoting the space of all metric gene trees
T on X ,

P(z | σ+, N, µ,Q, π) =

∫

T

P(z | T, µ,Q, π)P(T | σ+, N) dT

=

∫

T

P(z′ | T ′, µ,Q, π)P(T ′ | σ+, N) dT ′ (1)

= P(z′ | σ+, N, µ,Q, π).

Thus any 2-clade on the species tree produces symmetry in the site pattern frequency
distribution. Moreover, since both the multispecies coalescent model and the sequence substi-
tution model are well behaved with respect to marginalizing over taxa, it immediately follows
that 2-clades on the induced subtrees σ+|Y on subsets Y ⊂ X will produce symmetries in
the marginalizations of the site pattern distribution to Y .

This motivates the following definition of an algebraic model of site pattern probabilities.
In this definition and in what follows, it will be convenient to regard a site pattern probability
distribution P from a κ-state model on an n-leaf tree as an n-way site pattern probability
tensor. That is, we regard P = (pi1...in) as a κ × · · · × κ array with non-negative entries
adding to 1, where pi1...in denotes the probability that the n (ordered) taxa are in state
(i1, . . . , in).

Definition 2.1. Let ψ+ be a rooted binary topological species tree on X , and κ ≥ 2. Then
the κ-state ultrametric exchangeable model, UEκ(ψ

+), is the set of all |X |-way site pattern
probability tensors P , such that for every Y ⊆ X , and every 2-clade {a, b} on ψ+|Y , the
marginal distribution PY of site patterns on Y is invariant under exchanging the a and b
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indices. The collection of all distributions as ψ+ ranges over rooted binary topological trees
on X is the UE model (or the UEκ model to avoid ambiguity).

Although this model has ‘ultrametric’ in its name, note that the tree ψ+ is a topolog-
ical rooted tree, with no edge lengths. ‘Ultrametric’ here refers to the motivation for the
model, generalizing the CK model on an ultrametric species tree discussed above. While one
can contrive mechanistic models on non-ultrametric trees that lead to distributions in the
UEκ(ψ

+) model, we do not find them very natural, and prefer to highlight the ultrametricity
that a plausible mechanistic model is likely to require to lie within UEκ(ψ

+).
It is important to note that unlike most models in phylogenetics, including the CK

model above, the UE model is not defined through mechanistically-interpretable parameters.
Rather it has a descriptive form relating entries of the model’s joint distributions, chosen to
reflect certain implicit features of the CK model. The UE model then can be viewed as a
relaxation, or supermodel, of that more restrictive model.

Example 2.2. Let ψ+ be the rooted 3-taxon tree (a, (b, c)) and consider a 2-state substi-
tution model with states {0, 1}. A probability distribution for the UE

(
(a, (b, c))

)
model is

P = (pijk), a 2× 2× 2 array with entries the joint probabilities for assignments of states to
the taxa, pijk = P(a = ‘i’, b = ‘j’, c = ‘k’).

Since the constraints on the model arise only from subsets Y ⊆ {a, b, c} that contain at
least two taxa, there are four subsets of interest:

{a, b, c}, {b, c}, {a, b}, {a, c}.

Then UE2(ψ
+) is a subset of the probability simplex ∆7 ⊂ R

8 defined by the following linear
equations.

{a, b, c} :

{
p010 = p001

p101 = p110

{b, c} : p001 + p101 = p010 + p110

{a, b} : p010 + p011 = p100 + p101

{a, c} : p001 + p011 = p100 + p110

The first two constraints, for {a, b, c}, express that slices on the first index of probability
tensors in UE2(ψ

+) are symmetric. Specifically, if Pz·· denotes the conditional distribution
of b, c when a is in state z, then the 2× 2 matrix Pz·· is symmetric for each z ∈ {0, 1}. These
imply the third equation, for {b, c}, expressing that marginalizing over the first index gives
a symmetric matrix. The fourth equation, for {a, b}, is independent of the first three, but
with them implies the fifth one, for {a, c}.

Taking into account the probabilistic requirement that
∑
i,j,k∈{0,1} pijk = 1, we see the

model is a restriction of a 4-dimensional affine space to the simplex ∆7 with 0 ≤ pijk ≤ 1.

It is clear that far more complicated models of site pattern evolution on a species tree
than the CK model give rise to distributions which also lie within the UE model, since the
only requirement is that the resulting site pattern distributions reflect the symmetries of the
species tree. For instance, in [CK15], an extension is given to allow for Γ-distributed rate
variation across sites. A further generalization, allowing for edge-dependent variation of the
population size N = Ne, as well as time-dependent variation in the mutation rate µ across
the species tree, can also easily be seen to produce distributions lying within UE. Since the
symmetry conditions arising from the species tree are linear constraints on the site pattern
probability distributions, arbitrary mixtures of models exhibiting the same symmetries will
again exhibit these symmetries. Thus, the mechanistic models in [ALR19] on ultrametric
trees that allow for variation in the substitution rate matrix across sites also are submodels
of UE. Similarly, it has been shown that a model of gene flow on a 3-taxon ultrametric
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species tree will produce site pattern probability distributions that reflect the symmetry in
the 2-clade of the species tree [LK18, Proposition 0.8]. In focusing on the UE model we
obtain results that apply to all these models, and possibly more to be formulated in the
future.

3 Generic identifiability of trees under the UE model

To use a statistical model for valid inference, it is necessary that any parameter one wishes
to infer be identifiable; that is, a probability distribution from the model must uniquely
determine the parameter. For phylogenetic models, this strict notion is generally too strong
to hold, but one can often establish a similar generic result, that the set of distributions on
which identifiability fails is of negligible size (measure zero) within the model. The following
theorem is in this vein.

Theorem 3.1. The rooted binary topological tree ψ+ is identifiable from a generic probability
distribution in the UE model.

Proof. Fix κ and a taxon set X . Since for each binary species tree topology ψ+ the symmetry
conditions are expressible by linear equations, the UE model for ψ+ is the intersection of a
linear space with the probability simplex. We establish the result by showing that the linear
model spaces for different ψ+ are not contained in one another, since then their intersection
is of lower dimension and hence of measure zero within them.

That the linear spaces are not contained in one another will follow by establishing that for
each ψ+ there is at least one distribution in UEκ(ψ

+) that fails to have any ‘extra symmetry’
required for it to be in the model for a different tree. To construct such a distribution, assign
positive edge lengths to ψ+ so that the tree is ultrametric, and consider on it the κ-state
analog of the (non-coalescent) Jukes-Cantor (henceforth denoted JC) model. The resulting
site pattern distribution P is easily seen to have the necessary symmetries to lie in the UE
model.

