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Numerical computation of transverse homoclinic orbits
for periodic solutions of delay differential equations

Olivier Hénot * Jean-Philippe Lessard Jason D. Mireles James

Abstract

We present a computational method for studying transverse homoclinic orbits for periodic solu-
tions of delay differential equations, a phenomenon that we refer to as the Poincaré scenario. The
strategy is geometric in nature, and consists of viewing the connection as the zero of a nonlinear
map, such that the invertibility of its Fréchet derivative implies the transversality of the intersection.
The map is defined by a projected boundary value problem (BVP), with boundary conditions in the
(finite dimensional) unstable and (infinite dimensional) stable manifolds of the periodic orbit. The
parameterization method is used to compute the unstable manifold and the BVP is solved using
a discrete time dynamical system approach (defined via the method of steps) and Chebyshev series
expansions. We illustrate this technique by computing transverse homoclinic orbits in the cubic Ikeda
and Mackey-Glass systems.

Key words. Delay differential equations, Homoclinic tangle, Transverse homoclinic orbits, Periodic orbits,
Smale’s horseshoe, Symbolic dynamics, Poincaré scenario

1 Introduction

A delay differential equation (DDE) relates the rate of change of a function with its state at present and
past times. They are used, for example, to model networks with communication lags between subsystems,
and particle systems where disturbances propagate with finite speed. The delay gives a DDE a kind of
memory, and leads to the notion of an infinite dimensional dynamical system. Thanks to this high
dimensionality, even a scalar DDE can exhibit diverse and complex dynamics. We refer the interested
reader to the books [I1l [T6] 18] on the subject of DDEs.

A notable example is the delayed-feedback model for the concentration of blood cells introduced in
1977 by Mackey and Glass [36]

d w(t—7T)
w(t) = aw(t)+b1+w(t—7)P’ t>0. (1)
Here 7 > 0 is the constant delay and a,b, p € R are physiological parameters. The authors introduce the
notion of dynamical disease, where pathological behaviors are produced by control systems after variation
of the physiological parameters. Since qualitative changes in the dynamics characterize the onset of
symptoms, this notion ties dynamical bifurcation theory to disease pathology. More sophisticated models
of hematopoiesis, extending this concept, are found in the works of [37, [4T], [43].
In addition to its impact on pathology, Equation , nowadays known as the Mackey-Glass equation,
is famous for its rich dynamics. Indeed, the Mackey-Glass equation has become a flagship example
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(a) Mackey-Glass equation. (b) Cubic Ikeda equation.

Figure 1: Numerical simulations providing evidence for the existence of chaotic attractors in some simple
DDEs.

of chaos in infinite dimensions. In the original article [36], Mackey and Glass numerically followed a
sequence of period doubling bifurcations by increasing the delay 7, which led to the onset of chaotic
behavior. Figure |[1al shows numerical simulation results for Equation which suggest the existence of a
chaotic attractor. Further investigations were conducted by Farmer, Mensour and Longtin to compute the
Lyapunov exponents, Lyapunov dimension and power spectra [12, [38]. The interested reader is referred
to [19, 24, 26, [32] [41] and references therein for more information.

In the present work we consider a geometric mechanism which gives rise to chaotic behavior. The
picture goes back to Poincaré’s groundbreaking work on the three-body problem, where he showed that
homoclinic orbits associated with periodic solutions lead to extremely rich dynamics [40]. More precisely,
when the unstable manifold bends back and returns to a neighborhood of the periodic orbit, it can
intersect the stable manifold transversely; a phenomenon we refer to as the Poincaré scenario. Poincaré
famously complained that the resulting picture was difficult to draw. In modern language, the transverse
intersection implies the existence of chaotic motions (symbolic dynamics) via Smale’s Tangle Theorem
[42]. While a number of authors have shown existence of chaotic dynamics for DDEs (e.g. see [17), [19]
28, 291, [30], 3], [47] and the references therein), a rigorous proof of chaos in the Mackey-Glass equation
remains an important conjecture in the field (see [48] for a more thorough discussion of this conjecture).

The aim of this article is to present a numerical method for studying the Poincaré scenario (transverse
homoclinic orbits) in DDEs of the form

Sult) = glw(®)wi(-7), 120, &)

where 7 > 0 is the delay, w;(s) = w(t + s), for all s € [-7,0], and g : R x R — R is assumed to only be
comprised of elementary nonlinearities (i.e. exponential, logarithmic, algebraic functions and composi-
tions thereof). Our strategy consists of rephrasing the intersection of the stable and unstable manifolds as
an isolated zero of a nonlinear map. This choice is motivated by current techniques for computer-assisted
proofs, where zeros of infinite dimensional maps are proven to exist via contraction mapping arguments
applied to appropriate fixed-point operators. The reader will recognize here a Newton-Kantorovich type
argument, and may refer to some related works [9] 20} 33}, 4], [46].

An important feature of the proposed framework is that we do not exploit any numerical integration
schemes for advecting the flow generated by the DDE. Instead, we are careful to express the problem in



a form so that, after truncation, we are left to solve large systems of polynomial equations; in particular,
we formulate the method of steps (e.g. see [10]) as a C! Chebyshev integrator (see [34]) which amounts
to solving polynomial equations. While we do not give any computer-assisted proofs in the present work,
the article has the ulterior motive of paving the way for future mathematically rigorous studies of chaos
for DDEs. In particular, we are convinced that the present research provides a sufficient framework for
proving the existence of symbolic dynamics in the Mackey-Glass equation.

1.1 Framework
We begin by noting that for any DDE there exists an auxiliary polynomial DDE of the form

Gout) = Fult) w(—r), 120, ®3)

where 7 > 0 is the delay, wu;(s) = u(t + s), for all s € [-7,0], and f : R" x R” — R” is a polynomial.
Indeed, if the right-hand-side of the DDE is polynomial, then the DDEs and are identical with
u=w, f =¢gand n =1. Otherwise, we introduce new coordinates v; = ((v1)¢,-..,(vq):) in place of
an appropriate set of elementary nonlinear functions ¢(w;) (cf. Theorem 2.2 in [20]). Then, u = (w,v)
satisfies a DDE of the form with n =1+ d and

f(u(t),ut(T)) — (g(l)(u(t)aut(_T))> , (4)

where ¢, g(® are polynomials, with range in R, R? respectively, such that

9V (u(t), u (7)) = g(w(t), wi(~7))  and 9(2)(U(t)aUt(—T))=[Dw(wt)%wt](()%

whenever v, = p(w;). In fact, for initial conditions satisfying vy = ¢(wy), it follows that w(t) is a solution
of the DDE (2)).

