The rainbow saturation number is linear

Natalie Behague* Tom Johnston ${ }^{\dagger} \quad$ Shoham Letzter ${ }^{\ddagger}$
Natasha Morrison ${ }^{\S} \quad$ Shannon Ogden ${ }^{\text {I }}$

April 17, 2024

Abstract

Given a graph H, we say that an edge-coloured graph G is H-rainbow saturated if it does not contain a rainbow copy of H, but the addition of any non-edge in any colour creates a rainbow copy of H. The rainbow saturation number $\operatorname{rsat}(n, H)$ is the minimum number of edges among all H-rainbow saturated edge-coloured graphs on n vertices. We prove that for any non-empty graph H, the rainbow saturation number is linear in n, thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we also give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.

1 Introduction

For a fixed graph H, we say that a graph G is H-saturated if it does not contain H as a subgraph, but adding any extra edge creates a copy of H as a subgraph. The saturation

[^0]number of H, denoted by $\operatorname{sat}(n, H)$, is the minimum number of edges in an H-saturated graph G on n vertices. This can be thought of as a dual to the classical Turán extremal number ex (n, H) that counts the maximum number of edges in an H-free graph on n vertices. Since a maximal H-free graph is H-saturated, ex (n, H) equivalently counts the maximum number of edges in an H-saturated graph on n vertices. The saturation number in contrast counts the minimum number of edges among such graphs.

The saturation number was first studied independently by Zykov [18] and Erdős, Hajnal, and Moon [5], who proved that $\operatorname{sat}\left(n, K_{r}\right)=(r-2)(n-1)-\binom{r-2}{2}$, where as usual K_{r} denotes the complete r-vertex graph. Later, Kászonyi and Tuza [10] proved that the saturation number of every graph H is linear in n, that is, $\operatorname{sat}(n, H)=O_{H}(n)$. For more information and many other results related to the saturation number see the survey of Faudree, Faudree, and Schmitt [6]. In this paper we provide analogous results to these for the rainbow saturation number: a variant of the saturation number for edge-coloured graphs.

The generalisation of saturation to edge-coloured graphs was first considered by Hanson and Toft [9]. Following this, Barrus, Ferrara, Vandenbussche, and Wenger [2] considered the particular case of t-rainbow saturation, where there are exactly t colours available. Girão, Lewis, and Popielarz [8] initiated the study of the natural generalisation to the case where the palette of colours available is unlimited, rather than bounded by t. This is the focus of our paper.

A t-edge-coloured graph is an ordered pair (G, c), where c is a (not necessarily proper) edgecolouring of the graph G using colours from $[t]=\{1,2, \ldots, t\}$. An edge-colouring of a graph is said to be rainbow if every edge is assigned a distinct colour. We say that a t-edge-coloured graph (G, c) is (H, t)-rainbow saturated if (G, c) does not contain a rainbow copy of H, but the addition of any non-edge in any colour from $[t]$ creates a rainbow copy of H in G. Note that this requires $t \geq|E(H)|$. The t-rainbow saturation number of H, $\operatorname{denoted}^{\text {by }} \operatorname{rsat}_{t}(n, H)$, is the minimum number of edges in an ($H, t)$-rainbow-saturated graph on n vertices.

When the number of possible edge colours is infinite (say the set of colours is \mathbb{N}), an edgecoloured graph (G, c) is H-rainbow saturated if (G, c) does not contain a rainbow copy of H, but the addition of any non-edge in any colour from \mathbb{N} creates a rainbow copy of H. The rainbow saturation number of H, denoted by $\operatorname{rsat}(n, H)$, is the minimum number of edges in an H-rainbow saturated graph on n vertices.

In [8], Girão, Lewis, and Popielarz conjectured that, like ordinary saturation numbers, the rainbow saturation number of any non-empty graph H is at most linear in n, and they proved this for graphs with some particular properties.

Theorem 1.1 (Girão, Lewis, and Popielarz; Theorem 2 (4) in [8]). Let H be a graph with a non-pendant edge that is not contained in a triangle. Then $\operatorname{rsat}(n, H)=O(n)$.

In fact, Theorem 1.1 is a consequence of a stronger result that proves $\operatorname{rsat}_{t}(n, H)=O(n)$ for any such H and any $t \geq e(H)$.

Our main result proves that the rainbow saturation number of every graph is linear, thus confirming the conjecture of Girão, Lewis, and Popielarz [8].

Theorem 1.2. Every non-empty graph H satisfies $\operatorname{rsat}(n, H)=O(n)$.

Interestingly, when t is fixed the t-rainbow saturation number is not in general linear in n. Barrus, Ferrara, Vandenbussche, and Wenger [2] proved in particular that for all $t \geq|E(H)|$, $\operatorname{rsat}_{t}(n, H) \geq c_{1} \frac{n \log n}{\log \log n}$ whenever H is a complete graph, and $\operatorname{rsat}_{t}(n, H) \geq c_{2} n^{2}$ if H is a star, where c_{1} and c_{2} are constants depending only on t and the size of H.

