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A POSITIVE AND MOMENT-PRESERVING FOURIER SPECTRAL
METHOD∗

ZHENNING CAI† , BO LIN‡ , AND MEIXIA LIN§

Abstract. This paper presents a novel Fourier spectral method that utilizes optimization tech-
niques to ensure the positivity and conservation of moments in the space of trigonometric polynomials.
We rigorously analyze the accuracy of the new method and prove that it maintains spectral accuracy.
To solve the optimization problem, we propose an efficient Newton solver that has quadratic con-
vergence rate. Numerical examples are provided to demonstrate the high accuracy of the proposed
method. Our method is also integrated into the spectral solver of the Boltzmann equation, showing
the benefit of our approach in applications.
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1. Introduction. In kinetic theories, the distribution functions are introduced
to describe the number density of particles in the position-velocity space. These func-
tions are non-negative everywhere, and the moments of these functions often corre-
spond to fundamental physical quantities such as density, energy and electric charge,
many of which are conservative by fundamental laws of nature. These properties
are also reflected in kinetic equations such as the Boltzmann equation, the radiative
transfer equation and the Vlasov equation. Numerically, researchers have also been
making efforts to preserve these properties [5, 7, 10, 14, 18, 27, 32].

In general, it can be observed that for spectral methods, it is much harder to
achieve positivity due to the oscillatory behavior of high-frequency basis functions,
and sometimes the conservation laws are also lost when domain truncation is needed.
In particular, for the Boltzmann equation, the Fourier spectral method has a much
lower computational complexity for the quadratic collision operator compared with
other methods. However, the Fourier spectral method does not preserve momentum
and energy conservation, so that the equilibrium turns out to be a constant instead
of the Maxwellian [11]. The momentum and energy conservation can be fixed by a
post-processing after each time step [12, 24], but the positivity is still absent, which
may affect the quality of the solution in long-time simulations. The positivity of the
solution can be recovered by applying filters [5, 26], but a positivity-preserving filter
will reduce the convergence rate to second order, and it is unclear how to combine the
filtering and the conservation fix: applying one after another will ruin the property
achieved by the former.

In this work, we focus on the Fourier spectral method and propose a numerical
strategy that preserves both the moments and the positivity on collocation points.
The approach is based on an optimization problem with both equality and inequality
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constraints, and it will be shown that our approximation retains the spectral accuracy
under mild conditions. Our method can be considered as an extension of a previous
work in [24], where only the equality constraints are considered to preserve moments.
We will then introduce an efficient numerical algorithm for the optimization problem,
and integrate the method into the solver of the Boltzmann equation. Since the nega-
tive part of the distribution function can be controlled in the original Fourier spectral
method [2, 11, 16], the spectral accuracy is also observed in the positivity-preserving
Boltzmann solver. With positivity guaranteed, we can further combine the solver
with an entropic scheme introduced in [6], so as to achieve good quality in long-time
simulations.

The paper is organized as follows. Our main results are in section 2, our detailed
proof is in sections 3 to 5, a practical algorithm is given in section 6, numerical results
are in section 7, and the conclusions follow in section 8.

2. Main results.

2.1. Positive and moment-preserving projection. The major task of this
paper is to find a positive and moment-preserving spectral approximation of a positive
periodic function f ∈ L2

p([−π, π]d), f ≥ 0 in the discrete function space

(2.1) S
N = span{eik·x | k ∈ N d} ∩ R,

where
N = {−N, · · · , N}.

Since requiring the function to be pointwisely positive may harm the spectral accuracy,
here we consider the approximation in a subset of SN containing only functions that
are positive on all the collocation points xk = 2πk/(2N + 1), k ∈ N d. For simplicity,
we define this subset as SN+ :

(2.2) S
N
+ = {fN ∈ S

N | fN(xk) ≥ 0, ∀xk = 2πk/(2N + 1), k ∈ N d}.

Meanwhile, using 〈ϕ(x)〉 to denote the integral of ϕ(x) on [−π, π]d, we want the
moments ρ(f) := 〈m(x)f(x)〉 to be preserved during the approximation, where m(x)
refers to a vector ofM linearly independent polynomials. In addition, one component
of m(x) is required to be a constant, which implies the conservation of mass. For
the Boltzmann equation, we may consider choosing m(x) = (1, x, x2)⊺ to preserve
mass, momentum and energy. Under these constraints, a natural idea to find the
approximation is to solve the following convex optimization problem:

(2.3) ΠN+f := argmin
g∈SN+

‖g − f‖22, s.t. ρ(g) = ρ(f).

This approach is similar to the method in [24], where the authors only considered the
preservation of moments, so that f is approximated by

(2.4) ΠNf := argmin
g∈SN

‖g − f‖22, s.t. ρ(g) = ρ(f).

Compared to the solution of (2.4), our new L2 projection (2.3) requires only an
additional constraint on the positivity.

Here we state our main result as Theorem 2.2; the proof is deferred to sections 3
to 5. Throughout this paper, we will use the notation “A . B” to denote the inequal-
ity “A ≤ CB” for a constant C that can depend on the dimension d, the size of the
domain (2π)d, the polynomials m.
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Definition 2.1. We recall the interpolation operator IN from C((−π, π)d) to SN

and projection operator PN from L2((−π, π)d) to SN , which are

(2.5) (INg)(xk) = g(xk), ∀k ∈ N d; PNg =
∑

k∈Nd

ĝke
ik·x,

where ĝk is the Fourier coefficients

(2.6) ĝk =
1

(2π)d

∫

[−π,π]d
g(x)e−ik·xdx.

Theorem 2.2. For non-negative f ∈ L2
p([−π, π]d) ∩ C((−π, π)d), under condi-

tions
(H1) the component functions of m(x), denoted as mj(x) for 1 ≤ j ≤ M , are

linearly independent;
(H2) ∃g > 0 such that ρ(g) = ρ(f);

(H3) ∃g ∈ SN such that g(xk)>0 for k∈N d and (2π)d

(2N+1)d

∑
k∈Nd g(xk)PNm(xk)=

ρ(f);
there exists a N0 > 0, such that for N ≥ N0, Π

N
+ f in (2.3) is well defined, and

(2.7) ‖f −ΠN+f‖2 .
(
‖f −ΠNf‖2 + ‖f − INf‖2

)
.

Based on the spectral convergence of interpolation error and the spectral conver-
gence of ‖f −ΠNf‖2 in [24], we directly obtain a corollary of the above theorem.

Corollary 2.3. Under the conditions (H1)–(H3), if f ≥ 0 and f ∈ Hr
p ([−π, π]d)

where r > d/2 is an integer, it holds that for sufficiently large N ,

(2.8) ‖f −ΠN+ f‖2 .
1

N r
‖f‖Hr

p
.

3. On the optimization problem. Before proving the error estimate, we will
first study the well-posedness of the optimization problem (2.3) and reformulate it
into a different form. The major obstacle in the analysis is that the exact solution of
(2.3) cannot be written due to the inequality constraints. The purpose of this section
is to provide a convenient form of the solution that will be used in the error analysis.

3.1. Existence and uniqueness. We will now prove that (2.3) admits a unique
solution so that the operator ΠN+ is well defined.

To show the existence of (2.3), it is more convenient to rewrite it as a finite-
dimensional quadratic programming with linear constraints. Making use of Parseval’s
theorem, the optimization problem in (2.3) can be rewritten as

(3.1) min
ĝk

(2π)d
∑

k∈Nd

|ĝk − f̂k|2, s.t. Cĝ ≥ 0 and (2π)d
∑

k∈Nd

m̂kĝk = ρ(f),

where ĝk , f̂k and m̂k are, respectively, the Fourier coefficients of function g(x), f(x)

and m(x) defined as in (2.6); the matrix C ∈ C(2N+1)d×(2N+1)d denotes the inverse
discrete Fourier transform such that the components of Cĝ are g(xk) for k ∈ N d, and
“≥ 0” means each component is non-negative.