The idea of enlarging the dimension of the original system to a larger polynomial system is variously
referred to as automatic differentiation, polynomial embedding, or quadratic recast (e.g. see [2} [6] [15] 20
25, 27, 135]).

Remark 1.1. The reader may be surprised by our insistence on working with a polynomial DDE .
Certainly, for numerical computations, which is the scope of this article, this may seem like an awkward
annoyance as it is entirely possible to directly use the DDE with elementary nonlinearities; the results
of this article will follow straightforwardly, albeit handling Chebyshev and Taylor expansions of elementary
nonlinearities. On the other hand, generating the polynomial DDE is easily done (e.g. see [20]) and
is mot an innocent decision. From a numerical perspective, multiplication is a matural operation for
Chebyshev series expansions: their interpretation as cosine series facilitates multiplication via discrete
convolutions. From a theoretical perspective, the Banach algebra structure enjoyed by Chebyshev series
is most easily exploited in computer-assisted proofs when the nonlinearities are polynomial. The reader
will see in our strategy a flexible numerical technique for which computer-assisted proofs techniques can
be applied as easily as possible.

Example 1 (Cubic Ikeda equation). The Ikeda equation

d .
ﬁw(t) = sin(w(t — 7))

was introduced in [24]. This simple DDE also displays a chaotic attractor and is often found as a sister
equation to the Mackey-Glass equation (1)) in the literature. In the present article, we will not consider the
full sine nonlinearity. Indeed, it has been thoroughly explored and we rather emphasize the Mackey-Glass
equation. In [44], Sprott discusses how a low-order rescaled Taylor expansion of the sine nonlinearity



can be considered while still retaining complex dynamics; the resulting DDE is the so-called cubic Ikeda
equation given by

Z70(t) = wi(=7) —wi(=7)* (5)

We will use this cubic scalar DDE as an illustrative and intuitive template to guide the reader through
the forthcoming complex notions of the article; its (numerically) chaotic attractor is shown on Figure
Then, u = w satisfies the DDE of the form with n =1 and

fu), ue(=7)) = u(—7) — Ut(_7)3- (6)

Example 2 (Mackey-Glass equation). Consider the Mackey-Glass equation (L). We define o1 (w;) =

we(1+w)) ™Y, pa(wy) = wf™?

Withn:1+d:4and

and @3(wy) & w; . Then, u = (w, vy, v, v3) satisfies the DDE of the form

0)(u5(8) — pr(DaE) (w15 (o)

| v (®)(v3(E) — pur(t t)( —aw(t)+ b (v1):(—T7

Jlult) () = 3@—2wx>3w —aw(t) +b- (v)(~7) | @
03(8)2( — aw(t) + b+ (v1)(~7))

A similar polynomial system for the Mackey-Glass equation was first presented in [46] where the authors
prove the existence of periodic orbits in DDEs. Their method is based on Fourier series expansions
for which the resulting Banach algebra structure is, again, most easily exploited with polynomial non-
linearities. Incidentally, note that, in the process, the equilibrium 0 of the Mackey-Glass equation
has become a singular point. This should bear no impact in the present context since the numerically
observed chaotic dynamics remain bounded away from 0.

Now, since f is locally Lipschitz, there exists ¢, > 0 such that, for all ¢ € [0, ¢.), the solution operator
of the DDE is a strongly continuous semi-flow S; : C([—7,0],R™) — C([—7, 0], R™) defined by

[Se(9)](s) = / F([Se(9)](0), [Sy (9))(=7)) ¥, t 45> 0,
ot + s), t+5<0,

for all s € [—7,0]. Following the strategy presented in [34], the solution operator induces a discrete
dynamical system (DDS) by considering the time-7 map representing the forward integration of fixed
step-size 7, namely

{¢wax ®

pec”,
where C" & {¢ € C([-7,0],R™) : Si(¢) exists for all t € [0,7]} and

Hence, F(¢), for a given ¢ € C", is implicitly defined as the unique solution of
u(s) = [T (u, 9)](s), for all s € [-7,0],
where s
[T(u,9)](5) = 6(0) + [ flu(s'),d(s)ds',  forall s € [-7,0]. (10)

The DDS yields a discretization of the DDE and corresponds to the formalism behind the
numerical scheme to solve DDEs known as the method of steps (e.g. see [10]). The following lemma
summarizes the correspondence between the solutions of the DDE and the solutions of the DDS .



Lemma 1.2. Let 7 >0, m € N, and ¢ € C([—7,0],R™). The following statements are equivalent:
1. t € [0,m7] — Si(¢) is a solution of the DDE ().
2. j€{0,...,m—1} = Fi(¢) is a solution of the DDS (8.

Proof. By construction, the existence of a solution t € [0, m7] — S;(¢) of the DDE ({3)) is equivalent to
¢ = So(),S(¢), ..., Sm-1)r(¢) € C™ such that

Sj (¢) = ST(S(j—l)T(¢)) = f(S(]—l)T(¢)) =...= Jt](¢)7 ] = 07 cee, M= 1.
In other words, j € {0,...,m — 1} — FJ(¢) is a solution of the DDS (8). O

The essence of the method presented in this article is to pursue the transverse homoclinic orbit of a
mr-periodic solution of the DDE with the DDS , whose dynamics are given by a compact operator:
the time-7 map F.

1.2 Structure of the article

In Section [2| we present a zero-finding problem to compute periodic orbits of the DDE . In Section
we investigate the spectrum and eigenvectors. Then, in Section [4] we present the computation of the
unstable manifold. In Section [5] we combine all the ingredients to formulate a BVP as a zero-finding
problem yielding a transverse connecting orbit; the scheme guarantees the transversality through the
invertibility of the derivative of the map. We also illustrate the strategy in each section with the cubic
Ikeda equation. Lastly, in Section [6] we apply our method to compute a transverse homoclinic orbit for
the Mackey-Glass equation.

The code implementing the method presented in this article can be found at [22]. The code relies
on RadiiPolynomial [21], a library — written in Julia [I] — for computer-assisted proofs in dynamical
systems. We make no attempts to perform rigorous numerics in this article, yet the library provides
useful resources to easily implement the method presented in this article. Lastly, to visualize the data
we use Makie [8].

