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Abstract

The determinant lower bound of Lovász, Spencer, and Vesztergombi [European Journal of Combina-
torics, 1986] is a general way to prove lower bounds on the hereditary discrepancy of a set system. In
their paper, Lovász, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from
above by a function of the determinant lower bound. This was answered in the negative by Hoffman,
and the largest known multiplicative gap between the two quantities for a set system of m subsets of
a universe of size n is on the order of max{log n,√logm}. On the other hand, building upon work of
Matoušek [Proceedings of the AMS, 2013], Jiang and Reis [SOSA, 2022] showed that this gap is always
bounded up to constants by

√

log(m) log(n). This is tight when m is polynomial in n, but leaves open
the case of large m. We show that the bound of Jiang and Reis is tight for nearly the entire range of m.
Our proof amplifies the discrepancy lower bounds of a set system derived from the discrete Haar basis
via Kronecker products.

1 Introduction

Let X be a finite universe of elements, S a collection of subsets of X called a set system, and χ : X → {±1}
a ±1 coloring of the elements of X . The discrepancy of S with respect to χ, denoted disc(S, χ), is defined
as maxS∈S ||χ−1(1) ∩ S| − |χ−1(−1) ∩ S|| i.e. the largest difference between the number of elements colored
differently in any set S ∈ S. The discrepancy of S, denoted disc(S), is then minχ:X→{±1} disc(S, χ) i.e.
among all ±1 colorings of the elements of X , the least unequal we can make the most unequal set of S.
If |X | = n and |S| = m, let X = [n] and S = {S1, ..., Sm}. For each set system S, we can construct an
associated m× n incidence matrix AS : the entry in row i and column j of AS is equal to one if element j
is in Si and zero otherwise. We define the discrepancy of a real-valued matrix A as

disc(A) := min
x∈{±1}n

‖Ax‖∞,

where ‖·‖∞ denotes the L∞-norm of a vector. Using this definition, we see that disc(AS) = disc(S).
Throughout this exposition, we will use S and its indicator matrix AS interchangeably.

We would like discrepancy to be a robust quantity, but it can be sensitive to slight modifications to the
incidence matrix e.g. the discrepancy of the matrix [A,A] is always zero regardless of disc(A). This
motivates the definition of the hereditary discrepancy of a matrix A as

herdisc(A) := max
B∈S

disc(B),

where S is the set of all sub-matrices of A. Notice that adding rows to a matrix can never decrease its
discrepancy so it suffices for S to consist of sub-matrices whose columns are a subset of the columns of A. In

∗University of Toronto, Department of Computer Science (xinyuan@cs.toronto.edu).
†University of Toronto, Department of Computer Science (anikolov@cs.toronto.edu).

1

http://arxiv.org/abs/2303.08167v2
mailto:xinyuan@cs.toronto.edu
mailto:anikolov@cs.toronto.edu


a sense, this definition generalizes total unimodularity. It is easy to show that totally unimodular matrices
(TUM)1 have hereditary discrepancy at most one [Sch98]. Further, a result of Ghouila-Houri [GH62] states
that the set of hereditary discrepancy one matrices with entries in {−1, 0, 1} is exactly the set of TUM
matrices.

An important early work in discrepancy theory of Lovász, Spencer, and Vesztergombi [LSV86] showed that
the determinant lower bound of A, defined as

detlb(A) := max
k

max
B∈Sk

|det(B)|1/k ,

where Sk denotes the set of all k × k sub-matrices of A, satisfies 2herdisc(A) ≥ detlb(A). This, again,
generalizes what happens with totally unimodular matrices, for which both quantities are equal to one. The
determinant lower bound has since become a powerful tool in proving nearly tight lower bounds on many
natural and important set systems, e.g. axis-aligned boxes and point-line incidences [CL01, MNT18]. Given
that the determinant lower bound often implies nearly tight discrepancy lower bounds, it is natural to ask
how far it can be from the hereditary discrepancy. The first result in this direction is due to Matoušek [Mat13]
who showed that the ratio between hereditary discrepancy and the determinant lower bound is bounded from
above as

herdisc(A)

detlb(A)
. log(2mn) ·

√

log(2n).

Here we used the notation a . b to denote the the existence of a universal constant c such that a ≤ c · b.
Similarly, a & b denotes the existence of a universal constant c > 0 such that a ≥ c · b, and a ∼= b when a . b
and a & b.

Matoušek’s bound was not believed to be tight as the largest known value of herdisc(A)
detlb(A) is on the order of

logn. Both the large discrepancy three permutations family of Newman, Neiman, and Nikolov [NNN12] (see
also [Fra18]) and a construction due to Pálvölgyi [Pál10] achieve this gap. Matoušek’s bound follows from a
pair of inequalities

herdisc(A) . log(2mn) · hervecdisc(A), (1)

hervecdisc(A) .
√

log 2n · detlb(A), (2)

where the first inequality is implied by the seminal result of Bansal [Ban10], and the second inequality is
proved using duality. Note that vecdisc is the vector discrepancy of a set system, or matrix. This quantity
is similar to discrepancy but the elements of the universe are “colored” by vectors rather than by ±1. In
particular, for an m× n matrix A,

vecdisc(A) = min
v1,...,vn∈Sn−1

max
j∈[m]

∥

∥

∥

∥

∥

∥

∑

i∈[n]

Aj,i · vi

∥

∥

∥

∥

∥

∥

2

,

where Sn−1 is the unit sphere in R
n. Note that vector discrepancy is a lower bound on discrepancy since a

coloring χ : X → {±1} can be interpreted as a set of vectors where all vectors are parallel to each other.
The hereditary vector discrepancy of A, denoted hervecdisc, which appears in (1), is the maximum vector
discrepancy of any subset of the columns of A.

Recently Jiang and Reis [JR22] were able to improve Matoušek’s result by showing that herdisc(A)
detlb(A) .√

log 2m log 2n. Their work left open whether the
√
logm term can be replaced by

√
logn for large m.

In the present work, we show that this is mostly not possible, and that the factor of
√
logm is necessary for

all m in the range n ≤ m ≤ 2n
1−ǫ

for any constant ǫ > 0. Note that when m > 2n, the matrix contains
duplicated rows whose removal will not change the value of herdisc(A) nor detlb(A). Thus, our lower bound
covers nearly the whole range of values for m.

Our main result is stated in the next theorem. Its proof appears at the end of Section 3.

