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Abstract. Stochastic systems often exhibit multiple viable metastable states that are long-
lived. Over very long timescales, fluctuations may push the system to transition between
them, drastically changing its macroscopic configuration. In realistic systems, these tran-
sitions can happen via multiple physical mechanisms, corresponding to multiple distinct
transition channels for a pair of states. In this paper, we use the fact that the transition
path ensemble is equivalent to the invariant measure of a gradient flow in pathspace, which
can be efficiently sampled via metadynamics. We demonstrate how this pathspace meta-
dynamics, previously restricted to reversible molecular dynamics, is in fact very generally
applicable to metastable stochastic systems, including irreversible and time-dependent ones,
and allows to estimate rigorously the relative probability of competing transition paths. We
showcase this approach on the study of a stochastic partial differential equation describing
magnetic field reversal in the presence of advection.

1. Introduction

Rare events in stochastic systems lie at the core of many applications in the sciences, de-
scribing phenomena as wide as regime changes and tipping points in Earth’s climate [1–4],
conformation changes of biomolecules and protein folding [5, 6], material sciences [7], ge-
netic switches [8, 9], etc. These applications have in common that the underlying stochastic
system spends very long times close to one macroscopic state, only to eventually switch to
a completely different regime due to small and random fluctuations. From the perspec-
tive of stochastic analysis, these rare but important transitions correspond to a stochastic
bridge, i.e. a realization of the process that starts in one but ends in another basin of at-
traction. A whole class of rare event algorithms have been developed to obtain information
about transition paths, from importance sampling, over genealogical particle algorithms to
Freidlin-Wentzell theory and large deviations. They are valid in different regimes, and have
different ranges of applicability (see [10] for an overview).

Due to the utmost importance of rare events in applications, several methods have been
developed to enhance the probability of observing such events in computer simulations.
Transition path sampling (TPS) [11–13] and string-based methods [14, 15] allow focus-
ing the computational effort in the simulation of the transition events, avoiding spending
time in sampling the fluctuations of the system within the metastable states. Umbrella sam-
pling [16–18], adaptive force bias [19–22] and metadynamics [23–25], allow reconstructing
the free energy landscapes of metastable systems, which are characterized by the presence
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2 METADYNAMICS FOR TRANSITION PATHS IN IRREVERSIBLE DYNAMICS

of at least two deep free energy minima. Free energy methods require a preliminary choice
of a small set of collective variables (CVs) which are supposed at least to distinguish all
the metastable states. It can be shown that if there are precisely two metastable states then
the optimal CV is the committor function [26, 27], and many methods have recently been
developed using machine learning and data science techniques in order to deduce or approx-
imate it [28–31]. TPS, if used only to simulate the transitions, does not require choosing a
CV, but some of its variants aimed at estimating the rate [32, 33] also require using a CV.
Most TPS-based techniques suffer from metastability in path space: if multiple competing
transition mechanisms exist, the trajectories generated by TPS typically remain confined in
a single reaction channel. To address this problem it has been suggested to perform meta-
dynamics in path space [12, 13, 34]. The idea, introduced in these works, is driving the
transition paths towards unexplored reaction channels by a history-dependent bias defined
as a function of a CV capable of distinguishing those channels.

Most of these approaches were developed specifically for applications in molecular and
atomistic simulations. In these systems the dynamics (typically) satisfies detailed balance,
and samples a stationary and currentless probability measure. However, many stochastic
models describing important physical systems do not satisfy these properties and regularly
detailed balance is violated [35–37]. The dynamics does not necessarily sample a stationary
probability measure, and even when this is the case this probability measure is often not
currentless. Stochastic Partial Differential Equations (SPDEs), which are used for example
for describing the mesoscopic dynamics of fluids, active matter system, and atmosphere or
ocean dynamics, often include explicitly time-dependent terms. Under these conditions,
defining a free energy is not possible, and most of the methods for studying rare events
cannot be applied in their standard form.

In this work we propose a principled approach which allows exploring the bridge en-
semble for any kind of dynamics, including irreversible dynamics. The approach is based
on the observation that the path probability density defined by the Onsager-Machlup-Jacobi
(OMJ) functional defines a currentless probability measure even if the stochastic dynamics
from which the action is derived does not [38, 39]. By performing Langevin dynamics in
path space one can generate an ensemble of paths with a probability proportional to the ex-
ponential of the OMJ action. This allows defining a meaningful free energy as a function of
virtually any collective variable, and use enhanced sampling methods to estimate this free
energy. In particular, in order to explore the free energy landscape in path space we use
metadynamics, following ref. [34]. This approach allows studying rare events generated by
irreversible and time-dependent stochastic processes and characterized by multiple com-
peting transition mechanisms. In the context of irreversible dynamics, the advantage of this
approach is that we can rely on the rigorously derived equivalence of the bridge measure
and the invariant measure of certain stochastic partial differential equations, as proposed
in [40–42] and formally generalized to arbitrary non-reversible systems [41].