The lower bound on the t-rainbow saturation number for complete graphs was improved independently by Ferrara, Johnston, Loeb, Pfender, Schulte, Smith, Sullivan, Tait, and Tompkins [7], by Korándi [11], and by Girão, Lewis, and Popielarz [8] to $\operatorname{rsat}_{t}\left(n, K_{r}\right) \geq$ $c_{1} n \log n$, which is tight up to a constant factor.

Girão, Lewis, and Popielarz also conjectured that for any complete graph K_{r} where $r \geq 3$, the rainbow saturation number satisfies rsat $\left(n, K_{r}\right)=2(r-2) n+O(1)$ when $n \geq 2(r-2)$. We prove that $\operatorname{rsat}\left(n, K_{r}\right)$ is in fact significantly less than this conjectured value.

Theorem 1.3. Let $r \geq 3$. Then $\operatorname{rsat}\left(n, K_{r}\right) \leq(r+2 \sqrt{2 r}) n+c_{r}$, where c_{r} is a constant depending only on r.

In Section 2, we establish some useful basic results regarding rainbow saturation, including Propositions 2.2 and 2.3 which allow us to assume that any counterexample to Theorem 1.2 is connected and has no pendant edges. We describe the construction used to prove Theorem 1.2 in Section 3: given a graph H, we construct an edge-coloured graph on n vertices with $O(n)$ edges such that the addition of (almost) any non-edge creates a rainbow copy of H. In Section 4, we show that if e is an edge contained in a triangle then the graph produced by this construction does not contain a rainbow copy of H. Together with Theorem 1.1, this completes the proof of Theorem 1.2. Finally, we prove Theorem 1.3 in Section 5.

2 Preliminaries

In this section we provide preliminary results that deal with some easy classes of graphs. We begin by establishing that the existence of an edge-coloured graph G on n vertices with $O(n)$ edges that is "almost" H-rainbow-saturated (save for at most linearly many problematic nonedges) is enough to prove that $\operatorname{rsat}(n, H)=O(n)$. For a colour c, we say that a non-edge $e \in E(\bar{G})$ is c-bad for G if the addition of e in colour c to G does not create a rainbow copy of H. We say that a non-edge is bad if there exists a colour c such that e is c-bad for G.

Proposition 2.1. Let H be a graph, and let G be an n-vertex edge-coloured graph. Suppose that G has m bad non-edges and does not contain a rainbow copy of H. Then $\operatorname{rsat}(n, H) \leq$ $|E(G)|+m$.

Proof. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of bad non-edges of G. We construct an n-vertex graph G_{m} and colouring χ of $E\left(G_{m}\right)$ as follows: set $G_{0}:=G$, where each edge of G_{0} is coloured as it is in G. Consider each $i \in[m]$ in turn. If there is a colour c such that e_{i} is c-bad for G_{i-1}, then we define G_{i} to be $G_{i-1} \cup\left\{e_{i}\right\}$, set $\chi\left(e_{i}\right)=c$ (that is, e_{i} receives colour c), and keep the colours of the other edges as in G_{i-1}. Note that there may be multiple such c, in which case we pick one arbitrarily. Otherwise, if e_{i} is not bad for G_{i-1}, set $G_{i}:=G_{i-1}$. Observe that G_{m} is H-rainbow-saturated, and since we added at most m edges during this process, G_{m} has at most $|E(G)|+m$ edges. Hence, $\operatorname{rsat}(n, H) \leq|E(G)|+m$ as required.

A direct result of Proposition 2.1 shows that in order to prove Theorem 1.2 it suffices to consider connected graphs H.

Proposition 2.2. Let H be a disconnected graph and let H^{\prime} be a component of H that has the most vertices, and subject to this, the most edges. If $\operatorname{rsat}\left(n, H^{\prime}\right)=O(n)$, then $\operatorname{rsat}(n, H)=O(n)$.

Proof. Let s be the number of components of H which are isomorphic to H^{\prime}. As rsat $\left(n, H^{\prime}\right)=$ $O(n)$, we have $\operatorname{rsat}\left(n-m, H^{\prime}\right)=O(n)$, where m is given by $m:=2\left(|V(H)|-\left|V\left(H^{\prime}\right)\right|\right)-$ ($s-1$). Let (G, χ) be an H^{\prime}-rainbow-saturated graph on $n-m$ vertices with as few edges as possible.