To show P has no extra symmetries, suppose to the contrary that there is a Y ⊂ X
containing two taxa a, c where P |Y is invariant under exchanging the a and c indices, yet a, c
do not form a cherry on ψ+|Y . Then, after possibly interchanging the names of a, c, there
is a third taxon b such that the rooted triple ((a, b), c) is displayed on ψ+|Y . Moreover, by
further marginalizing to Y ′ = {a, b, c}, we have that P |Y ′ arises from a Jukes-Cantor model
on a 3-taxon ultrametric tree with positive edge lengths and rooted topology ((a, b), c), and
exhibits a, c symmetry.

To see that this is impossible, note that if P |Y ′ has both a, b and a, c symmetry, then it
also exhibits b, c symmetry. Thus, all marginalizations of P |Y ′ to two taxa are equal. This
implies all JC distances between taxa, which can be computed from these marginalizations,
are equal. This contradicts that the tree was binary.

Note that the proof above did not consider a coalescent process in any way in order to
show that extra symmetries do not generically hold in UE(ψ+). However, since applications
may consider submodels of the UE model, such as the CK model, it is necessary to ensure
they do not lie within the exceptional set of non-generic points in the UE model where
tree identifiability may fail. To address this issue, we seek an identifiability result for more
general mechanistic models that have an analytic parameterization, by which we mean that
for each topology ψ+ there is an analytic map from a full-dimensional connected subset of
R
k, for some k, to the set of probability distributions comprising the model. For example,

if σ+ is a rooted metric species tree with shape ψ+, and site pattern frequency distributions
are generated on gene trees arising under the coalescent using the GTR+I+Γ model, then
the collection of such distributions is given by an analytic parameterization, and as such is
a submodel of UE(ψ+).
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Theorem 3.2. Consider any submodel of the UE model with an analytic parameterization
general enough to have the JC model as a limit. Then for generic parameters the rooted
topological tree ψ+ is identifiable.

Proof. Let
f : Θ → UE(ψ+)

denote the parameterization map for the submodel on tree ψ+. Then f(Θ) cannot lie entirely
in UE(φ+) for any φ+ 6= ψ+, since, as shown in the previous proof, there are points from
the JC model in the closure of f(Θ) which are not in the closed set UE(φ+). Thus the set
f−1(UE(ψ+) ∩ UE(φ+)) is a proper analytic subvariety of Θ, and hence of measure zero in
it. Since there are only finitely many φ+, for generic points in Θ the resulting distribution
lies in the UE model for ψ+ only.

Note that the CK model, which is analytically parameterized, has the JC model as a
limit, since after choosing a JC substitution process one can let the population size N → 0+.
This effectively “turns off” the coalescent process, as small population sizes result in rapid
coalescence.

Geometrically, the UE model on a particular tree is a convex set, since it can be expressed
as the solution set for a system of linear equations and inequalities. It immediately follows
that mixtures of instances of the UE model on the same tree, whether defined by integrals
such as typical rates-across-sites models (e.g., the ultrametric GTR+Γ coalescent mixture
of [CK15]) or as sums (e.g., an ultrametric mixture of coalescent mixtures, as in [ALR19]),
or both, are also submodels of UE on that tree. Provided the model has an analytic pa-
rameterization, as all these examples do, Theorem 3.2 then says that the tree topology is
generically identifiable. Even in cases of mixtures which have so many numerical parameters
that dimension arguments show they cannot all be individually identifiable, the species tree
topology remains so. This is a potentially valuable observation, as a scheme designed for
inference of a tree under the UE model may avoid some issues of model misspecification
that might arise with a more standard approach of restricting to very simple models (e.g.
constant population size) so that all numerical parameters are identifiable as well.

The above theorems of course imply the weaker statement that for the UE model (and
many analytic submodels of the UE model) on four or more taxa, the unrooted species tree
topology is identifiable. As SVDquartets is designed to infer unrooted 4-taxon trees, this
gives hope that it might also be able to infer the unrooted tree topology for distributions from
the more general UE model. For this to be possible, it is necessary to prove that the specific
flattening matrices considered in the SVDquartets method satisfy certain rank conditions,
the content of the next theorem.

Recall that if a κ × κ × κ × κ array P has indices corresponding to taxa a, b, c, d, then
the flattening Flatab|cd(P ) is a κ2 × κ2 matrix with row and column indices in κ × κ and
((i, j), (k, l))-entry P (i, j, k, l).

Theorem 3.3. For P ∈ UEκ(ψ
+), and ab|cd any unrooted quartet induced from the tree

ψ+, let P̃ = P |{a,b,c,d} denote the marginalization to the taxa a, b, c, d. Then for all such P ,

Flatab|cd(P̃ ) has rank at most
(
κ+1
2

)
, while for generic P , Flatac|bd(P̃ ) and Flatad|bc(P̃ ) have

rank κ2.

Proof. Since ψ+|{a,b,c,d} has at least one cherry, assume one is formed by a, b. Then symmetry

under exchanging the a, b indices of P̃ shows that for each 1 ≤ i < j ≤ κ, the (i, j) and (j, i)
rows of Flatab|cd(P̃ ) are identical. Thus that flattening has at most κ2−

(
κ
2

)
=
(
κ+1
2

)
distinct

rows, and its rank is at most
(
κ+1
2

)
.

We prove the second statement for Flatac|bd(P̃ ), noting that the argument for Flatad|bc(P̃ )

is similar. To show that for generic P ∈ UEκ(ψ
+), Flatac|bd(P̃ ) has full rank, it suffices to
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construct a single P for which this flattening matrix is full rank. To see that this is the case,
consider the algebraic variety

Vac|bd = {P ∈ R
κ|X|

| det(Flatac|bd(P̃ )) = 0}.

This variety is defined by a single degree κ2 polynomial and contains all of the points
P for which Flatac|bd(P̃ ) is singular. If there is a single point P ∈ UEκ(ψ

+) for which

Flatac|bd(P̃ ) 6= 0, then the affine space UEκ(ψ
+) is not contained in Vac|bd. Thus, the inter-

section of UEκ(ψ
+) with Vac|bd is a proper subvariety of UEκ(ψ

+), and hence of measure

zero within it. Thus, generically, Flatac|bd(P̃ ) is full rank.
To construct such a probability distribution, assign any positive lengths to the edges of ψ+

so that it becomes ultrametric, and consider the κ-state JC model on it (with no coalescent
process). This leads to a distribution P ∈ UEκ(ψ

+). Then P̃ arises from the Jukes-Cantor
model on the induced rooted 4-taxon tree. Since the JC model is time reversible, P̃ is also
obtained by rooting the quartet tree at the MRCA of a and b, with non-identity JC Markov
matrices on each of the 5 edges of this rerooted tree. LetMa,Mb,Mc,Md denote the Markov
matrices on the pendant edges and Mint on the internal edge, so that F = (1/κ)Mint is the
distribution of pairs of bases at the endpoints of the internal edge. Let Nac = Ma ⊗Mc

and Nbd =Mb ⊗Md denote the Kronkecker products. Then, following the details of [AR06,
Section 4], the flattening matrix may be expressed as

Flatac|bd(P̃ ) = NT
acDNbd,

where D is a κ2 × κ2 diagonal matrix formed from the entries of F .
Since Mint is assumed to be a non-identity JC matrix, F has no zero entries, so D has

rank κ2. Similarly, the JC transition matrices Ma,Mb,Mc,Md are non-singular, and since
the Kronecker product of non-singular matrices is non-singular, so are NT

ac and Nbd. Thus
Flatac|bd generically has full rank.