In the following, we will first introduce bridge path sampling in section 2.1, and subse-
quently describe the metadynamics algorithm generally in section 2.2. We then show how
to apply metadynamics to transition paths to sample multiple competing transition mech-
anisms in section 2.3. Section 3 then demonstrates the applicability of the algorithm to a
multitude of examples, from a temporally oscillating doublewell in section 3.1, to a two-
dimensional irreversible stochastic differential equation (SDE) in section 3.2, and finally
in section 3.3 the stochastic Ginzburg-Landau equation with background advection as a
field-theoretic example with spatial extent. We conclude with a discussion in section 4.

2. Metadynamics in Pathspace

2.1. Bridge Path Sampling and Transition Path Sampling. Consider for Xt ∈ Rn the
stochastic differential equation

dXt = b(Xt, t)dt +
√

2εdWt , t ∈ [0, T ] , X0 = x− , (1)
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where b ∶ Rn×[0, T ]→ Rn is the deterministic drift vector field, andWt isRn-dimensional
Brownian motion. We are interested in drawing sample paths from (1), but conditional on
a (possibly rare) final condition XT = x+. Such trajectories are called stochastic bridges,
as they connect x− to x+ via the stochastic process (1). Sampling such bridges, i.e. drawing
paths from the bridge ensemble, is non-trivial, as simply integrating forward-in-time the
stochastic equation (1) has a very low probability of arriving anywhere near x+, in particular
in high dimension and/or if the final point is difficult to reach for the dynamics (i.e. if hitting
near x+ is rare).

Traditional examples for bridge sampling problems include molecular dynamics and
chemical reactions, where we are interested in transitions between a reactant and prod-
uct state of chemical molecules. Here, a well-developed theory of the form of transition
state theory (TST) and transition path sampling (TPS) exists. Many methods employed in
TPS, though, assume reversibility of the underlying stochastic process (with some notable
exceptions, such as forward flux sampling [33]), which is indeed fulfilled in the classical
molecular dynamics case. For equation (1), reversibility corresponds to demanding that the
drift is of the particular form b(x) = −∇U(x) for a potential U ∶ Rn → R. In that case, the
stationary density is explicitly known to be the Gibbs distribution ρ(x)∝ exp(−ε−1U(x)).

For general drifts b, i.e. for the irreversible setting, bridge path sampling can be at-
tempted as well, for example in the form of pathspace Langevin Markov Chain Monte
Carlo (MCMC) [40–42], which at least formally allows a generalization to non-reversible
systems [41]. This is the path we will take in the following.

Note that in (1) we restrict ourselves to additive Gaussian noise. Other forms of noise,
most importantly multiplicative Gaussian noise, would be a helpful extension of our work,
in particular because it allows to treat continuum limits of interacting diffusions and Dean-
Kawasaki dynamics [43, 44]. Unfortunately, multiplicative Gaussian noise comes with ad-
ditional complications for the definition of path space measures, so we will not consider
them here. Similarly, one might consider more general boundary conditions, such as sam-
pling problems where initial and final point are drawn from a probability distribution instead
of being prescribed.

2.1.1. The Onsager-Machlup functional and large deviation theory. In the vanishing noise
limit, ε→ 0+, transitions from x− to x+ of (1) are described by the minimizers, also termed
instantons, of the Freidlin-Wentzell action functional [45],

I[φ] = 1
2 ∫

T

0
∣φ̇ − b(φ)∣2 dt . (2)

This is because the probability of observing any given path φ(t) is given by P (φ(t)) ∼
exp(−ε−1I[φ]), as can be intuited by “solving” the SDE (1) for the noise, which has a
Gaussian distribution. Thus, considering all possible transition pathways φ(t) between x+
and x−, the minimizer will exponentially dominate all other scenarios. In other words,
for vanishing noise, the bulk of the transition trajectories between x− and x+ will lie in
the vicinity of the instanton trajectory. These minimizers can be computed efficiently by
numerical means [10, 46–50].