1A matrix A is TUM if every square submatrix of A has determinant in {−1, 0, 1}. A linear systems of the form Ax ≥ b

for TUM A, integral b, and 0 ≤ x has an integral polyhedron as its feasible region.
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Theorem 1. For any real number ǫ ∈ (0, 1), any integers n ≥ 2 and m ∈
[

n, 2n
1−ǫ
]

, there exists a matrix

A ∈ {0, 1}m×n such that
herdisc(A)

detlb(A)
&
√

logm logn. (3)

Note that the lower bound in Theorem 1 only holds for m ≤ 2n
1−ǫ

for an arbitrarily small but fixed constant
ε. This leaves open whether such a lower bound holds all the way to m = 2n. The next theorem gives a
new upper bound on herdisc(A) in terms of detlb(A), which implies that Theorem 1 cannot be extended to
m = 2ω(n/ log n).

Theorem 2. For all positive integers m and n, and all matrices A ∈ R
m×n, we have

herdisc(A)

detlb(A)
.

√
n.

This upper bound is based on the relationship between the volume lower bound on discrepancy studied
in [DNTTJ18], and the determinant lower bound. In particular, we show that the volume lower bound
is bounded by a constant multiple of

√
n · detlb(A), and use a result from [DNTTJ18] characterizing the

hereditary discrepancy of partial colorings in terms of the volume lower bound. We also give a simpler proof
for the special case of A ∈ {0, 1}m×n in the Appendix, using the theory of VC dimension.

Crucial to the proof of Theorem 1 is a recursively defined 2k × 2k matrix Ak, based on the Haar wavelet
basis. We will also show that Ak is tight for Equation (2).

Theorem 3. With n = 2k for an integer k ≥ 1, hervecdisc(Ak) &
√
log n · detlb(Ak).

Its proof appears in Section 3.1. It is yet unknown whether Equation (1) is tight as Jiang and Reis improved
upon Matoušek’s bound by circumventing the inequality altogether. The resolution of this problem via
an efficient algorithm would imply new and old constructive bounds, for example, the constructive version
of Banaszczyk’s upper bound for the Beck-Fiala problem [Ban98, BDG16], and a constructive version of
Nikolov’s upper bound for Tuśnady’s problem [Nik17].

Our use of the matrix Ak is inspired by work of Kunisky [Kun23], who first used this matrix in the context
of proving discrepancy lower bounds. We also observe that this matrix gives easier proofs of other known
results in discrepancy theory: see Section 3.1.

Before we begin the proof proper, we define a few variants of discrepancy which will appear throughout this
exposition. Just as disc(A) was defined in terms of L∞, we can define discrepancy in terms of other norms.
In particular, for L1,

disc1(A) := min
x∈{±1}n

‖Ax‖1
m

and generally for Lp,

discp(A) := min
x∈{±1}n

(‖Ax‖pp
m

)1/p

.

Note that discp(A) ≤ discq(A) when p ≤ q.

2 Proof Structure

In order to prove Theorem 1 we will find a family of matrices which satisfy equation (3). Our candidates
will have the form PN ⊗A where PN is the 2N ×N incidence matrix of the power set, and A is some p× p
matrix with a gap between detlb(A) and disc1(A). In particular, we let A be the Haar basis matrix used in
the work of Kunisky [Kun23], and prove some properties of A in-order to obtain the present result.

We bound detlb(PN ⊗A) from above by showing that detlb(PN ⊗A) .
√
N ·detlb(A) using standard linear

algebra and Lemma 4 from [Mat13]. See Lemma 4. For our choice of A, we will show that detlb(A) . 1.

3



We also bound disc(PN ⊗ A) & N · disc1(A) using a discrepancy amplification argument. See Lemma 5.
By finding a tight lower bound on disc1(A), we obtain the lower bound disc(PN ⊗A) & N · √log p. Taken
together, these bounds gives us a gap on the order of

√
N ·√log p between detlb(PN ⊗A) and disc(PN ⊗A).

Lemma 4. For the power matrix PN , and any real matrix A,

detlb (PN ⊗A) ≤
√
eN · detlb(A).

Proof. Let u1, ...,uN be the columns of PN and A ∈ R
p×p. Divide the columns of PN ⊗A into N contiguous

blocks of size (2Np)× p each representing uℓ⊗A. Note that uℓ⊗A consists of 2N blocks of A or 0 stacked
on top of one another. We claim that detlb(uℓ ⊗A) ≤ detlb(A). Consider an s× s sub-matrix B of uℓ ⊗A

with the rows indexed by I and columns indexed by J . Note that if any row of B is zero, then det(B) = 0
so in order for the determinant to be non-zero, the rows of B must be parts of rows of A with columns
indexed by J . If there are multiple copies of the same row of A, then again det(B) = 0. Thus B must come
from distinct rows of A with columns indexed by J . It follows that B is actually a sub-matrix of A up to

rearrangement of the rows, so |det(B)|1/s ≤ detlb(A). Since this is true for all choices of the submatrix B,
we have detlb (uℓ ⊗A) ≤ detlb(A).

Recall from [Mat13] Lemma 4, that for real matrices B1, ...,Bt each with the same number of columns and
D := maxi=1,2,...t detlb(Bi), any matrix B whose rows are copies of the rows of the matrices Bi satisfies

detlb(B) ≤ D
√
et. By applying Lemma 4 to (PN ⊗A)

⊤
with Bi = (ui ⊗A)

⊤
, and we have that

detlb(PN ⊗A) ≤
√
eN · max

ℓ∈[N ]
detlb(uℓ ⊗A) ≤

√
eN · detlb(A).

Lemma 5. (Discrepancy Amplification). For the power matrix PN and any real matrix A,

disc(PN ⊗A) ≥ N · disc1(A)

2
.

Proof. Let A ∈ R
p×q and t := disc1(A). Consider some vector x ∈ {±1}qN composed of vectors x(1), ...,x(N)

stacked on top of each other containing p entries each. We compute ‖(PN ⊗A)x‖∞. Note that

‖(PN ⊗A)x‖∞ = max
S⊆[N ]

∥

∥

∥

∥

∥

∑

i∈S
Ax(i)

∥

∥

∥

∥

∥

∞

= max
S⊆[N ]

max
j∈[p]

∣

∣

∣

∣

∣

∑

i∈S

(

Ax(i)
)

j

∣

∣

∣

∣

∣

.