2 Computation of the periodic orbit

Let m € N. A m7-periodic orbit of corresponds to a m-periodic orbit of ; that is, a fixed-point of

the mapping ¢ — F™(¢) (F composed with itself m times). Since working directly with m compositions

of F is laborious, we prefer unrolling F™ at the cost of working with a DDS comprised of more equations.
Thus, we consider the following multiple shooting scheme for the DDS

F(dm)
. aa | Flen)
¢~ F(¢) = ) (11)
]:((bm—l)
¢e(cm)m,
such that ]i'(qﬁ), for a given ¢ € (C™)™, is the unique solution of
[F())(s) = [T(F(),0)l(s),  forall s € [-7,0], (12)
where
T(ula (bm)
o T )
gy | T (13)
T(“m? d)mfl)



The following lemma summarizes the correspondence between periodic orbits of the DDE , periodic
orbits of the DDS and fixed-points of the DDS .

Lemma 2.1. Let 7 >0, m € N and ¢ € C([-7,0],R™). The following statements are equivalent:
1. t e R/m7Z — Si(¢) is an m-periodic orbit of the DDE (3).
2. j € Z/mZ v FI(¢) is an m-periodic orbit of the DDS .
3. (¢, F(¢),...,F"1(¢)) is a fived-point of the DDS ({1]).

Proof. The fact that Point 1 and Point 2 are equivalent follows immediately from Lemma [T.2] Moreover,
Point 2 means that ¢, F(¢),..., F™ 1(¢) € C™ such that F(F™ 1(¢)) = ¢. By construction, this is
equivalent to

F(Fm=1()) ¢

; Flo F(o

F(¢. F(9),-... F"H(9) = ( ) = ( " m
F(Fm=2(9)) VA

Hence, Lemma states that the computation of an mr-periodic orbit of the DDE amounts to
the computation of a fixed-point ¢ = (c1,...,¢n) € (C([—7,0],R™))™ of the DDS (11)); namely,

ci(s) =cm(0)+ [ fler(s'), em(s))) ds,
s for all s € [—T,0]. (14)
¢j(s) =ci—1(0)+ [ flej(s)cjma(s))ds's j=2,....m,
Recall that the right-hand-side of the DDE is polynomial, thereby guaranteeing that its periodic
solutions are analytic (e.g. see [39]). A practical basis for analytic functions on [—7,0] are the Chebyshev
polynomials of the first kind given by

T, (t) = cos(aarccos(t)), a=0,1,2,... and te[-1,1]. (15)
Thus, we expand ¢y, ..., ¢, as the Chebyshev series
ci(s(t)) ={c;}o+2 Z{cj}aTa(t), for all t € [-1,1], j=1,...,m,
a>1

where s(t) = Z(t—1) scales [~1,1] to [~7,0]. The analyticity of c1, ..., ¢, implies that there exists v > 1
such that their sequence of Chebyshev coefficients belongs to

g,l, def ac CNU{O} . |a‘€,1/ def |{a}0| +QZ |{a}a‘y0‘ < o0
a>1

Remark 2.2. The reader may wonder why (L is a sequence space over the complex field C and not the
real field R since we only care for real solutions of the DDE . For now, it suffices to say that this
slight generalization will allow us to handle the case of complex unstable eigenvalues.

The sequence space £} is a Banach algebra with the discrete convolution product

axb = ¢ fa},_p{b}y ., foralla,be( (16)

BEZ a>0

which corresponds to the natural convolution in Fourier space through . It follows that there is a
natural mapping, denoted with the same symbol, f : (£1)" x (£1)™ — (£1)" defined by replacing products



of Chebyshev series with the aforementioned convolution product *. There should be no confusion from
this abuse of notation since f denotes in both cases the same polynomial where the algebra depends
directly on the nature of its arguments.

Then, the system of equations is equivalent to

C1 = E(Cm) + S(%f(clﬂ Cm))7
c; =E(cj—1) +8(5f(cj,¢-1)), j=2,...,m,

where E,S : (£1)" — (£1)™ represent the evaluation at 1 and the integral from —1 to s respectively.

Namely, for all a = (ay,...,a,) € ({})" andi=1,...,n
{ai}0+22{ai}6a a=0,
{(E(@)i}a & p>1 (17a)
0, a>1,
{ai}o — {al}l -2 Z j{a{}57 a=0,
{(S(a)i}a = A (17D)
{ai}afl - {ai}aJrl a>1
20 ’ -

We now formalize our search for a periodic orbit of the DDE (2)) as a zero-finding problem. There
are two cases to address: either the DDE coincides exactly with (2]), or is an auxiliary polynomial
DDE of the original DDE (2]).

To start with, suppose that the DDEs and are identical, so n = 1. Consider the mapping
Fo : R x (£ nRNOH™ 5 R x (£L nRYV0})™ defined by

{E(cm)}o =0
E(cm) +8(5 f(c1,em)) — 1
F.(7,c) S E(c1) +S(5f(ca,€1)) —c2 ’ (18)

E(cm-1) + S f(Cm: emo1)) — €m

where § € R is fixed. If Fo(r,¢) = 0 with 7 > 0, then c4,...,c,, are the sequences of Chebyshev
coefficients of an m7-periodic orbit of the DDE (@2)). Observe that we impose {E(c,,)}o—8 = 0 to quotient
out the temporal translation invariance of the periodic orbit which transpires in the DDS as a 1-
parameter family of fixed-points. The specific choice of ¢ is determined from the numerical observations.
Additionally, this condition is compensated by solving for the value of the delay 7 for which the period
is a multiple of the delay.

On the other hand, when the polynomial DDE is in fact an auxiliary polynomial DDE (recall the
construction of f given in ) of the DDE with elementary nonlinearities, a zero of the mapping
F, does not necessarily yield a periodic solution of . Indeed, one must append the extra conditions
vo = ¢(wp) for solutions of to coincide with solutions of (2). According to Lemma 3.2 in [20], this
requirement can be compensated by introducing unfolding parameters. We note that there is a slight
limitation in the current statement of this lemma as the proxy variables n € R? cannot compensate the
equality vg = ¢(wg) set on the function space C([—7, 0], R?). Nevertheless, the proof of the lemma actually
proves the stronger and more useful result that it suffices to impose the equality vo(0) = [p(wp)](0) on
R?. We report this small modification of the result in the following lemma.

Lemma 2.3. Consider a DDE (2) with elementary nonlinearities and its auziliary polynomial DDE ,
where f has the form given in Letn € RY and t € R — uy = (wy,v¢) € C([—7,0],R*™?) be a periodic
solution of

dum—( g u(t), (7)) )

dt 7 \g® (u(t),ue(=7)) +n) "
If v(0) = [p(w0)](0), then t € R — wy is a periodic solution of (2)); in other words, n = 0.