For finite noise, this functional must be amended by an additional term to obtain the
Onsager-Machlup functional

S[φ] = 1
2 ∫

T

0
(∣φ̇ − b(φ)∣2 + ε∇ ⋅ b(φ)) dt . (3)

While this functional is derived as quantifying the relative probability of the process (1)
remaining in a tube around φ(t), in relation to a reference probability [51–53], for our
purposes it is enough to realize that paths φ(t) of the process (1) for finite noise can formally
be thought of as drawn from a Gibbs-type distribution

P [φ(t)] ∼ exp(−ε−1S[φ]) . (4)
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As a consequence, one can sample the bridge ensemble by instead integrating the stochastic
partial differential equation

∂τφ = −
δS[φ]
δφ

+
√

2εη , (5)

where φ(t, τ) ∶ [0, T ] × [0,∞] → Rn is a field in physical time t and virtual time τ , with
boundary conditions φ(0, τ) = x−, φ(T, τ) = x+. Here, δS/δφ is to be interpreted as a
functional derivative [54], and η(t, τ) is white in virtual and physical time, i.e.

Eη(t, τ)η(t′, τ ′) = δ(τ − τ ′)δ(t − t′) . (6)

Effectively, the physical time t is treated as spatial variable, and the evolution is happening
in the newly introduced virtual time variable. Sampling the SPDE (5) amounts to Langevin
Markov chain Monte Carlo (MCMC) in path space, i.e. the SPDE corresponds to a Markov
process (namely the functional Langevin equation) with an invariant measure equivalent to
the original transition path ensemble.

If the SDE (1) is in one dimension, n = 1, then combining (3) and (5) yields the SPDE

∂τφ = ∂2t φ − b(φ)b′(φ) − 1
2
εb′′(φ) +

√
2εη , φ(0, τ) = x− , φ(T, τ) = x+ , (7)

which is essentially a gradient flow with noise, with the gradient computed via the functional
derivative of (3). This result has been rigorously derived in [40–42].

If n > 1 and the system is non-gradient, the functional derivative of the the action (3)
instead yields

∂τφ = ∂2t φ − (∇b(φ) −∇b(φ)†)∂tφ − b(φ)∇b(φ) − 1
2
ε∇(∇ ⋅ b(φ)) +

√
2εη , (8)

subject to
φ(0, τ) = x− , φ(T, τ) = x+ , (9)

where the additional term proportional to ∂tφ vanishes in the case of detailed balance,
where ∇b(φ) is self-adjoint. This SPDE has been conjectured in [41, sec. 9], and also used
in [55].

Indeed, (5) can be used to effectively sample the bridge ensemble, since every generated
path automatically fulfills the initial and final conditions of the bridge and further the SPDE
has the bridge ensemble as invariant measure. The problem that motivates this work is that
the Onsager-Machlup action (3) itself might have multiple local minima in trajectory space,
each corresponding to a locally effective transition trajectory. This is the case, for example,
when there are multiple competing reaction channels, or multiple physical mechanisms
for the transition to occur. In that case, bridge sampling via (5) will be inefficient, since
the SPDE will spend exponentially long times in one of the minima, and only very rarely
explore others. We here propose to overcome this limitation by introducing metadynamics
to the sampling of (5).

2.2. Metadynamics. Metadynamics is a rare event simulation technique that allows effec-
tive estimation of the free energy even in the presence of multiple local minima with large
barriers. It was originally developed, and is mostly used, to sample high-dimensional atom-
istic systems as present in molecular dynamics, with applications in e.g. material science
or biophysics.

Its main idea is to avoid a Markov Chain Monte Carlo sampler to get stuck in a single
maximum of the Gibbs measure, by gradually ’filling’ the current free energy minimum
until saturation, so that the system eventually starts exploring all other states. This filling is
done in a controlled way that later allows to reconstruct the original probability landscape.
A multitude of variants of metadynamics exist [25], but they are restricted in application to
reversible systems, i.e. those with an underlying free energy landscape that can be filled.

The key realization of this paper is the fact that even for irreversible systems of the
form (1), the corresponding transition path sampling problem is a gradient flow in path
space and thus amenable to metadynamics. In short, while the dynamics might not have
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an underlying potential landscape, its trajectories do, in the form of the Onsager-Machlup
action (3).

2.2.1. Well-tempered metadynamics. In order to implement metadynamics, consider a re-
versible stochastic process qt ∈ Rn evolving according to

dqt = −∇U(qt)dt +
√

2εdWt , (10)

implying that the stationary distribution of qt is given by the Gibbs distribution q ∼ ρ(q)∝
exp(−ε−1U(q)). In metadynamics, the gradient dynamics (10) are augmented by a biasing
potential V (q, t) ∶ Rn × [0, T ]→ R via

dqt = −∇U(qt)dt −∇V (qt, t) +
√

2εdWt , (11)

where the biasing potential is large (and thus repelling) in regions where the system spent
a lot of time in the past. That way, exploration is increasingly encouraged over time.

