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Abstract. This paper proposes and analyzes a novel efficient high-order finite volume method
for the ideal magnetohydrodynamics (MHD). As a distinctive feature, the method simultaneously
preserves two critical physical constraints: a discretely divergence-free (DDF) constraint on the
magnetic field and the positivity-preserving (PP) property, which ensures the positivity of density,
pressure, and internal energy. To enforce the DDF condition, we design a new discrete projec-
tion approach that projects the reconstructed point values at the cell interface into a DDF space,
without using any approximation polynomials. This projection method is highly efficient, easy to
implement, and particularly suitable for standard high-order finite volume WENO methods, which
typically return only the point values in the reconstruction. Moreover, we also develop a new finite
volume framework for constructing provably PP schemes for the ideal MHD system. The framework
comprises the discrete projection technique, a suitable approximation to the Godunov–Powell source
terms, and a simple PP limiter. We provide rigorous analysis of the PP property of the proposed
finite volume method, demonstrating that the DDF condition and the proper approximation to the
source terms eliminate the impact of magnetic divergence terms on the PP property. The analysis is
challenging due to the internal energy function’s nonlinearity and the intricate relationship between
the DDF and PP properties. To address these challenges, the recently developed geometric quasi-
linearization approach is adopted, which transforms a nonlinear constraint into a family of linear
constraints. Finally, we validate the effectiveness of the proposed method through several bench-
mark and demanding numerical examples. The results demonstrate that the proposed method is
robust, accurate, and highly effective, confirming the significance of the proposed DDF projection
and PP techniques.
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1. Introduction. In this paper, we focus on the development of efficient and
robust high-order accurate numerical schemes for the ideal compressible MHD equa-
tions, which can be written into a system of hyperbolic conservation laws:

Ut +∇ · F(U) = 0, (1)

where t denotes the time. The conservative vector U = (ρ,m,B, E)
⊤

takes values
in R8, with ρ denoting the density, m = (m1,m2,m3) being momentum vector, B =
(B1, B2, B3) standing for the magnetic field, and E representing the total energy. In

the d-dimensional space, we have ∇ · F =
∑d

i=1
∂Fi

∂xi
with (x1, · · · , xd) denoting the

spatial coordinate variables, and the flux F = (F1, · · · ,Fd) is defined by

Fi(U) =
(
mi,miv −BiB+ ptotei, viB−Biv, vi(E + ptot)−Bi(v ·B)

)⊤
,

where v = (v1, v2, v3) = m/ρ denotes the fluid velocity, ptot = p + 1
2 |B|2 is the

total pressure including the thermal pressure p and the magnetic pressure, and the
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vector ei is the ith row of the identity matrix of size 3 × 3. The total energy E =
ρe + 1

2ρ|v|2 + 1
2 |B|2 consists of internal, kinetic, and magnetic energies, where e is

the specific internal energy. In addition, an equation of state (EOS) is required to
close the above MHD equations. A general EOS can be formulated as e = e(ρ, p)
and typically satisfies e > 0 ⇔ p > 0 when ρ > 0 (cf. [45, 47, 48]). This condition is
assumed in this paper, and it satisfied by the widely-used ideal EOS e = p/(ρ(γ−1)),
where γ ∈ (1,+∞) is a constant and denotes the adiabatic index.

The magnetic field B should satisfy a divergence-free (DF) constraint

∇ ·B :=

d∑
i=1

∂Bi

∂xi
= 0. (2)

In numerical simulations, preserving this DF constraint is crucial, as violation of it can
cause numerical instability and generate nonphysical structures in the approximated
solutions (cf. [9, 19, 41, 30]). While in the one-dimensional case, the DF constraint
can be easily preserved by ensuring B1 is constant, in the multidimensional cases,
exact preservation of the DF constraint in numerical simulations is very challenging.
Over the past few decades, various numerical techniques have emerged to handle the
DF constraint (2). One of the earliest methods is the projection approach [9], which
is a post-processing divergence correction procedure utilizing Hodge decomposition to
project the non-divergence-free magnetic field onto a DF subspace through solving an
elliptic Poisson equation. Another widely used technique is the constrained transport
(CT) method, initially proposed in [19] for simulating MHD flows. The CT method
maintains a discrete version of the DF condition on staggered grids, and numerous
variants have been developed by researchers within different frameworks, as docu-
mented in [18, 15, 34, 21, 54]. Unstaggered CT methods have also been developed
(see, e.g., [38, 24, 35, 25, 14]), typically based on numerically evolving the magnetic
potential and computing the DF magnetic field via the (discrete) curl of the magnetic
potential. Furthermore, locally DF discontinuous Galerkin methods have been devel-
oped to enforce the zero divergence of the magnetic field within each cell in [30]. More
recently, globally DF high-order methods have been proposed to maintain the exact
zero divergence of the magnetic field within the finite-volume or (central) discontinu-
ous Galerkin framework, as detailed in [2, 32, 31, 20]. Another class of methods for
mitigating divergence errors are the eight-wave schemes, which were introduced by
Powell [37, 36] as a discretization of Godunov’s modified MHD system

Ut +∇ · F(U) = −(∇ ·B)S(U), (3)

where S(U) = (0,B,v,v ·B)
⊤
. This modified model includes nonconservative source

terms, referred to as Godunov–Powell source terms, that are proportional to the di-
vergence of the magnetic field. By including these source terms, the modified model
becomes Galilean invariant [17], symmetrizable [22], and useful in constructing en-
tropy stable schemes (see, e.g., [10]). The eight-wave schemes do not enforce exact
divergence-free solutions but instead aim to advect the magnetic divergence errors
with the flow. This makes them effective at controlling these errors, although the non-
conservative nature of the Godunov–Powell modified MHD equations can introduce
certain drawbacks [41]. Another approach for dealing with divergence errors is the
hyperbolic divergence-cleaning method [16], which uses a mixed hyperbolic-parabolic
equation to damp out the divergence errors.

Another challenge in the numerical simulations of MHD is to preserve the positiv-
ity of density, pressure, and internal energy. In other words, the conservative variables
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U should be preserved in the admissible state set

G =

{
U = (ρ,m,B, E)⊤ : ρ > 0, E(U) := E − 1

2

( |m|2
ρ

+ |B|2
)

> 0

}
, (4)

where E(U) = ρe represents the internal energy. (Notice that the function E(U) is
concave with respect to U when ρ > 0, implying that G is a convex set.) Positiv-
ity preservation is a critical requirement for developing reliable numerical methods
for MHD. Many existing schemes for MHD often produce negative values for den-
sity or pressure, particularly in the presence of strong discontinuities, high Mach
numbers, low internal energy, low plasma beta, low density, and/or strong magnetic
fields. Negative density or pressure can cause the loss of hyperbolicity of the sys-
tem, leading to severe numerical instability and simulation breakdown. Although
this issue also occurs in pure hydrodynamic cases, it is more severe in MHD due
to the influence of magnetic divergence errors on positivity [45]. In the last two
decades, researchers have devoted some efforts to mitigating this issue; see, e.g.,
[4, 43, 3, 11, 13, 12, 33] and recently developed provably positivity-preserving (PP)
schemes [45, 47, 48, 49, 46]. The early efforts in this direction were devoted to design-
ing robust multi-state approximate Riemann solvers [26, 7, 8, 28] for the 1D ideal MHD
equations. Waagan proposed a second-order PP MUSCL-Hancock scheme [43] based
on relaxation Riemann solvers of [7, 8], whose robustness was further demonstrated
through benchmark numerical tests in [44]. In recent years, remarkable progresses
have been made in seeking high-order PP or bound-preserving methods for conserva-
tion laws [57, 58, 59, 3, 11, 53, 52, 56, 51, 42, 29]. Christlieb et al. [13, 12] developed
high-order PP finite difference schemes for ideal MHD, which utilize parametrized
flux-correction limiters [53, 52] and rely on the presumed PP property of the Lax–
Friedrichs scheme (later proven rigorously in [45]). In high-order finite volume or
discontinuous Galerkin (DG) methods, the PP property may be lost in two situations
[57, 58]: when the reconstructed or DG solution polynomials fail to be positive, or
when the cell averages become negative during the updating process. While PP lim-
iters [3, 11] can be used to recover positivity in the first case, ensuring the positivity
of the cell averages in the updating process is more challenging and critical to obtain
a genuinely PP scheme. The validity of the PP limiters [3, 11] relies on the posi-
tivity of the cell averages in the updating process. However, this was not rigorously
proven for the methods in [3, 11]. Only the 1D methods in [11] were formally shown
to be PP by invoking some assumptions on the exact Riemann solutions, while the
multi-dimensional methods in [11] were only conjectured to be PP. Given that finite
numerical tests alone may not be sufficient to demonstrate the PP property thor-
oughly and genuinely in all cases, the development of provably PP schemes for MHD
is essential.

In recent studies [45, 47, 48, 46], important progress has been made in the devel-
opment of high-order provably PP schemes for the ideal MHD system. A significant
finding in these studies is the close relationship between the PP property, which is an
algebraic feature, and the DF constraint, which is a differential restriction. This con-
nection has been established both at the continuous and discrete levels [45, 47, 46]. In
particular, the PP property of finite volume and DG schemes for the standard MHD
system is closely tied to a discrete DF condition, as proven in [45]. Furthermore, vio-
lating this discrete DF condition even slightly may cause cell averages to lose their PP
property in the updating process [45, Theorem 4.1 and Remark 4.4]. In [47, Appendix
A], it was shown that even the exact smooth solutions of the standard MHD system
(1) may not be PP if the continuous DF condition (2) is slightly violated. However,
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this issue does not occur in the modified MHD system (3), as its exact smooth solu-
tions are always PP, regardless of whether the DF constraint is satisfied or not [48,
Proposition 1]. Exploiting these insights, researchers have systematically developed
high-order provably PP schemes for the modified MHD system [47, 48, 46]. See also
[49, 33, 55] for a few applications or extensions.