Define a graph G^{*} on n vertices as follows: let H_{2} be obtained from H^{\prime} by gluing two disjoint copies of H^{\prime} together at an arbitrary vertex. Let G^{*} be the disjoint union of G with $s-1$ disjoint copies of H_{2} and two disjoint copies of each component of H that is not isomorphic to

Figure 1: An example of the graph G^{*} created via the construction described in Proposition 2.2. Here $s=3$.
H^{\prime}. See Figure 1 for an example. Let χ^{*} be an edge-colouring of $E\left(G^{*}\right)$ where $\chi^{*}(e)=\chi(e)$ for every edge $e \in G$, and $G^{*} \backslash V(G)$ is rainbow with colours not used in χ.

Observe that G^{*} contains no rainbow copy of H (by our choice of H^{\prime}, there are at most $s-1$ disjoint copies of H^{\prime} in $G^{*} \backslash G$ and G contains no rainbow copy of H^{\prime}). Moreover, the addition of any non-edge (in any colour) within G creates a rainbow copy of H in G^{*}, since $G^{*} \backslash V(G)$ contains a rainbow copy of $H \backslash V\left(H^{\prime}\right)$ avoiding any given colour. As there are at most $m(n-m)+\binom{m}{2}=O(n)$ other non-edges in G^{*}, by Proposition 2.1 we have $\operatorname{rsat}(n, H)=O(n)$, as required.

Therefore, in what follows we may (and will) assume that H is a connected graph. Our next result shows that, if H contains a vertex of degree 1, then $\operatorname{rsat}(n, H)=O(n)$.

Proposition 2.3. Let H be a connected graph with $\delta(H)=1$. Then $\operatorname{rsat}(n, H)=O(n)$.

Proof. Write $k=|V(H)|$ and $n=q(k-1)+r$, where $0 \leq r<k-1$. Define an edgecoloured graph G on n vertices as follows: take q disjoint copies of K_{k-1} and let χ be a rainbow colouring of them. Finally, add r isolated vertices. Note that G has n vertices and $q\binom{k-1}{2}=(n-r)\left(\frac{k-2}{2}\right)=O(n)$ edges. Clearly G does not contain a rainbow copy of H. Moreover, since $\delta(H)=1$, if any non-edge in any colour is added between two distinct copies of K_{k-1} in G, then a rainbow copy of H is created. Therefore, since G has at most $q(k-1) r+\binom{r}{2}=(n-r) r+\binom{r}{2}=O(n)$ other non-edges, Proposition 2.1 implies that $\operatorname{rsat}(n, H)=O(n)$.

3 The construction

In this section, we give the construction that lies at the heart of our proof of Theorem 1.2. Given a graph H and an edge $e \in E(H)$, we create an edge-coloured graph on n vertices with $O(n)$ edges such that the addition of (almost) any edge creates a rainbow copy of H. The main work in the proof of Theorem 1.2 will be to show that this graph does not contain a rainbow copy of H, which will be done in Section 4 .

Construction 3.1. Let H be a connected graph on at least three vertices, and let $x y \in$ $E(H)$. Write $S:=N_{H}(x) \cap N_{H}(y)$ and let T be the set of edges in H with one endpoint in S and the other in $\{x, y\}$. Define H^{\prime} to be the graph obtained from H by contracting the edge $x y$ and replacing any multi-edges by single edges. We label the vertices of H^{\prime} as in H, with the single vertex obtained from contracting $x y$ labelled by $x \mid y$. Let T^{\prime} be the set of edges in H^{\prime} between $x \mid y$ and S, and write $H^{\prime \prime}:=H^{\prime} \backslash T^{\prime}$.
For an integer $m \geq 2$, define $F=F(m)$ to be the graph obtained from H^{\prime} by replacing the vertex $x \mid y$ with m duplicates of itself, denoted $v_{1}, v_{2}, \ldots, v_{m}$. Write $M:=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and label the vertices in M by $x \mid y$. Label the remaining vertices as in H. This means F has m vertices labelled $x \mid y$ and one vertex labelled v for every $v \in V(H) \backslash\{x, y\}$.
Given any integers $m \geq 2$ and $r \geq \max \left\{\left|E\left(H^{\prime \prime}\right)\right|+1,2\right\}$, define the graph $G:=G_{x y}^{H}(m, r)$ as follows. Start with $\left|E\left(H^{\prime \prime}\right)\right|$ disjoint copies of $F(m)$, indexed by the edges in $H^{\prime \prime}$ as $F_{e_{1}}, \ldots, F_{e_{\left|E\left(H^{\prime \prime}\right)\right|}}$. To these we add $r-\left|E\left(H^{\prime \prime}\right)\right|$ copies of $F(m)$, which we index as F_{1}, \ldots, $F_{r-\left|E\left(H^{\prime \prime}\right)\right|}$. Finally, we obtain G by identifying the vertices corresponding to v_{i} for each i in turn. That is, for each $i=1, \ldots, m$, we replace the r vertices u_{1}, \ldots, u_{r} corresponding to v_{i} with one vertex and connect this vertex to the vertices in $\bigcup_{j=1}^{r} N\left(u_{j}\right)$. Note that the graph G has r copies of each vertex in $V\left(H^{\prime}\right) \backslash\{x \mid y\}$ and m copies of the vertex $x \mid y$, and that the labelling of the vertices naturally defines a labelling of the edges, where an edge in G whose vertices are labelled u and v is labelled $u v$. By construction, $u v$ is an edge in H^{\prime}.
We now define a colouring χ of G, which we will later show does not contain a rainbow copy of H. Let χ_{0} be a rainbow colouring of $H^{\prime \prime}$ and fix a colour that is not in χ_{0}, say black. We extend χ_{0} to a colouring of H^{\prime} by colouring the edges in T^{\prime} with a colour \star. Let an edge $u v$ in G be coloured by $\chi_{0}(e)$, where e is the colour of the edge in H^{\prime} matching the label of $u v$. For each edge e in $H^{\prime \prime}$, recolour the edge corresponding to e in F_{e} with the colour black, and finally recolour each edge coloured with \star with unique colours that are not used elsewhere in G.