The time-dependent bias potential is assumed to depend on the coordinates q only via a
smooth function f ∶ Rn → Rm with m ≪ n (in typical applications m < 4). The function
f should be chosen in such a way that the marginal distribution with respect to f ,

ρf(s) = ∫
Rn
ρ(x)δ(s − f(x))dx (12)

is multimodal, namely characterized by the presence of at least two distinct maxima, sep-
arated by a region in which ρf(s) is small. The function f is typically called Collective
Variable (CV), as it is assumed to be able to recapitulate the most salient features of the
probability density.

A typical protocol for building up the biasing potential is well-tempered metadynamics,
in which the biasing potential and process co-evolve according to

⎧⎪⎪⎨⎪⎪⎩

dqt = −∇U(qt)dt −∇(V ○ f)(qt, t)dt +
√

2εdWt ,

V̇ (s, t) = we−V (s,t)/κψδ(f(qt) − s) , V (s,0) = 0 .
(13)

The above intuitively deposits droplets of shape ψδ (typically Gaussian profiles of width δ)
at the current position of the CV, f(qt), with a constant factor w > 0. The weight of the
biasing potential is exponentially decreasing for increasing V (s, t), with a scale given by
κ > 0 (see [24, 25]). In the long-time limit, the biasing potential V∞(s) ∶= limt→∞ V (s, t)
yields an estimate of ρf(s) via

ρf(s) = e
κ+ε
κ V∞(s) . (14)

As a consequence, κ can be seen as an effective sampling temperature or noise amplitude,
different from the physical noise amplitude given by ε, and (14) translates between the two.

2.3. Pathspace Metadynamics. Applying now well-tempered metadynamics (13) in col-
lective variables to the Onsager-Machlup stochastic gradient flow (5) yields an effective
method for sampling transitions in the presence of multiple possible transition channels.
This technique was presented in [34] in the context of equilibrium systems from molecular
dynamics. We will derive this technique in our general notation in order to sample transition
paths in nonequilibrium systems.

Consider a CV function f[φ] ∶ C1(Rn, [0, T ]) → Rm, reducing from continuous tra-
jectories on Rn × [0, T ] to m collective variables. For example, one could consider the
location of the trajectory at t = T /2, which corresponds to f[φ] = φ(T /2) and thus
δf/δφ = δ(t − T /2).

Then, for a trajectory φ(t), integrate, in virtual time τ ,
⎧⎪⎪⎨⎪⎪⎩

∂τφ(t, τ) = − δS[φ]
δφ

− δV ○f([φ],τ)
δφ

+
√

2εη(t, τ) ,
V̇ (s, τ) = we−V (s,τ)/κψδ(f[φ(t, τ)] − s) .

(15)
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Figure 1. The 2-dimensional test model, as defined by equation (16).
For γ = 0 (left), the drift is a gradient flow in the potential (17). For
nonzero γ, such as γ = 0.4 (right), an additional swirl is added. There
are two fixed points of the system (white dots), and notably two distinct
most likely transition pathways between them (upper and lower). Non-
vanishing swirl makes one transition path preferred over the other. In
general it is hard to know the relative likelihood of the two transition
channels.
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Figure 2. Trajectories sampled by transition path sampling (left and cen-
ter) versus trajectories explored by pathspace metadynamics (right), for
the slightly asymmetric 2d example (γ = 0.2). Traditional transition path
sampling can only explore one of the two available transition mecha-
nisms, depending on the initial transition trajectory fed to the algorithm.
Metadynamics can explore the whole space of possible transitions.

We term the above pathspace metadynamics, and will use it in the following in several
examples of transitions in irreversible processes that exhibit multiple transition channels.

3. Numerical Examples

3.1. Two competing transition paths. The simplest case of coexistence of multiple tran-
sition paths is 2-dimensional gradient diffusion in a landscape that has two separate valleys
connecting the local minima. To this end, consider for Z = (X,Y ) ∈ R2 the system

dZ = −∇V (Z)dt + l(Z)dt +
√
εdW (16)
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Figure 3. Probability of taking the upper or lower transition path as a
function of γ. Transitioning from left to right, the upper transition path
(i.e. z > 0) is preferred for positive γ: The probability to observe a posi-
tive y-value at the center of the time interval, y(T /2) > 0, is increasing,
but both upper and lower channel remain present. Shown is the scaled
logarithm of the probability, ε logP (z) + C, with arbitrary normaliza-
tion constant C.

with
V (X,Y ) = 1

4
(X2 − 1)2 + 1

4
(Y 2 − α(c2 −X2))2 , (17)

and we choose
l(x, y) = (γy

0
) . (18)

This system is not reversible for γ ≠ 0 and corresponds to a diffusion in a potential with
two minima, (X±, Y±) = (±

√
(1 + α2c2)/(1 + α2),0), but with an additional non-gradient

force l(z) of strength γ added. The potential, and the flowlines of the full drift, are depicted
in figure 1. Notably, there are two distinct most likely transition pathways between the left
and the right fixed point, through the upper or the one lower channel. If γ = 0, both of
these are equally likely due to symmetry. If γ > 0, as visible in figure 1 (right), the upper
pathway is preferred for a left-to-right transition. For a general system of this type, it is hard
to compute all possible transition pathways and their relative likelihood.