Proof. See the proof of Lemma 3.2 in [20]. O

For all (1,7, ¢) € RxRIx ((£1)1T4)™ and ¢; = (cgl), cgg)) € (¢1)1*4 such that 051) el c§.2) € (£1)4 for
j =1,...,m, consider the mapping Fo elom : R x R x ((£L NRNAON)IHdym R xR x ((£L NRNVAOH)1+dym

defined by

E(cm) +S (5 f(ci,cm) + <L(2)) —c
Focten(7,1,0) = | B(e) +8 (5 f(eaer) + (42)))) I 1

Elen 5 (2rtemens (o)) —en

where ((§) is understood as [¢(k)](0) where x(s) = 6 for all s € [—7,0] and ¢ : C? — (£1)? is the injection

e 1y - 07 .

{(n)i}e =M ¢ i=1,...,d, forallnecCd (20)
0, a>1,

According to Lemma if Fo elem (7,7, ¢) = 0 with 7 > 0, then n = 0 and cgl), R c%) are the sequences

of Chebyshev coefficients of an mr-periodic orbit of the original DDE .

2.1 Numerical considerations

The role of the zero-finding problems F, and Fo clem are to obtain the central object of our
Poincaré scenario: the periodic orbit whose unstable manifold intersect transversely its stable manifold.
From a practical point of view, only finitely many Chebyshev coefficients can be handled by a computer.
So, given an order N € NU {0}, we define the truncation operator «? : £1 — (% by

: <N

aft, = a 4= or allae f,.

7TN def { }a; ) f 1 gi
0, a> N,

This operator extends in a natural fashion to C by acting as the identity and to cartesian products of C
and ¢ by acting component-wise.

The general gist to implement the zero-finding problems F, and F, ciem is to store the Chebyshev
coefficients as numerical vectors for which one defines the convolution product x , the evaluation
operator E and the integration operator S . We rely on the RadiiPolynomial library [21] to
handle this.

Then, an approximate zero of Fo (resp. Fo elem) is obtained by applying Newton’s method to the
finite dimensional problem wVF, 7w (resp. 7VF, clemm™). To be explicit, having an initial guess
7> 0,¢ € N (L NRYHOH™ (typically generated from the time series of a numerical integration of the
DDE ({3)), one recursively applies the iterates

(2) — (Z) — (#NDF,(7,e)xN) ' 7 NF, (7, ), (21)
and similarly for Fg cem. Concerning the choice of the truncation order N, one typically adjusts it
depending on the available memory and the tolerance below which one deems the remaining terms
negligible; the latter is bound to the precision used for the computations, e.g. machine precision is of
order ~ 10716 in double precision.

Let us expand slightly on the memory consumption of the scheme. We work with truncated se-
quence spaces 7 (£ N RNU{O}) consisting of sequences with N + 1 non-trivial Chebyshev coefficients in



R. Hence, formally, the mapping 7V F Y sends R'"*7(V+1) into itself; similarly, 7V Fo glemm? sends
R1+d+mA+d)(N+1) into itself. While we do not detail this, depending on the profile of the solution (how
large m and N are) one may want to exploit the structure of the Fréchet derivative DF, and DF elem
as these block-wise operators have sparse matrix representations.

We conclude this section by detailing the computation of a mr7-periodic orbit in the numerically
observed chaotic attractor of the cubic Ikeda equation (see also Figure [Lb)).

2.2 Example: periodic orbit for the cubic Ikeda equation

Consider the cubic Ikeda equation . We first fix a value for the delay 7 within the numerically observed
chaotic window 1.538 < 7 < 1.723 (e.g. see [44]). By a standard method of steps (using, for instance,
the Tsitouras 5/4 Runge-Kutta method), we sweep the chaotic attractor, looking for a periodic orbit.
Once an approximate periodic time series is identified, we perform a simple parameter continuation with
respect to the delay 7 so as to have approximately a period m7 for some m € N.

Next, we split into m pieces the time series of the periodic orbit and retrieve their Chebyshev series.
At this point, we have obtained an initial guess for Newton’s iterations . Precisely, for the cubic
Ikeda equation, f, given in @, is polynomial and acts on the sequences of Chebyshev coefficients as

f(a,b) = b — b*3 where b** = b« ... xb. It follows that
~—_———

k times
{E<Cm)}0 - 5
E(cn) +S(5(cm —€2)) — ¢
Fo(r,¢) = E(c1) +S(3(c1 —¢f?)) —ca |

where the phase § is prescribed by the numerical data, and

DF,(t,c)
= (DTFO (Ta C) Dcl Fo (T7 C) DC2 FO (7-, C) .. DCmFO (7—7 C))
0 0 o -- 0 E
S(3(cm —ci?)) -1 0 - 0 E + S[Z(I - 3M..2)]
— S(z(c1—¢i®))  E+S[ZI-3M2)] -1 0
S(L(em_1 - €51)) 0 E+S[3(I-3M,.2 )] 1

where I is the identity on £} and M, : £, — ¢1 is the multiplication operator of a given a € £, specifically
M. (b) = ax b for all b € £1. Observe that f(a,b) is independent of a, which has simplified a little the
expression for DF, (7, c).

In our case, we identified a time series of a m7-periodic orbit with m = 8 and a phase § = 0. We
choose the truncation order N = 30 for the Chebyshev series. Therefore, the Newton iterations are set
on R x oV (fL nRNAOH™ ~ R x RMV+D) ~ RIF8x31 — R249 " Performing Newton’s iterations yields
Tinit ~ 1.5649592985680902 and the sequences of Chebyshev coefficients Cinit = ((€init)1, - - - » (Cinit)m) €
V(0L N RNAOH) ™ Figure [2] shows the approximate m7-periodic orbit and the average of the sequences
Chebyshev coefficients.

3 Computation of the eigendecomposition

To describe the intersection of the invariant manifolds of a periodic orbit of the DDE in the frame-
work of the discrete dynamics given by the time-7 map F, we begin by investigating the spectrum and
eigenspaces of the linearized problem.
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Figure 2: (a) m7-periodic orbit, with m = 8, for the cubic Ikeda equation. The dot corresponds to the
phase § = 0 of the periodic orbit. (b) Average {m =" 37" | [{(Cinit); }al}ax0 of the sequences of Chebyshev
coefficients of the mr-periodic orbit shown in (a).

The assumption that f is a polynomial guarantees that F is compact (e.g. see [16]). Its Fréchet
derivative inherits this property such that the spectrum of DJF is comprised of eigenvalues accumulating
at 0. Similarly, F and DF are also compact. The following lemma relates the Floquet multipliers of
the DDE ({3)) with the ones of the DDSs and . Note that it is important here that the discrete
dynamics are generated by the time-7 map of the flow of the DDE, and that these results would have to
be modified for more general Poincare sections.