The argument in this proof, that generically the ranks of “wrong” flattenings of quartet
distributions are large, proceeded by constructing an element of the UE model using a
parameterized model in the absence of a coalescent process. However, just as was done
in Theorem 3.2, we can extend the conclusion to analytic submodels of the UE model,
such as those incorporating the coalescent. For instance, since the CK model has the non-
coalescent JC model as a limit, this implies that there are points in the CK model that
are arbitrarily close to the point P constructed in the proof, which therefore must also have
rank κ2 flattenings, as matrix rank is lower semicontinuous. We can thus obtain the following
generalization of a result from [CK15].

Theorem 3.4. Consider any submodel of the UE(ψ+) model with an analytic parameter-
ization general enough to have the JC model as a limit. If ψ+ displays the quartet ab|cd,
then for all distributions P in the model, with P̃ = P |{a,b,c,d}, Flatab|cd(P̃ ) has rank at most(
κ+1
2

)
, while for generic P , Flatac|bd(P̃ ) and Flatad|bc(P̃ ) have rank κ2.

We note that our proof of this theorem has avoided the explicit calculations and more
intricate arguments that appear in [CK15] while also establishing the result in a more general
setting. This is possible because of our use of a tensor P in the closure of the CK model, but
not in the CK model, as well as adopting the viewpoint of [AR06] on flattenings as matrix
products.

Using the two preceding theorems on identifiability, the statistical consistency of the
SVDquartets method can be obtained. When Chifman and Kubatko [CK15] proved essen-
tially the same result on ranks of flattenings for the CK model, they highlighted it as an
identifiability result, but did not explicitly make a claim of consistency. The consistency re-
sult for SVDquartets was then unambiguously stated and proved in this setting in [WK20],
which also gave an analysis of the convergence rate.
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Here we show that their argument for the consistency of SVDquartets applies more gener-
ally to site patterns generated under the UE model, as well as many submodels. In particular,
it validates the consistency of inference under models allowing mixtures of coalescent mix-
tures which may have different substitution processes across the genome, as described in
[ALR19].

To be precise, we must first specify some method of quartet amalgamation M , which
takes a collection of one quartet tree for each 4-taxon subset of X and produces an unrooted
topological tree on X . In order to establish consistency, we require that if all quartet trees
in the collection given to the method M are displayed on a common tree T on X , then M
returns T . Following [NCMW18], we say such a method is exact while recognizing that for
large sets X one generally must use a heuristic method M ′ that seeks to approximate M .

Theorem 3.5. The SVDquartets method, using an exact method to construct a tree from
a collection of quartets, gives a statistically consistent unrooted species tree topology estima-
tor for generic parameters under the UE model, and under any submodel with an analytic
parameterization general enough to have the JC model as a limit.

Proof. To simplify notation in the argument, let Flatac|bd(P ) denote the ac|bd flattening of
the marginalization P |{a,b,c,d}.

By Theorems 3.3 and 3.4 for generic parameters giving a probability distribution P in
the model and any four taxa a, b, c, d such that ab|cd is displayed on the unrooted tree ψ,
Flatab|cd(P ) has rank at most

(
κ+1
2

)
, while Flatac|bd(P ) and Flatad|bc(P ) have rank κ

2. This

implies that Flatab|cd(P ) will have at least
(
κ
2

)
singular values of 0, while Flatac|bd(P ) and

Flatad|bc(P ) have all positive singular values. For a finite sample of s sites from the model,

denote the empirical distribution by P̂s. Then for any ǫ > 0 and any norm

lim
s→∞

Pr
(
|P̂s − P | < ǫ

)
= 1.

Since the vector σ(M) of ordered singular values of a matrix M is a continuous function of
the matrix, this implies that for each q ∈ {ab|cd, ac|bd, ad|bc}

lim
s→∞

Pr

(
‖σ(Flatq(P̂s))− σ(Flatq(P ))‖ < ǫ

)
= 1

where ‖ · ‖ denotes any vector norm. With the SVD score µ(M) defined as the sum of the(
κ
2

)
smallest singular values of a κ2 × κ2 matrix M , we know

0 = µ
(
Flatab|cd(P )

)
< min

{
µ(Flatac|bd(P )), µ

(
Flatad|bc(P )

)}
.

But it then follows that

lim
s→∞

Pr

(
µ(Flatab|cd(P̂s)

)
< min

{
µ(Flatac|bd(P̂s)), µ(Flatad|bc(P̂s))

})
= 1.

Thus, as the sample size s grows, the probability that choosing the quartet tree on a, b, c, d
minimizing µ gives the quartet tree displayed on ψ approaches 1.

Since this probability approaches 1 for each of set of four taxa, and there are only finitely
many such sets, the probability that all quartet trees inferred by minimizing µ are displayed
on the species tree approaches 1. Thus with probability approaching 1, the method M will
return the correct species tree.

4 Dimension of UE models on large trees

Although the symmetry conditions of the UE model have been expressed as linear constraint
equations, these constraints are not in general independent, as was shown for a particular
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3-taxon species tree in Example 2.2. In that example, it was easy to determine a basis of
constraints, and thus the dimension of the model. In this section we investigate larger trees
and determine the model dimension.

Knowledge of dimension is important for several reasons. First, it gives us a basic insight
into how restrictive the model on a particular tree topology is. Second, if one is to use these
models for tree inference, the dimension is important for judging how close a data point is to
fitting the model. Intuitively, data is conceptualized as coming from a true model point with
‘noise’ added, and if a model has high dimension the noise tends to do less to move that data
from the model than if it had lower dimension. Such dimensionality considerations are made
rigorous in many model selection criteria, for instance the Akaike Information Criterion and
Bayesian Information Criterion.