Applying pathspace metadynamics to this example corresponds to integrating equa-
tion (15) in virtual time for trajectories φ(t, τ) = (φx(t, τ), φy(t, τ)) connecting the left
to the right fixed point. At every instance in virtual time, the solution to the SPDE yields
a transition path, and integrating for long times samples from the transition path ensem-
ble. Without employing metadynamics, the SPDE will quickly converge to one of the two
transition scenarios, and remain stuck there for exponentially long (virtual) times. Employ-
ing metadynamics, instead, allows us to gradually fill up one of the transition channels and
eventually explore the other as well. In particular in the scenario γ ≠ 0, where the rela-
tive likelihood of the two channels is not obvious, this strategy helps identify their relative
weight.

As collective variable, we choose m = 1 and f[φ] = φy(T /2), i.e. the y-value of the
trajectory at the center of the temporal interval. We expect this value to be positive if
the upper channel is chosen, and negative for the lower. Note though that f[φ] = 0 not
necessarily corresponds to a trajectory crossing the domain at the center. Instead, it might
correspond to a trajectory that waits at the initial point until t = T /2 and only afterwards
initiates a transition through either channel.

Figure 2 shows a comparison of naive pathspace MCMC (left, center) to pathspace meta-
dynamics (right) for γ = 0.2. While MCMC results in the exploration of only one of the
two transition mechanisms (either the upper transition or the lower transition, depending on
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Figure 4. Left: Path density plot obtained from pathspace MCMC sam-
pling for transitions in the oscillating double well potential from x =−1
to x = 1, shown in the x-t-plane. Even for a very large number of sam-
ples, the trajectory never leaves the current local minimum determined by
the initial condition of the sampling procedure. Right: Path density plot
obtained from pathspace metadynamics for the same system. As clearly
visible, the process explores all relevant transition trajectories, irrespec-
tive of the initial condition of initialization of the sampling procedure.
For both plots, ε = 10−2 and ∆T = 2.

initialization of the sampler), metadynamics can efficiently explore both these mechanisms,
and compare their relative likelihood. As expected for positive γ the lower pathway is less
likely for a left-to-right transition than the upper pathway. This picture is confirmed when
looking at the probability distribution of the CV, for different values of γ, in figure 3. While
for γ = 0, both upper and lower pathway are of equal likelihood, for increasing values of γ
the upper pathway becomes more likely. Note that the relative likelihood of the two, for the
noise of ε = 10−2, makes the upper pathway exponentially more likely even for rather small
positive γ. Figure 3 shows the rescaled log-likelihood.

For this example, we chose ε = 10−2, κ = 20, T = 4, α = 3, and γ as indicated, withNt =
64 discretization points andw = 1, and ψδ(s) = exp(−s2/2δ2) with δ = 0.1. Discretization
in time is done via second order finite differences. Integration in virtual time is done with
Euler-Maruyama with stepsize ∆τ = 10−3.

3.2. Oscillating doublewell. Even in one dimension there can be multiple competing re-
action channels, for example when the system has explicit time dependence and there are
multiple points in time at which a transition is advantageous. As an example, consider the
SDE given in equation (1) with drift

b(x, t) = −x3 + x + 1
4

sin(4πt/T ) . (19)

This is simply a diffusion in a double-well potential that is periodically tilted left or right.
In fact, within the time period T the potential tilts exactly twice, allowing for two “optimal”
opportunities to jump from the left to the right basin. Therefore, the ensemble of transi-
tion paths contains at least two different distinct trajectories, and sampling both of them
efficiently is a hard task.

Concretely, we want to sample trajectories that transition within the interval [0, T ] from
the left basin, X− = −1, to the right basin, X+ = 1. We could consider employing classical
transition path sampling by integrating φ(t, τ) via equation (8) with φ(0, τ) = X− and
φ(T, τ) = X+. Then, depending on the initial choice of transition path, we would sample
almost certainly only one of the multiple possible transition pathways. This is depicted in
figure 4 (left), which shows as streamlines the deterministic, time-dependent drift b(x, t),
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Figure 5. Left: Limiting biasing potential V∞(s) in the space of col-
lective coordinates (s1, s2) = (x(T /3), x(2T /3)) for the moving double
well experiment. There are three dominant states, A,B, and C, which
correspond to late transition, early transition, and dwelling around the
saddle, respectively. Right: Sketch of these three transition scenarios.

and in color a weighted histogram of observed samples. If instead we perform transition
path sampling with the help of pathspace metadynamics then we see how the whole space
of feasible transition paths is explored. In particular, it becomes clear that there are at
least three noteworthy classes of transition trajectories: those that transition at the earliest
opportunity, those at the latest, and those that spend one oscillation in close proximity to
the saddle point (which, despite its instability, turns out to be a very relevant transition
trajectory). This is shown in figure 4 (right), where again we show a histogram of transition
paths {x(t)}Tt=0.