Lemma 3.1. Let 7 > 0, m € N, ¢ € C([-7,0,R"), A € C and v € C([-7,0],C)". The following
statements are equivalent:

1. \™ is a Floquet multiplier associated to the mt-periodic orbit t € R/m7Z +— Si(¢) of the DDE
@). Namely, for j = 1,...,m, X™ is an eigenvalue of DSpr(S(j—1)-(¢)) with eigenvector v; =
[DFI=H(g)]v.

2. \™ is a Floquet multiplier associated to the m-periodic orbit j € Z/mZ — FI(¢) of the DDS
®). Namely, for j = 1,....,m, \™ is an eigenvalue of DF™(FI=1(¢)) with eigenvector v; =
DF ().

j2m(m=1)

3. N At XetTwm are eigenvalues associated to the fized-point ¢ = (¢, F(p),...,F™ L¢)) of
the DDS . Namely, for any k € {0,...,m—1}, the complex number Ay LN\ 5 is an etgenvalue
of DF(c) with corresponding eigenvector (vy, A tog, )\;(mfl)vm), where v; = [DFI=Y(¢)|v for
j=1...,m.

Proof. On the one hand, for j = 1,...,m, Lemma guarantees the equality S¢;_1),(¢) = Fi=1(¢),
thus (DS (S—1)-(¢))|v; = [DF™(F/~(¢))]v;. It follows that Point 1 is equivalent to Point 2.
Denoting ¢ = (¢1,. .-, ¢m), we have that

0 cee 0 DF(em)
o D]:(Cl) 0 0
DF(c) = .
0 D]‘—(Cmfl) 0



Therefore, fixing k € {0,...,m — 1}, we have that the equality

o AU DF (6o v
o D [DF($)Jv Ao
D]:(C) : = . = )\k :
N o) N DER ) A o
is equivalent to DF™(c;)v; = AJlv; = A™v; for j = 1,...,m. It follows that Point 2 is equivalent to
Point 3. O

Now, given a periodic orbit, the phase-space C([—7,0],R™) of the DDE can be decomposed into
C([-7,0],R") = E,@E . ®Es where Ey, E., Es are the unstable, center and stable eigenspaces respectively.
By compactness of the solution operator, E}, and F, are necessarily finite dimensional and correspond to
the span of the unstable and center (generalized) eigenvectors respectively.

Even though the time-7 map F is a priori implicitly defined by @[), it turns out that its Fréchet
derivative can be explicitly computed by noting that

DF(¢) = DyT(F(9),¢) = [DiT(F(9), 9)IDF(d) + D2T(F (), 9),

where

([DiT(F(¢), 9)lul(s) = /s [Drf([F(@)I(s), &(s))]u(s") ds',
o for all u € C([—7,0],R"),

S

([D2T(F(9), ¢)Jul(s) = u(0) +/ [D2f([F(@)I(s"), ¢(s")]u(s) ds’,
Since D1 T (F(¢), ) is compact, I — D1 T (F(¢), ¢) is invertible if and only if it is injective. We have that
(I = DiT(F(¢),¢))u = 0 is the integral form of a linear ODE. By uniqueness of the solution, it follows
that v is identically zero. Therefore, the injectivity holds and so does the equality

DF(¢) = (I = DiT(F(9),¢)) ™ D2T(F(9), ).

According to Lemma the spectrum and eigenspaces of a m-periodic orbit ¢;, for j =1,...,m, of
the DDS can be equivalently studied with [DyF™ (¢)]g=,, for some j € {1,...,m}, or DF(c), with

cE (c1,-..,cm) being a fixed-point of the DDS . Despite the fact that we compute the periodic orbit
as a fixed-point of F (cf. Section , we favour looking at the eigendecomposition of [DyF™(¢)]p=c, -
The reason is that in practice, numerical errors tend to tarnish the eigenvalues accumulating to 0. The
spectrum of DF(c) is then laborious to parse since it contains m copies, coming from the m-th root, of
each eigenvalue of [DyF™ (4)]g=c,-

By using the chain rule, we can then compute the eigendecomposition of DF™(c;). More precisely,
let ¢ = (cy,...,¢p) € ((€1)™)™ where c; is the sequence of Chebyshev coefficients representing c;. Define

H;(r,c) < (I-S[5D1f(cjs1,¢)]) (E+S[5Daf(cjp1,¢)]),  j=1,....m—1,
H,,(7,¢) < (I—S[5D1f(c1,¢m)]) " (E+ S[5Daf(c1, em))).

Consequently, for j = 1,...,m, we have that [DyF™(¢)]gp=., is represented by
H,(1,c) £ H,;_i(r,¢)-H; o(r,c)-...-Hi(r,¢) - Hy(r,¢) - Hp 1 (r,¢) ... - Hj(r,¢).  (22)

Suppose we have a Floquet multiplier A™ of [DyF™(¢)]¢=c,, for some j € {1,...,m}. In the forth-
coming Section [4] to parameterize the local unstable manifold, we will need to retrieve the eigenvector
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of DF (¢) associated with A. According to Point 3 of Lemma this eigenvector is represented by
v =(v1,...,vm) € ((£1)™)™ where v; is the eigenvector of H; associated with A™ such that

[Hl(T, C)]Vl = )\mvl,
vy = ATHH (7, ¢)]vy, (23)
vi =AM H; 1 (1,0)]v;1 = AUV [H;_((r,¢)] ... [Hi(r,0)]lvi,  j=3,...,m.

So far, we have characterized the Floquet multipliers and eigenspaces for the polynomial DDE ({3)).
However, Lemma does not hint on what the spectrum and eigenspaces are for the DDE (2|) when the
DDE is an auxiliary polynomial DDE of . According to Theorem 3.5 in [20], if the periodic orbit
of the auxiliary polynomial DDE represents a periodic orbit of the DDE , then the stable and
unstable Floquet multipliers are identical and the associated eigenvectors coincide. On the other hand,
the d additional coordinates in the construction of f, given in[d] introduce d center Floquet multipliers
whose eigenvectors do not pertain to the original DDE ([2)); in particular, if the periodic orbit is hyperbolic,
then dim E; = 1 + d. This last claim can be made rigorous from the results presented in [20]; although,
for the needs of this article, we shall be satisfied by observing this numerically.