The problem (3.1) is a finite-dimensional quadratic programming with linear con-
straints and a strictly convex objective function. Therefore, the existence and unique-
ness of the solution is guaranteed provided that the feasible set

{g ∈ S
N | g(xk) ≥ 0 ∀k ∈ N d, (2π)d

∑

k∈Nd

m̂kĝk = ρ(f)}
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is not empty. Nevertheless, we introduce a stronger condition (H3) to fulfill our later
proof, and this condition could be viewed as a sufficient condition for (3.1) having a
unique solution. Moreover, we can mimic the above proof to get the existence and
uniqueness of (2.4) under the same condition (H3).

3.2. Reformulation of the optimization problem. Compared with the op-
erator ΠNf defined in (2.4), the explicit form of ΠN+ f cannot be written due to the
inequality constraints. As a result, the analysis of ΠN+f is significantly harder. In this
section, we will focus on the representation of ΠN+f

c
N with f cN ∈ SN by assuming the

knowledge of the active constraints of the optimization problem.
We decompose SN in (2.1) into the direct sum of two subspaces:

(3.2) S
N = M⊕M

⊥,

where

(3.3) M = {fN ∈ S
N | ρ(fN ) = 0}.

Thus, for any f cN ∈ S
N , it holds that

(3.4) ‖ΠN+ (f cN)− f cN‖22 = min
h∈M

‖h‖22, s.t. h(xk) + f cN(xk) ≥ 0, k ∈ N d.

Consider a real orthonormal basis of M such that M = span{ψl(x)}, then the opti-
mization problem in (3.4) is equivalent to

(3.5) min
hl

∑

l

1

2
|hl|2, s.t.

∑

l

hlψl(xk) + f cN(xk) ≥ 0, k ∈ N d.

Similar to the idea of the active set method (e.g., see [23, Chapter 16]), these inequality
constraints can be decomposed into active and inactive constraints. Precisely speak-
ing, given the vector h∗ = (h∗l ) that optimizes the objective function in (3.5), we can
separate the index set for the constraints N d into two disjoint subsets N d = A ∪ R,
such that

∑

l

h∗l ψl(xk) + f cN (xk) = 0, ∀k ∈ A,
∑

l

h∗l ψl(xk) + f cN (xk) > 0, ∀k ∈ R.

This indicates that A is the set of active constraints, and therefore (3.5) is equivalent
to

(3.6)

min
hl

∑

l

1

2
|hl|2, s.t.

∑

l

hlψl(xk) + f cN (xk) = 0, k ∈ A,
∑

l

hlψl(xk) + f cN (xk) > 0, k ∈ R.

For simplification, we define fA and fR as vectors of f cN (xk) for k ∈ A and k ∈ R,
respectively, and thus the constraints in (3.6) can be represented as

(3.7) CAh+ fA = 0, CRh+ fR > 0,

where the components of CA and CR are the values of basis functions ψl(xk). As-
suming that the active set A is given, we can write the Karush–Kuhn–Tucker (KKT)
conditions as

(3.8) h− C⊺
Aλ = 0, CAh = −fA, CRh+ fR > 0, λ ≥ 0,
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where λ ∈ R|A| is the Lagrange multiplier. Furthermore, we can assume that CA in
(3.8) is of full row rank, since if CA has linearly dependent rows, we can simply remove
some constraints such that all the remaining constraints are independent. Under this
assumption, the first two equations in (3.8) can already determine the vectors h and
λ uniquely. The solutions are

(3.9) h = −C⊺
A(CAC

⊺
A)

−1fA, λ = −(CAC
⊺
A)

−1fA.

The well-posedness of (3.5) or (3.6) guarantees that the solutions (3.9) automatically
satisfy the last two conditions in (3.8).

The solution of h in the form of (3.9) will be used in the proofs in the next
sections. However, it should be remarked here that this form cannot be used in the
algorithms since the active set A is generally unknown. A practical algorithm to solve
(2.3) will be given later in section 6.

4. Proof of Theorem 2.2. We will prove (2.7) by several inequalities sequen-
tially. The main idea is summarized as follows.

• The optimality of ΠN+ f shows that

(4.1) ‖f−ΠN+f‖2 ≤ ‖f−ΠN+ (ΠNf)‖2 ≤ ‖f−ΠNf‖2+‖ΠNf−ΠN+ (ΠNf)‖2,

since ΠNf ∈ SN and ρ(ΠNf) = ρ(f).
• By choosing f cN = ΠNf in (3.4), its solution h (3.9) satisfies

(4.2) ‖ΠN+ (ΠNf)−ΠNf‖2 = ‖h‖2 ≤ ‖C⊺
A‖2‖(CAC

⊺
A)

−1‖2‖fA‖2.

• Further proof requires independent estimations of the three terms on the
right-hand side of (4.2). The results are

‖fA‖2 . (2N + 1)d/2‖CA‖22‖(CAC
⊺
A)

−1‖2‖IN
(
f c−N

)
‖2,(4.3)

‖CA‖2 . (2N + 1)d/2,(4.4)

‖(CAC
⊺
A)

−1‖2 . (2N + 1)−d,(4.5)

where f c−N = max(−f cN , 0) and f cN again refers to ΠNf .
• Finally, the term ‖IN

(
f c−N

)
‖2 on the right-hand side of (4.3) can be esti-

mated by

(4.6) ‖IN
(
f c−N

)
‖2 . ‖f − f cN‖2 + ‖f − INf‖2.

It is clear that concatenating all the inequalities above will lead to the conclusion of
Theorem 2.2. In this section, we will show the proofs of (4.3), (4.4), and (4.6) in
subsection 4.2, subsection 4.1 and subsection 4.3, respectively. The proof of (4.5) is
more involved, and we will defer it to section 5.

4.1. Proof of (4.3). To distinguish the negative and the positive components
of fA, we decompose it as

(4.7) fA = f+
A − f−

A,

where f+
A = max(fA,0) and f−

A = max(−fA,0). By definition, the negative part
can be estimated by

(4.8) ‖f−
A‖22 =

∑

k∈A
(min(f cN (xk), 0))

2 ≤
∑

k∈Nd

(
f c−N (xk)

)2
=

(2N + 1)d

(2π)d
‖IN (f c−N )‖22,
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where the last equality comes from Parseval’s theorem and IN is the interpolation
operator (2.5). Therefore, to prove (4.3), we just need to use ‖f−

A‖ to control ‖f+
A‖,

which will be done in the rest part of this subsection.
Since CA has full row rank, its pseudoinverse C†

A = C⊺
A(CAC

⊺
A)

−1. To make use
of the optimality of h in (3.6), we consider the following perturbation of h:

(4.9) hε = h+ εC†
Af

+
A,

where ε is chosen as a positive real number. Recalling the definition of Cψ in (4.15),
direct computation shows

Cψhε + f = Cψh+ f + εCψC
†
Af

+
A = Cψh+ f + ε

(
CA
CR

)
C⊺

A(CAC
⊺
A)

−1f+
A

=

(
CAh+ fA
CRh+ fR

)
+ ε

(
f+
A

CRC
†
Af

+
A

)
.

(4.10)

Since CAh+fA = 0 and CRh+fR > 0 (see (3.7)), it can be seen that all components
of the vector in the right-hand side of (4.10) are non-negative for sufficiently small ε.
Therefore, hε stays in the feasible set, and the optimality of h suggests

(4.11)
d

dε

(
1

2
‖hε‖22

)∣∣∣∣
ε=0+

≥ 0,

which is

(4.12) 0 ≤ h⊺C†
Af

+
A = h⊺C⊺

A(CAC
⊺
A)

−1f+
A = −f⊺

A(CAC
⊺
A)

−1f+
A.

Then we plug (4.7) into the above equation to get

(f−
A)

⊺(CAC
⊺
A)

−1f+
A − (f+

A)
⊺(CAC

⊺
A)

−1f+
A ≥ 0,

which yields ‖C†
Af

+
A‖22 ≤ ‖C†

Af
+
A‖2‖C†

A‖2‖f−
A‖2. Therefore,

‖f+
A‖2 ≤ ‖CA‖2‖C†

Af
+
A‖2 ≤ ‖CA‖2‖C†

A‖2‖f−
A‖2

≤ ‖CA‖2‖C⊺
A‖2‖(CAC

⊺
A)

−1‖2‖f−
A‖2.

(4.13)

Combining (4.8) and the above equation yields (4.3).