From the assumption, we have 1
p‖Ax(i)‖1 ≥ t for every i ∈ [N ]. Taking an average over all choices of i,

t ≤ 1

pN

N
∑

i=1

p
∑

j=1

∣

∣

∣

∣

(

Ax(i)
)

j

∣

∣

∣

∣

=
1

pN

p
∑

j=1

N
∑

i=1

∣

∣

∣

∣

(

Ax(i)
)

j

∣

∣

∣

∣

=⇒
N
∑

i=1

∣

∣

∣

∣

(

Ax(i)
)

j

∣

∣

∣

∣

≥ Nt

for some j ∈ [p]. With S+ = {i : (Ax(i))j > 0} and S− = {i : (Ax(i))j < 0},

Nt ≤
N
∑

i=1

∣

∣

∣

∣

(

Ax(i)
)

j

∣

∣

∣

∣

=
∑

i∈S+

(

Ax(i)
)

j
−
∑

i∈S−

(

Ax(i)
)

j

=

∣

∣

∣

∣

∣

∑

i∈S+

(

Ax(i)
)

j

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i∈S−

(

Ax(i)
)

j

∣

∣

∣

∣

∣

=⇒ max

{∣

∣

∣

∣

∣

∑

i∈S+

(

Ax(i)
)

j

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∑

i∈S−

(

Ax(i)
)

j

∣

∣

∣

∣

∣

}

≥ Nt

2
.
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Lemmas 4 and 5 together imply that

herdisc(PN ⊗A)

detlb(PN ⊗A)
≥

√
N

2
√
e
· disc1(A)

detlb(A)
.

Note that, if A ∈ R
p×q, then PN ⊗A is an (2Np)× (Nq) matrix, so

√
N is roughly

√
logm for small enough

p, where m := 2Np is the number of rows of PN ⊗ A. To prove Theorem 1, we need to find a matrix A

that exhibits a large gap between disc1(A) and detlb(A). In the next section, we show that a matrix whose
columns are the discrete Haar basis vectors has this property.

3 Discrete Haar Basis

The 2k × 2k discrete Haar basis matrix Ak is defined recursively with A0 = [1] and

Ak =









Ak−1 I2k−1

Ak−1 −I2k−1









, (4)

where I2k−1 is the 2k−1×2k−1 identity matrix. This matrix arises from the following tree structure. Construct
a depth k perfect binary tree, and let r be an additional node. We make the root of the perfect binary tree
the left child of r, and r becomes the root of our tree. Every non-leaf node represents a column in the matrix
while every root-to-leaf path corresponds to a row in the matrix. Whenever the path proceeds down the left
child from some node i, entry i of the corresponding row will have value +1. If instead the path proceeds
down the right child of i, entry i of the corresponding row will have value −1. Thus every row will have k
non-zero entries. It is also not hard to show that, for any ±1 coloring of the columns, there is a row whose
nonzero entries are equal to the corresponding column colors, and, therefore, disc(Ak) = k. Kunisky [Kun23]
describes this in detail.

In addition, we define the {0, 1}2k×2k matrices A+
k and A−

k to be the indicator matrices of the positive and
negatives elements of Ak respectively. Here an indicator matrix will have one in some entry if and only the
corresponding entry of Ak is non-zero and positive, in the case of A+

k , or negative, in the case of A−
k . Note

that Ak = A+
k −A−

k . Finally define,

A±
k :=









A+
k

A−
k









. (5)

We bound the hereditary discrepancy to determinant lower bound ratio for both PN ⊗Ak and PN ⊗A±
k .

Theorem 6. For the power matrix PN , the discrete Haar basis Ak, and the stacked indicator matrix A±
k

as defined in equation (5),

herdisc (PN ⊗Ak)

detlb (PN ⊗Ak)
&

√
N · k, (6)

herdisc
(

PN ⊗A±
k

)

detlb
(

PN ⊗A±
k

) &
√
N · k. (7)

Proof. First we apply the proof structure described in the previous section to Ak. In particular, we show
that detlb(Ak) = O(1) in Lemma 7 and that disc1(Ak) &

√
k in Lemma 9. Applying Lemma 4 to the first

result and Lemma 5 to the second, we have that detlb (PN ⊗Ak) .
√
N and disc (PN ⊗Ak) & N ·

√
k. It

follows that
herdisc (PN ⊗Ak)

detlb (PN ⊗Ak)
≥ disc (PN ⊗Ak)

detlb (PN ⊗Ak)
&

√
N · k.

5



The process for A±
k is similar. To show an upper bound on detlb(A±

k ), use Corollary 8 where A+
k and A−

k are
shown to be TUM. Since the determinant of any square submatrix of either matrix is at most one in absolute
value, we can apply Lemma 4 of [Mat13] to A+

k and A−
k to obtain detlb(A±

k ) = O(1). To obtain the lower

bound on disc1(A
±
k ), we will recall that disc1(Ak) &

√
k from Lemma 9. Note that, for any x ∈ {−1,+1}2k,

by the triangle inequality

1

2k
‖Akx‖1 =

1

2k
‖(A+

k −A−
k )x‖1 ≤ 2

(

1

2k+1
‖A+

k x‖1 +
1

2k+1
‖A−

k x‖1
)

.

Therefore, disc1(A
±
k ) &

√
k as well. Apply Lemma 4 and Lemma 5 to detlb(A±

k ) = O(1) and disc1(A
±1
k ) &√

k respectively to obtain equation (7).

Lemma 7. detlb(Ak) ≤ 2.

Proof. We show that any i × i square submatrix B of Ak satisfies | det(B)| ≤ 2i. First, define Mk(i) :=
maxB | det(B)| where the maximum is taken over all i×i submatricesB ofAk. We computeMk(i) recursively
by considering the forms that all i× i submatrices of Ak can take:

1. B only contain elements from the first 2k−1 columns of Ak,

2. B only contain elements from the second 2k−1 columns of Ak, or

3. B contain elements from both the first and second 2k−1 columns of Ak.

We use the recursive formula (4) to analyze these cases. In the first case the resulting submatrix is either
entirely contained in Ak−1 up to rearranging rows, or contains a duplicated row. The magnitude of the
determinant of these submatrices can be bounded above by Mk−1(i) and 0, respectively. In the second case
we note that the submatrix is TUM. To see this, recall that the second 2k−1 columns of Ak consist of an
identity matrix and its negation stacked on top of one another. Any square submatrix is entirely contained
in the identity matrix or contains duplicated (and negated) rows. Thus the absolute value of the determinant
of this kind of submatrix is at most one. It remains to consider the third case. Let B be a submatrix of
Ak with some j columns coming from the second 2k−1 columns of Ak for 1 ≤ j < i. For any such column
there is either one or two non-zero entries, equal to 1 or −1. If there is only one non-zero entry, then this
reduces to computing Mk(i − 1) since we can perform a co-factor expansion on this column. If there are
two non-zero entries, then we can permute the rows so that they are adjacent. This only changes the sign of
the resulting determinant. Notice that the two rows are identical except for the sign of the non-zero entries.
When performing a co-factor expansion on these two entries, the (i − 1) × (i − 1) submatrix that results
when removing either row and the column is identical. Thus | det(B)| is at most twice the absolute value of
the determinant of this (i − 1)× (i − 1) submatrix. After removing all the columns and associated rows of
B from the second half of Ak in this way, we see that | det(B)| ≤ 2jMk−1(i − j). Since, in the base case,
M0(1) = 1, the claim follows.