The purpose of this paper is to design and analyze a new high-order robust fi-
nite volume method for solving the ideal MHD system in multiple dimensions. This
method maintains both a discrete DF constraint and the desirable PP property, mak-
ing it unique compared to existing methods. The contributions and novelty of this
work are summarized as follows:

• We propose a novel discrete projection technique that exactly enforces a dis-
crete version of the DF condition. As a notable feature, this projection
method modifies the reconstructed point values at the cell interface and
projects them into a discretely DF (DDF) space. Such a “discrete” pro-
jection approach is significantly different from the existing “continuous” DF
methods, which typically enforces the piecewise polynomial solutions in a
DF function space (see, for example, [1, 30, 2, 32, 54, 20, 33]). Thanks to
this feature, our DDF projection technique is particularly suitable for stan-
dard high-order finite volume WENO methods, in which the reconstruction
procedure typically returns only the point values instead of approximation
polynomials. This makes the proposed DDF projection very efficient and
easy to implement. We provide insights into the projection technique and
prove that the DDF projection procedure preserves the high-order accuracy
of the reconstruction.

• We design a new finite volume framework for constructing provably PP schemes
for the ideal MHD system. The key ingredients of the framework include the
DDF projection, a suitable approximation to the Godunov–Powell source
terms, and a simple PP limiter. Due to the intrinsic relation between the
PP and DDF properties, the cell averages may lose their PP property in the
updating process if the DDF projection is not used or if the Godunov–Powell
source terms are not discretized appropriately. Yet, seeking a qualified source
approximation is highly nontrivial. Based on our rigorous PP analysis, we
devise a novel source approximation, which differs from those in [47, 48, 46]
and leads to a milder PP CFL condition. We also present a PP limiter
to enforce the PP property of the reconstructed point values without using
any approximation polynomials, as a generalization of the simple maximum-
principle-preserving limiter [59] for scalar conservation law. Furthermore, the
PP limiter does not destroy the DDF condition enforced by the projection.

• We provide rigorous analysis of the PP property of our finite volume method.
The analysis is challenging due to the nonlinearity of E(U) and the relation of
DDF condition to the PP property. We overcome these challenges by using the
recently developed geometric quasilinearization (GQL) approach [45, 50]. The
key idea of GQL is to equivalently transfer the nonlinear constraint E(U) >
0 in (4) into a family of linear constraints by introducing extra auxiliary
variables. Based on GQL and technical estimates, our numerical analysis
shows that the enforced DDF condition and our suitable approximation to the
Godunov–Powell source terms eliminate the impact of magnetic divergence
terms on the PP property.

• We implement the new second-order and fifth-order DDFPP finite volume
schemes and demonstrate their robustness through several benchmark and

4



demanding numerical experiments. Our numerical results also validate the
importance of the proposed DDF projection and PP techniques.

2. New DDFPP finite volume method. This section presents the frame-
work and computational details of our new finite volume method, which preserves the
desired positivity and a DDF constraint, for the 2D ideal MHD system. For better
readability, the rigorous proof of the PP property, which is highly technical and non-
trivial, will be given in section 3. It is worth noting that our numerical method and
analysis are directly extensible to the 3D case.

Let the symbols (x, y) represent the 2D spatial coordinates for convenience. As-
sume that the computational domain is partitioned into a uniform rectangular mesh
with cells {Iij = (xi− 1

2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
)}. Let ∆x and ∆y denote the constant

spatial step-sizes in the x and y directions, respectively. The center of the cell Iij is
denoted as (xi, yj) with xi =

1
2 (xi− 1

2
+ xi+ 1

2
) and yj = 1

2 (yj− 1
2
+ yj+ 1

2
). Integrating

the 2D MHD equations (3) over Iij gives

d

dt

∫
Iij

Udxdy = −
∫ y

j+1
2

y
j− 1

2

(F1(U(xi+ 1
2
, y, t))− F1(U(xi− 1

2
, y, t)))dy

−
∫ x

i+1
2

x
i− 1

2

(F2(U(x, yj+ 1
2
, t))− F2(U(x, yj− 1

2
, t)))dx−

∫
Iij

(∇ ·B)S(U)dxdy.

(5)

2.1. Outline and key ingredients of the DDFPP method. In order to
obtain a high-order accurate scheme, the flux integrals in (5) on the cell edges should
be approximated by using a quadrature rule of sufficient accuracy. For example,
to achieve the kth order accuracy, one can employ the Q-point Gauss quadrature
with Q = ⌈k

2 ⌉ or the Q-point Gauss–Lobatto quadrature with Q = ⌈k+2
2 ⌉. Let Qx

i :=

{xµ
i }Qµ=1 and Qy

j := {yµj }Qµ=1 denote the quadrature nodes in the intervals [xi− 1
2
, xi+ 1

2
]

and [yj− 1
2
, yj+ 1

2
], respectively. Let {ωµ}Qµ=1 be the corresponding quadrature weights,

which are normalized such that
∑Q

µ=1 ωµ = 1.

Let Uij be the numerical approximation to 1
∆x∆y

∫
Iij

Udxdy. From (5), we can

derive a semi-discrete high-order finite volume method for 2D MHD system (3) as

dUij(t)

dt
= − 1

∆x

(
F̂1,i+ 1

2 ,j
− F̂1,i− 1

2 ,j

)
− 1

∆y

(
F̂2,i,j+ 1

2
− F̂2,i,j− 1

2

)
+ Sij , (6)

where the numerical fluxes are defined by

F̂1,i+ 1
2 ,j

:=

Q∑
µ=1

ωµF̂1

(
U−,µ

i+ 1
2 ,j

,U+,µ

i+ 1
2 ,j

)
, F̂2,i,j+ 1

2
:=

Q∑
µ=1

ωµF̂2

(
Uµ,−

i,j+ 1
2

,Uµ,+

i,j+ 1
2

)
(7)

as approximations to 1
∆y

∫ y
j+1

2
y
j− 1

2

F1(U(xi+ 1
2
, y, t))dy and 1

∆x

∫ x
i+1

2
x
i− 1

2

F2(U(x, yj+ 1
2
, t))dx,

respectively, and Sij is a suitable approximation to 1
∆x∆y

∫
Iij

(−∇·B)S(U)dxdy which

will be discussed later. The notations F̂1(·, ·) and F̂2(·, ·) denote the numerical flux
functions. In this paper, we adopt the Lax–Friedrichs flux

F̂ℓ(U
−,U+) =

1

2

(
Fℓ(U

−) + Fℓ(U
+)− αLF

ℓ (U+ −U−)
)
, ℓ = 1, 2 (8)

with αLF
ℓ , ℓ = 1, 2, denoting the numerical viscosity parameters. Some other numerical

fluxes such as the HLL flux can also be used in our framework. The quantities
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U±,µ

i+ 1
2 ,j

and Uµ,±
i,j+ 1

2

in (7) denote the high-order accurate approximations to the point

values of the solution at (x±
i+ 1

2

, yµj ) and (xµ
i , y

±
j+ 1

2

), respectively, and they are typically

reconstructed from the cell averages {Uij}.
Based on our numerical analysis (see section 3), we find that in order to achieve

the PP property, the values U±,µ

i+ 1
2 ,j

and Uµ,±
i,j+ 1

2

should be reconstructed very carefully

such that the following conditions (9)–(10) are satisfied simultaneously:

∇h ·Bij :=

Q∑
µ=1

ωµ

 (B1)
−,µ

i+ 1
2 ,j

− (B1)
+,µ

i− 1
2 ,j

∆x
+

(B2)
µ,−
i,j+ 1

2

− (B2)
µ,+

i,j− 1
2

∆y

 = 0, (9)

and
U±,µ

i+ 1
2 ,j

∈ G, Uµ,±
i,j+ 1

2

∈ G ∀i, j, µ,

Πij =
Uij − ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
1− 2ω̂1

∈ G, if k ≥ 3.

(10)

where ω̂1 = 1
L(L−1) is the first weight of the L–point Guass–Lobatto quadrature with

L = ⌈k+2
2 ⌉ for a kth order finite volume scheme, and

λ1 = αLF
1 ∆t/∆x, λ2 = αLF

2 ∆t/∆y, λ = λ1 + λ2,

Π∓
i± 1

2 ,j
:=

Q∑
µ=1

ωµU
∓,µ

i± 1
2 ,j

, Π∓
i,j± 1

2

:=

Q∑
µ=1

ωµU
µ,∓
i,j± 1

2

, (11)

The condition (9) is a DDF condition for the magnetic field, because ∇h · Bij can
be regarded as an approximation to the weak divergence 1

∆x∆y

∫
∂Iij

B · n∂Iijds =
1

∆x∆y

∫∫
Iij

∇ · Bdxdy on the cell Iij , where n∂Iij denotes the unit outward normal

vector of ∂Iij . As it will be shown in Theorem 2.1, both conditions (9) and (10)
play key roles in ensuring the PP property. However, the values U±,µ

i+ 1
2 ,j

and Uµ,±
i,j+ 1

2

obtained from a conventional high-order reconstruction generally do not satisfy (9)
and (10). To address this, we will propose an efficient DDF projection technique (see
subsection 2.3) and a simple PP limiter (see subsection 2.4) to enforce the conditions
(9) and (10), respectively; see Figure 2.1 for an illustration.

High-order

Reconstruction

DDF

Projection

PP

Limiter

U±,µ

i+1
2
,j
,Uµ,±

i,j+1
2

∇h ·Bij = 0

satisfy (10)

Ũ±,µ

i+1
2
,j
, Ũµ,±

i,j+1
2

∇h · B̃ij = 0

Û±,µ

i+ 1
2
,j
, Ûµ,±

i,j+ 1
2

{
Uij

}

Fig. 2.1: Outline of the DDF projection and PP limiter for conditions (9) and (10).