As CVs, we choose

f[φ] = (s1, s2) = (φ(T /3), φ(2T /3)) , (20)

i.e. the location of the sampled trajectory at 1/3 and 2/3 of the time interval. We obtain, after
running the algorithm (15) sufficiently long, a clear separation of the available options, as
visible in the converged biasing potential V∞(s) in figure 5 (left): Either s1 remains small,
corresponding to a late transition and remaining in the original basin for the first oscillation,
labeled as region A. Alternatively, s2 is large, corresponding to an early transition where
the trajectory is in the second basin already during the second oscillation, labeled as region
B. Lastly, both s1 and s2 are of moderate value, corresponding to an early transition to the
saddle, but then dwelling at the saddle for a full oscillation, labeled as regionC. The biasing
potential gives an estimate of the relative likelihood of these options. These alternatives are
sketched in figure 5 (right).

For this example, we chose ε = 10−2, κ = 2, T = 16, with Nt = 128 discretization points
and w = 1, δ = 0.05. Discretization in time is done via second order finite differences.
Integration in virtual time is done with Euler-Maruyama with stepsize ∆τ = 10−3.

3.3. Magnetic field reversal in the presence of advection. To demonstrate the feasibil-
ity of applying pathspace metadynamics to systems with a large number of variables, we
will lastly consider a system with infinitely many degrees of freedom, a stochastic partial
differential equation. Concretely, consider the Ginzburg-Landau (or equivalently φ4- or
Allen-Cahn) equation for a field u(x, t) ∶ [−L,L] × [0, T ]→ R given by

∂tu(x, t) = ν∂2xu − u3 + u +
√

2εη(x, t) , u(−L, t) = u(L, t) = 0 . (21)
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Figure 6. Snapshots of samples of the four possible transition path-
ways from the negative configuration u−(x) to the positive configuration
u+(x): nucleation from left wall (L), nucleation from right wall (R), nu-
cleation from both walls (B), or nucleation in the center (C).

−2 −1 0 1 2
s1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

s 2 L R

C

B γ = 0

−2 −1 0 1 2
s1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

s 2 L R

C

B γ = 0.03

Figure 7. Left: Limiting biasing potential V∞(s) in CV space (s1, s2),
corresponding to the sin and cos-components at t = T /2. Intuitively, s1
corresponds to the left-right asymmetry, and s2 to the center-boundary
asymmetry of the configuration in space. Four separate transition chan-
nels are identified (R, L, C, B). Right: The same, but in the presence of
background flow, γ = 0.03, as in equation (27). Since fronts are propa-
gated predominantly left to right, the nucleation from the left boundary
(L) is now clearly preferred over nucleation from the right (R).

Here, at each point x in space, u(x, t) is traveling in a double-well potential, driving locally
towards ±1. The diffusion constant ν couples neighboring locations, and η(x, t) is white in
space and time stochastic noise. The system prefers to be in one of the two states u+(x) or
u−(x), corresponding to almost all of the domain being at 1 or −1, respectively, except for
a small boundary layer, since the boundary is kept at 0 via Dirichlet boundary conditions.

The natural question is to ask by what mechanism the model switches from u− to u+.
This is a classical example of nucleation theory, with applications in phase separation or
magnetic field reversal, and has found particular attention in the small-noise regime and
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large deviation theory [56–60]. Intuitively, a critical nucleus must be formed to drive parts
of the system over the potential barrier. After this, front propagation ensures prevailing of
the new phase throughout the whole domain. Since the boundaries are kept at 0, nucleat-
ing from one of the boundaries is generally easier, so that the system can flip either via a
traveling wave from the left or from the right. Depending on the size of the domain L (or
equivalently the diffusion constant ν), a nucleus might also form within the domain.