Using a similar argument as above, we can show that the matrices A+
k and A−

k are TUM. Note that, using
(4), A+

k and A−
k can be recursively defined as A+

0 = [1], A−
0 = [0], and

A+
k =









A+
k−1 I2k−1

A+
k−1 0









A−
k =









A−
k−1 0

A−
k−1 I2k−1









, (8)

where 0 is the all zeros matrix of appropriate dimension, and I2k−1 is the 2k−1 by 2k−1 identity matrix.

Corollary 8. A+
k and A−

k are TUM matrices where A+
k and A−

k are indicators of the positive and negatives
entries of Ak, respectively.

6



Proof. We only consider A+
k as the proof that A−

k is a TUM matrix is similar. The proof proceeds by
induction on k. Consider some i × i submatrix B of A+

k . If B is entirely contained in first half of the
columns of A+

k , then we are done by the inductive hypothesis; if B is entirely contained in the second half of
the columns of A+

k , then B is a submatrix of the identity matrix or has a row of 0’s, and the absolute value
of its determinant is at most 1. Thus it suffices to consider the case where B has some columns from the
first half of A+

k and some columns from the second half of A+
k . Since any column from the second half has

only one non-zero entry, equal to 1, performing co-factor expansions on the columns in the second half shows
that the absolute value of the determinant will only be as large as the absolute value of the determinant of
some smaller square sub-matrix in A+

k−1. Note that in the base case, | det(A+
0 )| = 1.

Lemma 9. disc1(Ak) =
k+1
2k

(

k
⌊(k+1)/2⌋

) ∼=
√
k.

Proof. The proof for k = 0 is trivial, so we focus on the case k ≥ 1. Let Ãk denote the 2k × (2k − 1)
matrix equal to Ak with the first column, all of whose entries are 1, removed. Note that this is equivalent
to removing the root node r and keeping only the perfect binary tree of depth k in the tree structure of the
Haar basis, as described at the beginning of the section. We have the following key claim.

Claim 10. For any x ∈ {±1}2k−1 there exists a permutation which maps the entries of Ãkx to those of
Ãk1.

Proof. Our proof is by induction on k. When k = 1,we have a root node with two children corresponding to
the matrix

Ã1 =









1

−1









.

When x = [1], Ã1x = Ã11 and the identity permutation suffices; when x = [−1], Ã1x = −Ã11 and it
suffices to swap the two entries.

Consider some height k perfect binary tree corresponding to Ãk. Let u be the root of the tree with left and
right children u+ and u− respectively. Since every root-to-leaf path must go through u+ or u−, this forms
a partition of the rows of Ãk. In particular, we can rearrange Ãk as

Ãk =









1 Ãk−1 0

−1 0 Ãk−1









.

Consider the Ãk−1 submatrices which appear in Ãk. The Ãk−1 submatrix in the first 2k−1 rows has rows
which correspond to root-to-leaf paths with leaves in the subtree rooted at u+. Its columns correspond to
nodes in the same subtree. The Ãk−1 submatrix in the second 2k−1 rows is defined similarly on the subtree
rooted at u−. Write the vector x as [xu,x+,x−]⊤ where xu is the color of the node u and x+ and x− are
the colors of the nodes in the subtrees rooted at u+ and u−, respectively. Consider the value of xu. If
xu = 1, then by the inductive hypothesis, there exists a permutation which takes the entries of Ãk−1x+ to
the entries of Ãk−11 and another permutation which takes the entries of Ãk−1x− to the entries of Ãk−11.
These two permutations can be combined to form a permutation which maps the entries of Ãkx to the
entries of Ãk1. Otherwise xu = −1. Again, there exists a permutation π1 which takes Ãk−1x+ to Ãk−11

and another permutation π2 which takes Ãk−1x− to Ãk−11. We can construct a permutation which maps
the elements of Ãkx to those of Ãk1 by by first applying π1 to the first 2k−1 entries of Ãkx, and π2 to the
remaining 2k−1 entries, and then swapping the first 2k−1 entries with the second 2k−1 entries.

Note that, for any x ∈ {±1}2k , disc1(Ak,x) = disc1(Ak,−x). Then, we have

disc1(Ak,x) =
1

2
(disc1(Ak,x) + disc1(Ak,−x))

7



By Claim 10, and, since all entries of the first column of Ak are equal to 1,

disc1(Ak,x) =
1

2k

2k
∑

i=1

|ã⊤i 1+ 1|+ |ã⊤i 1− 1|
2

=
1

2k+1

2k
∑

i=1

|ã⊤i 1+ 1|+ 1

2k+1

2k
∑

i=1

|ã⊤i 1− 1|,

where ã⊤i is the i-th row of Ãk. Recall that each row of Ãk has exactly k non-zero entries, and every sign
pattern for these k entries appears exactly once, as each row in Ãk corresponds to a root-to-leaf path in a
depth k perfect binary tree, and the sign pattern corresponds to the sequence of left and right turns made
by the path. In particular, there are exactly

(

k
ℓ

)

rows ãi for which ã⊤i 1 equals k − 2ℓ, since such rows have
k − ℓ non-zero entries equal to +1, and ℓ non-zero entries equal to −1. Substituting above, we have

1

2k+1

2k
∑

i=1

|ã⊤i 1+ 1|+ 1

2k+1

2k
∑

i=1

|ã⊤i 1− 1|

=
1

2k+1

k
∑

ℓ=0

(

k

ℓ

)

|k + 1− 2ℓ|+ 1

2k+1

k
∑

ℓ=0

(

k

ℓ

)

|k − 1− 2ℓ|

=
1

2k+1

k
∑

ℓ=0

(

k

ℓ

)

|k + 1− 2ℓ|+ 1

2k+1

k+1
∑

ℓ=1

(

k

ℓ− 1

)

|k + 1− 2ℓ|

=
1

2k+1

k+1
∑

ℓ=0

((

k

ℓ

)

+

(

k

ℓ− 1

))

|k + 1− 2ℓ|

=
1

2k+1

k+1
∑

ℓ=0

(

k + 1

ℓ

)

|k + 1− 2ℓ|.