4.2. Proof of (4.4). To show the inequality (4.4), we recall that the entries of
CA are ψl(xk) with k ∈ A and l being the index of the basis functions of M. The
following lemma is a basic property of Fourier spectral methods:

Lemma 4.1. For any two basis functions ψj and ψl,

(4.14)
∑

k∈Nd

ψj(xk)ψl(xk) =
(2N + 1)d

(2π)d
δjl.

This conclusion can be drawn by the fact that {ψl(x)} is an orthonormal basis of
a subspace of SN . We can now show the estimate (4.4) as follows:

Proof of (4.4). Let

(4.15) Cψ =

(
CA
CR

)
.
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Lemma 4.1 indicates that C⊺
ψCψ = (2N+1)d

(2π)d
I, where I denotes the identity matrix.

Then for any vector y, it holds that

(4.16) ‖Cψy‖22 = y⊺C⊺
ψCψy = y⊺C⊺

ACAy + y⊺C⊺
RCRy ≥ y⊺C⊺

ACAy = ‖CAy‖22.

Therefore,

(4.17) ‖C⊺
A‖2 = ‖CA‖2 ≤ ‖Cψ‖2 =

√
(2N + 1)d

(2π)d
.

4.3. Proof of (4.6). Below we will prove a more general result in Lemma 4.2,
where setting g = f cN gives the inequality (4.6).

Lemma 4.2. For a given non-negative continuous function f ≥ 0, it holds that
for any continuous function g,

‖IN (g−)‖2 ≤ 2
(
‖f − INf‖2 + ‖f − INg‖2

)

Proof. Making use of the discrete Fourier transform and Parseval’s theorem, it is
not difficult to see that for any two functions g and w in SN ,

(4.18) 〈g w〉 = (2π)d
∑

k∈Nd

ĝkŵk =
(2π)d

(2N + 1)d

∑

k∈Nd

g(xk)w(xk).

Using f ≥ 0 and (4.18), it holds that ‖IN (g+ − f)‖2 ≤ ‖IN (g − f)‖2. Therefore,

‖IN (g−)‖2 = ‖IN(g− − g+ + f − f + g+)‖2
≤ ‖IN(f − g)‖2 + ‖IN (g+ − f)‖2
≤ 2‖IN(f − g)‖2 ≤ 2

(
‖INf − f‖2 + ‖f − INg‖2

)
.

5. Proof of (4.5). Suppose a real orthonormal basis of M⊥ is {φj(x)}. We
can follow the definitions of CA and CR to define matrices BA and BR, where the
elements of BA and BR are φj(xk) with k ∈ A and k ∈ R = N d\A, respectively, and
k denotes the row index and j denotes the column index. Thus, by Lemma 4.1, one
can conclude from the orthogonality of the basis functions {ψj(x)} and {φj(x)} that
the square matrix √

(2π)d

(2N + 1)d

(
CA BA
CR BR

)

is an orthogonal matrix. Therefore,

(5.1) CAC
⊺
A +BAB

⊺
A =

(2N + 1)d

(2π)d
IA.

In this section, we are going to show that there exists a constant CB independent of
N such that

(5.2)

∥∥∥∥
(2π)d

(2N + 1)d
BAB

⊺
A

∥∥∥∥ ≤ CB < 1
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for sufficiently large N . Then by (5.1), we have

(2N + 1)d

(2π)d
‖(CAC

⊺
A)

−1‖2 ≤
∥∥∥∥∥

(
IA −

(2π)d

(2N + 1)d
BAB

⊺
A

)−1
∥∥∥∥∥
2

≤ 1

1−
∥∥∥ (2π)d

(2N+1)dBAB
⊺
A

∥∥∥
2

≤ 1

1− CB
,

which proves (4.5).
For simplicity, we define

�k =

[
(2k1 − 1)π

2N + 1
,
(2k1 + 1)π

2N + 1

]
× · · · ×

[
(2kd − 1)π

2N + 1
,
(2kd + 1)π

2N + 1

]
, k ∈ N d.

In fact, �k denotes a d-dimensional hypercube whose center is xk and the length of
edges are 2π

2N+1 , and it satisfies ∪k∈Nd�k = [−π, π]d. We can then describe the main
idea of our proof of (5.2) in the following steps:

• For any vector v, we can construct a polynomial P (x) such that

(5.3)

∣∣∣∣∣
(2π)d

(2N + 1)d
v⊺B⊺

ABAv −
∑

k∈A

∫

�k

(P (x))2dx

∣∣∣∣∣ ≤ C1
v⊺v√
N
.

Therefore, by triangle inequality, it holds that

∣∣∣∣
(2π)d

(2N + 1)d
v⊺B⊺

ABAv

∣∣∣∣ ≤ C1
v⊺v√
N

+
∑

k∈A

∫

�k

(P (x))2dx.

• The sum of the integrals can be bounded by the integral on [−π, π]d as

(5.4)
∑

k∈A

∫

�k

(P (x))2dx ≤ F
( |A|
(2N + 1)d

)
‖P (x)‖22,

where F(x) ≥ 0 is a strictly increasing function on [0, 1] with F(1) = 1.
• Then it remains to estimate two terms in the right-hand side of (5.4) as

|A|
(2N + 1)d

≤ C2 < 1,(5.5)

‖P (x)‖22 ≤ (1 +
C3√
N

)2v⊺v.(5.6)

Combining all the inequalities above leads to

∣∣∣∣
(2π)d

(2N + 1)d
v⊺B⊺

ABAv

∣∣∣∣ ≤
(
F(C2) +

C1 + 2F(C2)C3√
N

+
F(C2)C

2
3

N

)
v⊺v,

which proves (5.2) with constant CB = F(C2)+1
2 for N sufficiently large. In this

section, we will show the proofs of (5.3)–(5.5) in subsections 5.2 to 5.4, respectively.
(5.6) is a corollary in the proof of (5.3), which is shown in subsection 5.2.
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5.1. On the Fourier series of polynomials. As the Fourier spectral method
is adopted and the introduced m(x) is a vector of polynomials, the remaining proof
in this section depends highly on the properties of PNm(x). These properties are
stated in Lemma 5.1, where its proof is deferred in Appendix A.

Lemma 5.1. For a polynomial of degree K

p(x) =
∑

|α|≤K
pαx

α, xα = xα1
1 xα2

2 · · ·xαd

d ,

where α = (α1, ..., αd)
⊺ ∈ Nd is a multi-index and |α| :=∑d

j=1 αj, it holds that

(5.7) |PNp|H1 ≤ C(K, d, p)
√
N, ‖PNp− p‖2 ≤ C(K, d, p)N−1/2,

where

C(K, d, p) =

√
2d

(
2dπKKd

dd

)2(
π2

3
+ 1

)d−1 ∑

|α|≤K
|pα|.

Since the space of polynomials of degree lower than or equal to K is finite dimen-
sional, we can use the equality of norms in finite dimensional spaces to obtain the
following corollary:

Corollary 5.2. For any polynomial of degree less than or equal to K, there exist
a constant C̃ depending only on K and d such that

|PNp|H1 ≤ C̃‖p‖2
√
N, ‖PNp− p‖2 ≤ C̃‖p‖2N−1/2.

We can now show the linear independence of {PNmj(x), j = 1, ...,M} under the
condition (H1).

Lemma 5.3. For a vector of polynomials m(x) satisfying (H1), there exists N0 >
0 such that for N ≥ N0, it holds that ‖a‖ . ‖aTPNm(x)‖2 for any real vector
a ∈ RM .

Proof. For any vector a = (a1, ..., aM )⊺, we apply Lemma 5.1 and triangle in-
equality to get

‖aTPNm(x)‖2 ≥

∥∥∥∥∥∥

M∑

j=1

ajmj(x)

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥

M∑

j=1

ajmj(x)−
M∑

j=1

ajPNmj(x)

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥

M∑

j=1

ajmj(x)

∥∥∥∥∥∥
2

− ‖a‖2

√√√√
M∑

j=1

‖mj(x)− PNmj(x)‖22

≥

∥∥∥∥∥∥

M∑

j=1

ajmj(x)

∥∥∥∥∥∥
2

− σ1‖a‖2N−1/2,

where the constant σ1 depends on the dimension d and the polynomials m(x). On the
other hand, the linear independence of mj(x) (from (H1)) implies that there exists a

constant σ2 such that
∥∥∥
∑M

j=1 ajmj(x)
∥∥∥
2
≥ σ2‖a‖2, where the constant σ2 is positive

and depends only on the polynomials m(x). Therefore,

(5.8) ‖aTPNm(x)‖2 ≥
(
σ2 − σ1N−1/2

)
‖a‖2.
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We can pick a sufficiently large N0 such that the constant in front of ‖a‖2 is larger
than σ2/2 when N ≥ N0, which proves the conclusion of the lemma.