Since we already start with a 2-dimensional SPDE (space and time), the corresponding
gradient diffusion in pathspace will yield a 3-dimensional SPDE (space, time, and virtual
time) for φ(x, t, τ) ∶ [−L,L] × [0, T ] × [0,∞]→ R, given by

∂τφ = ∂2t φ − ( δb
δφ

− δb
†

δφ
)∂tφ −

δb†

δφ
b(φ) − 1

2
ε
δ

δφ
(Tr

δb

δφ
) +

√
2εη(x, t, τ) , (22)

subject to the boundary conditions

φ(x, t=0, τ) = u−(x) , φ(x, t=T, τ) = u+(x) , φ(x=−L, tτ) = 0 , φ(x=L, tτ) = 0 .
(23)

Here, derivatives are replaced by functional derivatives, and † is theL2-adjoint in the spatial
variable.

Note that the O(ε)-term, which is the gradient of a divergence in the finite dimensional
case, now includes the (functional) trace of the operator δb/δφ. Unfortunately, this operator
is not necessarily trace class, and the corresponding term might diverge. This is indeed the
case for the Ginzburg-Landau-type cubic nonlinearity in (24), and is a problem well-known
and discussed in the field theory literature [61–63]. We follow common practice [61] here
and drop the diverging term, but remark in passing that this does not rest on any rigorous
footing, and in fact a renormalized term of O(ε) might be more appropriate.

Concretely, for our choice of b(φ) = ν∂2xφ−φ3 +φ and given boundary conditions, this
amounts to

∂τφ = ∂2t φ − (ν∂2x − 3φ2 + 1)(∂2xφ − φ3 + φ) +
√

2εη(x, t, τ) , (24)

with boundary conditions

φ(x, t=0, τ) = u−, φ(x, t=T, τ) = u+, φ(x=−L, t, τ) = 0, φ(x=L, t, τ) = 0 . (25)

As can be seen by the missing ∂tφ-term, this system is actually reversible, but we will add
a term breaking reversibility below.

Integrating (24) corresponds to a Markov chain Monte Carlo for the Ginzburg-Landau
equation, and indeed this samples from the transition ensemble from u− to u+. Again,
though, starting the system close to one of transition channels (for example nucleating from
the left boundary as in figure 6, top left) means that the sampler will effectively never leave
its vicinity. Employing pathspace metadynamics, instead, results in exploring all possible
transition channels.

As collective variables, we suggest m = 2 with

f[φ(x, t)] = (s1, s2) = ( − ∫
L

−L
φ(x,T /2) sin(πx/2L),∫

L

−L
φ(x,T /2) cos(πx/2L)) ,

(26)
taking the t = T /2-configuration and projecting it onto − sin and cos, respectively. This
yields a value for the left-right asymmetry as s1, and for the center-boundary asymmetry as
s2. For example, nucleating from the left boundary means that around t = T /2 most mass
is concentrated in the left half-space, yielding a positive value for s1 (and roughly 0 for s2).

The converged biasing potential in the CV-plane is depicted in figure 7 (left) and reveals
the possible transition channels: The landscape clearly has 4 distinct peaks, correspond-
ing to a nucleation from the left boundary (L), from the right boundary (R), from both
boundaries at the same time (B), and from the center (C). L and R have identical weight by
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symmetry, and are clearly preferred over C and B. Figure 6 shows samples of the four indi-
vidual transition scenarios as individual realizations of the sampler within the four regions,
respectively.

The situation becomes more complicated when adding additionally an advection term
to the Ginzburg-Landau equation, namely

∂tu(x, t) = ν∂2xu − u3 + u − v∂xu +
√

2εη(x, t) , u(−L, t) = u(L, t) = 0 , (27)

with velocity field v(x) chosen here to be v(x) = γ exp(− 1
1−(x/L)2

). Since for γ > 0

this velocity field is positive within the domain, and only drops to 0 at the boundaries, one
expects it to favor nucleation from the left boundary: The rightward advection helps pushing
the phase front across the domain. Nucleation from the right boundary, on the other hand,
is suppressed, since the nucleus must expand against the background flow. Nucleation in
the center, or from both boundaries, will be distorted by the advection in one direction.
Note further that the advection term is not L2 self-adjoint, and thus the resulting system
is no longer reversible. This is intuitively clear since one expects the most likely forward
transition from u− to u+ to nucleate from the left boundary, but backward from u+ to u− to
nucleate from the left boundary as well, instead of the time-reversed forward transition.

This intuition is confirmed by the biasing potential, as visible in figure 7 (right). Here,
the nucleation from the left boundary (L) is clearly preferred over R for a value of γ = 0.03.
Increasing γ further leads to a disappearance of R, while C and B merge with L into the
only surviving transition channel.

For this section, the system parameters are L = 1, T = 16, ν = 4 ⋅ 10−2, ε = 10−3, γ as
indicated, and the numerical parameters are ∆τ = 10−2, w = 10−1, δ = 10−1, κ = 10−1,
Nx = 32, Nt = 32. The SPDE was discretized with second order finite-differences in
time and Chebyshev in space, with first order exponential time differencing (ETD) [64] as
integrator in virtual time.