3.1 Numerical considerations

Consider an approximate zero 7 > 0, € = (€1,...,¢y) € w¥((£1)™")™ of Fo, or Fo clem (cf. Section [2.1)).
Then, for j =1,...,m, we have that the operator H; given in is approximated by

HY (7,¢) ©HY ,(7,¢) - HY ,(7,¢)-... - HY (7,¢) - HY(7,¢) - HY_,(7,¢) ... - HY(7,¢), (24)

J m—1 J
where
HY (7,¢) = (o — wVS[ZD1 f(€jh1, €)™ ) HExY + aVS[IDaf (€41, ¢)]nY), j=1,...,m—1,
HY(7,¢) = (7N — aNS[Z Dy f(e1,en)]7™) M (ExY + wVS[ZDaf(C1,Em)]mN).

Clearly, HY (7, ¢) can only provide a finite portion of the spectrum of [DyF™(¢)]¢=c,, namely n(N +
1) many eigenvalues. Nevertheless, the missing eigenvalues get closer to 0 as the truncation order N
increases. To give some insights, we sketch the argument. The operators H;V define a sequence, with
respect to NN, of finite rank operators converging in norm (inherited from ¢!) to H; whose spectrum
is identical to the one of [DyF™(#)]g=c;. It turns out that for any ¢ € [0, 1], the eigenvalues of the
homotopy ¢ +— (1 — ()H} (7, ¢) + (H;(7,c), which are not eigenvalues of HY (7,c), are contained in a
disk in € which shrinks as N grows. The interested reader may refer to [33], and references therein, for
more details as well as an application of this property to rigorously validate the spectrum of equilibria
for DDEs.

Furthermore, the eigenvectors vi,...,v,, given in are approximated by vi,...,v,, € wN(£L)"
satisfying - o
BY (7,0)lvi = A"V, vy =A'HL(7,0)vi1, j=2,...,m. (25)

We conclude this section by detailing the computation of the eigendecomposition associated with the
mr-periodic orbit obtained for the cubic Ikeda equation (cf. Section [2.2)).

3.2 Example: eigendecomposition for the cubic Ikeda equation

For the cubic Ikeda equation , f(a,b) is independent of a, such that the operators I:Iy reduce to

HY(r,c) = Ex" + nVS(F[I- 3Mc;2})7rN, j=1,...,m—1,

H) (1,¢) = Ex" + 7VS(Z[I — 3Mc.2])w".

12
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Figure 3: Collection of N + 1 = 31 Floquet multipliers associated with the m7-periodic orbit shown on
Figure |2 for the cubic Ikeda equation. The black dashed circle is the unit circle. There is 1 unstable
eigenvalue (red dot), 1 centre eigenvalue (green dot) and 29 stable eigenvalues (blue dots). Note that due
to the proximity of the stable eigenvalues, only a single blue dot appears on the figure.

We numerically retrieve the spectrum of H{V (Tinit, Cinit), given in , with 7Tinie > 0 and Ciniy €
N (£1)™ computed in Section in particular, here m = 8 and N = 30. The numerical spectrum
consists of N +1 = 31 eigenvalues; Figure [3|suggests that the periodic orbit has a single unstable Floquet
multiplier i ~ —4.624622928960324. We choose arbitrarily one of the m-th root A\ = |ﬂ\i6’%. For

j=1,...,m, we consider the approximate unstable eigenvector v; € v éll, of H;V (Tinit, Cinit) associated
with A™ as given by (25]). Specifically, we have
[HY (Tinit> Cinit)]V1 = A7'¥1, Vi =AY ExN + aVS(Tyn I - 3M(6in;t);il])7"N)‘7j—1’ J=2,...,m.

4 Computation of the unstable manifold

To construct a homoclinic orbit for a periodic solution, we first compute the unstable manifold via the
parameterization method. The essential references for the parameterization method are the three articles
B, 4 B]. The parameterization method was extended to equilibrium and periodic orbits of DDEs in
[14, 23], and in the last reference just cited the authors obtain validated, computer assisted bounds on
the discretization and truncation errors. We refer also to the works of [I3] 45], where parameterization
methods for computing stable/unstable manifolds attached to periodic orbits of explicitly and implicitly
defined finite dimensional discrete time dynamical system are developed. The technique developed below
extends this work to infinite dimensional, implicitly defined, compact maps.

Loosely speaking, the idea is to find a parameterization characterized as a mapping lifting the trajec-
tories from the unstable eigenspace onto the unstable manifold. An appeal of this method is that, under
a non-resonance condition for the eigenvalues, the resulting parameterization is not constrained to be a
local graph.

Let ¢ € C([-7,0],R") and t € R/m7Z > Si(¢) be a mr-periodic orbit of the DDE (3). Assume
that DSy, (¢) has no defective unstable eigenvalues AT*,..., A" € C (i.e. the associated eigenvectors are
linearly independent and span E,). Consider the diagonal matrix

A1 0
AE
0 Ang
We look for a mapping P : (R/m7Z) x C™ — C™ which acts as a topological conjugacy between the
semi-flow of the DDE and the corresponding linearized flow about the m7-periodic orbit, namely
P(t+ 6 (mod mr),AY70) = S,(P(0,0)), (26)

where t € R, # € R/m77Z and 0 € C™. Note that if holds, then the solution operator S, defines
a flow, i.e. is well-defined for ¢t < 0, on the image of P. Moreover, evaluating at ¢ = 0 shows that
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t — P(t+ 6 (mod m7),0) is a periodic orbit of the DDE (3)); it also follows that trajectories on the
image of P goes to this periodic orbit as ¢ — —oo. In other words, the conjugacy P, if it exists, yields a
parameterization of the unstable manifold.

Note that we slightly constrained the image of P to C™ instead of C([—7, 0], R™) since we wish to deal
with the phase space of the DDE , the DDSs and altogether.

The question of existence of P is especially relevant in the context of DDEs where it is common for
solution operators to not be one-to-one. In such cases, the unstable manifold may collapse into a lower
dimensional manifold. However, even then, there exists a small enough neighbourhood of the periodic
orbit for which the local unstable manifold is a graph over the unstable eigenspace. Hence, P would be,
at best, a local graph of the unstable manifold. Yet, we stress that P does not have to be a graph. In fact,
for analytic DDEs (as in the context of this article) trajectories on the unstable manifold are analytic,
the one-to-oneness of the solution operator on this manifold is guaranteed and the unstable manifold is
analytic. See for instance [16].

Then, it is known (see [3], [, [5]) that a mapping P satisfying the conjugacy relation always exists
provided that the eigenvalues AT",..., AT! are non-resonant; the definition of non-resonant eigenvalues is
reported below.

Definition 4.1. A collection 1, ..., ux € C of eigenvalues are non-resonant whenever the equalities

Pt XX p S = g, j=1,..., K,
for aq,...,ax € NU{0}, only hold for the trivial case o =1, oy =0 for alll=1,..., K, 1 # j.