Construction 3.1 was inspired by the construction used in [8] to prove Theorem 1.1. In fact,

Figure 2: An example of the construction of the graph $G_{x y}^{H}(m, r)$. The dashed edge represents edges which are originally coloured \star and will be coloured with unique colours by χ. The colour black can be seen replacing other colours according to the index of the copy of F.
when the edge $x y$ is not contained in a triangle, $N_{H}(x) \cap N_{H}(y)=\emptyset$, and the graph described in Construction 3.1 is equivalent to the construction in [8].

See Figure 2 for an example of how Construction 3.1 works. In what follows, we will use $G_{x y}^{H}(n)$ to refer to the edge-coloured graph $\left(G_{x y}^{H}(m, r), \chi\right)$, where $m=n-r(|V(H)|-2)$ and $r=\max \left\{\left|E\left(H^{\prime \prime}\right)\right|+1,2\right\}$; so $G_{x y}^{H}(n)$ has n vertices. Observe that the addition of any nonedge in any colour within M creates a rainbow copy of H. Since $r=O(1)$ and $m=n-O(1)$, there are at most $O(n)$ bad non-edges in $G_{x y}^{H}(n)$. Therefore, if $G_{x y}^{H}(n)$ contains no rainbow copy of H, then Proposition 2.1 will yield $\operatorname{rsat}(n, H)=O(n)$, as required.

4 Completing the proof of Theorem 1.2

The goal of this section is to show that $G_{x y}^{H}$ contains no rainbow copy of H.
Proposition 4.1. Let H be a non-empty connected graph. For any edge $x y \in E(H)$ that is contained in a triangle and all integers m and r, the graph $G_{x y}^{H}(m, r)$ does not contain a rainbow copy of H.

Before proving this, we show why it implies Theorem 1.2 (restated here for convenience).
Theorem 1.2. Every non-empty graph H satisfies $\operatorname{rsat}(n, H)=O(n)$.

Proof of Theorem 1.2. First, note that by Proposition 2.2, it suffices to prove that every connected graph H satisfies $\operatorname{rsat}(n, H)=O(n)$. Let H be a non-empty connected graph. If H has a triangle, let $x y$ be an edge contained in a triangle, and write $G:=G_{x y}^{H}(n)$. Then $|E(G)|=O(n)$, and G has no rainbow copies of H by Proposition 4.1. Moreover, as described at the end of Section 3, for all but at most $O(n)$ non-edges e, the addition of e in any colour creates a rainbow copy of H. In particular, $\operatorname{rsat}(n, H)=O(n)$, as required. Otherwise, if H is triangle-free, then $\operatorname{rsat}(n, H)=O(n)$, using either Proposition 2.3 if H has a pendant edge or Theorem 1.1 if H has a non-pendant edge.

Proof of Proposition 4.1. Suppose for contradiction that there exists a connected graph H and an edge $x y \in E(H)$ contained in a triangle such that $G_{x y}^{H}(m, r)$ contains a rainbow copy H_{\Re} of H, for some integers m, r with $m \geq 2$ and $r \geq \max \left\{\left|E\left(H^{\prime \prime}\right)\right|+1,2\right\}$. Take H to have the minimal number of vertices with respect to these properties, and fix appropriate m and r such that $G:=G_{x y}^{H}(m, r)$ has a rainbow copy of H. Recall that the vertices of G are labelled
by vertices in H^{\prime} (the graph obtained from H by contracting $x y$), M is the set of vertices labelled $x \mid y$, and that the edges of G are labelled by edges in H^{\prime}.

Since H_{\Re} is connected it must contain at least one vertex in M, else it would be contained entirely within a copy of $H \backslash\{x, y\}$, which is impossible as $\left|V\left(H_{\mathfrak{R}}\right)\right|=|V(H)|$.