Lemma 5.3 shows that aTPNm(x) = 0 implies a = 0, which is summarized in
the following corollary.

Corollary 5.4. For a vector of polynomials m(x), under the condition (H1),
there exists N0 > 0 such that for N ≥ N0, {PNmj(x)} are linearly independent.

5.2. Proofs of (5.3) and (5.6). We recall that the entries of BA are φj(xk)
with k ∈ A and j being the index of the basis functions of M⊥. On the other
hand, from the definition of M in (3.3), M⊥ = span{PNmj(x) | j = 1, · · · ,M}.
Corollary 5.4 shows that PNmj(x) are linearly independent for sufficiently large N ,
meaning that that {PNmj(x)} is also a basis of M⊥. Thus, there exists a matrix
A ∈ RM×M such that for any v = (v1, · · · , vM )⊺ ∈ RM ,

(5.9)

M∑

j=1

vjφj(x) = v⊺APNm(x) = PN(v⊺Am)(x).

Lemma 5.3 and the orthogonality of {φj} show that

(5.10) ‖v‖2 = ‖v⊺APNm(x)‖2 & ‖A⊺v‖2,

which indicates that ‖A⊺‖2 is bounded uniformly in N . Below we will choose

(5.11) P (x) = v⊺Am(x)

and prove the inequality (5.3). Since

v⊺B⊺
ABAv =

∑

k∈A




M∑

j=1

vjφj(xk)




2

=
∑

k∈A

(
PNP (xk)

)2
,

we can rewrite the left-hand side of (5.3) as

(5.12)

∣∣∣∣∣
∑

k∈A

∫

�k

(
PNP (xk)

)2
dx−

∑

k∈A

∫

�k

(P (x))2dx

∣∣∣∣∣ .

Based on the above reformulation, (5.3) can be proved by triangle inequality if
∣∣∣∣∣
∑

k∈A

∫

�k

(
PNP (xk)

)2
dx−

∑

k∈A

∫

�k

(PNP (x))2dx
∣∣∣∣∣ .

v⊺v√
N
,(5.13)

∣∣∣∣∣
∑

k∈A

∫

�k

(
PNP (x)

)2
dx−

∑

k∈A

∫

�k

(P (x))2dx

∣∣∣∣∣ .
v⊺v√
N
.(5.14)

These two inequalities will be shown in this subsection.
(5.13) can be regarded as an interpolation on a portion of collocation points for

function (PNP (x))2 ∈ S2N . To estimate it, the following lemma is introduced.

Lemma 5.5 (Interpolation of trigonometric polynomials). For any Ψ ∈ S2N , it
holds that

∑

k∈Nd

∣∣∣∣
∫

�k

(Ψ(xk)−Ψ(x)) dx

∣∣∣∣ . N−1|Ψ|W 1,1([−π,π]d).
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Proof. On the one hand, the local quadrature error for smooth function Ψ satisfies
(e.g., see [29, Chapter 3])

(5.15)

∣∣∣∣
∫

�k

(Ψ(xk)−Ψ(x)) dx

∣∣∣∣ .
max(3,d+1)∑

j=2

N−j |Ψ|W j,1(�k).

On the other hand, by the inverse inequality or Bernstein’s inequality (e.g., see [22,
Chapter 1.4]), it holds that for any 1 < j ≤ d+ 1,

|Ψ|W j,1([−π,π]d) . N j−1|Ψ|W 1,1([−π,π]d).

As a result, we take a sum of k ∈ N d in (5.15) and apply the above inverse inequality
to obtain ∑

k∈Nd

∣∣∣∣
∫

�k

(Ψ(xk)−Ψ(x)) dx

∣∣∣∣

.

max(3,d+1)∑

j=2

N−j|Ψ|W j,1([−π,π]d) . N−1|Ψ|W 1,1([−π,π]d).

We are now ready to prove the inequalities (5.13) and (5.14). During the proof,
the inequality (5.6) will be used as an intermediate result. Below we will present three
proofs for these three inequalities.

Proof of (5.13). Lemma 5.5 shows

(5.16)

∣∣∣∣∣
∑

k∈A

∫

�k

(
PNP (xk)

)2
dx−

∑

k∈A

∫

�k

(PNP (x))2dx
∣∣∣∣∣

≤
∑

k∈Nd

∣∣∣∣
∫

�k

(
(PNP (xk))2 − (PNP (x))2

)
dx

∣∣∣∣

. N−1|(PNP (x))2|W 1,1([−π,π]d),

By the chain rule,
(5.17)

|(PNP (x))2|W 1,1([−π,π]d) = 2

∫

[−π,π]d
|∇PNP (x)|1|PNP (x)|dx

≤ 2
√
d‖PNP (x)‖2|PNP (x)|H1 = 2

√
d‖v‖2|PNP (x)|H1 ,

where the last equality utilizes the equality in (5.10). Then according to (5.9)–(5.11)
and Lemma 5.1,

(5.18) |PNP (x)|H1 ≤ ‖A⊺v‖2

√√√√
M∑

j=1

|PNmj(x)|2H1 . ‖v‖2
√
N.

Plugging (5.17) and (5.18) into (5.16) proves (5.13).

Proof of (5.6). By Corollary 5.2 and (5.9)–(5.11), we get the following estimate
of the projection error for sufficiently large N :

(5.19) ‖PNP − P‖2 . N−1/2‖P‖2 ≤ N−1/2‖A⊺v‖2‖m⊺m‖1/21 . N−1/2‖v‖2.
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Assume that the constant in this equality is C3, i.e., ‖PNP − P‖2 ≤ C3N
−1/2‖v‖2.

Then by triangle inequality,

(5.20) ‖P‖2 ≤ ‖PNP‖2 + ‖PNP − P‖2 ≤
(
1 +

C3√
N

)
‖v‖2.

Taking the square on both sides of (5.20) yields (5.6).

Proof of (5.14). The left-hand side of (5.14) satisfies

(5.21)

∣∣∣∣∣
∑

k∈A

∫

�k

(
(PNP (x))2 − (P (x))2

)
dx

∣∣∣∣∣

≤‖
(
PNP + P

) (
PNP − P

)
‖1

≤‖PNP + P‖2‖PNP − P‖2 ≤ 2‖P‖2‖PNP − P‖2,

where ‖PNP‖2 ≤ ‖P‖2 is used in the last inequality. We can now apply (5.19) and
(5.20) to obtain

∣∣∣∣∣
∑

k∈A

∫

�k

(
(PNP (x))2 − (P (x))2

)
dx

∣∣∣∣∣ . N−1/2

(
1 +

C3√
N

)
‖v‖22 . N−1/2‖v‖22.

5.3. Proof of (5.4). The proof of (5.4) requires a theorem introduced in [4].
Here we rewrite it as a lemma:

Lemma 5.6 (Remark 3 in [4]). Let P (x) be an arbitrary polynomial of degree K
and V be a d-dimensional convex set of positive measure. Then for any subset Ω ⊂ V
of positive measure,

(5.22)

(
1

|V |

∫

V

|P (x)|2dx
)1/2

≤ C(d,K)

( |Ω|
|V |

)−K (
1

|Ω|

∫

Ω

|P (x)|2dx
)1/2

,

where constant C(d,K) ≥ 1 depends on d and K.

Based on the notations in Lemma 5.6, we plug V = [−π, π]d, Ω̄ = ∪k∈A�k,
Ω = V \Ω̄ and P (x) from (5.11) with degree K into Lemma 5.6,

∫

V

|P (x)|2dx ≤ (C(d,K))2
( |Ω|
|V |

)−2K−1 ∫

Ω

|P (x)|2dx.