The second equality above follows by a change of variables in the second sum, the third equality uses the
convention

(

k
k+1

)

=
(

k
−1

)

= 0, and the last equality follows form Pascal’s identity.

Now, by Lemma 11 below, we have that

k+1
∑

ℓ=0

(

k + 1

ℓ

)

|k + 1− 2ℓ| = 2(k + 1)

(

k

⌊(k + 1)/2⌋

)

,

which implies that disc1(Ãk) ∼=
√
k since

(

k
⌊(k+1)/2⌋

) ∼= 2k/
√
k by Stirling’s approximation.

The above proof also has a probabilistic interpretation. We show that, for a uniformly random row a⊤ of

Ãk and a fixed coloring x ∈ {±1}2k−1, a⊤x is distributed like X1 + · · ·+Xk where the Xis are independent
Rademacher random variables (i.e. random variables uniform in {−1,+1}). Recall that uniformly choosing a
row of Ãk corresponds to uniformly choosing a root-to-leaf path in the depth k perfect binary tree. Further,
the non-leaf nodes of the tree correspond to the columns of Ãk. Thus we know that exactly k entries of the
row will be non-zero. Let the indices of these entries be U1, ..., Uk, and note that a⊤x = xU1aU1+· · ·+xUk

aUk
.

The key observation is that, conditional on the values of U1, . . . , Uℓ, aUℓ
is equally likely to be −1 or +1,

since the a uniformly random path in the binary tree going through U1, . . . , Uℓ is equally likely to visit the
left or the right child of Uℓ. We can then show that xU1aU1 + · · · + xUk

aUk
has the same distribution as a

sum of k independent Rademacher random variables by induction on k. In the base case, aU1 is uniform
in {−1,+1}, and so is xU1aU1 . Suppose xU1aU1 + · · · + xUk−1

aUk−1
is distributed as the sum of k − 1

independent Rademacher random variables. Conditional on the choice of U1, . . . , Uk, aUk
, and, therefore,

xUk
aUk

are equally likely to be −1 or +1. Taking expectation over the choice of U1, . . . , Uk finishes the proof.

The next lemma is likely a well-known calculation. We include a proof due to Lavrov, for completeness.
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Lemma 11 ([Lav18]).
∑k
ℓ=0

(

k
ℓ

)

|k − 2ℓ| = 2k ·
(

k−1
⌊k/2⌋

)

.

Proof. Recall the identity
(

k
ℓ

)

ℓ =
(

k−1
ℓ−1

)

k. We write

k
∑

ℓ=0

(

k

ℓ

)

|k − 2ℓ| =
∑

ℓ<k/2

(

k

ℓ

)

(k − 2ℓ)−
∑

ℓ>k/2

(

k

ℓ

)

(k − 2ℓ)

= k





∑

ℓ<k/2

(

k

ℓ

)

−
∑

ℓ>k/2

(

k

ℓ

)



− 2





∑

ℓ<k/2

(

k

ℓ

)

ℓ−
∑

ℓ>k/2

(

k

ℓ

)

ℓ





= 2k





∑

ℓ>k/2

(

k − 1

ℓ− 1

)

−
∑

ℓ<k/2

(

k − 1

ℓ− 1

)





= 2k

(

k − 1

⌊k/2⌋

)

.

Here, the first equality follows since
(

k
ℓ

)

(k − 2(k/2)) = 0 when k is even. The last equality follows by consider

the parity of k; when k is even, we obtain a
(

k−1
k/2

)

term after cancellation, and when k is odd, we obtain a
(

k−1
⌊k/2⌋

)

term after cancellation.

Note that when we divide the identity by 2k, we obtain the expectation of a sum of k independent Rademacher
random variables. The asymptotic version of this identity follows from Khintchine’s inequality.

Proof of Theorem 1. Consider the range of m in [n, n2] and
(

n2, 2n
(1−ǫ)

]

separately. In the first interval, we

let A be the matrix Ak padded with m − n rows of zeros. Here, herdisc(A)
detlb(A)

∼= logn ∼=
√
logm · logn. When

m ∈
(

n2, 2n
(1−ǫ)

]

, we consider the matrix PN ⊗Ak where N = ⌊log2(m/n)⌋ and k = ⌊log2 nǫ⌋. Observe that

PN⊗Ak is anm′×n′ matrix wherem′ = 2N+k ≤ m/n1−ǫ < m and n′ = N ·2k ≤ log2(m/n)·nǫ ≤ n−nǫ logn

since m ≤ 2n
(1−ǫ)

. We obtain A by padding PN ⊗Ak with zero vectors so that it has exactly m rows and n

columns. Note that logm ∼= N and logn ∼= k. By Theorem 6, herdisc(A)
detlb(A) &

√
Nk &

√
logm logn, as required.

The reader might object that the matrixAk has negative entries which would not occur for incidence matrices
of a set system, but we can remedy this by considering A±

k as defined in Theorem 6 instead.

3.1 Other Notable Properties

We can make a few more observations about the properties of Ak.

Claim 12. | det(Ak)| = 22
k−1.

Proof. Note that the columns of Ak are orthogonal so | det(Ak)| is equal to the product of the ℓ2-norms of

columns. Since the ith column has magnitude 22
i−1

, | det(Ak)| = 22
k−1+2k−2+···+20 = 22

k−1.

Next we prove Theorem 3, showing that Ak serves as an example that equation (2) of [Mat13] — mentioned
in the introduction — is tight.

Proof of Theorem 3. To see this, it suffices to show that vecdisc (Ak)
2
= Ω(k). Let v0,v1, ...,vq be the vector

colors assigned to the 2k columns of Ak. Recall that Ak corresponds to a tree with root node r, where r
has no right child, and the left child is the root of a perfect binary tree of depth k. The root to leaf paths
of this tree represent rows in Ak. For any path r, t1, ..., ti from r to a node ti, let vti = vr +

∑i−1
j=1 atjvtj

where atj is 1 if tj+1 is the left child of tj , and −1 otherwise. We will show that there exists a root-to-leaf
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tk path t1, ..., tk such that ‖vtk‖22 ≥ k. In particular we show that at every internal node t, with children t+
and t−, must have ‖vt+‖2 ≥ 1 + ‖vt‖2 or ‖vt−‖2 ≥ 1 + ‖vt‖2. To see this, note that

‖vt+‖2 = ‖vt + vt‖2 = ‖vt‖2 + ‖vt‖2 + 2〈vt,vt〉 = ‖vt‖2 + 1 + 2〈vt,vt〉.