Claim 4.2. For every $v \in V(H) \backslash\{x, y\}$, the rainbow copy $H_{\mathfrak{R}}$ uses at least one vertex labelled v.

Proof. Suppose for contradiction that v is a vertex in $V(H) \backslash\{x, y\}$ such that $H_{\mathfrak{\Re}}$ uses no vertex labelled v.

Suppose first that v is the unique common neighbour of x and y in H. Then, since H_{\Re} uses no vertex labelled v, it uses at most $|E(H)|-2$ colours: at most $\left|E\left(H^{\prime \prime}\right)\right|=|E(H)|-|T|-1$ colours used by χ_{0}, and possibly also black. This is a contradiction, as a rainbow copy of H requires $|E(H)|$ colours.

Next, suppose that the graph $H^{v}:=H \backslash\{v\}$ is connected. By the previous paragraph, we may (and will) assume that v is not the unique common neighbour of x and y. Consider the edge-coloured graph G^{*} obtained from $G=G_{x y}^{H}(m, r)$ by the deletion of every vertex labelled v. As H_{\Re} contains no vertex labelled v, it is present in G^{*}, and, in particular, G^{*} contains a rainbow copy of H^{v}. Observe that $G^{*}=\left(G_{x y}^{H^{v}}(m, r), \chi_{0}^{\prime}\right)$, where χ_{0}^{\prime} is the restriction of χ_{0} to $\left(H^{v}\right)^{\prime \prime}$ and $r \geq \max \left\{\left|E\left(H^{v}\right)\right|+1,2\right\}$. Since v is not the unique common neighbour of x and y, the edge $x y$ is in a triangle in H^{v}. Therefore, since H^{v} is connected, by minimality of H we know that $G_{x y}^{H^{v}}(m, r)$ contains no rainbow copy of H^{v}. Hence, we obtain a contradiction. Therefore, we may (and will) assume that, for every non-cut vertex u in H, the rainbow copy H_{\Re} contains a vertex labelled u. In particular, v is a cut vertex in H. Note that x and y are in the same component of H^{v} since $x y \in E(H)$ and $v \in V(H) \backslash\{x, y\}$. Let C be a component of H^{v} not containing $\{x, y\}$. Take $u \in C$ of maximum distance from v. Note that u is not a cut vertex of H, and thus, by assumption, there is a vertex u^{\prime} in $H_{\mathfrak{R}}$ labelled u. Since $H_{\mathfrak{R}}$ is connected and contains at least one vertex in M, there is a path in $H_{\mathfrak{R}}$ from M to u^{\prime}. However, by our choice of C, any such path passes through a vertex labelled v, which is a contradiction.

Recall that T is the set of edges in H with one endpoint in $S=N_{H}(x) \cap N_{H}(y)$ and the other in $\{x, y\}$, and that T^{\prime} is the set of edges in H^{\prime} between $x \mid y$ and S. Note that $|S|=\left|T^{\prime}\right|=\frac{|T|}{2} \geq 1$ since $x y$ is contained in a triangle. By Claim 4.2, we see that $\left|H_{\Re} \cap M\right| \leq 2$. We will obtain a contradiction by counting the edges in H_{\Re} (via two cases).

First, consider the case where $\left|H_{\Re} \cap M\right|=2$. By Claim 4.2, H_{\Re} contains exactly one vertex labelled v, for each $v \in V(H) \backslash\{x, y\}$. Hence there are at most $2\left|T^{\prime}\right|$ edges in H_{\Re} with a label in T^{\prime}. Now, consider an edge $u v \in E\left(H^{\prime}\right) \backslash T^{\prime}$, where $u \neq x \mid y$ without loss of generality. Since there is exactly one vertex labelled u, all edges labelled $u v$ belong to the same copy of F, and thus have the same colour. It follows that the edges of H_{\Re} are coloured using at most $\left|E\left(H^{\prime}\right)\right|-\left|T^{\prime}\right|+2\left|T^{\prime}\right| \leq|E(H)|-1$ colours, which contradicts the assumption that H_{\Re} is a rainbow copy of H.

Now, consider the case where $\left|H_{\Re} \cap M\right|=1$. In this case, by Claim 4.2 there is exactly one $v \in V(H) \backslash\{x, y\}$ that labels two vertices in $H_{\mathfrak{R}}$, and every other vertex in $V\left(H^{\prime}\right)$ appears once as a label. We claim that for every edge $e \in E\left(H^{\prime}\right)$, except possibly for $v x \mid y$ (if this is an edge), all edges labelled e have the same colour. Indeed, if e does not contain v then the claim clearly follows, as there is at most one edge labelled e. Otherwise, $e=u v$ with $u \neq x \mid y$, and thus, since $e \in E\left(H^{\prime}\right) \backslash T^{\prime}$ and all edges labelled e are in the same copy of F, they all receive the same colour. Note that, if $v x \mid y$ is an edge in H^{\prime}, then there are at most two edges in H_{\Re} with this label. Altogether, the edges of $H_{\mathfrak{R}}$ see at most $\left|E\left(H^{\prime}\right)\right|+1=|E(H)|-\left|T^{\prime}\right|<|E(H)|$ colours, which contradicts H_{\Re} being a rainbow copy of H.