The following lemma details the relation between the parameterization of the local unstable manifold
of a periodic orbit of the DDE and the DDSs and .

def

Lemma 4.2. Let 7 >0, m € N, ¢ € C([-7,0,R"), A1,..., \n, € C, A = diag(A\1,...,A\n,) and U be
an open subset of C™. Assume that t € R/m7Z — Si(¢) is a mr-periodic orbit of the DDE with

non-resonant unstable Floquet multipliers A\T", ..., A" . The following statements are equivalent:

1. P: (R/m7Z) x U — C™ parameterizes a local unstable manifold and satisfies the conjugacy relation
P(t+ 6 (mod mt),A""0) = Sy(P(0,0)).

2. P1y...yPm : U — C™ parameterizes a local unstable manifold and satisfies the conjugacy relations
P1(Ao) = F(Pm(0)) and P;j(Ao) = F(Pj-1(0)) forj=2,...,m.
3. P:U— (C™)™ parameterizes a local unstable manifold and satisfies the conjugacy relation P(Ao) =
F(P(0)).
Proof. Assuming Point 1 holds, for j = 1,...,m, define P;(0) = P((j — 1)7,0). By construction, the
images of Py, ..., P, cover the local unstable manifold of the periodic orbit. According to the conjugacy
relation P(t + 6 (mod m7), A" 7¢) = Sy(P(6,0)), it follows that

Pi(Ag) = P(0,Ac) = S-(P((m = 1)7,0)) = S+ (Pm(0)) = F(Pm())-

Repeating this argument for j = 2,..., m, we obtain P;(Ac) = F(Pj_1(0)) as desired.
Conversely, if Point 2 holds, then for any § € R/m7Z, define P(f,0) = Sp(P1(A=%/75)). From the
conjugacy relations satisfied by P;, for j = 1,...,m, we have that

P((j = 1)7.0) = 8317 (Py(A~00)) = FIUPL A0 o)) = P (o).

Thus, by construction, the image of P covers the local unstable manifold of the periodic orbit. Now,
given t € R and 0 € R/m7Z, we have

P(t 46 (mod m7), AY7a) = Sy, o(PL (A~ TAYT5)) = S,(Sp(P1 (A% 0))) = S:(P(6, 0)).
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Lastly, Point 2 is equivalent to Point 3 from the equality

21(1120) J’;(Zm(a))
P(As) = 2(: -] 7 :I(U)) — F(P(o). 0
Pm(Ao) F(Pm—1(0))

As we computed the mr-periodic orbit of the DDE by working with the DDS , we shall
retrieve its unstable manifold in the framework of the DDS . From the equivalence between Point 1
and Point 3 of Lemma the resulting unstable manifold can be expressed in the context of the DDE
(3). Henceforth, we consider P, as described in Point 3 of Lemma satisfying the conjugacy relation

o

P(Ao) = F(P(0)). (27)

The parameterization P can always be written as an analytic function on D™, where D = {zeC:
|z] < 1} is the unit open disk in the complex plane. Indeed, let

PO = S i[DgP(U)]UZO(s)UO‘, for all s € [~7,0], max |oi] <7,

’ i=1,...,nq
la>0
. . . (o3
where v > 0 is the radius of convergence of the series, |a| = a1 + ... + an,, 0% = of' X ...0on ",
« . .. . .
al = o! X ... X ay,! and Dy = Dgt...D,". We shall carry on this standard multi-indices notation

throughout this article. Then, the conjugacy relation yields
P(0) = F(P(0)) and  N[DZP(0)]y=o = [DF(PO)][DEP(0)] gm0, L=1,... 00,

where (€)) is the Kronecker delta, that is (e;)r = 1 if k = [ and 0 otherwise. Thus, the zero-th order
(i.e. |a| = 0) Taylor coefficient is a fixed-point of the DDS and each order 1 (i.e. each |a| = 1)
Taylor coefficient corresponds to an unstable eigenvector. Moreover, from the Faa di Bruno formula [7],
we obtain

[Dg%(P(AU)v P(U>)]a:0

)\DL
al

1
al

= DT (P(O). PO))( :

al

[D5P(0)]o=0 ) + [DT(P(0), P(O)] ([D5P(0)]o=0) + Ra(P(A0), (o)),

where R, (P(Ac), P(c)) only depends on the lower order Taylor coefficients % [DEP(0)]g=0 for |B| < |al.
From this equality and the conjugacy relation 7 it follows that the higher order Taylor coefficients are
explicitly given by the formula

1 . . -1
LIDSP(@))om0 = (X1 = XDLT(P(0), P(0)) = DT (P(0), P(0)) Ru(P(Ao), (o)), o] >2
‘ (28)
Choosing the scaling of the eigenvectors to be ~y [;’TZP(J)LZO, for l =1,...,ny, the recurrence relation

(28) generates the series

let|
Z %[D?’P(U)]U:Q(S)Ua, for all s € [-7,0], 0 € D™,
laj>0

which is equal to P(yo). Hence, we have obtained a parameterization of the local unstable manifold,
satisfying the conjugacy relation , whose radius of convergence is 1 as initially claimed.

Remark 4.3 (Image of the parameterization and covering of the local unstable manifold). The parameter-
ization of the unstable manifold may be complex-valued in the event of complex eigenvalues. The unstable
manifold is real and is covered by the image of the parameterization intersected with C([—7,0],R™). The
set of such values in the domain D™ which yields a real image is entirely traceable from the nature of the
eigenvalues. The general case of n, unstable Floquet multipliers may be deduced from the three following
cases:
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o there is a single unstable eigenvalue \™ > 1, then P(o) € C(|—1,0],R™) for all o € (—1,1).

e there are two complex conjugate unstable eigenvalues A\, \* € C (where the star symbolizes the
complex conjugacy), then P(o,0*) € C([—7,0],R™) for all 0 € D.

e there is a single unstable eigenvalue N'™ < —1, then, without loss of generality, A = |)\m|%ei%
and the corresponding eigenvector is (vi, A" va, ..., A" Yy ) with v; € C([-7,0],R") for j =
1,...,m (¢f. Lemma , It follows that Pj(eiwa) € C([-7,0],R™) for all o € (—1,1) and
J=1,...,m. In this case, the manifold is non-orientable, it is topologically equivalent to a Mobius
strip: according to the conjugacy relation ([27), we have that F™(P(|A™| o)) = P(A™|A™|"1o) =
P(—0) for allc € D.