For a rooted topological tree ψ+ on taxa X we consider the model UEκ(ψ
+). Let dκ(ψ

+)

denote the dimension of the affine space V (ψ+) ⊂ R
κ|X|

of all tensors satisfying the linear
equations expressing the symmetry conditions defining the model, as well as that all entries
of the distribution tensor sum to 1 (i.e., the affine, or Zariski, closure of the model). By
dropping the condition that tensor entries sum to 1, we pass to the cone over the model, a
linear space L(ψ+) of dimension cκ(ψ

+) = dκ(ψ
+) + 1. We now give a recursive formula for

computing the dimension cκ(ψ
+).

Theorem 4.1. For a rooted binary topological tree ψ+ on a taxon set X, let ψ+
A and ψ+

B

be the rooted subtrees descendant from the child nodes of the root of ψ+, on taxa A and B
respectively, so that X = A ⊔B and ψ+ = (ψ+

A , ψ
+
B). Then

cκ(ψ
+) = cκ(ψ

+
A)cκ(ψ

+
B)−

(
κ

2

)
.

For a topological rooted species tree ψ+ onX , we can construct a set of equations defining
the cone L(ψ+) by considering every subset Y ⊆ X and every 2-clade {a, b} of each ψ+

|Y as

was done in Example 2.2. However, as we saw in that example, the equations we obtain
in this way are not necessarily independent. As a first step towards proving Theorem 4.1,
we construct a smaller (though still not necessarily independent) set of linear equations
defining the cone L(ψ+). This set is defined by associating a set of linear equations to each
vertex of the topological rooted tree ψ+ on X . Specifically, for each internal vertex v of
ψ+ choose two taxa a, b with v = MRCA(a, b). Let P be a |X |-dimensional κ × · · · × κ
tensor of indeterminates, with indices corresponding to taxa in X and let Pab denote the
marginalization of P over all indices corresponding to taxa in desc(v)\ {a, b}. Each choice of
the indices corresponding to taxa in X \desc(v) determines a matrix slice of Pab, with indices
corresponding to a, b. Expressing that each of these slices is symmetric yields a collection
of linear equations. Denote this set of equations by Sv = S(ψ+, {a, b}). Though the set Sv
will depend on the particular pair of taxa (a, b) chosen, for our purposes the particular pair
is irrelevant, so one can designate any consistent rule for selecting the pair (a, b) so that the
Sv are well-defined. If v is not an internal vertex of ψ+, define Sv to be the empty set.

Lemma 4.2. Let ψ+ be a topological rooted tree on X. Then the set

S =
⋃

v∈V (ψ+)

Sv

defines the cone L(ψ+).

Proof. It is enough to show that if v = MRCA(a, b) = MRCA(a, c), then the linear equations
expressing symmetry of slices of Pac are contained in the span of those expressing symmetry
of slices of Pab together with those equations in S arising from nodes descended from v. We
show this inductively, proceeding from the leaves of the tree to the root. The base case,
when v has only two leaf descendants, is trivial. Assume the result holds for the internal
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nodes descended from v. Let the children of v be v1, which is ancestral to or equal to a, and
v2, which is ancestral to b, c since ψ+ is binary. Then w = MRCA(b, c) is a descendent of
v2. The equations arising from w express that any entry of the marginalization of P over
all descendants of w except b, c is invariant under exchanging the b, c indices. Since the
entries of Pab arise from further marginalization, the equations expressing symmetry of the
ab-slices together with those arising from w imply those expressing the ac-slices of Pac are
symmetric.

The proof of the previous lemma explains the dependence of the equations we see in Ex-
ample 2.2. The {a, b, c} constraints are the equations arising from MRCA(b, c), which in that
example, required no marginalization of P . The {a, b} constraints are the equations arising
from the root of the tree that express symmetry of Pab which are obtained by marginalizing
P over c. Together, these constraints imply the {b, c} and {a, c} constraints, the latter of
which express symmetry in the slices of Pac.

Proof of Theorem 4.1. Let nA = |A| and nB = |B|. With U = R
κnA and V = R

κnB , we
identify W = U ⊗ V = R

|X| with the space of knA × knB real matrices. In particular, we
have L(ψ+

A) ⊂ U , L(ψ+
B) ⊂ V , and L(ψ+) ⊂W .

We first claim that L(ψ+
A) ⊗ L(ψ+

B) is the subspace Z ⊂ W defined by the subset S ′ of
S = S(ψ+) of Lemma 4.2 containing only those equations arising from non-root internal
nodes of ψ+.

To see L(ψ+
A)⊗ L(ψ+

B) ⊆ Z, consider an equation in S ′ associated to a non-root node v
and its descendant taxa a, b as in the lemma. Without loss of generality, we may assume v
is a node of ψA. Then, ordering the taxa so that a, b are the first two, this equation in S ′

has the form ∑

α1

x(i,j,α1,α2),β −
∑

α1

x(j,i,α1,α2),β = 0 (2)

where the summation over α1 ∈ [k]m runs through all assignments of states to taxa descended
from v other than a, b , α2 ∈ [k]nA−2−m is a fixed choice of states for taxa in A not descended
from v, β ∈ [k]nB is a fixed choice of states for the taxa in B, and i 6= j. This equation
expresses that column β of a matrix in W satisfies an equation associated to v, a, and b in
the definition of L(ψ+

A). Thus it holds on all of L(ψ+
A) ⊗ L(ψ+

B), and we obtain the desired
inclusion.

To see L(ψ+
A) ⊗ L(ψ+

B) ⊇ Z, note that equation (2) has shown that every column of
z ∈ Z lies in L(ψ+

A), and likewise every row of z lies in L(ψ+
B). But from the singular value

decomposition of z,

z =
∑

i

ci ⊗ ri

where the ci form a basis for the column space of z and the ri form a basis for the row space
of z. Since ci ∈ L(ψ+

A) and ri ∈ L(ψ+
B), it follows that z ∈ L(ψ+

A)⊗ L(ψ+
B), establishing the

stated inclusion and that Z = L(ψ+
A)⊗ L(ψ+

B).
Now the space L(ψ+) is the subset of Z = L(ψ+

A) ⊗ L(ψ+
B) defined by the equations in

S \ S ′, associated to the root of ψ. To conclude that

cκ(ψ
+) = cκ(ψ

+
A)cκ(ψ

+
B)−

(
κ

2

)
,

it is enough to show that we can obtain an independent set of equations defining L(ψ+)
by taking an independent set defining Z and augmenting it by

(
κ
2

)
additional independent

equations associated to the root.
Let L be any independent subset of equations in S ′ that define Z, and M = S \ S ′ the

set of
(
κ
2

)
equations associated to the root of ψ+ (and the choice of a ∈ A and b ∈ B). Then

L∪M defines L(ψ+). To see that L∪M is independent, first order indices so that a and b
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indices are listed first among A and B. Then, using ‘+’ in an index to denote the sum over
the assignment of all states [κ] = {1, 2, . . . , κ} in that index, for any 1 ≤ i < j ≤ k,

xi+...+, j+...+ − xj+...+, i+...+ = 0

must be the unique element of M that involves the variable xii···i, jj···j (noting that each
equation in L involves variables that have at least two distinct entries in the indices for A or
two distinct entries in the indices for B). Since L is an independent set, this implies L∪M
is independent.