5 Rainbow saturation for cliques

The purpose of this section is to prove Theorem 1.3, restated here for convenience.
Theorem 1.3. Let $r \geq 3$. Then $\operatorname{rsat}\left(n, K_{r}\right) \leq(r+2 \sqrt{2 r}) n+c_{r}$, where c_{r} is a constant depending only on r.

We begin by proving the following lemma.
Lemma 5.1. For every $s \geq 3$, there is an edge-coloured graph $\left(H, \chi_{H}\right)$ on $\binom{s}{2}+s$ vertices with the following properties:
(1) the largest rainbow clique in H has $\binom{s}{2}+1$ vertices,
(2) for every $v \in V(H)$, there is a rainbow clique in $H \backslash\{v\}$ on $\binom{s}{2}+1$ vertices,
(3) for every colour c, there is a rainbow clique with $\binom{s}{2}+1$ vertices containing no edge coloured c.

Proof. Let S be a set of size s. Let H be a complete graph on vertices $S \cup S^{(2)}$, where $S^{(2)}=\{\{x, y\} \subseteq S: x \neq y\}$ is the set of pairs of distinct elements from S. For each pair $\{x, y\} \in S^{(2)}$, colour the edges $(x,\{x, y\})$ and $(y,\{x, y\})$ with the same colour, picking a different colour for each pair. The remaining edges receive a rainbow colouring, with colours distinct from those used so far.

We first show that the largest rainbow clique in H has size $\binom{s}{2}+1$. Suppose that T is a rainbow clique, and write $t:=|T \cap S|$. For every two distinct vertices $x, y \in T \cap S$, the pair $\{x, y\}$ is not in T, since the edges $(x,\{x, y\})$ and $(y,\{x, y\})$ have the same colour. It follows that $|T| \leq t+\binom{s}{2}-\binom{t}{2} \leq\binom{ s}{2}+1$, using the fact that $\binom{t}{2} \geq t-1$ for $t \geq 0$. This shows that H has no rainbow cliques of size at least $\binom{s}{2}+2$. Given distinct vertices $x, y \in S$, let $T(x, y):=\{x, y\} \cup\left(S^{(2)} \backslash\{\{x, y\}\}\right)$. It is not difficult to see that $T(x, y)$ is a rainbow clique of size $\binom{s}{2}+1$, and hence a maximum rainbow clique. This proves (1).

For (2), let $v \in V(H)$. If $v \in S$, then for any $x, y \in S \backslash\{v\}$, the clique $T(x, y)$ avoids v (using $s \geq 3$). If $v \in S^{(2)}$, then $v=\{x, y\}$ for some $x \neq y \in S$, and thus the clique $T(x, y)$ avoids v. This proves (2).

For (3), let c be a colour that is used on H (if c does not appear on H, then (3) holds trivially). Since every colour class is either an edge or a path of length 2, there is a vertex v which is incident with all edges of colour c. By (2), there is a maximum rainbow clique avoiding v and thus c. This proves (3).

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Given $r \geq 10$, let s be the largest integer such that $r \geq\binom{ s}{2}+1$ (so $\left.r \leq\binom{ s+1}{2}\right)$. Write $t:=r-\binom{s}{2}-1$. Notice that we may take n to be sufficiently large.
Let $\left(H, \chi_{H}\right)$ be an edge coloured graph as in Lemma 5.1 (applied with s), and let T_{1}, T_{2} and U be pairwise disjoint sets of sizes t, t, and $n-2 t-|V(H)|$ respectively which are disjoint from $V(H)$. Let G be a graph on vertex set $V(H) \cup U \cup T_{1} \cup T_{2}$ with edge set $E(G):=\left\{u v:\{u, v\} \nsubseteq U\right.$ and $\left.u v \notin T_{1} \times T_{2}\right\}$. We define a colouring χ on $E(G)$ such that $\chi(e)=\chi_{H}(e)$ for each $e \in E(H)$, and the edges of $E(G) \backslash E(H)$ receive a rainbow colouring with colours distinct from those used by χ_{H}. Note that the vertices of each T_{i} induce a rainbow clique of size t.

We claim that G contains no rainbow copy of K_{r+2}. Indeed, suppose W is a rainbow clique in G. Then W contains at most one vertex from U (as U is an independent set), at most t vertices from $T_{1} \cup T_{2}$ (as no edges exist between T_{1} and T_{2}), and at most $\binom{s}{2}+1$ vertices from H (by the choice of χ_{H}). Thus, $|W| \leq\binom{ s}{2}+1+t+1=r+1$, as claimed.