Besides the satisfaction of conditions (9) and (10), a suitable discretization of the
source term, which should exactly eliminate the impact of divergence error on the PP
property [47, 48], is also very crucial for guaranteeing the PP property. Seeking the
qualified source approximation is highly nontrivial. Based on our numerical analysis
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presented in section 3, we find out the following source term approximation

Sij =− 1

∆x

Q∑
µ=1

ωµ

(
1

2
JB1K

µ

i+ 1
2 ,j

S
(
{{U}}µ

i+ 1
2 ,j

)
+

1

2
JB1K

µ

i− 1
2 ,j

S
(
{{U}}µ

i− 1
2 ,j

))

− 1

∆y

Q∑
µ=1

ωµ

(
1

2
JB2K

µ

i,j+ 1
2

S
(
{{U}}µ

i,j+ 1
2

)
+

1

2
JB2K

µ

i,j− 1
2

S
(
{{U}}µ

i,j− 1
2

))
,

(12)

where J·K and {{·}} respectively denote the jump and average of the limiting values at
a cell interface:

JB1K
µ

i+ 1
2 ,j

:= (B1)
+,µ

i+ 1
2 ,j

− (B1)
−,µ

i+ 1
2 ,j

, JB2K
µ

i,j+ 1
2

:= (B2)
µ,+

i,j+ 1
2

− (B2)
µ,−
i,j+ 1

2

,

{{U}}µ
i+ 1

2 ,j
:=

1

2

(
U+,µ

i+ 1
2 ,j

+U−,µ

i+ 1
2 ,j

)
, {{U}}µ

i,j+ 1
2

:=
1

2

(
Uµ,+

i,j+ 1
2

+Uµ,−
i,j+ 1

2

)
.

Notice that the source term approximation (12) is novel and different from those
proposed in [47, 48]. As a result, the theoretical CFL condition (15) for PP property
milder than those derived in [47, 48].

Define

Lij

(
U
)
:= − 1

∆x

(
F̂1,i+ 1

2 ,j
− F̂1,i− 1

2 ,j

)
− 1

∆y

(
F̂2,i,j+ 1

2
− F̂2,i,j− 1

2

)
+ Sij , (13)

then the scheme (6) can be written as
dUij

dt = Lij

(
U
)
, which can be marched forward

in time by some Runge–Kutta or multi-step methods. For the scheme (6) with (12),
we have the following main theorem on the PP property.

Theorem 2.1. Assume that Uij ∈ G for all i and j. If the values U±,µ

i+ 1
2 ,j

and

Uµ,±
i,j+ 1

2

satisfy conditions (9) and (10) for all i and j, then the scheme (6) with (12)

is PP, namely, the updated cell averages satisfy

U
∆t

ij := Uij +∆tLij(U) ∈ G, ∀i, j, (14)

under the CFL condition

0 < ∆t

(
αLF
1

∆x
+

αLF
2

∆y

)
< ω̂1, (15)

where
αLF
1 ≥ α̂LF

1 + β1, αLF
2 ≥ α̂LF

2 + β2 (16)

with

α̂LF
1 := max

i,j,µ
max

{
α1(U

−,µ

i+ 1
2 ,j

,U+,µ

i− 1
2 ,j

), α1(U
+,µ

i+ 1
2 ,j

,U−,µ

i− 1
2 ,j

)
}
,

α̂LF
2 := max

i,j,µ
max

{
α2(U

µ,−
i,j+ 1

2

,Uµ,+

i,j− 1
2

), α2(U
µ,+

i,j+ 1
2

,Uµ,−
i,j− 1

2

)
}
,

β1 := max
i,j,µ


∣∣∣JB1K

µ

i+ 1
2 ,j

∣∣∣
2
√
{{ρ}}µ

i+ 1
2 ,j

 , β2 := max
i,j,µ


∣∣∣JB2K

µ

i,j+ 1
2

∣∣∣
2
√

{{ρ}}µ
i,j+ 1

2

 .

Here, α1 and α2 are defined by

αi(U, Ũ) = max

{
|vi|+ Ci, |ṽi|+ C̃i,

√
ρvi +

√
ρ̃ṽi

√
ρ+

√
ρ̃

+max{Ci, C̃i}
}

+
|B− B̃|
√
ρ+

√
ρ̃
,
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Ci =
1√
2

C2
s +

|B|2
ρ

+

√√√√(C2
s + |B|2

ρ

)2

− 4C2
sB

2
i

ρ


1
2

, Cs =
p

ρ
√
2e

.

The proof of Theorem 2.1 is very technical and nontrivial, and it will be pre-
sented in section 3. We emphasize that the three key ingredients (namely, the DDF
projection, the PP limiter, and the approximate source term Sij in (12)) are essential
in ensuring the PP property (14). Removing any of them in our method may lead to
the loss of the PP property.

Remark 2.2. The conclusion (14) in Theorem 2.1 demonstrates that the scheme
(6) with (12) is PP, if the first-order forward Euler method is used for time discretiza-
tion. To achieve high-order accuracy in time, one can use the high-order accurate
strong-stability-preserving (SSP) methods [23]. Because an SSP method is a convex
combination of the Euler forward, the PP property is still valid thanks to the convex-
ity of G. For example, if we adopt the SSP third-order Runge–Kutta method, then
we obtain a fully discrete, high-order accurate, DDFPP finite volume method:

U
(1)

ij = U
n

ij +∆tLij(U
n
),

U
(2)

ij =
3

4
U

n

ij +
1

4

(
U

(1)

ij +∆tLij(U
(1)

)
)
,

U
n+1

ij =
1

3
U

n

ij +
2

3

(
U

(2)

ij +∆tLij(U
(2)

)
)
,

(17)

where ∆t is the time step-size.

2.2. High-order reconstruction. Reconstructing the point values Û±,µ

i+ 1
2 ,j

and

Ûµ,±
i,j+ 1

2

is a key step in the high-order finite volume method (6); see Figure 2.1. As

two typical examples, a second-order accurate linear reconstruction and a fifth-order
accurate WENO reconstruction are presented to illustrate the procedure on Cartesian
meshes.

2.2.1. Second-order linear reconstruction. Given the cell averages {Uij},
one can reconstruct a piecewise linear function:

Ûij(x, y) = Uij + (Ûx)ij(x− xi) + (Ûy)ij(y − yj), (x, y) ∈ Iij . (18)

The local slopes (Ûx)ij and (Ûy)ij can be defined via the van Albada limiter by

(Ûx)ij =

([
Ui+1,j−Uij

∆x

]2
+ ϵR

)
◦ Uij−Ui−1,j

∆x +

([
Uij−Ui−1,j

∆x

]2
+ ϵL

)
◦ Ui+1,j−Uij

∆x[
Uij−Ui−1,j

∆x

]2
+
[
Ui+1,j−Uij

∆x

]2
+ ϵL + ϵR

, (19)

(Ûy)ij =

([
Ui,j+1−Uij

∆y

]2
+ ϵU

)
◦ Uij−Ui,j−1

∆y +

([
Uij−Ui,j−1

∆y

]2
+ ϵD

)
◦ Ui,j+1−Uij

∆y[
Uij−Ui,j−1

∆y

]2
+
[
Ui,j+1−Uij

∆y

]2
+ ϵD + ϵU

, (20)

where [W]2 =
(
W 2

1 , · · · ,W 2
8

)⊤
for any vector W = (W1, · · · ,W8)

⊤
, the symbol

“◦” represents the Hadamard product (element-wise multiplication), and we take

8



ϵL = ϵR = 3∆x and ϵD = ϵU = 3∆y. To achieve a second-order accurate scheme,
one can choose the midpoint quadrature rule with Q = 1 for evaluating the numerical
fluxes (7) on each cell edge. The limiting values Û±,1

i+ 1
2 ,j

and Û1,±
i,j+ 1

2

can be evaluated

by using the reconstructed piecewise linear function (18):

Û−,1

i+ 1
2 ,j

= Uij + (Ûx)ij
∆x

2
, Û+,1

i+ 1
2 ,j

= Ui+1,j − (Ûx)i+1,j
∆x

2
, (21)

Û1,−
i,j+ 1

2

= Uij + (Ûy)ij
∆y

2
, Û1,+

i,j+ 1
2

= Ui,j+1 − (Ûy)i,j+1
∆y

2
. (22)

2.2.2. Fifth-order WENO reconstruction. We recall the fifth-order accurate
WENO reconstruction on the Cartesian meshes [40, 57]. To achieve the fifth-order
accuracy, one can utilize the Gauss quadrature with Q = 3 or the Gauss–Lobatto
quadrature with Q = 4 for evaluating the numerical fluxes (7) on each cell edge. We
notice that, if we use the three-point Gauss quadrature rule, negative linear weights
would appear in the WENO reconstruction for the midpoint [39]. Negative weights
must be dealt with care [39], otherwise numerical oscillations and instability may
occur. To avoid such risk, we adopt the four-point Gauss-Lobatto quadrature rule
in our fifth-order finite volume WENO scheme. The two-dimensional (2D) WENO
reconstruction procedure is performed in a dimension-by-dimension fashion by the
following two steps.
Step 1. Given the 2D cell averages {Ui,j}, we perform 1D WENO reconstructions to

obtain four edge averages:{
Ui,j

}
→

{
Ū+

i+ 1
2 ,j

, Ū−
i+ 1

2 ,j

}
for fixed j,{

Ui,j

}
→

{
Ū+

i,j+ 1
2

, Ū−
i,j+ 1

2

}
for fixed i.

Step 2. Based on the edge averages, we perform 1D WENO reconstructions to obtain
the point values at the Gauss–Lobatto quadrature nodes:{
Ū+

i+ 1
2 ,j

}
→

{
Û+,µ

i+ 1
2 ,j

}Q

µ=1
,
{
Ū−

i+ 1
2 ,j

}
→

{
Û−,µ

i+ 1
2 ,j

}Q

µ=1
for fixed i,{

Ū+
i,j+ 1

2

}
→

{
Ûµ,+

i,j+ 1
2

}Q

µ=1
,
{
Ū−

i,j+ 1
2

}
→

{
Ûµ,−

i,j+ 1
2

}Q

µ=1
for fixed j.