The theorem gives insight into model dimensions for families of ‘extreme’ topologies:
rooted caterpillars and fully balanced shapes.

Corollary 4.3. Suppose ψ+ is a rooted caterpillar tree on n taxa. Then the dimension of
the UEκ(ψ

+) model is

dκ(ψ
+) =

κn + κ

2
− 1.

Proof. If n = 1, then the model is simply a base distribution for the sole taxon, so dκ(ψ
+) =

κ − 1, consistent with the stated formula. Now inductively assume the stated formula for
the rooted caterpillar on n− 1 taxa. Then by Theorem 4.1, for n taxa

cκ(ψ
+) =

(
κn−1 + κ

2

)
κ−

(
κ

2

)
=

(
κn + κ2

2

)
−

(
κ2 − κ

2

)
=
κn + κ

2
,

and the claim follows.

Also from Theorem 4.1 we can compute that the dimension of the UE model on the
4-taxon balanced tree ((a, b), (c, d)) is

dκ =

(
κ2 + κ

2

)2

−

(
κ

2

)
− 1 =

κ(κ3 + 2κ2 − κ+ 2)

4
− 1.

By comparing the dimensions for the 4-taxon caterpillar and balanced trees, we see that dk
depends on the rooted tree topology, and not only on the number of taxa.

More generally, for a fully balanced tree ψ+ on n = 2ℓ taxa, Theorem 4.1 yields that

dκ(ψ
+) = O

((
κ(κ+ 1)

2

)n/2)
.

Thus for fully balanced trees the dimension is o(κn/2), while for rooted caterpillars on n
taxa, Corollary 4.3 shows the dimension is asymptotic to κn/2. For a fixed number of taxa
n = 2ℓ, it follows that the dimension of the balanced tree model will be smaller than that of
the caterpillar.

This comparison of model dimension for caterpillars and balanced trees is intuitively
plausible, as cherries on the full tree lead to more symmetry requirements on a tensor than
do cherries on subtrees. In general, the more balanced a tree is, the smaller one might expect
the model dimension to be. This leads us to pose the following conjectures, where RB(n)
denotes the set of rooted binary n-leaf trees.

Conjecture 4.4. For all κ, there exists an m, such that for n ≥ m, dκ(ψ
+) is maximized

over ψ+ ∈ RB(n) when ψ+ is the n-leaf caterpillar tree.

Conjecture 4.5. For all κ, there exists an m, such that for ℓ ≥ m, dκ(ψ
+) is minimized

over ψ+ ∈ RB(2ℓ) when ψ+ is the 2ℓ-leaf balanced tree.
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5 A genomic model of site patterns on general trees

In this section, we examine a generalization of the CK model to non-ultrametric trees to
motivate an algebraic model that encompasses it. Marginalizations (respectively, slices) of a
site pattern probability tensor will be denoted by placing a ‘+’ (resp. k) in the index summed
over (resp. conditioned on). The transpose operator will be denoted with an exponent ‘T .’
For example, we can generalize the equations derived in Example 2.2 for the UE model on
the ultrametric 3-leaf rooted tree (a, (b, c)) for any value of κ using this notation as follows:

(1) Pk·· = PTk··,

(2) P+·· = PT+··.

(3) P··+ = PT··+,

(4) P·+· = PT·+·.

In the definition of the UE model, these constraints arise from the taxon subsets (1) {a, b, c},
(2) {b, c}, (3) {a, b} and (4) {a, c}, and it is not hard to see that the equations in (1) and (3)
imply those in (2) and (4), just as in Example 2.2.

5.1 The Extended Exchangeability Model

In [LK19], the CK model is extended to permit non-ultrametricity of the species tree. This
extension allows, for instance, the modeling of relationships between species when generation
times or scalar mutation rates differ across populations in the tree. In this same work,
flattening matrices are used to establish the generic identifiability of the unrooted species tree
topology of the extended model from which it follows that SVDquartets is still a statistically
consistent method of inference of the unrooted species tree topology for these models when
combined with any exact method of quartet amalgamation.

In order to motivate our algebraic model, first consider a model obtained from the CK
by dropping the ultrametricity requirement on the species tree. Suppose a and b are taxa in
a 2-clade on σ+, and let v be their common parental node. In the special case that the edge
lengths of ea = (v, a) and eb = (v, b) equal, then the lineages a and b would be exchangeable
under this site pattern model as shown for the CK model. Thus, for this particular tree the
site pattern distribution can be viewed as a tensor with symmetry in the a and b coordinates.
On a general species tree, however, where ea and eb may have different lengths and mutation
rates may not be consistent, all sites evolve over those edges according to the transition
matrices

Ma = exp (saQ) , sa =

∫ ℓ(ea)

0

µea(t)dt,

Mb = exp (sbQ) , sb =

∫ ℓ(eb)

0

µeb(t)dt,

where ℓ(e) is the length of edge e and µea(t) and µeb (t) are time dependent mutations rates.
Supposing, without loss of generality, that sa ≤ sb, define the Markov matrix

M =MbM
−1
a = exp ((sb − sa)Q) .

Then the site pattern distribution can be viewed as one obtained from a tensor with symmetry
in a and b that has been acted on by M in the b-index. More specifically, we imagine that on
the edges leading toward both a and b, the Markov matrixMa describes an initial substitution
process, but on the edge to b there is a subsequent mutation process described by M . If we
introduce an additional action by M on the edge to a, then in the resulting distribution we
would regain symmetry in a and b. Since no coalescent events occur in these pendant edges,
there are no complications arising from the coalescent events that do occur.

To formalize this mathematically, suppose P is an N -way κ× κ× · · · × κ tensor. Define
the action of a κ× κ matrix M in the kth index of P by Q = P ∗kM where

Q(i1, i2, . . . , ik, . . . , iN ) = vM,
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with v the row vector determined by fixing the ℓth index of P to be iℓ for all ℓ 6= k. For
example, for n = 3 and k = 1, the tensor P ∗1 M is specified by (P ∗1 M)ijk = (P·jkM)i.
Given an n-tuple of matrices (M1,M2, . . .Mn), let

P ∗ (M1,M2, . . . ,Mn) = (. . . ((P ∗1 M1) ∗2 M2) · · · ∗nMn)

denote the action in each of the indices of P .