Since Ω = V \Ω̄, the above inequality can be written as

(5.23)

∫

Ω̄

|P (x)|2dx ≤
(
1− (C(d,K))−2

(
1− |Ω̄||V |

)2K+1
)∫

V

|P (x)|2dx.

It is easy to see that |Ω̄|
|V | = |A|

(2N+1)d
. Therefore, (5.23) shows that (5.4) holds with

function F(x)
F(x) = 1− (C(d,K))−2 (1− x)2K+1

.
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5.4. Proof of (5.5). We will estimate the size of active set to show |A|
(2N+1)d

≤
C2 < 1, which is based on the construction of a series of positive and moment-
preserving functions. This series of functions will converge to a L2 function. The
construction and related proof are mainly from [19, 20].

Lemma 5.7. Consider two optimization problems

JN (αN ) = min
β∈RM

{JN(β) =
(2π)d

(2N + 1)d

∑

k∈Nd

exp(β · PNm(xk))− β · ρ(f)},(5.24)

J(α) = min
β∈RM

{J(β) = 〈exp(β ·m(x))〉 − β · ρ(f)}.(5.25)

Under (H1)–(H3) and for sufficiently large N , both JN and J have unique solutions
αN and α, respectively. Moreover, JN is locally uniformly convergent to J on RM ,
and αN converges to α.

The proof of this lemma is almost identical to the proof of Theorem 3.1 in [19]
(see also the proof of Theorem 1 in [20]). We omit the details here.

Lemma 5.8 (Proof of (5.5)). For the active set A = A(N) defined in (3.6),
under the conditions of Lemma 5.7, there exist constants 0 ≤ C2 < 1 and N0 > 0
such that for all N ≥ N0, (5.5) is satisfied.

Proof. We will prove this lemma by contradiction. If the lemma is not true, for
any ε > 0 and N0, there exists N > N0 such that

|A|
(2N + 1)d

> 1− ε.

Recalling R is the complement set of A such that R = N d\A, it holds that

|R|
(2N + 1)d

≤ ε.

By definition, for all k ∈ A, we have ΠN+ (f cN )(xk) = 0. Therefore, according to the
Cauchy–Schwarz inequality and (4.18), it holds that

〈ΠN+ (f cN )〉 = (2π)d

(2N + 1)d

∑

k∈Nd

ΠN+ (f cN )(xk) =
(2π)d

(2N + 1)d

∑

k∈R
ΠN+ (f cN )(xk)

≤
√

(2π)d|R|
(2N + 1)d

(
(2π)d

(2N + 1)d

∑

k∈R

(
ΠN+ (f cN )(xk)

)2
)1/2

=

√
(2π)d|R|
(2N + 1)d

‖ΠN+ (f cN )‖2 ≤
√
(2π)dε‖ΠN+ (f cN )‖2

On the other hand, the left-hand side 〈ΠN+ (f cN )〉 = 〈f〉 > 0. Therefore,

(5.26) ‖ΠN+ (f cN )‖2 ≥
〈f〉√
(2π)dε

.

In particular, we take ε = 1/N0 and let N0 go to infinity to construct a subsequence of
‖ΠN+ (f cN )‖2 that goes to infinity. Together with the uniform boundedness of ‖f cN−f‖2
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[24], it holds that the subsequence of ‖ΠN+ (f cN ) − f cN‖2 also goes to infinity, which
means there exists a subsequence of the optimal objective functions in (3.4) that
tends to infinity.

Now we start to show that there is a feasible solution of (3.4) for each sufficiently
large N , and the L2 norms of these feasible solutions are uniformly bounded. This
means the optimal value of (3.4) is uniformly bounded.

According to Lemma 5.7, the optimization problem (5.24) has a unique solution
αN for any sufficiently large N . The first-order optimality condition of (5.24) shows

(5.27)
(2π)d

(2N + 1)d

∑

k∈Nd

exp(αN · PNm(xk))PNm(xk) = ρ(f).

Then, the function

EN(x) = IN (exp(αN · PNm(x))) ∈ S
N

satisfies EN(xk) > 0 for all k ∈ N d and ρ(EN ) = ρ(f). Thus, using triangle inequality
and the optimality of Π+

N (f cN ), we have

‖EN‖2 ≥ ‖EN − f cN‖2 − ‖f cN‖2 ≥ ‖Π+
N (f cN )− f cN‖2 − ‖f cN‖2,

which implies that ‖EN‖2 also diverges to infinity in the subsequence.
However, by Lemma 5.7, αN converges to α, which is the unique solution of

(5.25). Making use of (4.18) and the (local) uniform convergence of JN to J in
Lemma 5.7, this sequence satisfies

‖EN(x)‖22 =
(2π)d

(2N + 1)d

∑

k∈Nd

exp(2αN · PNm(xk))→ 〈exp(2α ·m(x))〉,

which is bounded. This contradicts our previous conclusion that the subsequence of
‖EN‖2 tends to infinity. By the method of contradiction, the constant C2 < 1 must
exist.

6. An efficient solver of the optimization problem. In this section, we aim
at designing an efficient numerical scheme to solve (2.3).

To brief the idea more clearly, we can further apply (4.18) to (3.1) and obtain an
equivalent form of the minimization problem in (2.3) as

min
gk

∑

k∈Nd

(
gk − (PNf)(xk)

)2
s.t. gk ≥ 0 and

(2π)d

(2N + 1)d

∑

k∈Nd

PNm(xk)gk = ρ(f).

The above optimization problem can be represented as a matrix-vector form as

(6.1) min
g
‖g − fN‖22, s.t. g ∈ R

(2N+1)d

+ andMg = ρ(f),

where fN is the vector of (PNf)(xk) for k ∈ N d; the entries of the matrix M ∈
RM×(2N+1)d is (2π)d

(2N+1)dPNmj(xk), and j denotes the row index and k denotes the

column index. By (H3), we have ρ(f) ∈ Ran(M), where Ran(M) is the range space
ofM. According to subsection 3.1, (6.1) admits a unique minimizer, denoted as g∗.
Furthermore, Corollary 5.4 and (4.18) implies Ran(M) = RM for sufficiently large N .



A POSITIVE AND MOMENT-PRESERVING SPECTRAL METHOD 15

The problem (6.1) is a convex quadratic programming problem, which computes

the projection of fN onto a polyhedral set {g ∈ R
(2N+1)d

+ : Mg = ρ(f)}. By
introducing a Lagrange multiplier λ ∈ Ran(M), the Lagrange function associated
with the problem (6.1) is given as

(6.2) L(g;λ) = ‖g−fN‖22+δ+(g)−λ⊺ (Mg − ρ(f)) , (g,λ) ∈ R
(2N+1)d×Ran(M),

where δ+(·) is the indicator function of the non-negative orthant R
(2N+1)d

+ . Based on
(6.2), the dual problem of (6.1) takes the form as

max
λ∈Ran(M)

{
min

g∈R(2N+1)d
L(g;λ)

}
.(6.3)

By rewriting the Lagrange function L(g;λ) as

L(g;λ) =

∥∥∥∥g −
(
fN +

1

2
M⊺λ

)∥∥∥∥
2

2

+ δ+(g) + λ⊺ρ(f)−
∥∥∥∥fN +

1

2
M⊺λ

∥∥∥∥
2

2

+ ‖fN‖22 ,

we can find that g = Π+

(
fN + 1

2M⊺λ
)
minimizes L(g;λ) for any fixed λ, where

Π+(·) is the projection operator onto R
(2N+1)d

+ defined as: for any w ∈ R(2N+1)d ,

(
Π+(w)

)
k
= max(0, wk), ∀k.

Then the dual problem (6.3) can be written equivalently as

(6.4) max
λ∈Ran(M)

{
Φ(λ) := −

∥∥∥∥Π+

(
fN +

1

2
M⊺λ

)∥∥∥∥
2

2

+ λ⊺ρ(f) + ‖fN‖22

}
.

Note that the subspace constraint λ ∈ Ran(M) is imposed to ensure the boundedness
of the solution set of the dual problem (6.4).

We are going to focus on solving the dual problem (6.4), which is an unconstrained
maximization problem on Ran(M) with a concave objective function. As long as we
obtain a maximizer λ∗ of (6.4), we can compute the unique optimal solution to (6.1)
as g∗ = Π+

(
fN + 1

2M⊺λ∗

)
.