In our implementation, we employ the WENO-Z reconstruction [6] in conjunction
with local characteristic decomposition to improve the performance.

2.3. Discretely divergence-free projection technique. This subsection pro-
poses the DDF projection, which modifies {B̂±,µ

i+ 1
2 ,j

, B̂µ,±
i,j+ 1

2

} to {B̃±,µ

i+ 1
2 ,j

, B̃µ,±
i,j+ 1

2

}, so
as to enforce the DDF condition

∇h · B̃ij :=

Q∑
µ=1

ωµ

 (B̃1)
−,µ

i+ 1
2 ,j

− (B̃1)
+,µ

i− 1
2 ,j

∆x
+

(B̃2)
µ,−
i,j+ 1

2

− (B̃2)
µ,+

i,j− 1
2

∆y

 = 0. (23)

The DDF projection technique is very simple, efficient, and easy to implement.

2.3.1. DDF projection for second-order scheme. We first consider the
second-order case to gain some insight on the DDF projection. In this case, the
reconstructed magnetic field is a linear function within each cell:

B̂ij(x, y) = Bij + (B̂x)ij(x− xi) + (B̂y)ij(y − yj), (x, y) ∈ Iij . (24)
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Notice that Q = 1. According to (21) and (22), we have

∇h · B̂ij :=
(B̂1)

−,1

i+ 1
2 ,j

− (B̂1)
+,1

i− 1
2 ,j

∆x
+

(B̂2)
1,−
i,j+ 1

2

− (B̂2)
1,+

i,j− 1
2

∆y

= ((B̂1)x)ij + ((B̂2)y)ij = ∇ · B̂ij(x, y),

where the slopes ((B̂1)x)ij and ((B̂2)y)ij are independently computed by (19) and

(20), respectively. Therefore, in general, the divergence ((B̂1)x)ij + ((B̂2)y)ij is not
necessarily zero. In order to enforce the DDF condition (23), we can modify the slopes

((B̂1)x)ij and ((B̂2)y)ij into ((B̃1)x)ij and ((B̃2)y)ij such that

((B̃1)x)ij + ((B̃2)y)ij = 0. (25)

Define S1 := ((B̂1)x)ij − ((B̃1)x)ij and S2 := ((B̂2)y)ij − ((B̃2)y)ij as the differences
between the original and modified slopes. Then the desired DDF condition (25) is
equivalent to

S1 + S2 = ((B̂1)x)ij + ((B̂2)y)ij = ∇h · B̂ij .

To keep the original accuracy of the scheme, the differences between the original and
modified slopes should be as small as possible. Hence we propose to determine S1

and S2 by solving the following optimization problem

minimize S2
1∆x2 + S2

2∆y2,

subject to S1 + S2 = ∇h · B̂ij ,
(26)

which leads to

S1 =
∆y2∇h · B̂ij

∆x2 +∆y2
, S2 =

∆x2∇h · B̂ij

∆x2 +∆y2
. (27)

Therefore, the modified slopes are given by

((B̃1)x)ij = ((B̂1)x)ij−
∆y2∇h · B̂ij

∆x2 +∆y2
, ((B̃2)y)ij = ((B̂2)y)ij−

∆x2∇h · B̂ij

∆x2 +∆y2
. (28)

This implies the modified point values are given by

(B̃1)
∓,1

i± 1
2 ,j

= (B̂1)
∓,1

i± 1
2 ,j

∓A1, (B̃2)
1,∓
i,j± 1

2

= (B̂2)
1,∓
i,j± 1

2

∓A2 (29)

with

A1 =
∆x

2
S1 =

∆x∇h · B̂ij

2(1 + (∆x/∆y)2)
, A2 =

∆y

2
S2 =

∆y∇h · B̂ij

2(1 + (∆y/∆x)2)
. (30)

We have the following observations.

Proposition 2.3. The quantities A1 and A2 defined in (30) are the solution to
the following optimization problem

minimize A2
1 +A2

2,

subject to
2A1

∆x
+

2A2

∆y
= ∇h · B̂ij .

(31)

10



Proof. Substituting the constraint A2 = ∆y( 12∇h · B̂ij − A1

∆x ) into the objective
function A2

1 + A2
2 and then solving the resulting minimization problem with respect

to A1, we can obtain the minimum point (30).

Remark 2.4. Geometrically, the solution to problem (31) is the Euclidean projec-

tion of (0, 0) to the line 2A1

∆x + 2A2

∆y = ∇h · B̂ij in the two-dimensional plane. Let P
denote the following mapping{

(B̂1)
±,1

i∓ 1
2 ,j

, (B̂2)
1,±
i,j∓ 1

2

}
→

{
(B̃1)

±,1

i∓ 1
2 ,j

, (B̃2)
1,±
i,j∓ 1

2

}
.

This mapping is associated with the following matrix

P =


1− η η −µ µ
η 1− η µ −µ
−µ µ 1− ζ ζ
µ −µ ζ 1− ζ

 , (32)

where η = 1
2(1+(∆x/∆y)2) , µ = ∆x

∆y η, and ζ = 1
2(1+(∆y/∆x)2) . We observe that

P2 = P, P2 = P,

thus P is a projection operator. Hence we call the modification (29) “DDF projection”.

Proposition 2.5. For the second-order reconstruction (24), the DDF modifica-
tion of the slopes (28) is equivalent to the DDF projection of the point values (29).

Proof. Clearly, the DDFmodification of the slopes (28) implies that the associated
point values are modified into (29) with (30). Conversely, if we modify the point values
as (29) with (30), then we can reconstruct a linear function by using the modified point
values. We can verify that the slopes of the new linear function satisfy (28).

Proposition 2.5 demonstrates that we only need to modify the reconstructed point
values via (29) at the cell interfaces, to enforce the DDF constraint (23).

2.3.2. DDF projection for higher-order schemes. We now discuss the DDF
projection technique to enforce the condition (23) for kth-order finite volume schemes
with k ≥ 3. Unlike the second-order scheme, for higher-order schemes such as the fifth-
order WENO scheme, the reconstruction directly gives only the point values at the
cell-interface without explicitly building any approximation polynomials. Therefore,
the DDF condition (23) cannot be enforced by the DF techniques (cf. [1, 2, 54, 33])
based on approximation polynomials.

Motivated by the DDF projection technique (29) in the second-order case, we
propose the following DDF projection on higher-order reconstructed point values at
the cell-interface:

(B̃1)
∓,µ

i± 1
2 ,j

= (B̂1)
∓,µ

i± 1
2 ,j

∓A1, (B̃2)
µ,∓
i,j± 1

2

= (B̂2)
µ,∓
i,j± 1

2

∓A2, 1 ≤ µ ≤ Q, (33)

where A1 and A2 are defined by

A1 =
∆x∇h · B̂ij

2(1 + (∆x/∆y)2)
, A2 =

∆y∇h · B̂ij

2(1 + (∆y/∆x)2)
(34)

with

∇h · B̂ij :=

Q∑
µ=1

ωµ

 (B̂1)
−,µ

i+ 1
2 ,j

− (B̂1)
+,µ

i− 1
2 ,j

∆x
+

(B̂2)
µ,−
i,j+ 1

2

− (B̂2)
µ,+

i,j− 1
2

∆y

 .
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Theorem 2.6. The modified point values (33) satisfy the DDF condition (23).

Proof. Substituting the modified values (33) into the formulation of ∇h · B̃ij in
(23), we obtain

∇h · B̃ij =

Q∑
µ=1

ωµ


[
(B̂1)

−,µ

i+ 1
2 ,j

−A1

]
−
[
(B̂1)

+,µ

i− 1
2 ,j

+A1

]
∆x

+

[
(B̂2)

µ,−
i,j+ 1

2

−A2

]
−
[
(B̂2)

µ,+

i,j− 1
2

+A2

]
∆y


= ∇h · B̂ij −

(
2A1

∆x
+

2A2

∆y

) Q∑
µ=1

ωµ = ∇h · B̂ij −
∇h · B̂ij

1 + (∆x/∆y)2
− ∇h · B̂ij

1 + (∆y/∆x)2
= 0.

The proof is completed.

Now, we raise a natural and important question: Does the DDF projection (33)
keep the original high-order accuracy of the reconstructed point values? This question
is answered by the following theorem.

Theorem 2.7. Assume that the exact magnetic field, denoted by B = (B1, B2, B3),
is a Ck function. Assume that the reconstructed point values are kth-order approxi-
mations to the exact point values, i.e., we have

(B̂1)
∓,µ

i± 1
2 ,j

−B1(xi± 1
2
, yµj ) = O(hk), (B̂2)

µ,∓
i,j± 1

2

−B2(x
µ
i , yj± 1

2
) = O(hk), (35)

where h = max{∆x,∆y}. Then the DDF modified point values are also kth-order
approximations to the exact point values, namely, we have

(B̃1)
∓,µ

i± 1
2 ,j

−B1(xi± 1
2
, yµj ) = O(hk), (B̃2)

µ,∓
i,j± 1

2

−B2(x
µ
i , yj± 1

2
) = O(hk),

This means the DDF projection (33) maintains the original high-order accuracy of
the reconstruction.

Proof. Based on the accuracy of the adopted Q-point quadrature rule, we have∣∣∣∣∣∣
Q∑

µ=1

ωµB1(xi± 1
2
, yµj )−

1

∆y

∫ y
j+1

2

y
j− 1

2

B1(xi± 1
2
, y)dy

∣∣∣∣∣∣ ≤ O(hk),

∣∣∣∣∣∣
Q∑

µ=1

ωµB2(x
µ
i , yj± 1

2
)− 1

∆x

∫ x
i+1

2

x
i− 1

2

B2(x, yj± 1
2
)dx

∣∣∣∣∣∣ ≤ O(hk).