Similarly, we have that ‖vt−‖2 = ‖vt‖2 + 1 − 2〈vt,vt〉. The claim then follows since either 〈vt,vt〉 ≥ 0 or
−〈vt,vt〉 ≥ 0. The theorem then follows from the tree interpretation of Ak.

In [LSV86] there appears an open problem of Sós which asks if the hereditary discrepancy of a union of
two sets systems is bounded above by the discrepancy of each individual set system i.e. for set systems
(X,S1) and (X,S2) is it true that herdisc(S1 ∪ S2) ≤ f(herdisc(S1), herdisc(S2)) for some function f? It
turns out that no such bound exists. The Hoffman example2, the example of Pálvölgyi [Pál10], and the
three permutations family of Newman, Neiman, and Nikolov [NNN12] are instances of such pairs of set
systems whose individual hereditary discrepancies are at most 1, but whose union on a universe of size n
has discrepancy Ω(log n/ log logn) (for the Hoffman example) or Ω(logn) (for the other two).

We see that Ak — with the decomposition into A+
k and A−

k — is another similar counter-example of Sós’
conjecture. While it matches the Ω(logn) discrepancy lower bound of the Pálvölgyi and Newman-Neiman-
Nikolov constructions, it is simpler to analyze.

Claim 13. With A±
k as described above Claim 8,

disc
(

A±
k

)

& k.

Proof. Recall that disc(Ak) = k. We claim that disc(A±
k ) ≥ 1

2disc(Ak), and this proves the claim. Indeed,
take any coloring x. Let a⊤ be the row of Ak achieving |a⊤x| = disc(Ak,x) and let a⊤+ and a⊤− be the
corresponding rows in the copy of A+ and A− in A± respectively. Since disc(Ak) ≤ |a⊤x| = |a⊤+x − a⊤−x|,
by the triangle inequality we have that either |a⊤+x| ≥ disc(Ak)/2 or |a⊤−x| ≥ disc(Ak)/2.

4 Upper Bound on Hereditary Discrepancy

In this section we prove Theorem 2. To this end we introduce the volume lower bound on hereditary discrep-
ancy, introduced by Lovász and Vesztergombi [LV89], and, in a more general setting, by Banaszczyk [Ban93],
and studied by Dadush, Nikolov, Talwar, and Tomczak-Jaegermann [DNTTJ18].

Let A be an m× n real matrix, and define the symmetric convex set KA := {x ∈ R
n : ‖Ax‖∞ ≤ 1}. Let us

define the volume lower bound of A, denoted volLB(A), by

volLB(A) = max
k∈[n]

max
S⊆[n],|S|=k

1

volk (KA ∩WS)
1/k

,

where WS is the canonical subspace in the dimensions indexed by S (i.e. WS = span {ei, i ∈ S}) and volk is
the k-dimensional volume within WS , i.e., the Lebesgue measure restricted to this subspace. We also define
a dual volume lower bound by

volLB∗(A) = max
k∈[n]

max
S⊆[n],|S|=k

volk (conv(±ΠSa1, . . .±ΠSam))1/k

c
2/k
k

,

where ΠS is the orthogonal projection onto WS , ai
⊤ is the i-th row of A, and ck = πk/2

Γ( k
2+1)

is the volume of

the k-dimensional unit Euclidean ball.

2Hoffman’s set system F is defined on a regular k-ary tree of depth k and obtains
herdisc(AF )
detlb(AF )

= Θ
(

logn

log log n

)

. Let T be

a k-regular tree with height k. The universe consists of the nodes of T . Let F1 be the sets of all root-to-leaf paths in T , and
F2 be the set of all sibling sets (all nodes with the same parent) of internal nodes in T . Then F = F1 ∪ F2. We have that
herdisc(F1), herdisc(F2) ≤ 1, detlb(F) = O(1), and disc(F) = Ω(k/ log k). See [Mat09] Section 4.4.
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We also need the concept of a polar set of a set K ⊆ R
n, defined as

K◦ := {y ∈ R
n : y⊤x ≤ 1 ∀x ∈ K}.

It is a consequence of the hyperplane separator theorem that for any closed convex K containing 0, K◦◦ =
K [Roc70, Section 14]. Moreover, it is clear from the definition that K ⊆ L implies L◦ ⊆ K◦.

We have the following relationship between volLB(A) and volLB∗(A).

Claim 14. For any matrix A ∈ R
m×n, volLB(A) ∼= volLB∗(A).

Proof. Let KA be defined as above, and let LA := conv(±a1, . . .± am). We claim that, for any set S ⊆ [n],
(KA ∩ WS)

◦ = ΠSLA, where the polar (KA ∩ WS)
◦ is taken within the subspace WS . It is sufficient to

show this for S = [n], as, otherwise, we can replace the matrix A by its submatrix consisting of the columns
indexed by S. In the case S = [n], we just need to show K◦

A
= LA. Notice that

KA = {x ∈ R
n : ‖Ax‖∞ ≤ 1}

= {x ∈ R
n : 〈Ax,y〉 ≤ 1 for all ‖y‖1 ≤ 1}

= {x ∈ R
n : 〈x,A⊤y〉 ≤ 1 for all ‖y‖1 ≤ 1}.

By the definition of polar, we see that KA = L◦
A

as

LA = {A⊤y : y ∈ R
m where ‖y‖1 ≤ 1}.

Thus K◦
A
= L◦◦

A
= LA as required.

Once we have established that (KA ∩ WS)
◦ = ΠSLA, we have, by the Santaló-Blaschke and the reverse

Santaló inequalities (see Chapters 1 and 8 of [AAGM15]),

volk(KA ∩WS)
1/kvolk((KA ∩WS)

◦)1/k ∼= c
2/k
k .

This completes the proof.

The next lemma shows a relationship between volLB(A) and detlb(A) that, as far as we are aware, has not
been observed before.

Lemma 15. For any matrix A ∈ R
m×n, volLB∗(A) .

√
n · detlb(A).

In the proof of Lemma 15 we use the following result of Nikolov. Closely related results were shown earlier
by Dvoretzky and Rogers [DR50, Theorem 5B] and Ball [Bal89, Proposition 7].