According to [21], we can see that Φ(·) is continuously differentiable with respect
to λ on Ran(M) with

∇Φ(λ) = −MΠ+

(
fN +

1

2
M⊺λ

)
+ ρ(f), for any λ ∈ Ran(M).

Then the dual problem (6.4) can be solved by the nonsmooth equation

∇Φ(λ) = 0, λ ∈ Ran(M).(6.5)

Noting the fact that ∇Φ(·) is nondifferentiable, we cannot apply the commonly-used
derivative-based methods directly. Fortunately, since Π+(·) is strongly semismooth
[33], we can develop a semismooth Newton method to solve the nonsmooth equation
(6.5) and expect a quadratic convergence rate.

We present our proposed method for solving (6.1) in Algorithm 6.1, together
with its convergence results in Theorem 6.1. The detailed proof can be found in
Appendix B.
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Algorithm 6.1 A semismooth Newton based algorithm for solving (6.1)

1: Initialization. Given τ1, τ2 ∈ (0, 1) to ensure the non-negative definiteness of
Hessian matrices and µ ∈ (0, 1/2), δ ∈ (0, 1) to set line search step sizes. Let the
initial point λ0 be the zero vector in RM . Set j = 0.

2: repeat

3: Step 1 (Newton Direction) Let the vector uj ∈ R(2N+1)d be defined as:
for each k, (uj)k = 1 if (fN + 1

2M⊺λj)k > 0 and (uj)k = 0 otherwise. Set

εj := τ1 min{τ2, ‖∇Φ(λj)‖} and solve dj ∈ Ran(M) from the linear system

(
−1

2
MDiag(uj)M⊺ − εjIM

)
d = −∇Φ(λj).

4: Step 2 (Line Search) Let nj be the smallest non-negative integer n for which

Φ(λj + δndj) ≥ Φ(λj) + µδn〈∇Φ(λj),dj〉.

5: Step 3. Set λj+1 = λj + δnjdj , and j ← j + 1.
6: until ‖∇Φ(λj)‖ is smaller than the given tolerance.
7: return An approximate solution ĝ := Π+

(
fN + 1

2M⊺λj
)
to (6.1).

Theorem 6.1. Let {λj} be the infinite sequence generated by Algorithm 6.1.
Then {λj} ⊆ Ran(M) is a bounded sequence and any accumulation point is an opti-
mal solution to the problem (6.4).

Furthermore, let K := {k ∈ N d : (g∗)k > 0} and assume

span({M:,k}k∈K) = Ran(M),(6.6)

where M:,k is the kth column of the matrix M, then the sequence {λj} converges to
an optimal solution λ∗ to (6.4) and

‖λj+1 − λ∗‖ ≤ O(‖λj − λ∗‖2).

7. Numerical results. In this section, we will present numerical results to
demonstrate the performance of our positive and moment-preserving Fourier spec-
tral method. We will take the number of dimensions d = 3 in all the numerical
examples and denote the spatial variable as (x, y, z)⊺ ∈ R

3.

7.1. Convergence test. In this example, we choose different functions f and
check the error of ΠN+ f . Since Π

N
+f ∈ SN , we can apply Parseval’s theorem and obtain

‖f −ΠN+ f‖22 = ‖f − PNf‖22 + ‖PNf −ΠN+f‖22.

All the three errors in the above equality will be presented for a detailed comparison.
Example 1: Hm

p functions. In the first example, we consider periodic functions
defined on [−π, π]3 with the following expression:

(7.1) f(x, y, z) = [(1− cos(x)) (1− cos(y)) (1− cos(z))]q .

Three choices of q will be studied:
• q = 4/5, for which f ∈ H2

p ([−π, π]3) but f 6∈ H3
p ([−π, π]3).
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Table 1

Errors of projections for f = [(1− cos(x)) (1− cos(y)) (1− cos(z))]q .

N 2 4 8 16 32
q = 4/5

‖PNf −ΠN+f‖2 2.94× 10−2 2.28× 10−3 1.31× 10−4 6.35× 10−6 2.83× 10−7

‖PNf −ΠNf‖2 2.85× 10−2 2.26× 10−3 1.31× 10−4 6.35× 10−6 2.83× 10−7

‖f − PNf‖2 5.27× 10−1 1.54× 10−1 4.04× 10−2 1.00× 10−2 2.42× 10−3

‖f −ΠN+f‖2 5.28× 10−1 1.54× 10−1 4.04× 10−2 1.00× 10−2 2.42× 10−3

order 1.78 1.93 2.01 2.05
q = 13/10

‖PNf −ΠN+f‖2 9.08× 10−1 1.23× 10−1 1.61× 10−2 2.00× 10−3 2.42× 10−4

‖PNf −ΠNf‖2 4.06× 10−2 1.74× 10−3 5.34× 10−5 1.33× 10−6 3.02× 10−8

‖f − PNf‖2 7.69× 10−1 1.18× 10−1 1.61× 10−2 2.05× 10−3 2.51× 10−4

‖f −ΠN+f‖2 1.19× 100 1.70× 10−1 2.28× 10−2 2.86× 10−3 3.49× 10−4

order 2.81 2.90 2.99 3.03
q = 9/5

‖PNf −ΠN+f‖2 1.02× 100 6.61× 10−2 4.40× 10−3 2.80× 10−4 1.71× 10−5

‖PNf −ΠNf‖2 5.41× 10−2 1.13× 10−3 1.78× 10−5 2.28× 10−7 2.59× 10−9

‖f − PNf‖2 1.06× 100 7.67× 10−2 5.33× 10−3 3.46× 10−4 2.14× 10−5

‖f −ΠN+f‖2 1.47× 100 1.01× 10−1 6.91× 10−3 4.45× 10−4 2.74× 10−5

order 3.86 3.87 3.96 4.02

• q = 13/10, for which f ∈ H3
p ([−π, π]3) but f 6∈ H4

p ([−π, π]3).
• q = 9/5, for which f ∈ H4

p ([−π, π]3) but f 6∈ H5
p ([−π, π]3).

Table 1 shows that the error of our new projection ‖f − ΠN+f‖2 is always at the
same magnitude as the error of the direct projection ‖f − PNf‖2. Moreover, the
convergence order of ‖f −ΠN+f‖2 differs with respect to the regularity of function f ,
which agrees with Corollary 2.3.

Example 2: smooth function. The second example is a smooth and periodic func-
tion

(7.2) f(x, y, z) =
(
sin2 x+ sin2 y + sin2 z

)
exp

(
− 1

sin2 x
− 1

sin2 y
− 1

sin2 z

)
,

for which the spectral accuracy of ‖f −ΠN+f‖2 can be observed in Table 2.

Table 2

Errors of the different projections for f in (7.2).

N 2 4 8 16 32
‖PNf −ΠN+f‖2 1.08× 10−1 1.40× 10−2 3.80× 10−3 2.14× 10−4 6.03× 10−6

‖PNf −ΠNf‖2 3.35× 10−3 4.22× 10−4 3.88× 10−5 1.02× 10−6 7.13× 10−9

‖f − PNf‖2 6.24× 10−2 2.29× 10−2 4.15× 10−3 4.04× 10−4 9.40× 10−6

‖f −ΠN+f‖2 1.25× 10−1 2.68× 10−2 5.63× 10−3 4.57× 10−4 1.12× 10−5

order 2.22 2.25 3.62 5.35

7.2. Application to the Boltzmann equation. The initial value problem of
the space homogeneous Boltzmann equation describes the evolution of non-negative
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distribution function f(t, v) in three dimensions (d = 3) as

(7.3)





∂f

∂t
= Q(f, f),

f(t = 0, v) = f0(v), v ∈ R
3,

where the bilinear collision or interaction operator

(7.4) Q(f, f)(v) =

∫

R3

∫

S2

B(|v − v∗|, cos θ) (f(v′∗)f(v′)− f(v∗)f(v)) dσd(v − v∗).