Recall that the exact magnetic field is divergence-free. With the help of the divergence
theorem and the triangle inequality, we obtain

∣∣∣∇h · B̂ij

∣∣∣ = ∣∣∣∣∣∇h · B̂ij −
1

∆x∆y

∫∫
Iij

∇ ·Bdxdy

∣∣∣∣∣
=

∣∣∣∣∣∇h · B̂ij −
1

∆x∆y

∫
∂Iij

B · n∂Iijds

∣∣∣∣∣
≤

∣∣∣∣∣∇h · B̂ij −
Q∑

µ=1

ωµ

(
B1(xi+ 1

2
, yµ

j )−B1(xi− 1
2
, yµ

j )

∆x
+

B2(x
µ
i , yj+ 1

2
)−B2(x

µ
i , yj− 1

2
)

∆y

)∣∣∣∣∣
+

1

∆x

∣∣∣∣∣∣
Q∑

µ=1

ωµB1(xi+ 1
2
, yµ

j )−
1

∆y

∫ y
j+1

2

y
j− 1

2

B1(xi+ 1
2
, y)dy

∣∣∣∣∣∣
12



+
1

∆x

∣∣∣∣∣∣
Q∑

µ=1

ωµB1(xi− 1
2
, yµ

j )−
1

∆y

∫ y
j+1

2

y
j− 1

2

B1(xi− 1
2
, y)dy

∣∣∣∣∣∣
+

1

∆y

∣∣∣∣∣∣
Q∑

µ=1

ωµB2(x
µ
i , yj+ 1

2
)− 1

∆x

∫ x
i+1

2

x
i− 1

2

B2(x, yj+ 1
2
)dx

∣∣∣∣∣∣
+

1

∆y

∣∣∣∣∣∣
Q∑

µ=1

ωµB2(x
µ
i , yj− 1

2
)− 1

∆x

∫ x
i+1

2

x
i− 1

2

B2(x, yj− 1
2
)dx

∣∣∣∣∣∣
≤ 1

∆x

Q∑
µ=1

ωµ

(∣∣∣(B̂1)
−,µ

i+ 1
2
,j
−B1(xi+ 1

2
, yµ

j )
∣∣∣+ ∣∣∣(B̂1)

+,µ

i− 1
2
,j
−B1(xi− 1

2
, yµ

j )
∣∣∣)

+
1

∆y

Q∑
µ=1

ωµ

(∣∣∣(B̂2)
µ,−
i,j+ 1

2

−B2(x
µ
i , yj+ 1

2
)
∣∣∣+ ∣∣∣(B̂2)

µ,+

i,j− 1
2

−B2(x
µ
i , yj− 1

2
)
∣∣∣)+O(hk−1)

= O(hk−1).

It then follows from (34) that

|A1| ≤ ∆xO(hk−1) = O(hk), |A2| ≤ ∆yO(hk−1) = O(hk). (36)

According to (36), (35), and (33), we have

(B̃1)
∓,µ

i± 1
2 ,j

= B1(xi± 1
2
, yµj ) +O(hk)∓A1 = B1(xi± 1

2
, yµj ) +O(hk),

(B̃2)
µ,∓
i,j± 1

2

= B2(x
µ
i , yj± 1

2
) +O(hk)∓A2 = B2(x

µ
i , yj± 1

2
) +O(hk).

The proof is completed.

The numerical results shown in Example 4.1 will further confirm that the proposed
DDF projection does not destroy the high-order accuracy of our schemes.

Remark 2.8. The DDF projection (33) only involves the point values (B̂1)
∓,µ

i± 1
2 ,j

and (B̂2)
µ,∓
i,j± 1

2

, and does not require any approximation polynomials in the reconstruc-

tion step. Hence the DDF projection (33) is very easy to implement.

2.4. Positivity-preserving limiter. In this subsection, we design a simple PP
limiter to enforce the condition (10), as illustrated in Figure 2.1. Assume thatUij ∈ G

for all i and j. For each cell Iij , given the point values {Ũ±,µ

i+ 1
2 ,j

, Ũµ,±
i,j+ 1

2

}, the PP

limiting procedure modifies them to {U±,µ

i+ 1
2 ,j

,Uµ,±
i,j+ 1

2

}, which satisfy (10), via the

following two steps.
Step 1. First, modify the density:

≈
ρ∓,µ

i± 1
2 ,j

= θ1

(
ρ̃∓,µ

i± 1
2 ,j

− ρ̄ij

)
+ ρ̄ij ,

≈
ρµ,∓
i,j± 1

2

= θ1

(
ρ̃µ,∓
i,j± 1

2

− ρ̄ij

)
+ ρ̄ij (37)

with

θ1 := min

{∣∣∣∣ ρ̄ij − ϵ1
ρ̄ij − ρmin

∣∣∣∣ , 1} , ρmin =

min
{
ρ̃∓,µ

i± 1
2 ,j

, ρ̃µ,∓
i,j± 1

2

}
, if k = 2,

min
{
ρ̃∓,µ

i± 1
2 ,j

, ρ̃µ,∓
i,j± 1

2

, ρ⋆ij

}
, if k ≥ 3,

where we take ϵ1 = min{10−13, ρ̄ij} to avoid the influence of the round-off errors, and
ρ⋆ij is the first component of Πij defined by

Π̃ij :=
Uij − ω̂1

λ

[
λ1

(
Π̃+

i− 1
2 ,j

+ Π̃−
i+ 1

2 ,j

)
+ λ2

(
Π̃+

i,j− 1
2

+ Π̃−
i,j+ 1

2

)]
1− 2ω̂1

,
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Π̃∓
i± 1

2 ,j
:=

Q∑
µ=1

ωµŨ
∓,µ

i± 1
2 ,j

, Π̃∓
i,j± 1

2

:=

Q∑
µ=1

ωµŨ
µ,∓
i,j± 1

2

.

This step modifies {Ũ±,µ

i+ 1
2 ,j

, Ũµ,±
i,j+ 1

2

} to {
≈
U±,µ

i+ 1
2 ,j

,
≈
Uµ,±

i,j+ 1
2

} with
≈
U := (

≈
ρ, m̃, B̃, Ẽ)⊤.

Step 2. Modify the point values {
≈
U±,µ

i+ 1
2 ,j

,
≈
Uµ,±

i,j+ 1
2

} to {U±,µ

i+ 1
2 ,j

,Uµ,±
i,j+ 1

2

} by

U∓,µ

i± 1
2 ,j

= θ2

( ≈
U∓,µ

i± 1
2 ,j

−Uij

)
+Uij , Uµ,∓

i,j± 1
2

= θ2

( ≈
Uµ,∓

i,j± 1
2

−Uij

)
+Uij (38)

with

θ2 = min
{∣∣∣ E(Uij)−ϵ2

E(Uij)−Emin

∣∣∣ , 1} , Emin =

min
{
E(

≈
U∓,µ

i± 1
2 ,j

), E(
≈
Uµ,∓

i,j± 1
2

)
}
, if k = 2,

min
{
E(

≈
U∓,µ

i± 1
2 ,j

), E(
≈
Uµ,∓

i,j± 1
2

), E
( ≈
Πij

)}
, if k ≥ 3,

where ϵ2 = min{10−13, E(Uij)}, and
≈
Πij is given by

≈
Πij :=

Uij − ω̂1

λ

[
λ1

( ≈
Π+

i− 1
2 ,j

+
≈
Π−

i+ 1
2 ,j

)
+ λ2

( ≈
Π+

i,j− 1
2

+
≈
Π−

i,j+ 1
2

)]
1− 2ω̂1

,

≈
Π∓

i± 1
2 ,j

:=

Q∑
µ=1

ωµ

≈
U∓,µ

i± 1
2 ,j

,
≈
Π∓

i,j± 1
2

:=

Q∑
µ=1

ωµ

≈
Uµ,∓

i,j± 1
2

.

The above PP limiter is motivated by the simplified maximum-principle-preserving
limiter in [59]. As demonstrated by Example 4.1, such a PP limiter does not destroy
the high-order accuracy; see also [57, 59, 56] for some theoretical justification.

Theorem 2.9. Assume that Uij ∈ G for all i and j. Then the PP limited point

values
{
U±,µ

i+ 1
2 ,j

,Uµ,±
i,j+ 1

2

}
defined by (38) maintain the DDF condition (9) and simul-

taneously satisfy the PP conditions (10).

Proof. Thanks to the linearity of the discrete divergence operator ∇h·, we have

∇h ·Bij = θ2∇h ·
≈
Bij + (1− θ2)∇h ·Bij = θ2∇h ·

≈
Bij = θ2∇h · B̃ij = 0.

Hence the DDF condition (9) is preserved by the PP limiter. In the following, we will
verify the conditions (10). Note that

≈
ρ∓,µ

i± 1
2 ,j

= θ1

(
ρ̃∓,µ

i± 1
2 ,j

− ρij

)
+ ρij ≥ θ1

(
ρmin − ρij

)
+ ρij

= −θ1
∣∣ρmin − ρij

∣∣+ (ρij − ϵ1
)
+ ϵ1 ≥ ϵ1 > 0,

which implies ρ∓,µ

i± 1
2 ,j

= θ2
≈
ρ∓,µ

i± 1
2 ,j

+ (1 − θ2)ρij > 0. Because the function E(U) is

concave with respect to U when ρ > 0, applying Jensen’s inequality gives

E(U∓,µ

i± 1
2 ,j

) = E
(
θ2

≈
U∓,µ

i± 1
2 ,j

+ (1− θ2)Uij

)
≥ θ2E

( ≈
U∓,µ

i± 1
2 ,j

)
+ (1− θ2)E

(
Uij

)
≥ θ2Emin + (1− θ2)E

(
Uij

)
= θ2

(
Emin − E(Uij)

)
+ E(Uij)

≥ −θ2
∣∣Emin − E(Uij)

∣∣+ (E(Uij)− ϵ2) + ϵ2 ≥ ϵ2 > 0.