Next, we show that the addition of any non-edge $x y$ in U in any colour creates a rainbow copy of K_{r+2}. Suppose that $x y$ is coloured red, and denote by G^{\prime} the graph obtained from G by adding $x y$ in red. Then exactly one of the following holds: no edge in $G[V(H) \cup\{x, y\}]$ is red; exactly one of the edges from $\{x, y\}$ to $V(H)$ is red; red is used in H. Hence, by the properties of H given by Lemma 5.1 and by definition of G, there is a maximum rainbow clique W in H such that $G[W \cup\{x, y\}]$ does not contain any red edges. Thus $W \cup\{x, y\}$ is a rainbow clique of size $\binom{s}{2}+3=r-t+2$ in G^{\prime}. Since either T_{1} or T_{2} is not incident to any red edge, there is $i \in\{1,2\}$ for which $W \cup T_{i} \cup\{x, y\}$ is a rainbow clique of size $r+2$, as required.
Now, as $r \leq\binom{ s+1}{2}$, we have $t \leq\binom{ s+1}{2}-\binom{s}{2}-1=s-1$. Also, since $r \geq\binom{ s}{2}$, we have $s-1 \leq \sqrt{2 r}$. Thus, thinking of r as fixed, we have

$$
\begin{aligned}
|E(G)| & =(|V(H)|+2 t)(n-|V(H)|-2 t)+|E(H)|+2\binom{t}{2}+2 t|V(H)| \\
& =(|V(H)|+2 t)(n-|V(H)|-2 t)+O(1) \\
& =\left(\binom{s}{2}+s+2 t\right) \cdot n+O(1) \\
& =(r+s+t-1) \cdot n+O(1) \\
& \leq(r+2 s-2) \cdot n+O(1) \\
& \leq(r+2 \sqrt{2 r}) \cdot n+O(1)
\end{aligned}
$$

Observe that G has at most $t^{2}=O(1)$ bad non-edges, namely the edges $u v$ such that $u \in T_{1}$ and $v \in T_{2}$, so applying Proposition 2.1 yields that $\operatorname{rsat}\left(n, K_{r+2}\right) \leq(r+2 \sqrt{2 r}) n+O(1)$.

6 Conclusion and open problems

Our main theorem shows that for any graph H the rainbow saturation number $\operatorname{rsat}(n, H)$ is linear in n. Given this, it is natural to ask the following.

Question 6.1. For every graph H, does there exist a constant $c=c(H)$ such that

$$
\operatorname{rsat}(n, H)=(c(H)+o(1)) n ?
$$

Analogous questions have been considered for saturation and the related notion of weak saturation. The limit $\lim _{n \rightarrow \infty} \frac{\operatorname{sat}(n, H)}{n}$ was conjectured to exist by Tuza; see [16, 17]. Although some progress has been made towards Tuza's conjecture (see [13, 15]), it remains open.

Another natural direction would be to generalise the notion of weak saturation to edgecoloured graphs. A subgraph G of F is said to be weakly (F, H)-saturated if the edges of $E(F) \backslash E(G)$ can be added to G, one edge at a time, in such a way that every added edge creates a new copy of H. The minimum number of edges in a weakly (F, H)-saturated graph is known as the weak saturation number, and is denoted wsat (F, H). When $F=K_{n}$, we write $\operatorname{wsat}(n, H)$ instead of $\operatorname{wsat}\left(K_{n}, H\right)$.

We say an edge-coloured subgraph (G, χ) of F is weakly H-rainbow saturated if there exists an ordering e_{1}, \ldots, e_{m} of $E(F) \backslash E(G)$ such that, for any list c_{1}, \ldots, c_{m} of distinct colours from \mathbb{N}, the non-edges e_{i} in colour c_{i} can be added to G, one at a time, so that every added edge creates a new rainbow copy of H. The weak rainbow saturation number of H, denoted by $\operatorname{rwsat}(F, H)$, is the minimum number of edges in a weakly H-rainbow saturated graph. When $F=K_{n}$, we write $\operatorname{rwsat}(n, H)$ instead of $\operatorname{rwsat}\left(K_{n}, H\right)$.

Note that we require the collection of added edges to receive distinct colours. In particular, we wish to exclude the possibility that all added edges have the same colour, in which case the previously added edges do not contribute to making new rainbow copies and the problem reduces to the standard rainbow saturation number.

The study of weak saturation numbers was introduced by Bollobás [3] in 1968, where he proved that $\operatorname{sat}\left(n, K_{m}\right)=\operatorname{wsat}\left(n, K_{m}\right)$ for all $3 \leq m \leq 7$ and conjectured that this equality holds for all m. This conjecture was first proved by Lovász [12] using a beautiful generalisation of the Bollobás two families theorem. It would be interesting to determine whether a similar phenomenon holds for the rainbow saturation number.