Definition 5.1. Let ψ+ be a rooted topological species tree on X with |X | = n. Then
the extended exchangeable model, EEκ(ψ

+), is the set of all n-way site pattern probability
tensors P , such that there is an n-tupleM = (M1,M2, . . . ,Mn) of κ×κ non-singular Markov
matrices Mi and a non-negative array P̃ in the model UEκ(ψ

+) such that P ∗M = P̃ .

We note that UE is a submodel of EE: any distribution in UEκ(ψ
+) is seen to lie in

EEκ(ψ
+) by taking all matricesMi to be the identity. Also, to ensure that the EE model does

not include all distributions, it is important that the Mi be non-singular in this definition:
Otherwise, if the Mi describe processes where all states transition to the same state with
probability 1, then for any tensor P , P ∗(M1,M2, . . .Mn) = P̃ , a tensor with a single diagonal
entry equal to 1 that is in UE.

While the UE model on a 2-leaf tree imposes constraints on the probability distribution
of site patterns, the 2-leaf EE model is dense among all probability distributions. Indeed,
the EE model on such a tree simply requires that the site pattern distribution have the form
of P =M−T

1 SM−1
2 with S a symmetric probability matrix and the Mi Markov. But a dense

subset of all probability distributions can be expressed as P = DM for a diagonal matrix D
with entries from the row sums of P and an invertible Markov matrix M . We can thus take
M1 =M , S =MTDM , and M2 = I.

For a 3-taxon tree, though, the EE model is typically not the full probability simplex
∆κ3−1. For κ ≥ 4, this follows from a simple dimension bound. The UE(ψ+) model for a
3-taxon tree ψ+ has, from Corollary 4.3, dimension

dκ =
κ3 + κ

2
− 1.

Moreover, the affine closure of the UE model on a 3-taxon tree is mapped to itself by the *
action of (M−1,M−1,M−1) for any Markov matrix M . Thus the dimension of the EE(ψ+)
model can be at most

dim(UE(ψ+) + 2κ(κ− 1),

where the second term is the number of parameters specifying two Markov matrices. Thus

dim(EE(ψ+) ≤
κ3 + 4κ2 − 3κ

2
− 1 < κ3 − 1

for all κ ≥ 4.
As we address in the remark following Corollary 6.2, we can confirm computationally that

for a 3-taxon tree and κ = 3, EE(ψ+) is of lower dimension than the probability simplex
∆26 and that for κ = 2, the Zariski closure of EE(ψ+) is equal to ∆7.

Remark. A more restrictive variant of the EE model, that is closer to the mechanistic models
of [LK19] model, could be defined by requiring that all the ‘extension’ matrices Mi arise as
exponentials of the same GTR rate matrix. While this common exponential condition is not
expressible purely through algebra, there are other algebraic relaxations of it that one could
impose instead, such as that the extension matrices Mi are symmetric and commute.

6 The EE model on 3-taxon trees

By Definition 5.1, the EE model on a 3-leaf rooted tree ψ+ is the set of κ×κ×κ probability
tensors of the form

P = P̃ ∗ (M−1
a ,M−1

b ,M−1
c ),
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for some P̃ ∈ UE(ψ+) and invertible Markov matrices Ma,Mb, and Mc.
Because of the matrix actions, this model has a non-linear structure. This makes it more

difficult to fully characterize the model EE in terms of constraints than it was for the affine
linear UE model. It also means that the optimization problem for maximum likelihood may
not be a convex one, making direct use of constraints for inference more appealing than
attacking the optimization problem inherent to maximum likelihood.

While determining all equality constraints satisfied by the model (i.e., generators of the
ideal of model invariants) is difficult computationally, here we focus on determining some of
them. We will use these in Section 7 in our proof of tree identifiability under the EE model.
Noting that only a few constraints are utilized in the SVDquartets method, future work
should investigate whether the constraints found here are useful for rooted tree inference.

Proposition 6.1. Let P be a tensor in the EE model on ψ+ = ((a, b), c), and Cof(A) denote
the matrix of cofactors of a square matrix A. Then for all k ∈ [κ] the matrices

Qa··k = P+·· Cof(P·+·)
TP··k

and
Qb··k = P··k Cof(P+··)P

T
·+·

are symmetric: that is,
Qa··k = (Qa··k)

T (3)

and
Qb··k = (Qb··k)

T . (4)

Proof. If P is in the EE model, then P = P̃ ∗ (M−1
a ,M−1

b ,M−1
c ), with P̃ ∈ UE and

Ma,Mb,Mc Markov. Then

P·+· =M−T
a P̃·+·M

−1
c and P+·· =M−T

b P̃+··M
−1
c =M−T

b P̃·+·M
−1
c

since P̃ ∈ UE implies P̃·+· = P̃+··. Then, assuming necessary inverses exist,

P−T
·+· P

T
+·· =MaM

−1
b ,

Thus
P ∗a (P

−T
·+· P

T
+··) = P̃ ∗ (M−1

b ,M−1
b ,M−1

c ).

But it is straightforward to check that every slice with fixed c-index of P̃ ∗(M−1
b ,M−1

b ,M−1
c )

is symmetric, since that is true for P̃ . Thus

(P−T
·+· P

T
+··)

TP··k = P+··P
−1
·+·P··k

is symmetric for every k. Using the cofactor formula for the inverse of a matrix, and clearing
denominators by multiplying by a determinant yields (3).

The assumption of invertibility used in this argument can be justified for a dense set of
choices of P̃ . Indeed, it is enough to exhibit one such choice, since that indicates the subset
leading to non-invertibility is a proper subvariety (defined by certain minors vanishing), and
hence of lower dimension. Such a choice is obtained with the Markov matrices being the
identity, and P̃ having non-zero diagonal entries, and zero elsewhere. Since the claim is
established on a dense set, it holds everywhere by continuity.

The claim (4) can be shown either in a similar way, or by conjugating (in the sense
of multiplying by a matrix and its transpose) Qa··k by P·+·P

−1
+·· and removing determinant

factors.

Remark. Since Qa··k and Qb··k are conjugate for any tensor P (even one not in the EE model),
checking that one is symmetric implies the other is as well, provided the appropriate inverse
exists. If these are used as necessary conditions for membership in the model, when applied
to data it may still be desirable to check that both are approximately symmetric, since it
is unclear how conjugation will effect the way we measure the inevitable stochastic error
leading to violation of perfect symmetry.
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Corollary 6.2. The EE model on ψ+ = ((a, b), c) is contained in the algebraic variety
defined by the degree κ+ 1 polynomials given by the entries of the 2κ matrix equations

P+·· Cof(P·+·)
TP··k − PT··k Cof(P·+·)P

T
+··,

P··k Cof(P+··)P
T
·+· − P·+· Cof(P+··)

TPT··k.