While possible to construct a zero-finding problem in the same vein as in Section [2] we favour gen-
erating the parameterization of the local unstable manifold via an explicit recurrence relation. First, for
j=1,...,m, we expand P; as the Taylor-Chebyshev series

[Pi(0)](s(t)) = Z {pjtoa +2 Z{pj}ﬁ@Tﬁ(t) 0%, for all t € [-1,1], o € D™,
R p>1

where s(t) & Z(t — 1) scales [~1,1] to [-7,0]. Also, we define {p;}a = {{P;}g.a}s>0 € (£L)" for
|a] > 0. In other words, {p}a = ({P1}a;---,{Pm}a) denotes the sequences of Chebyshev coeflicients
corresponding to analytic functions in (C([—1,1],R™))™. The analyticity of P1, ..., P,, implies that there
exists v > 1 such that their sequence of Taylor-Chebyshev coefficients solving the conjugacy relation
belongs to

e) = qae (@) alne) = Y Hatale = Y | Hatoal +2) ) Halsalr” | <oo

|e|>0 ler|>0 B>1
This is a Banach algebra with the discrete convolution product

||
a®b Z {a}o—p* {b}s , for all a,b € £*(£}),

|B|=0 |a|>0

which corresponds to the Cauchy product for Taylor series whose coefficients are Chebyshev series. Since f
in the DDE is polynomial, there is a natural mapping, denoted with the same symbol, f : (£} (£1))" x
()™ — (£*(¢L))™ defined by replacing products of Taylor-Chebyshev series with the convolution
product ®. Once again, we believe that our abuse of notation will not lead to confusion; the algebraic
rules defining the polynomial f are unambiguously deduced from its arguments.

Remark 4.4. Let a = (aj,...,a,,) € ((*()™)™ with a; = ((aj)1,...,(aj)n) for j =1,...,m. For
(ceoln)ve?ience, 11/6 denote {ato = ({@1}a, .-, {am}a) € ((LL)")™ and {a;}a = ({(&j)1}as----{(@j)n}a) €
)t forg=1,...,m.

We draw the reader’s attention to the previously derived recurrence relation . The implication of
this sequence of equations is that, having computed the bundle of the unstable eigenspace (e.g. computed
from Section over the periodic orbit (e.g. computed from Section , the higher order terms of
the parameterization are simply obtained by recursively solving linear equations. To be precise, for
j=1,....m, fix {p;}o =¢; € (¢})" and {pj}e, = vju € ({L)", for I =1,...,ny, where ¢ = (c1,...,Cm)
is a zero of Fo, or Fy clem, and the unstable eigenvectors vy, ..., vy are given by forl=1,...,ny.
Then, the higher order Taylor-Chebyshev coefficients {p}, of the parameterization are given by solving
recursively the linear systems

(AQI - )‘aKl(T7 C) - KQ(Tv c)){p}a = Ra(TvL(Aa p)7p)7 ‘O‘| > 2, (29)
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with

R.(7,L(\, p).P)

|a]—1
S (; {f(Lw'TMpl)mﬁ“pm) — £(0,0) ~ [Df(0,0)] (L“’oﬁ 1p"1)>} )
T m
r lal-1 a1 L(mf' ' pa)
S|z f@lmy" "p2),mp p1) — f(0,0) — [Df(0,0)] el
— T b1 o
lal—1 laf—1 | L(m*  pn)
S g f(L( T pm) 7T pm—l) - f(0,0) - [Df(070)] |a|’1;1
T Pm—1 o
and where
{(nl'a}o s < {({Ja}a’ﬁ’ :g: i %: for all N e NU{0},a € £} (¢}), (30a)
L(\a) < {X*{a}a}ia|>0, for all a € £*(¢}), (30b)
S[5D1f(c1,¢m)]
S|ZD
Kl(T, C) def [2 1f(c2a Cl)] . (30(})
0 S[ le Cm, Cm— 1
0 .. 0 E+ S| g f(c1,¢m)]
S T
Ko(ro) [ © 13 Daf(e2, ca) . " (:) . (30d)
0 E + S[ZDsf (¢ Cmi)] 0

Again, we remark that the decay of the higher order coefficients is controlled by fixing the length of the
associated eigenvectors.

Let us review how such a parameterization of the local unstable manifold for the DDE yields
a parameterization of the local unstable manifold for the DDE . Suppose the periodic orbit of the
auxiliary polynomial DDE represents a periodic orbit of the DDE (2). Then, Corollary 1 in [20]
guarantees that the non-resonance property of the Floquet multipliers holds for both DDEs (2)) and .
Furthermore, Point 3 of Theorem 3.1 in [20] implies that the unstable manifold for both DDES (2) and
(3) coincide.

4.1 Numerical considerations

An approximation of the parameterization of the local unstable manifold can be obtained as follows.

Consider an approximate zero 7 > 0 and € = (€1,...,&m,) € #V((£1)")™ of F,, or Fo clem (cf. Section
2.1). Moreover, for | = 1,...,ny, consider the approximate unstable eigenvalue A" and associated

approximate eigenvectors vi g, ..., V., given by (cf. Section [3.1). Let A = (A1,...,\,,). For
j=1,...,m,set {pj}o =¢; and {p;}., = v;; for I =1,...,n,. Then, we have that p, generated by the
recurrence relation , is approximated by p, generated by the recurrence relation

YT XKy (7,¢) — Ko (7, €)nV {pla = 7V Ra(F. LA D). D), o] = 2. (31)

We conclude this section by computing the parameterization of the local unstable manifold associated
with the m7-periodic orbit obtained for the cubic Ikeda equation (cf. Section [2.2)).
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Figure 4: (a) Local unstable manifold of the m7-periodic orbit shown on Figure for the cubic Tkeda equa-
tion. (b) Representation in Chebyshev space of the parameterization of the local unstable manifold shown
in (a). The dots correspond to the periodic orbit. The numbers indicate the labelling of the m pieces; the
numbering follows the successive iterations of the time-7 map. (c) Average {m~! >y HPjtaslta,s20
of the sequences of Taylor-Chebyshev coefficients of the parameterization of the local unstable manifold
shown in (a).
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4.2 Example: unstable manifold for the cubic Ikeda equation

For the cubic Tkeda equation , f, given in @7 is polynomial and acts on the Taylor-Chebyshev
coefficients as f(a,b) =b — b® where b® b ® .- ® b.
k times

Consider 7iny > 0 and € € w7V (£L)™ computed in Section in particular, here m = 8 and
N = 30. Recall from Sectionthat the unstable manifold is expected to be 1-dimensional (i.e. n, = 1)
since there seems to be a singl