Lemma 16. (Theorem 10 in [Nik15]). Let m ≥ n and E ⊆ R
n be a minimum volume ellipsoid containing

the points ±a1, . . . ,±am ∈ R
n. There exists a set T ⊆ [m] of size n such that

| det((ai)i∈T )| ≥
√

n!

nn
voln(E)

cn
∼= n1/4e−n/2

voln(E)

cn
,

where (ai)i∈T is the matrix with columns ai for i ∈ T , and voln is the n-dimensional Lebesgue measure.

Note that Theorem 10 in [Nik15] in fact shows that there is a distribution on random multisets T for which

E| det((ai)i∈T )|2 = n!
nn

voln(E)2

c2n
. Since the determinant is zero unless T is a set, this implies Lemma 16.

Proof of Lemma 15. Take some S ⊆ [n] of size k such that

volLB∗(A) =
volk(ΠSLA)1/k

c
2/k
k

,
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where a⊤1 , . . . , a
⊤
m are the rows ofA, and LA := conv(±a1, . . .±am). Applying Lemma 16 to±ΠSa1, . . . ,±ΠSam,

we have that, taking E ⊆ WS to be the smallest volume ellipsoid containing±ΠSa1, . . . ,±ΠSam, there exists
a set T ⊆ [m] of size k for which

| det((ΠSai)i∈T )| & k1/4e−k/2
volk(E)

ck
≥ k1/4e−k/2

volk(ΠSLA)

ck
.

The last inequality follows because LA ⊆ E. Re-arranging and raising to the power 1/k, this gives us that

volLB∗(A) =
volk(ΠSLA)1/k

c
2/k
k

.
| det((ΠSai)i∈T )|1/k

c
1/k
k

.
√
k · detlb(A),

where, in the final inequality, we used that (ΠSai)i∈T is the transpose of a k by k submatrix of A, and we

also used the estimate c
−1/k
k .

√
k, which follows from Stirling’s approximation. Since k ≤ n, the result

follows.

We remark in passing that the trivial inequality volk(E) ≥ volk(ΠSLA) for a k-dimensional symmetric
convex polytope with 2m vertices ΠSLA and an ellipsoid E containing it can be improved to volk(E) ≥
√

k
log(2m)volk(ΠSLA) when m is small, using, e.g., results of Gluskin [Glu89]. Substituting this inequality

in the proof of Lemma 15 gives the bound volLB∗(A) .
√
log 2m · detlb(A).

The final ingredient we need for the proof of Theorem 2 is an upper bound on the hereditary discrepancy of
partial colorings in terms of the volume lower bound, due to Dadush, Nikolov, Tomczak-Jaegermann, and
Talwar.

Lemma 17. (Lem.8 in [DNTTJ18]). There exist universal constants c ≥ 1 and ǫ0 ∈ (0, 1) such that the
following holds. For any closed convex set K ⊆ R

n satisfying −K = K and

n
min
k=1

min
S⊆[n]:|S|=k

volk(K ∩WS) ≥ 1,

and any y ∈ (−1, 1)n, there exists an x ∈ [−1, 1]n with |fixed(x)| ≥ ⌈ǫ0n⌉ and x−y ∈ cK, where fixed(x) :=
{i ∈ [n] : |xi| = 1}.

We are now ready to complete the proof.

Proof of Theorem 2. It suffices to show that disc(A) .
√
n detlb(A), since this implies that for any submatrix

B of A with k columns we also have

disc(B) .
√
k detlb(B) ≤ √

n detlb(A).

Using Lemma 17, we construct a sequence of partial colorings x0 = 0, . . . ,xT ∈ {−1,+1}n, where T .

1 + log1/(1−ǫ0)(n), each xt ∈ [0, 1]n, and

‖A(xt − xt−1)‖∞ .
√

n(1 − ǫ0)t−1 detlb(A). (9)

To construct x1, we apply Lemma 17 to y := 0, and K := volLB(A) · KA. By the definition of volLB(A),
this K satisfies the assumption of the lemma, and we let x1 equal the x guaranteed by the lemma. Since
x1 ∈ cK = c · volLB(A) ·KA, by the definition of KA we have that

‖Ax1‖∞ ≤ c · volLB(A) ∼= volLB∗(A) .
√
n detlb(A),

where the last two inequalities follow, respectively, by Claim 14 and by Lemma 15. In general, to get the
bound (9) for xt − xt−1 for t ≥ 2, we set S := [n] \ fixed(xt−1), and apply Lemma 17 with y := ΠSx1,
and K := volLB(AS) · KAS , where AS is the submatrix of A consisting of the columns indexed by S. If
x ∈ [−1,+1]S is the partial coloring guaranteed by the lemma, we define xt by setting its coordinates in
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S to equal the corresponding coordinates in x, and the remaining coordinates to equal the corresponding
coordinates in xt−1. It is straightforward to check that fixed(xt) ≥ (1 − (1 − ǫ0)

t)n and (9) hold for all t.
Moreover, once t ≥ T ≥ 1 + log1/(1−ǫ0)(n), we must have xt ∈ {−1,+1}n.
Having constructed x1, . . . ,xT , we observe that, by (9) and the triangle inequality,

‖Ax‖∞ .
√
n · detlb(B)

(

1 +
√

(1− ǫ0) +
√

(1− ǫ0)2 + · · ·
)

∼=
√
n · detlb(A).

This completes the proof.
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A Upper Bound on Hereditary Discrepancy for Set Systems

Here we give a different proof of the special case of Theorem 2 for matrices A with entries in {0, 1}, i.e.,
incidence matrices of set systems. This proof is more elementary, and has the interesting property that the
upper bound on discrepancy is certified by a uniformly random coloring.

We need is a connection between the hereditary discrepancy of a set system S on a universe X , and its VC
dimension. Recall that the VC dimension, denoted dim(S), is the largest size of a set Y ⊆ X such that the
restriction S|Y := {S ∩ Y : S ∈ S} equals the powerset of Y . Equivalently, we can define the VC dimension
dim(A) of an incidence matrix A ∈ {0, 1}m×n as the largest N for which the power matrix PN can be found
as a submatrix of A.
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A.1 Upper Bound in Terms of VC Dimension

Let us introduce some terminology from stochastic processes that we use in our proof. For a metric space
(T, d), let N (T, d, ǫ) be the covering number of T i.e. N (T, d, ǫ) is the smallest number of closed balls with
centers in T and radii ǫ whose union covers T . Further, let ‖Y ‖ψ2 be the sub-gaussian norm of a real-valued
random variable Y where ‖Y ‖ψ2

:= inf{t ≥ 0 : E exp
(

Y 2/t2
)

≤ 2}. Finally, for a class of real-valued
functions F defined on a probability space (Ω, µ), where Ω is a finite set, we define the L2(µ) norm by

‖f‖L2(µ) :=
(
∑

ω∈Ω |f(ω)|2µ(ω)
)1/2

. If µ is the uniform measure on Ω, then we simple write L2 rather than
L2(µ).