The polynomials of this corollary also arise as phylogenetic invariants for the general
Markov (GM) model of sequence evolution [AR03] with no coalescent process. In the setting
of that work, the tensors of interest are those in the orbits of 3-way diagonal tensors under
actions of GLκ in each index, while here they are the orbits of tensors symmetric in two
indices under the same GLκ actions. Since diagonal tensors display this symmetry, the
invariants above must also apply to the GM model. However, the GM model on a 3-taxon
tree has additional invariants of this form, for every pair of taxa, not just those in the cherry.

Remark. Using the computational algebra software Singular [DGPS22], we are able to show
that for κ = 2, there are no non-trivial polynomials vanishing on the EE model. Thus, the
polynomial invariants implied by Corollary 6.2 are identically zero. For κ = 3, we verified
computationally that these invariants are not identically zero.

As demonstrated by methods such as SVDquartets, reframing model constraints in terms
of rank conditions can be useful for developing practical methods of phylogenetic inference.
With this in mind, we can reinterpret the results of Corollary 6.2 as rank conditions for
the EE model. To do so, we use the following lemma, which follows a construction of G.
Ottaviani that was suggested to us by L. Oeding.

Lemma 6.3. Let A,B,C,D,E, F be six κ× κ matrices, with B,E invertible, satisfying

CB−1A+DE−1F = 0.

Then the 3κ× 3κ matrix 


0 A B
D 0 C
E F 0





has rank 2κ.

Proof. Observe



0 A B
D 0 C
E F 0



 =




I 0 0
0 I D
0 0 E








0 0 I
0 −(CB−1A+DE−1F ) CB−1

I E−1F 0








I 0 0
0 I 0
0 A B



 .

Corollary 6.4. Tensors in the EE model on ψ+ = ((a, b), c) are contained in the algebraic
variety defined by the degree 2κ+ 1 polynomials given by the (2κ+ 1)× (2κ+ 1) minors of
each of the 2κ matrices 


0 P··k P·+·

−PT··k 0 P+··

−PT·+· −PT+·· 0





and 


0 PT·+· PT+··

−P·+· 0 P··k

−P+·· −PT··k 0



 .

Proof. Choosing A,B,C,D,E, F in Lemma 6.3 as shown in these matrices makes the equa-
tion CB−1A +DE−1F = 0 express that Qa··k and Qb··k are symmetric, which was shown in
Proposition 6.1.

The result of Corollary 6.4 allows one to formulate necessary conditions for EE model
membership on the 3-taxon tree in terms of rank conditions on matrices, much as the
SVDquartets method is based on rank conditions on matrices in the 4-taxon case.
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7 Tree identifiability under the EE model

The EE model invariants of the previous section enable us to prove that the rooted tree
topology is generically identifiable under the EE model. We establish these results for κ ≥ 4,
which includes the cases most relevant for phylogenetic analysis.

To establish identifiability, we use the following non-identifiability result.

Lemma 7.1. Consider a 2-taxon species tree (a:x, b:(ℓ − x)), with 0 ≤ x ≤ ℓ with constant
population size N above the root and any GTR rate matrix Q with stationary distribution π.
Then the probability distribution matrix F of site patterns under the CK model is symmetric
and independent of x.

Proof. Using time reversibility, the distribution can be expressed as

F =

∫ ∞

t=0

diag(π)MxM2tMℓ−xµN (t)dt

where µN (t) is the density function for coalescent times, and Mz = exp(Qz). Since the
integrand, a GTR distribution, is a symmetric matrix, then so is F . Since the Mz commute,
and MxMℓ−x =Mℓ,

F = diag(π)Mℓ

∫ ∞

t=0

M2tµN (t)dt

has no dependence on x.

Theorem 7.2. The rooted topological tree ψ+ is identifiable from generic probability distri-
butions in the EEκ(ψ

+) model for κ ≥ 4.

Proof. We first suppose κ = 4. For the 3-taxon trees φ+ = ((a, b), c) and ψ+ = ((a, c), b),
we show that EE(ψ+)∩EE(φ+) has measure zero within EE(ψ+). To do this, it is enough
to construct one point in EE(ψ+) that is not in the Zariski closure of EE(φ+), since that
implies the Zariski closure of the intersection of EE(ψ+) and EE(φ+) is of lower dimension
than EE(ψ+).

Let N be an arbitrary effective population size and let φ+ = ((a:2, c:0):1, b:1), with
distances in coalescent units (number of generations divided by 2N). Let µ = 1/2N and
define Q to be the Kimura 2-parameter (K2P) rate matrix




−4 1 2 1
1 −4 1 2
2 1 −4 1
1 2 1 −4




with equilibrium distribution π = (14 ,
1
4 ,

1
4 ,

1
4 ). Finally, let P be the probability tensor that

arises from this choice of parameters in the CK model.
Then lettingM = exp(2Q), we see that P̃ = P ∗ (I,M,M) lies in UE(ψ+), which implies

that P ∈ EE(ψ+). To see that P does not belong to the Zariski closure of EE(φ+) by
Corollary 6.2 it suffices to show that for some k

P+·· Cof(P·+·)
TP··k − PT··k Cof(P·+·)P

T
+·· 6= 0. (5)

Note that P+·· and P·+· are probability distribution matrices for the same model on the
2-leaf species trees (b:1, c:1) and (a:2, c:0). But, by Lemma 7.1,

P+·· = P·+· = PT+·· = PT·+·,

so
P+··P

−T
·+· = P−1

·+·P
T
+·· = I4.
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To show (5), it is thus enough to show that some P..k is not symmetric. This can be verified
without appealing to numerical computation: For example,

(P..1)12 − (P..1)21 =
1

10530
e−20 −

1

22230
e−25 −

1

20007
e−29.

If this were zero, then multiplying by e29 would show e is a root of a rational polynomial,
contradicting its transcendence.

Thus EE(ψ+)∩EE(φ+) has measure zero within EE(ψ+).
Interchanging taxon names then shows the intersection of any two resolved 3-taxon tree

models is of measure zero within them, and thus that a generic distribution in any single
3-taxon model lies only in that 3-taxon model. This establishes the theorem for 3-taxon
trees when κ = 4.

For larger trees ψ+, each displayed rooted triple determines a measure zero subset of
EE(ψ+) containing all points where that rooted triple may not be identifiable from marginal-
izations of P to those 3 taxa. Since there are a finite number of such sets, for a generic P ∈
EE(ψ+), all displayed rooted triples are identifiable, and hence so is the tree ψ+.