4. Discussion and relation to previous results

We demonstrated a novel algorithm to sample transition trajectories in complex stochas-
tic systems. The method makes use of the fact that the transition path ensemble can be
sampled efficiently via Langevin MCMC and accelerated with metadynamics. This makes
sure that the algorithm samples from all possible transition paths even in the presence of
multiple competing transition channels. The flexibility comes at the price of choosing the
right collective coordinates; Without correct CVs, metadynamics is ineffective or yields
misleading results. Choosing suitable CVs necessitates physical intuition about the system
at hand, and it is not always easy to find a good set of CVs. The problem of finding CVs for
generic sampling problems is classical, and essential not only for our algorithm here, but
for all rare event algorithms. It can be shown that the optimal collective variable is the com-
mittor function, which is usually not available for any problem of practical relevance. As
mentioned in the introduction, good heuristics for CVs can come from physical intuition,
and machine learning and data science techniques or methods tailored to the specific appli-
cation might offer more systematic insight [28–31, 65]. Lastly, it is reasonable to suspect
that the right choice of CVs is not as critical for our pathspace method as it is for traditional
metadynamics: Its only purpose in our method is to enhance the exploration of pathspace.
Even a non-optimal CV might facilitate that, while they often give wrong estimates for dy-
namical quantities such as the (virtual) transition times in pathspace, which are irrelevant
for our purposes.

The presented approach requires storing in memory the whole pathway, posing an intrin-
sic limitation to the size of the systems which can be studied with it. However, because of
the increasing speed of modern computers, we demonstrate that even stochastic partial dif-
ferential equations are feasible to be treated without any special effort or hardware. Since
the underlying pathspace Langevin equation is the same as the gradient decent equation
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for action minimization (for example for instanton computation in the Freidlin-Wentzell
sense), similar optimizations can be employed to sample transition paths in even higher
dimensional PDEs, as demonstrated for example for the 3D Navier-Stokes equation in [66].

Metadynamics has been suggested for use in pathspace before [12, 13, 34]. Generally in
those works, theO(ε)-term of the Onsager-Machlup action (3) is omitted, even though it has
been pointed out in other contexts [53, 67] that the term is crucial for the correct behavior of
transition paths at non-zero temperature. Here, we chose to discretize the continuous limit-
ing SPDE, which must include this term, but conceivably one might alternatively discretize
the original stochastic process first and then derive the bridge sampler fully discretely. This
might allow to sidestep issues of the renormalizability of the bridge sampling SPDE, in
particular for higher dimensional continuous problems.

All previous applications of metadynamics to pathspace restrict the procedure to the
setup of equilibrium systems and gradient flows, where b(X) = −∇V (X). As shown in our
examples above, the method presented in this work is generally applicable to a wide range of
situations, including irreversible dynamics without underlying potential landscape, explicit
time dependence of the drift (or noise) terms, etc. Due to the efficiency of metadynamics,
it works even for high- or infinite-dimensional systems such as SPDEs. Additionally, our
method is readily generalized to situations such as computing expectations over transition
paths, sampling time-periodic paths, sampling trajectories that visit a sequence of points,
sampling trajectories with a time-integrated constraint, and many other scenarios encoun-
tered in different problem domains.
Acknowledgments. TG wants to thank Timo Schorlepp for helpful discussions. TG ac-
knowledges support from EPSRC projects EP/T011866/1 and EP/V013319/1.
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[52] D. Dürr and A. Bach, Communications in Mathematical Physics 60, 153 (1978).
[53] F. J. Pinski and A. M. Stuart, The Journal of Chemical Physics 132, 184104 (2010).
[54] I. M. Gelfand and S. V. Fomin, Calculus of Variations (Courier Corporation, 2000).
[55] P. D. Drummond, Physical Review E 96, 042123 (2017).
[56] R. V. Kohn, M. G. Reznikoff, and E. Vanden-Eijnden, Journal of Nonlinear Science

15, 223 (2005).
[57] M. G. Reznikoff and E. Vanden-Eijnden, Comptes Rendus Mathematique 340, 305

(2005).
[58] E. Vanden-Eijnden and M. G. Westdickenberg, Journal of Statistical Physics 131, 1023

(2008).
[59] F. Otto, H. Weber, and M. Westdickenberg, Electronic Journal of Probability 19, 1

(2014).
[60] J. Rolland, F. Bouchet, and E. Simonnet, Journal of Statistical Physics 162, 277

(2016).
[61] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series

of Monographs on Physics (Oxford University Press, 2002).
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