The parameters in (7.4) discribes the details of bilinear collision, where (v, v∗) and
(v′, v′∗) are pre-collisional velocity pair and post-collisional velocity pair, respectively;

σ is the specular reflection direction and cos θ = (v−v∗)·σ
|v−v∗| ; B(|v − v∗|, cos θ) is the

collision kernel. For elastic collisions, the collision operator in (7.4) satisfies

(7.5)

∫

R3

Q(f, f)φ(v)dv = 0, φ(v) = 1, v1, v2, v3, |v|2,

which implies the conservation of mass, momentum and energy for f in (7.3).
To discretize (7.3) by the Fourier spectral method (see [25] or the review paper

[9] and the references therein), we assume f(t, x) has a compact support in a ball
B0(R) and truncate the simulation domain into a larger bounded hypercube [−L,L]3
where L ≥ 3+

√
2

2 R to avoid aliasing error. Furthermore, we can periodize both the
distribution function and the collision operator so that the right-hand side of the
Boltzmann equation becomes
(7.6)

QR(f, f)(v) =

∫

B0(2R)

∫

S2

B(|v − v∗|, cos θ) (f(v′∗)f(v′)− f(v∗)f(v)) dσd(v − v∗).

It should be noted that the operator QR does not preserve all the collision in-
variants of the original operator. In particular, the conservations of momentum and
energy are lost. Considering the following expansion of the distribution function:

(7.7) f(v) =
∑

k∈N 3

f̂ke
i π
L
k·v, f̂k =

1

(2L)3

∫

[−L,L]3
f(v)ei

π
L
k·vdv,

the Fourier coefficients of QR(f, f) can be approximated by

(7.8) Q̂k =
∑

(l+m) mod N=k

(
B̂(l,m)− B̂(m,m)

)
f̂lf̂m,

and the thus Fourier method for the truncated Boltzmann equation is

(7.9)
df̂k
dt

= Q̂k.

The initial distribution function can be approximated by either interpolation or pro-
jection.

In our tests, we consider the Maxwell gas molecules by taking B(|v− v∗|, cos θ) =
1
4π , which implies B̂(l,m) in (7.8) as

B̂(l,m) = 32πR3 (ξ + η) sin(ξ − η)− (ξ − η) sin(ξ + η)

2ξη(ξ + η)(ξ − η) ,
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where ξ = |l+m|Rπ
L , η = |l−m|Rπ

L .
For a forward Euler method with uniform time step ∆t, we denote the vector of

the coefficients f̂k at the nth time step as fn. Then the temporal discretization of
(7.9) becomes

(7.10) fn+1 = fn +∆tQ(fn,fn),

whereQ is the vector of Q̂k. In general, this method preserves only mass conservation,
and we will fix the momentum conservation, the energy conservation and the positivity
by applying our positive projection after each time step, so that the numerical scheme
becomes

(7.11)





fn+1,∗ = fn +∆tQ(fn,fn),

fn+1
N = argmin

g∈SN+

‖g − fn+1,∗
N ‖22 s.t. ρ(g) = ρ(fnN ),

f0
N = ΠN+f0.

For the purpose of comparison, we will also present the solution with moment con-
servation only, where SN+ is the above scheme is replaced by SN . Also, the scheme
in (7.11) can be easily generalized to higher-order scheme by using Runge-Kutta
methods. In our implementation, we use the third-order strong stability-preserving
Runge-Kutta method [13] by applying projection to each stage.

In the following two examples, we take R = 3 and time step ∆t = 0.01. The error
of moments is computed by the l2 error of the five conserved moments.

Example 1: BKW solution. The first example is the Bobylev-Krook-Wu (BKW)
solution[3, 17], which is an exact solution of (7.3) as

(7.12) f(t, v) =
1

(2πS)3/2
exp

(
−|v|

2

2S

)(
5S − 3

2S
+

1− S
2S2

|v|2
)
,

where S = 1− 2 exp(−t/6)/5.

Table 3

Errors and properties of fN at t = 0.1.

N 4 8 16
spectral method

‖INf − fN‖2 6.39× 10−2 3.03× 10−3 2.10× 10−8

‖ρ(f)− ρ(fN )‖2 1.70× 10−3 2.66× 10−3 1.06× 10−9

mink∈N 3(fN (xk)) −2.55× 10−4 −1.43× 10−4 −1.68× 10−10

moment projection
‖INf − fN‖2 6.39× 10−2 3.03× 10−3 2.10× 10−8

‖ρ(f)− ρ(fN )‖2 4.86× 10−15 2.49× 10−14 2.70× 10−14

mink∈N 3(fN (xk)) −2.55× 10−4 −1.43× 10−4 −1.68× 10−10

positive and moment-preserving
‖INf − fN‖2 6.62× 10−2 2.99× 10−3 2.10× 10−8

‖ρ(f)− ρ(fN )‖2 6.39× 10−16 4.01× 10−15 1.26× 10−14

mink∈N 3(fN (xk)) 0 0 0

It can be seen in Table 3 that all three methods exhibit spectral convergence at t =
0.1. Meanwhile, although both moment-preserving methods preserve the conservation
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(b) ‖ρ(f) − ρ(fN )‖2.

0 10 20 30
-12

-10

-8

-6

-4

-2

0

2
10-9

spectral method
moment preserving
positive and moment-preserving

(c) mink∈N3(fN (xk)).

Fig. 1. Example of the Boltzmann equation for BKW solution. Time evolution of the L2 error

‖INf − fN‖2, l2 error of moments ‖ρ(f) − ρ(fN )‖2 and minimum value mink∈N3(fN (xk)) for

N = 16.

of all moments (up to machine accuracy), our new positive and moment-preserving
Fourier method is the only one that preserves positivity.

We are also interested in the long-time performance of all three methods in Ta-
ble 3. Therefore, we simulate the BKW problem to a longer time t = 30 for N = 16,
and we plot the result in Figure 1. It can be observed that the positive and moment-
preserving method achieves better accuracy for a relatively longer simulation.

Example 2: discontinuous initial value. This example adopts a discontinuous
initial value [5] as

f0(v) =





ρ1
(2πT1)3/2

exp

(
−|v|

2

2T1

)
, if v1 > 0,

ρ2
(2πT2)3/2

exp

(
−|v|

2

2T2

)
, if v1 < 0,

where ρ1 = 6/5, ρ2 = 4/5, T1 = 2/3 and T2 = 3/2. Numerical solutions for N = 16
on the line y = z = 0 at t = 0.5 are plotted in Figure 2.

-5 0 5
0

0.05

0.1

0.15
spectral method
moment preserving
positive and moment-preserving

-5 0 5
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-2

0

2

4

6

8
10-3

spectral method
moment preserving
positive and moment-preserving

Fig. 2. Example of the Boltzmann equation for discontinuous initial value. N = 16 and t = 0.5.

Due to the discontinuity occurring in the initial value, we observe the Gibbs
phenomenon for all three methods in Figure 2. Nevertheless, the solution of positive
and moment-preserving method is always non-negative, and the magnitude of its
oscillation is smaller than that of the other two methods.

8. Conclusions. This work focuses on maintaining the positivity and the con-
servation of moments when applying the Fourier spectral method. By introducing
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an optimization problem in the space of trigonometric polynomials, a new projection
is constructed such that all moments are conserved and the projected trigonometric
polynomial is non-negative on all collocation points. We analyze the accuracy of the
new projection, and prove the spectral accuracy is maintained. Moreover, an effi-
cient and practical Newton’s method is proposed to solve the associated optimization
problem, which is proved to enjoy quadratic convergence. The spectral accuracy of
the new Fourier spectral method is further validated by numerical examples including
applications to the Boltzmann equation.

Regarding the generality of this new projection, future works include the extension
to other equations where positivity is an important issue in numerical implementation,
e.g., the Fokker-Planck equation or the Cahn-Hilliard equation with a logarithmic
potential. The idea of constructing new projection may also be applied to other
spectral methods.

Appendix A. Proof of Lemma 5.1. With the help of triangle inequality, it
suffices to estimate the H1 semi-norm and the projection error of monomials, which
are given in Corollaries A.2 and A.3, respectively. They are based on the computation
and estimate of monomials xα = xα1

1 xα2
2 · · ·xαd

d shown in the following lemma.