The following result is a consequence of well-known lemmas. We recount it here for completeness.

Lemma 18. For any non-constant matrix A ∈ {0, 1}m×n,

herdisc(A) .
√

n · dim(A).

Proof. It is enough to prove that disc(A) .
√

n · dim(A) since, applying this inequality to any submatrix

B consisting of a subset of k columns from A shows that, disc(B) .
√

k · dim(B) ≤
√

n · dim(A).

We prove that disc(A,x) .
√

n · dim(A) is satisfied in expectation by a uniformly random coloring x ∈
{−1,+1}n with entries X1, X2, ...Xn which are independent Rademacher random variables (i.e., uniform in
{−1,+1}). Let F denote the class of indicator functions defined by the rows of A, i.e., for every i ∈ [m], we
define a function fi : [n] → {0, 1} given by fi(j) = ai,j . We will show that

E sup
f∈F

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

Xif (i)

∣

∣

∣

∣

∣

.
√

dim(F).

For each indicator function f , let the random variable Zf :=
∣

∣

∣

1√
n

∑n
i=1 Xif(i)

∣

∣

∣. Note that this differs from

the discrepancy of the row indicated by f by a multiple of
√
n, i.e., disc(A,x) =

√
n · supf∈F Zf . Consider

the random process (Zf )f∈F . We will apply Dudley’s inequality (Lemma 19) to show that

E sup
f∈F

Zf .

∫ 1

0

√

logN (F , L2, ǫ)dǫ. (10)

In order to apply Dudley’s inequality we must show that (Zf )f∈F has sub-gaussian increments. Note that,
since ‖Xi‖ψ2 . 1, we have

‖Zf − Zg‖ψ =
1√
n

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

n
∑

i=1

Xif(i)

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

n
∑

i=1

Xig(i)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

ψ2

≤ 1√
n

∥

∥

∥

∥

∥

n
∑

i=1

Xi(f − g)(i)

∥

∥

∥

∥

∥

ψ2

.

(

1

n

n
∑

i=1

(f − g)(i)2

)1/2

,

where the second step follows from the reverse triangle inequality, and the final step by Hoeffding’s lemma.
The right hand side is ‖f − g‖L2 so when we apply Dudley’s inequality as shown in Lemma 19, we obtain
Equation 10.

Using Theorem 20, we can bound the covering number with respect to the normalized L2 norm as

logN
(

F , L2, ǫ
)

. dim(F) log

(

2

ǫ

)

.

Plugging the right hand side into the integral in Equation 10 and integrating, we have E supf∈F Zf .
√

dim(F). Recall that the discrepancy of the row indicated by f is
√
n ·Zf , thus the hereditary discrepancy

is bounded above as herdisc(A) .
√

n dim(F), as was our goal.
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Lemma 19. (Dudley’s Inequality, Remark 8.1.5 [Ver18]). Let (Xt)t∈T be a random process on a metric
space (T, d) with sub-gaussian increments i.e. there exists a K ≥ 0 such that ‖Xt−Xs‖ψ2 ≤ Kd(t, s) for all
t, s ∈ T . Then

E sup
t,s∈T

|Xt −Xs| . K

∫ ∞

0

√

logN (T, d, ǫ)dǫ.

Theorem 20. (Covering Numbers via VC Dimension, 8.3.18 [Ver18]). Let F be a class of Boolean functions
on a probability space (Ω,Σ, µ). Then, for every ǫ ∈ (0, 1), we have

N
(

F , L2(µ), e
)

≤
(

2

ǫ

)C·dim(F)

for an absolute constant C.

We note that Lemma 18 can likely be improved further, for example by following the techniques of Ma-
toušek [Mat95], and carefully tracking constants.

A.2 Connection to the Determinant Lower Bound

To finish the proof, it remains to show a connection between VC dimension and the determinant lower bound.
To do so, we show that a matrix A ∈ {0, 1}m×n with large VC dimension must contain a submatrix with
large determinant. This submatrix is a binary version of the Hadamard matrix, described next.

Let the 0-1 Hadamard matrix be the {0, 1} matrix obtained by applying the linear map a 7→ (a+1)/2 to all
of the entries in the standard ±1 Hadamard matrix. Denote the n×n 0-1 and standard Hadamard matrices
by H̃n and Hn respectively. We prove the following.

Claim 21.

∣

∣

∣det
(

H̃n

)∣

∣

∣ ≥ 2−n · nn/2.

Proof. Consider Hn and suppose w.l.o.g. that its first rows is the all ones row. Add this row to all the
other rows. Observe that all the other rows now have entries in {0, 2}. Scale them down by a factor of two.
Adding one row to another does not change the determinant. Scaling a row scales the determinant by the

same amount. Since |det (Hn)| = nn/2,
∣

∣

∣
det
(

H̃n

)∣

∣

∣
= 2−n · nn/2.

We can now finish the proof of Theorem 2 for A ∈ {0, 1}m×n. If A is a constant matrix (i.e., all its
entries are equal), the bound is trivial, so we assume otherwise. The upper bound arises from the pair of
inequalities herdisc(A) .

√

n dim(A) and
√

dim(A) . detlb(A). The former inequality is achieved by a
random coloring, as shown in Lemma 18. The latter follows by considering the power matrix Pdim(A), which
is a submatrix of A. Since every dim(A) × dim(A) 0-1 matrix is a submatrix of Pdim(A), we can find also

find H̃dim(A) as a submatrix of Pdim(A), and, therefore, of A. By Claim 21 we know that
∣

∣

∣
det
(

H̃dim(A)

)∣

∣

∣
≥

2− dim(A) · (dim(A))
dim(A)/2

. It follows that

detlb(A) ≥
∣

∣

∣det
(

H̃dim(A)

)∣

∣

∣

1/ dim(A)

&
√

dim(A).

Thus, the two inequalities together give us detlb(A) & herdisc(A)/
√
n as required.
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