Therefore, we have U∓,µ

i± 1
2 ,j

∈ G. Similar arguments give Uµ,±
i,j+ 1

2

∈ G. For k ≥ 3, we

observe that

Π∓
i± 1

2 ,j
= θ2

( ≈
Π∓

i± 1
2 ,j

−Uij

)
+Uij , Π∓

i,j± 1
2

= θ2

( ≈
Π∓

i,j± 1
2

−Uij

)
+Uij ,
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which yield

Πij = θ2

( ≈
Πij −Uij

)
+Uij = θ2

≈
Πij + (1− θ2)Uij . (39)

Let n1 = (1, 0, 0, 0, 0, 0, 0, 0)⊤. Similarly, we have

≈
Πij · n1 = θ1

(
Π̃ij · n1 −Uij · n1

)
+Uij · n1 = θ1

(
ρ⋆ij − ρij

)
+ ρij > 0,

which together with (39) implies Πij · n1 = θ2
≈
Πij · n1 + (1 − θ2)ρij > 0. Applying

Jensen’s inequality to E(U), we obtain

E(Πij) = E
(
θ2

≈
Πij + (1− θ2)Uij

)
≥ θ2E(

≈
Πij) + (1− θ2)E(Uij)

≥ θ2Emin + (1− θ2)E(Uij) ≥ ϵ2 > 0.

Therefore, we have Πij ∈ G when the order of accuracy k ≥ 3. In summary, the PP
conditions (10) hold. The proof is completed.

3. Rigorous analysis of positivity-preserving property. In this section, we
rigorously analyze the PP property of the proposed finite volume method and give
the proof of Theorem 2.1. The analysis and proof are very technical and difficult.
There are two main challenges. First, the point values {U±,µ

i+ 1
2 ,j

,Uµ,±
i,j+ 1

2

} in our finite

volume method are strongly coupled by the important DDF condition (9), this makes
the PP analysis very complicated. In particular, such a strong coupling invalidates
the classic convex decomposition technique [57, 58], which is based on splitting a
high-order multidimensional scheme into convex combination of formally fist-order
one-dimensional PP schemes. The second challenge lies in the high nonlinearity of
the MHD system: particularly, the flux Fi(U) and the internal energy E(U) are highly
nonlinear functions of the conservative vector U. In order to analyze the positivity
of E(U), one has to substitute the high-order scheme into the complicated function
E(U) to judge the positivity of the computed internal energy E . In the following, we
will introduce the GQL approach [50] to overcome these difficulties.

3.1. Geometric quasilinearization. We first give a brief review of the GQL
approach, which equivalently transfers the intractable nonlinear constraint E(U) > 0
in (4) into a family of linear constraints. More specifically, the GQL approach provides
the following equivalent linear representation of the admissible set G, which will be
the foundation stone of our PP analysis and proof of Theorem 2.1.

Lemma 3.1 (GQL representation [45]). The admissible state set G defined in
(4) is equivalent to

G∗ =

{
U = (ρ,m,B, E)⊤ : U · n1 > 0, U · n∗ +

|B∗|2
2

> 0 ∀v∗,B∗ ∈ R3

}
, (40)

where n1 = (1, 0, 0, 0, 0, 0, 0, 0)⊤, n∗ =
(

|v∗|2
2 ,−v∗,−B∗, 1

)⊤
, and the variables

{v∗,B∗} are called the extra free auxiliary variables in the GQL framework [50] which
are introduced in exchange for linearity.

The first proof of Lemma 3.1 can be found in [45], while its geometric interpre-
tation was later given in [50]. It is worth noting that, although a few extra variables
{v∗,B∗} are introduced in (40), all the constraints in G∗ become linear, which greatly
facilitates the PP analysis. In fact, such a linear equivalent form (called GQL repre-
sentation) can be constructed for any convex sets, as shown in [50].
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Lemma 3.2 (see [45]). Given any two admissible states U, Ũ ∈ G, we have(
U− Fℓ(U)

α
+ Ũ+

Fℓ(Ũ)

α

)
· n∗ + |B∗|2 + Bℓ − B̃ℓ

α
(v∗ ·B∗) > 0, (41)

for any free auxiliary variables v∗,B∗ ∈ R3 and α > αℓ(U, Ũ), where αℓ is defined in
Theorem 2.1 and ℓ ∈ {1, 2, 3}.

As a direct consequence of Lemma 3.2, we have the following estimates.

Corollary 3.3. For any U, Ũ ∈ G, v∗,B∗ ∈ R3, and ℓ ∈ {1, 2, 3}, it holds that

−
(
Fℓ(U)− Fℓ(Ũ)

)
· n1 > −αℓ(U, Ũ)(U+ Ũ) · n1, (42)

−
(
Fℓ(U)− Fℓ(Ũ)

)
· n∗ ≥ −αℓ(U, Ũ)

(
(U+ Ũ) · n∗ + |B∗|2

)
− (Bℓ − B̃ℓ)(v

∗ ·B∗). (43)

Proof. The inequality (42) can be derived as follows:

−
(
Fℓ(U)− Fℓ(Ũ)

)
·n1 = ρ̃ṽℓ−ρvℓ ≥ −max{|vℓ|, |ṽℓ|}(ρ+ρ̃) > −αℓ(U, Ũ)(U+Ũ)·n1.

The inequality (43) follows from (41) by reformulation and taking α → αℓ(U, Ũ).

The following lemma will be useful in studying the effect of approximate source
term (12) on the PP property.

Lemma 3.4 (see [47]). For any U ∈ G, any v∗,B∗ ∈ R3, and ξ ∈ R, we have

− ξ (S(U) · n∗) ≥ ξ(v∗ ·B∗)− |ξ|√
ρ

(
U · n∗ +

|B∗|2
2

)
. (44)

3.2. Proof of Theorem 2.1. We are ready to rigorously prove Theorem 2.1.

Proof. Under conditions (10), the GQL representation in Lemma 3.1 implies

U±,µ

i+ 1
2 ,j

· n1 > 0, U±,µ

i+ 1
2 ,j

· n∗ +
|B∗|2
2

> 0, (45)

Uµ,±
i,j+ 1

2

· n1 > 0, Uµ,±
i,j+ 1

2

· n∗ +
|B∗|2
2

> 0, (46)

and when the accuracy order k ≥ 3, we have 0 < ω̂1 ≤ 1
6 and

Uij · n1 >
ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n1, (47)

Uij · n∗ +
|B∗|2
2

>
ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n∗ + ω̂1|B∗|2. (48)

If k = 2, then ω̂1 = 1
2 and Uij = ω̂1

λ

[
λ1

(
Π+

i− 1
2
,j
+Π−

i+ 1
2
,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
,

which yields

Uij · n1 =
ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n1, (49)

Uij · n∗ +
|B∗|2
2

=
ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n∗ + ω̂1|B∗|2. (50)
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Combining (47)–(48) for k ≥ 3 with (49)–(50) for k = 2, we obtain for any k ≥ 2 that

Uij · n1 ≥ ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n1, (51)

Uij · n∗ +
|B∗|2
2

≥ ω̂1

λ

[
λ1

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
+ λ2

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)]
· n∗ + ω̂1|B∗|2 (52)

for any free auxiliary variables v∗,B∗ ∈ R3. From (11) and (45)–(46), we observe
that

Π±
i+ 1

2 ,j
· n1 > 0, Π±

i,j+ 1
2

· n1 > 0 ∀i, j, (53)

Π±
i+ 1

2 ,j
· n∗ +

|B∗|2
2

> 0, Π±
i,j+ 1

2

· n∗ +
|B∗|2
2

> 0 ∀v∗,B∗ ∈ R3 ∀i, j. (54)

The estimates (51)–(54) will be useful in showing the PP property (14) of the updated

cell average U
∆t

ij := Uij +∆tLij(U). Substituting the numerical fluxes (7) with (8)

into (13), we can reformulate U
∆t

ij as

U
∆t

ij =Uij +
1

2
λ1

(
Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j
−Π−

i+ 1
2 ,j

−Π+
i− 1

2 ,j

)
+

1

2
λ2

(
Π+

i,j+ 1
2

+Π−
i,j− 1

2

−Π−
i,j+ 1

2

−Π+
i,j− 1

2

)
+ΠF +∆tSij ,

(55)

where λ1 =
αLF

1 ∆t
∆x , λ2 =

αLF
2 ∆t
∆x , and

ΠF :=− 1

2

∆t

∆x

Q∑
µ=1

ωµ

[(
F1(U

−,µ

i+ 1
2 ,j

)− F1(U
+,µ

i− 1
2 ,j

)
)
+
(
F1(U

+,µ

i+ 1
2 ,j

)− F1(U
−,µ

i− 1
2 ,j

)
)]

− 1

2

∆t

∆y

Q∑
µ=1

ωµ

[(
F2(U

µ,−
i,j+ 1

2

)− F2(U
µ,+

i,j− 1
2

)
)
+
(
F2(U

µ,+

i,j+ 1
2

)− F2(U
µ,−
i,j− 1

2

)
)]

.