Lemma A.1 (Fourier coefficients of monomials). For a given monomial xα, its
Fourier coefficients (x̂α)k satisfy

(A.1) |(x̂α)k| ≤ C(|α|, d)
d∏

j=1

(
δ0,kj +

1− δ0,kj
|kj |

)
, ∀k = (k1, ..., kd)

⊺,

where
1−δ0,kj

|kj | := 0 when kj = 0, and the constant C(|α|, d) = 2dπ|α||α|d
dd .

Proof. A direct computation yields

(A.2) (x̂α)k =
1

(2π)d

∫

[−π,π]d
xαe−ik·xdx =

d∏

j=1

F (kj , αj),

where F (m,n) for two integers m and n ≥ 0 is the one-dimensional Fourier transform
of monomial

(A.3) F (m,n) =
1

2π

∫ π

−π
tne−imtdt.

When m = 0, F (0, n) = ((−1)n+1)πn

2(n+1) . When m 6= 0 and n = 0, F (m, 0) = 0. When

m 6= 0 and n > 0, we can apply integration by parts and get

(A.4) F (m,n) =

{
i(−1)mπn−1

m − n(n−1)
m2 F (m,n− 2), n is odd,

(−1)mnπ(n−2)

m2 − n(n−1)
m2 F (m,n− 2), n is even,

where we specify F (m,−1) = 0 in the above equality. By the definition in (A.3), it
holds that when n > 1,

|F (m,n− 2)| ≤ 1

2π

∫ π

−π
|t|n−2dt =

πn−2

n− 1
.

Plugging the above inequality into (A.4) yields |F (m,n)| ≤ 2nπn−1

|m| for all m 6= 0.

On the other hand, it is obvious that |F (0, n)| =
∣∣∣ ((−1)n+1)πn

2(n+1)

∣∣∣ ≤ πn. Combining the
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above different cases of |F (m,n)|, we get an estimate for all m and n that

(A.5) |F (m,n)| ≤ 2nπn
(
δ0,m +

1− δ0,m
|m|

)
.

By plugging the above estimate into (A.2), we obtain the desired (A.1) where the

constant C(|α|, d) comes from
∏d
j=1 2αjπ

αj = 2dπ|α|∏d
j=1 αj ≤

2dπ|α||α|d
dd

.

Based on this lemma, two corollaries will be shown, which are related to the H1

semi-norm and the projection error of monomials.

Corollary A.2 (H1 semi-norm of monomials). The H1 semi-norm of PNxα
satisfies

(A.6) |PNxα|H1 ≤ C(|α|, d)
√
N,

where C(|α|, d) =
√
2d
(

2dπ|α||α|d
dd

)2 (
π2

3 + 1
)d−1

is a constant.

Proof. By the definition of H1 semi-norm and Lemma A.1,

|PNxα|2H1 =
∑

k∈Nd

d∑

l=1

|kl|2|(x̂α)k|2

≤
(
2dπ|α||α|d

dd

)2 d∑

l=1

∑

k∈Nd

|kl|2
d∏

j=1

(
δ0,kj +

1− δ0,kj
|kj |

)2

=

(
2dπ|α||α|d

dd

)2 d∑

l=1

N∑

kl=−N
(|kl|δ0,kl + 1− δ0,kl)2

d∏

j=1
j 6=l

N∑

kj=−N

(
δ0,kj +

1− δ0,kj
|kj |

)2

=

(
2dπ|α||α|d

dd

)2 d∑

l=1

(2N)

d∏

j=1
j 6=l


2

N∑

kj=1

1

|kj |2
+ 1




≤
(
2dπ|α||α|d

dd

)2

d(2N)

(
π2

3
+ 1

)d−1

.

Corollary A.3 (Projection error of monomials). For a monomial xα,

(A.7) ‖PNxα − xα‖2 ≤ C(|α|, d)N−1/2,

where constant C(|α|, d) =
√
2d
(

2dπ|α||α|d
dd

)2 (
π2

3 + 1
)d−1

.

Proof. By Parseval’s theorem and Lemma A.1,

‖PNxα − xα‖22 ≤
d∑

l=1

∞∑

k1=−∞
· · ·

∞∑

kl−1=−∞

∑

|kl|>N

∞∑

kl+1=−∞
· · ·

∞∑

kd=−∞
|(x̂α)k|2

≤
(
2dπ|α||α|d

dd

)2 d∑

l=1

∑

|kl|>N

1

|kl|2
d∏

j=1
j 6=l

∞∑

kj=−∞

(
δ0,kj +

1− δ0,kj
|kj |

)2

=

(
2dπ|α||α|d

dd

)2

2d
∑

n>N

1

n2

(
π2

3
+ 1

)d−1

.
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On the other hand,
∑

n>N
1
n2 = ψ(1)(N + 1), where ψ(m)(z) denotes the polygamma

function [1, Section 6.4]. It is shown in [28] that for z > 0,

(−1)(m+1)ψ(m)(z) <
(m− 1)!

zm
+

m!

zm+1
.

Therefore,

N
∑

n>N

1

n2
= Nψ(1)(N + 1) ≤ N

N + 1
+

N

(N + 1)2
≤ 1,

and (A.7) is proved.

Appendix B. Proof of Theorem 6.1. We first note that the function∇Φ(·) is
Lipschitz continuous on Ran(M), as Π+(·) is Lipschitz continuous with modulus 1 [30].
According to Rademacher’s theorem [31, Section 9.J], ∇Φ(·) is almost everywhere
Fréchet-differentiable in Ran(M). Let λ ∈ Ran(M) be any given point. Define the
following operator

∂̂2Φ(λ) := −1

2
M∂Π+(fN +

1

2
M⊺λ)M⊺,

where ∂Π+(fN + 1
2M⊺λ) is the Clarke subdifferential [8] of the Lipschitz continuous

function Π+(·) at fN + 1
2M⊺λ, defined as the following set of diagonal matrices:

(B.1) ∂Π+(w) =



Diag(u)

∣∣∣∣∣∣

uk = 1, wk > 0,
uk ∈ [0, 1], wk = 0,
uk = 0, wk < 0,



 , for all w ∈ R

(2N+1)d .

From [15], we have that

∂2Φ(λ)d = ∂̂2Φ(λ)d, for all d ∈ R
M ,

where ∂2Φ(λ) denotes the Clarke subdifferential of ∇Φ(·) at λ. Moreover, it can

be seen that the elements in ∂̂2Φ(λ) are all symmetric and negative semidefinite.

Furthermore, ∇Φ(·) is strongly semismooth [33] with respect to ∂̂2Φ(λ).
Based on the above discussions, we can design a semismooth Newton method to

solve the nonsmooth equation (6.5). The semismooth Newton method is a generalized
version of the classical Newton method, where the main modification is to replace the
Hessian matrix by a generalized Hessian operator. In our case, any element in ∂̂2Φ(λ)
can be seen as a generalized Hessian of Φ(·). In particular, we can pick

−1

2
MDiag(u)M⊺ ∈ ∂̂2Φ(λ),

where u ∈ R(2N+1)d is defined as: for each k, uk = 1 if (fN + 1
2M⊺λ)k > 0 and

uk = 0 otherwise.
The first part of the convergence results in Theorem 6.1 then follows from [34,

Theorem 3.4]. In order to ensure the quadratic convergence rate in the second part,
according to [34, Theorem 3.5], we only need the constraint nondegeneracy assumption

M lin(T
R

(2N+1)d

+

(g∗)) = Ran(M),(B.2)
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where T
R

(2N+1)d

+

(g∗) denotes the tangent cone of R(2N+1)d

+ at g∗, and lin(T
R

(2N+1)d

+

(g∗))

denotes the lineality space of T
R

(2N+1)d

+

(g∗), that is the greatest linear subspace con-

tained in T
R

(2N+1)d

+

(g∗). By noting the fact that

T
R

(2N+1)d

+

(g∗) =
{
g ∈ R

(2N+1)d
∣∣∣gk ≥ 0, k ∈ N d\K

}
,

where K is defined in the theorem, we have that

lin(T
R

(2N+1)d

+

(g∗)) =
{
g ∈ R

(2N+1)d
∣∣∣gk = 0, k ∈ N d\K

}
.

Therefore, we can see that the condition (B.2) is equivalent to (6.6) in Theorem 6.1.
This completes the proof.
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