For κ > 4, the proof follows by embedding the 4-state rate matrix above in the upper
left corner of a κ-state GTR rate matrix and setting the remaining entries to 0.

Remark. Several comments are in order about the method of proof in Theorem 7.2. First,
if the matrix Q is chosen to be a Jukes-Cantor rate-matrix, then one finds that the same
construction of P leads to a point on which the invariants for EE(φ+) vanish. That is, P is
not ‘sufficiently generic’ to identify the rooted tree. This is explored more thoroughly in the
Appendix.

Second, since the argument used an instance of the CK model with a K2P rate matrix, it
also establishes the following, which directly applies to models used for phylogenetic inference.

Corollary 7.3. For κ = 4, consider any submodel of EE such that each ψ+ has an analytic
parameterization general enough to contain the Kimura 2-parameter coalescent mixture model
with constant population size. Then for generic parameters the rooted topological tree ψ+ is
identifiable.

Finally, while our proof of identifiability of a rooted tree under the EE model fails for the
CK Jukes-Cantor model, unrooted trees are still identifiable under that model. To establish
this, note that a probability distribution for a 4-taxon tree on taxa a, b, c, d under the EE
model has the form P = P̃ ∗ (Ma,Mb,Mc,Md), with P̃ in the UE model and the Markov
matrices invertible. As a result, its flattenings can be expressed as

Flatab|cd(P ) = (Ma ⊗Mb)
T Flatab|cd(P̃ )(Mc ⊗Md),

Flatac|bd(P ) = (Ma ⊗Mc)
T Flatac|bd(P̃ )(Mb ⊗Md),

Flatad|bc(P ) = (Ma ⊗Md)
T Flatad|bc(P̃ )(Mb ⊗Mc).

Since Ma,Mb,Mc, and Md have full rank, this implies the rank of each flattening of P is
equal to the rank of the corresponding flattening of P̃ . It is then straightforward to obtain
the following analog of Theorem 3.5.

Theorem 7.4. The SVDquartets method, using an exact method to construct a tree from
a collection of quartets, gives a statistically consistent unrooted species tree topology estima-
tor for generic parameters under the EE model, and under any submodel with an analytic
parameterization general enough to contain the CK K2P model.
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A Pseudo-exchangeability for the Jukes-Cantor Model

The proof of Theorem 7.2, on the generic identifiability of the tree topology under the EE
model, used a particular point in the EE model arising from the CK Kimura 2-parameter
model. Here, we show that it is not possible to use similar arguments with a point in the
CK Jukes-Cantor model. We do this by specifically considering the CK Jukes-Cantor model,
and showing that the model always has ‘extra symmetries’ that prevent the identification of
the rooted triple tree by these invariants.

Proposition A.1. Consider the CK Jukes-Cantor model on the tree ((a:ℓa, b:ℓb):ℓab, c:ℓc).
If ℓa = ℓab + ℓc then the resulting probability tensor P = (pijk) exhibits a, c exchangeability,
that is, pijk = pkji.

Proof. Let P = (pijk) be a probability tensor from the CK Jukes-Cantor model on a 3-leaf
tree. While P has 64 entries, because the site substitution model is the Jukes-Cantor model,
it has at most five distinct entries. Thus, we may group the coordinates of P into five
equivalance classes, which we represent by

[pAAA], [pAAC ], [pACA], [pACC ], [pACG].

For any representative of the equivalence class [pAAA], [pACA], or [pACG], swapping the first
and third indices produces another representative of the same equivalence class. However, for
representatives of the equivalence class [pAAC ], swapping the first and third indices produces
a representative of the equivalence class [pACC ], and vice versa. Therefore, to prove the
proposition, it suffices to show that for P , [pAAC ] and [pACC ] are equal. To establish this,
we prove that pAAC = pACC .

Restricting to the leaf set {a, b}, we obtain the 2-leaf rooted tree (a:ℓa, b:ℓb) and the
probability of observing state ij from the CK Jukes-Cantor model on this tree is

Pij+ = pijA + pijC + pijG + pijT .

Likewise, by restricting to the leaf set {b, c}, we obtain the 2-leaf rooted tree (b:ℓb+ ℓab, c:ℓc)
and the probability of observing state jk from the CK Jukes-Cantor model on this tree is

P+jk = pAjk + pCjk + pGjk + pTjk.

Note that since ℓa = ℓab+ ℓc, the 2-leaf species trees obtained by restricting to {a, b} and
{b, c} differ only by the location of the root. By Lemma 7.1, since the Jukes-Cantor model is
a submodel of GTR, the probability distribution matrices for the JC models on these trees
are symmetric and equal. Therefore, we have Pij+ = Pji+ = P+ji = P+ij . Specifically, this
implies PAC+ = P+CA, or

pACA + pACC + pACG + pACT = pACA + pCCA + pGCA + pTCA.

Under the JC model, pACG, pACT , pGCA, and pTCA all belong to the equivalence class of
coordinates with three distinct indices, which is to say, pACG = pACT = pGCA = pTCA.
Thus, by cancellation, the equation above reduces to pCCA = pACC . Since pCCA and pAAC
are in the same JC equivalence class, this implies pAAC = pACC .

Corollary A.2. The invariants of Corollory 6.2 associated to all of the trees ((a, b), c),
((a, c), b) and ((b, c), a) vanish on all probability tensors P arising from the Jukes-Cantor
CK model on any of these trees.

Proof. First consider P̃ arising from the CK Jukes-Cantor model on the tree ((a:ℓ, b:ℓ):ℓ, c:0).
By the proposition, this tensor is fully-symmetric, that is, invariant under any permutation
of the indices, for any positive value of ℓ. It thus lies in the UE model for all three trees.
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Now the probability tensor P from the CK JC model on ((a:ℓa, b:ℓb):ℓ, c:ℓc), where ℓa, ℓb ≥ ℓ
and ℓc ≥ 0 can be expressed as

P = P̃ ∗ (Ma,Mb,Mc),

where Ma, Mb, Mc are Jukes-Cantor matrices for edges of length ℓa − ℓ, ℓb − ℓ, ℓc − ℓ,
respectively. Thus P lies in the EE model for all three trees. Therefore the invariants
associated to all three trees vanish on it.

Moreover, since the entries of probability tensors in the EE model are parametrized by
analytic functions of the edge lengths, composing these function with the invariants gives
analytic functions that vanish on a full-dimensional subset of the parameter space, which
must therefore be zero on the entire parameter space. Thus the invariants vanish on the
model even when the terminal edge lengths do not satisfy the assumed inequalities.
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