Let us first prove that U
∆t

ij · n1 > 0. Thanks to the inequality (42), we derive

ΠF · n1 >− 1

2

αLF
1 ∆t

∆x

Q∑
µ=1

ωµ

(
U−,µ

i+ 1
2 ,j

+U+,µ

i− 1
2 ,j

+U+,µ

i+ 1
2 ,j

+U−,µ

i− 1
2 ,j

)
· n1

− 1

2

αLF
2 ∆t

∆y

Q∑
µ=1

ωµ

(
Uµ,−

i,j+ 1
2

+Uµ,+

i,j− 1
2

+Uµ,+

i,j+ 1
2

+Uµ,−
i,j− 1

2

)
· n1

=− 1

2
λ1

(
Π−

i+ 1
2 ,j

+Π+
i− 1

2 ,j
+Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j

)
· n1

− 1

2
λ2

(
Π−

i,j+ 1
2

+Π+
i,j− 1

2

+Π+
i,j+ 1

2

+Π−
i,j− 1

2

)
· n1. (56)

Note that the first component of S(U) is zero, yielding Sij · n1 = 0. Combining it
with (55)–(56) gives

U
∆t

ij · n1 > Uij · n1 − λ1

(
Π−

i+ 1
2 ,j

+Π+
i− 1

2 ,j

)
· n1 − λ2

(
Π−

i,j+ 1
2

+Π+
i,j− 1

2

)
· n1. (57)

This together with (51) implies

U
∆t

ij · n1 > (ω̂1 − λ)

[
λ1

λ

(
Π+

i− 1
2 ,j

+Π−
i+ 1

2 ,j

)
· n1 +

λ2

λ

(
Π+

i,j− 1
2

+Π−
i,j+ 1

2

)
· n1

]
> 0,
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where the last inequality follows from (53) and the CFL condition (15). Next, let us

prove U
∆t

ij · n∗ + |B∗|2
2 > 0 for any free auxiliary variables v∗,B∗ ∈ R3. It follows

from (55) that

U
∆t

ij · n∗ +
|B∗|2
2

= Uij · n∗ +
|B∗|2
2

+
1

2
λ1

(
Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j
−Π−

i+ 1
2 ,j

−Π+
i− 1

2 ,j

)
· n∗

+
1

2
λ2

(
Π+

i,j+ 1
2

+Π−
i,j− 1

2

−Π−
i,j+ 1

2

−Π+
i,j− 1

2

)
· n∗ +ΠF · n∗ +∆tSij · n∗.

(58)

We now estimate the lower bounds for ΠF · n∗ and ∆tSij · n∗, respectively. Thanks
to the inequality (43), we have

ΠF · n∗ ≥− 1

2

α̂LF
1 ∆t

∆x

Q∑
µ=1

ωµ

[(
U−,µ

i+ 1
2 ,j

+U+,µ

i− 1
2 ,j

+U+,µ

i+ 1
2 ,j

+U−,µ

i− 1
2 ,j

)
· n∗ + 2|B∗|2

]

− 1

2

∆t

∆x

Q∑
µ=1

ωµ

[
(B1)

−,µ

i+ 1
2 ,j

− (B1)
+,µ

i− 1
2 ,j

+ (B1)
+,µ

i+ 1
2 ,j

− (B1)
−,µ

i− 1
2 ,j

]
(v∗ ·B∗)

− 1

2

α̂LF
2 ∆t

∆y

Q∑
µ=1

ωµ

[(
Uµ,−

i,j+ 1
2

+Uµ,+

i,j− 1
2

+Uµ,+

i,j+ 1
2

+Uµ,−
i,j− 1

2

)
· n∗ + 2|B∗|2

]

− 1

2

∆t

∆y

Q∑
µ=1

ωµ

[
(B2)

µ,−
i,j+ 1

2

− (B2)
µ,+

i,j− 1
2

+ (B2)
µ,+

i,j+ 1
2

− (B2)
µ,−
i,j− 1

2

]
(v∗ ·B∗)

=− 1

2

α̂LF
1 ∆t

∆x

[(
Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j
+Π−

i+ 1
2 ,j

+Π+
i− 1

2 ,j

)
· n∗ + 2|B∗|2

]
− 1

2

α̂LF
2 ∆t

∆x

[(
Π+

i,j+ 1
2

+Π−
i,j− 1

2

+Π−
i,j+ 1

2

+Π+
i,j− 1

2

)
· n∗ + 2|B∗|2

]
−∆t(∇h · {{B}}ij)(v∗ ·B∗), (59)

where the “averaged” discrete divergence operator ∇h · {{B}}ij is defined by

∇h · {{B}}ij :=
Q∑

µ=1

ωµ

({{B1}}µi+ 1
2 ,j

− {{B1}}µi− 1
2 ,j

∆x
+

{{B2}}µi,j+ 1
2

− {{B2}}µi,j− 1
2

∆y

)
. (60)

Thanks to Lemma 3.4, we have the following estimate relative to the source term

−JB1K
µ

i+ 1
2 ,j

S
(
{{U}}µ

i+ 1
2 ,j

)
· n∗ ≥ JB1K

µ

i+ 1
2 ,j

(v∗ ·B∗)−

∣∣∣JB1K
µ

i+ 1
2 ,j

∣∣∣√
{{ρ}}µ

i+ 1
2 ,j

(
{{U}}µ

i+ 1
2 ,j

· n∗ +
|B∗|2
2

)

≥ JB1K
µ

i+ 1
2 ,j

(v∗ ·B∗)− 2β1

(
{{U}}µ

i+ 1
2 ,j

· n∗ +
|B∗|2
2

)
.

Similarly, one can obtain

−JB2K
µ

i,j+ 1
2

S
(
{{U}}µ

i,j+ 1
2

)
· n∗ ≥ JB2K

µ

i,j+ 1
2

(v∗ ·B∗)− 2β2

(
{{U}}µ

i,j+ 1
2

· n∗ +
|B∗|2
2

)
,

Combining these estimates with (12), we obtain

∆tSij · n∗ ≥∆t

∆x

Q∑
µ=1

ωµ

(
1

2
JB1K

µ

i+ 1
2 ,j

+
1

2
JB1K

µ

i− 1
2 ,j

)
(v∗ ·B∗)
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− β1∆t

∆x

Q∑
µ=1

[(
{{U}}µ

i+ 1
2 ,j

+ {{U}}µ
i− 1

2 ,j

)
· n∗ + |B∗|2

]

+
∆t

∆y

Q∑
µ=1

ωµ

(
1

2
JB2K

µ

i,j+ 1
2

+
1

2
JB2K

µ

i,j− 1
2

)
(v∗ ·B∗)

− β2∆t

∆y

Q∑
µ=1

[(
{{U}}µ

i,j+ 1
2

+ {{U}}µ
i,j− 1

2

)
· n∗ + |B∗|2

]
=− β1∆t

2∆x

[(
Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j
+Π−

i+ 1
2 ,j

+Π+
i− 1

2 ,j

)
· n∗ + 2|B∗|2

]
− β2∆t

2∆y

[(
Π+

i,j+ 1
2

+Π−
i,j− 1

2

+Π−
i,j+ 1

2

+Π+
i,j− 1

2

)
· n∗ + 2|B∗|2

]
+

∆t

2
ĴBKij(v

∗ ·B∗), (61)

where ĴBKij :=
∑Q

µ=1 ωµ

( JB1Kµ
i+1

2
,j
+JB1Kµ

i− 1
2
,j

∆x +
JB2Kµ

i,j+1
2

+JB2Kµ
i,j− 1

2

∆y

)
. Substituting

the estimates in (52), (59), and (61) into (58), we obtain

U
∆t

ij · n∗ +
|B∗|2
2

≥1

2

(
λ1 − (α̂LF

1 + β1)
∆t

∆x

)[(
Π+

i+ 1
2 ,j

+Π−
i− 1

2 ,j

)
· n∗ + |B∗|2

]
+

1

2

(
λ2 − (α̂LF

2 + β2)
∆t

∆y

)[(
Π+

i,j+ 1
2

+Π−
i,j− 1

2

)
· n∗ + |B∗|2

]
+

1

2

(
2ω̂1λ1

λ
−
(
λ1 + (α̂LF

1 + β1)
∆t

∆x

))[(
Π−

i+ 1
2 ,j

+Π+
i− 1

2 ,j

)
· n∗ + |B∗|2

]
+

1

2

(
2ω̂1λ2

λ
−
(
λ2 + (α̂LF

2 + β2)
∆t

∆y

))[(
Π−

i,j+ 1
2

+Π+
i,j− 1

2

)
· n∗ + |B∗|2

]
+∆t(v∗ ·B∗)

(
1

2
ĴBKij −∇h · {{B}}ij

)
(15)
> ∆t(v∗ ·B∗)

(
1

2
ĴBKij −∇h · {{B}}ij

)
=∆t(v∗ ·B∗) (−∇h ·Bij)

(9)
= 0,

where we have used the CFL condition (15) which ensures that λ1 ≥ (α̂LF
1 + β1)

∆t
∆x ,

λ2 ≥ (α̂LF
2 + β2)

∆t
∆x ,

2ω̂1λ1

λ > 2λ1 ≥ λ1 + (α̂LF
1 + β1)

∆t
∆x , and

2ω̂2λ2

λ > 2λ2 ≥ λ2 +

(α̂LF
2 + β2)

∆t
∆x . In summary, we have U

∆t

ij ∈ G∗ = G. The proof is completed.

4. Numerical experiments. In this section, we give several benchmark or chal-
lenging numerical examples to validate the robustness, effectiveness, and accuracy of
our DDFPP finite volume schemes. We focus on the second-order and fifth-order
DDFPP schemes with the third-order SSP Runge–Kutta time discretization (17). In
all our tests, we use the ideal EOS e = p/(ρ(γ − 1)) and set the CFL number as 0.3.

Example 4.1 (Vortex problem with low pressure). We first consider a smooth
vortex problem [13, 47] to examine the accuracy of the proposed DDFPP schemes. The
initial condition is chosen as (ρ,v,B, p) = (1, 1+δv1, 1+δv2, 0, δB1, δB2, 0, 1+δp) with
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the perturbations (δv1, δv2) =
µ√
2π

e0.5(1−r2)(−y, x), (δB1, δB2) =
µ
2π e

0.5(1−r2)(−y, x),

δp = −µ2(1+r2)
8π2 e1−r2 , where r2 = x2 + y2 and the vortex strength µ = 5.389489439.

The lowest thermal pressure is about 5.3 × 10−12 in the vortex center, so that our
PP limiting procedure is necessary for this example. In our test, the computational
domain is taken as [−10, 10]2, the boundary conditions are periodic, and the adiabatic
index is γ = 5/3. We simulate this problem until t = 0.05. Table 4.1 lists the l1 errors
and the corresponding convergence rates in the velocity, magnetic field, and pressure
for our second-order and fifth-order DDFPP schemes at different grid resolutions. The
results indicate that the expected convergence rates are achieved, verifying that our
DDF projection and PP limiter do not affect the accuracy.

Table 4.1: Example 4.1: l1 errors at t = 0.05 and the corresponding convergence rates
for our second-order and fifth-order DDFPP schemes with ∆x = ∆y = 20/N .

Method N
v2 B1 p

l1 error order l1 error order l1 error order

2nd-order

20 1.79e-4 – 1.19e-4 – 1.60e-4 –
40 5.29e-5 1.75 3.62e-5 1.72 6.27e-5 1.35
80 1.60e-5 1.72 1.06e-5 1.77 2.27e-5 1.46
160 4.04e-6 1.99 2.82e-6 1.91 5.84e-6 1.96
320 9.04e-7 2.16 6.32e-7 2.16 1.22e-6 2.26
640 1.54e-7 2.55 1.07e-7 2.57 2.17e-7 2.49
1280 2.64e-8 2.54 1.77e-8 2.59 4.07e-8 2.42

5th-order

20 1.06e-3 – 7.21e-4 – 9.91e-4 –
40 1.57e-4 2.76 9.10e-5 2.99 1.26e-4 2.97
80 1.80e-5 3.13 1.01e-5 3.17 1.61e-5 2.97
160 9.12e-7 4.30 4.49e-7 4.49 6.36e-7 4.66
320 3.11e-8 4.87 1.51e-8 4.90 1.89e-8 5.08
640 8.10e-10 5.26 4.61e-10 5.03 5.68e-10 5.05
1280 2.50e-11 5.01 1.61e-11 4.84 2.04e-11 4.80

Example 4.2 (Orszag–Tang problem). This is a benchmark test [27, 46], and
it is performed to verify the effectiveness, DDF property, and high resolution of our
schemes. The initial state is taken as

(ρ,v,B, p) = (γ2,− sin y, sinx, 0,− sin y, sin(2x), 0, γ)

with γ = 5/3. The computational domain is [0, 2π]2 and divided into 200 × 200
uniform cells with periodic boundary conditions. Figure 4.1 compares the results
obtained by the fifth-order finite volume schemes with and without DDF projection,
respectively. We observe that the solution computed without DDF projection has
obvious oscillations and indicates very severe numerical instability. This validates
the necessity of the proposed DDF projection technique. For further comparison, we
also evaluate the discrete divergence error εdiv := maxi,j |∇h ·Bij | and present its
evolution in Figure 4.2a. As we can see, the discrete divergence error grows very fast
if the DDF projection is not used, while using the DDF projection can enforce the
discrete divergence error εdiv at the level of round-off error. It is worth mentioning that
if we do not use the DDF projection and PP limiter, we observe that the fifth-order

20



WENO code would break down at t = 3.11 due to nonphysical solution. This further
confirms the importance of DDF projection and PP limiter for robust simulation.
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Fig. 4.1: Example 4.2: Density contours computed with or without DDF projection.
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Fig. 4.2: The time evolution of the divergence errors εdiv := maxi,j |∇h ·Bij |.

Example 4.3 (Rotor problem). In this example, we simulate the benchmark rotor
problem, which describes a dense fluid disk rotating in an ambient fluid with γ = 5/3.
The initial conditions are set as

(ρ,v,B, p) =


(10,−(y − 0.5)/r1, (x− 0.5)/r1, 0, 2.5/

√
4π, 0, 0, 0.5), r ≤ r1,

(1 + 9ϕ,−ϕ(y − 0.5)/r, ϕ(x− 0.5)/r, 0, 2.5/
√
4π, 0, 0, 0.5), r1 < r ≤ r2,

(1, 0, 0, 0, 2.5/
√
4π, 0, 0, 0.5), r2 < r,

where r =
√

(x− 0.5)2 + (y − 0.5)2, r1 = 0.1, r2 = 0.115, and ϕ = (r2− r)/(r2− r0).
The computational domain is taken as [0, 1]2 with outflow boundary conditions. The
simulation is performed until t = 0.295 on the uniform mesh of 400 × 400 cells.
Figure 4.3 displays the numerical results obtained by the proposed second-order and
fifth-order DDFPP schemes. We see that our results agree well with those reported
in [46]. The time evolution of the discrete divergence error εdiv is shown Figure 4.2b.
One can observe that the divergence errors are kept at about 10−13 if the DDF
projection is applied, while the errors grow quickly if the DDF projection is not used.
A further comparison is shown in Figure 4.4 for the fifth-order finite volume WENO
schemes with and without DDF projection. One can see the numerical instability and
nonphysical structures from the solution computed without DDF projection, while
the waves are correctly resolved when the DDF projection is used.

Example 4.4 (Blast problem). We now study a challenging blast problem [5]
with the adiabatic index γ = 1.4 to demonstrate the PP property of our numerical
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Fig. 4.3: Contours of thermal pressure (left), Mach number (middle), and magnetic
pressure (right). Top: second-order DDFPP. Bottom: fifth-order DDFPP.
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Fig. 4.4: Example 4.3: Zoom-in central part of Mach number at t = 0.295.

schemes. The computational domain [−0.5, 0.5]2 is initially full of stationary fluid with
piecewise constant pressure p, which has a strong circular jump on x2 + y2 = 0.12.
The initial conditions are given by

(ρ,v,B) =

(
1, 0, 0, 0,

100√
4π

, 0, 0

)
, p =

{
103,

√
x2 + y2 ≤ 0.1,

0.1, otherwise.

The computational domain is partitioned into 200 × 200 uniform cells. Figure 4.5
displays the numerical results obtained by the proposed second-order and fifth-order
DDFPP schemes, in comparison with the results given by the fifth-order WENO
scheme without DDF projection. We can see that the flow patterns are well captured
by the proposed DDFPP schemes and agree with those computed in [13, 47, 48, 49,
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46]. Furthermore, the fifth-order DDFPP scheme exhibits higher resolution than the
second-order one, and both DDFPP schemes are very robust. However, without DDF
projection, the fifth-order WENO scheme produces obvious oscillations and nonphys-
ical structures in the numerical solution. Figure 4.2c presents the time evolution of
the discrete divergence error εdiv. As we can see, the DDF condition is enforced to
machine accuracy when the DDF projection is employed, but the divergence errors
grow very fast if we do not perform the DDF projection. We also notice that if we
turn off the PP limiter, the code would break down due to negative pressure.
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Fig. 4.5: Example 4.4: The contour plots of the density. Twenty-five equally spaced
contour lines from 0.2 to 4.54. Left: second-order DDFPP scheme. Middle: fifth-
order DDFPP scheme. Right: fifth-order WENO scheme without DDF projection.

Example 4.5 (Astrophysical jet). The last example simulates a high Mach num-
ber jet problem in a strong magnetic field [47, 46]. The adiabatic index is set to be
γ = 1.4. Initially, the domain [−0.5, 0.5] × [0, 1.5] is full of the ambient plasma
with (ρ,v,B, p) = (0.1γ, 0, 0, 0, 0,

√
200, 0, 1). A high-speed jet initially locates at

x ∈ [−0.05, 0.05] and y = 0, it is injected in y-direction of the bottom boundary
with the inflow jet condition (ρ,v,B, p) = (γ, 0, 800, 0, 0,

√
200, 0, 1). In our test, the

computational domain is taken as [0, 0.5] × [0, 1.5] and divided into 200 × 600 cells.
For the left boundary x = 0, the reflecting boundary condition is imposed. The
outflow conditions are applied on other boundaries. Figure 4.6 shows the schlieren
images of density logarithm log ρ obtained by our second-order and fifth-order DDFPP
schemes. We can observe that the numerical results are comparable to those simu-
lated in [47, 48, 46], while the fifth-order DDFPP scheme has a higher resolution than
the second-order one. This is a very challenging test, as negative pressure can be
easily produced in the simulation, due to the high Mach number and the presence of
magnetic field. If the PP limiter is turned off, we observe that the code would blow up
quickly. The proposed DDFPP schemes exhibit good robustness and high resolution
for this problem.

5. Conclusions. In this paper, we have developed a new high-order robust finite
volume method for solving the ideal MHD equations, which govern the behavior of
magnetized fluids in astrophysical and laboratory plasmas. The method stands out
due to its ability to maintain both a DDF constraint and the PP property simul-
taneously. We have proposed a novel discrete projection technique that enforces the
DDF condition by projecting the reconstructed point values at the cell interface into a
DDF space, without using any approximation polynomials. This projection method is
highly efficient, easy to implement, and particularly suitable for standard high-order
finite volume WENO methods, which typically return only the point values in the re-
construction rather than approximation polynomials. We have also developed a new
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Fig. 4.6: Example 4.5: Density logarithm at t = 0.001, 0.0015, and 0.002 (from left to
right). Top: second-order DDFPP scheme. Bottom: fifth-order DDFPP scheme.

finite volume framework for constructing provably PP schemes for the ideal MHD
system. The framework incorporates the discrete projection, a suitable approxima-
tion to the Godunov-Powell source terms, and a simple PP limiter. We have provided
rigorous analysis of the PP property of the proposed finite volume method, showing
that the DDF condition and suitable approximation to the source terms eliminate the
effect of magnetic divergence terms on the PP property. The analysis is challenging
due to the nonlinearity of E(U) and the relationship between the DDF and PP prop-
erties. We have overcome the challenges by using the GQL approach, which transfers
the nonlinear constraint into a family of linear ones. Finally, we have demonstrated
the effectiveness of the proposed method through several benchmark and demanding
numerical experiments. The numerical results have shown that the proposed method
is robust and accurate, and confirmed the importance of the proposed DDF projection
and PP techniques.
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