Question 6.2. Let $r \geq 3$. Is $\operatorname{rwsat}\left(n, K_{r}\right)=\operatorname{rsat}\left(n, K_{r}\right)$?

It would be interesting to see if upper bounds on $\operatorname{rwsat}\left(n, K_{r}\right)$ can be found that are much stronger than those provided by Theorem 1.3 (note that $\operatorname{rsat}\left(n, K_{r}\right) \geq \operatorname{rwsat}\left(n, K_{r}\right)$).

Question 6.3. Let $r \geq 3$. Is it the case that $\operatorname{rwsat}\left(n, K_{r}\right) \leq r n+O(1)$, for n sufficiently large?

Alon [1] proved in 1985 that $\operatorname{wsat}(n, H)=(c(H)+o(1)) n$, for all graphs H. The natural generalisation of this to hypergraphs was recently proved by Shapira and Tyomkin [14]. An analogous question can be considered regarding the weak rainbow saturation number.

Question 6.4. For every graph H, does there exist a constant $c=c(H)$ such that

$$
\operatorname{rwsat}(n, H)=(c(H)+o(1)) n ?
$$

In the above definition of weak rainbow saturation we do not require (G, χ) to be rainbow H-free. Note however that one could alternatively consider the minimum number of edges in a weakly H-rainbow saturated, rainbow H-free graph. Unlike with weak saturation numbers, it is not clear whether this gives the same value as the weak rainbow saturation number of H. Indeed, a graph may contain a rainbow copy of H and still be a minimal (with respect to edge removal) weakly H-rainbow saturated graph. For example, a rainbow K_{n} is weakly K_{n}-saturated but removing any edge does not leave a weakly K_{n}-rainbow saturated graph, due to the stipulation that adding the edge back in in any colour must create a rainbow K_{n}.

6.1 Proper rainbow saturation

As our construction does not give a proper colouring, it is natural to ask what happens if we restrict our attention to properly edge-coloured graphs. We make the following definition: A properly edge-coloured graph (G, c) is properly H-rainbow saturated if (G, c) does not contain a rainbow copy of H, but the addition of any non-edge, in any colour from \mathbb{N} which preserves the proper colouring, creates a rainbow copy of H. The proper rainbow saturation number of H, denoted by $\operatorname{prsat}(n, H)$, is the minimum number of edges in a properly H-rainbow saturated edge-coloured graph on n vertices.

Question 6.5. Is $\operatorname{prsat}(n, H) \leq \operatorname{rsat}(n, H)$ for all H ?
It is worth noting that the phrase 'rainbow saturation' has appeared in the literature in a different context. Recently, Bushaw, Johnston, and Rombach [4] defined a different form of rainbow saturation which also requires the colouring to be proper. We will refer to this concept as BJR proper rainbow saturation to distinguish it from the definition above.

A graph G is $B J R$ properly H-rainbow saturated if there is a proper colouring of G that does not contain a rainbow copy of H, but if any non-edge is added to G then any proper colouring contains a rainbow copy of H. The BJR proper rainbow saturation number of H, denoted by $\operatorname{prsat}^{\prime}(n, H)$, is the minimum number of edges in a properly H-rainbow saturated graph on n vertices.

Note that the two definitions are subtly different. Any graph G that is BJR properly H rainbow saturated gives rise to a properly H-rainbow saturated edge-coloured graph (G, c) by taking c to be the proper colouring of G that does not contain a rainbow copy of H. This observation tells us that $\operatorname{prsat}(n, H) \leq \operatorname{prsat}^{\prime}(n, H)$ for all n and H. However, the converse might not hold: if (G, c) is properly H-rainbow saturated, there is no guarantee that every recolouring of G plus a non-edge contains a rainbow H.

Bushaw, Johnston, and Rombach [4] proved that, for any graph H that does not include an induced even cycle, the BJR proper rainbow saturation number of H is linear in n, that is, $\operatorname{prsat}^{\prime}(n, H)=O(n)$. They also showed that $\operatorname{prsat}^{\prime}\left(n, C_{4}\right)$ is again linear in n and conjecture that, analogously to the classical saturation numbers, the proper rainbow saturation number is linear in n for every H. Private correspondence with Bushaw, Johnston and Rombach and independently with Barnabás Janzer informs us that this can be shown by a straightforward application of a result of Kazsonyi and Tuza [10]. It follows that prsat (n, H) must also be linear in n for all H. It would be interesting to know if there are any graphs H where $\operatorname{prsat}(n, H)$ and $\operatorname{prsat}^{\prime}(n, H)$ differ considerably.

Acknowledgements We would like to thank the anonymous referees for their helpful comments.

References

[1] N. Alon. An extremal problem for sets with applications to graph theory. J. Combin. Theory Ser. A, 40(1):82-89, 1985.
[2] M. D. Barrus, M. Ferrara, J. Vandenbussche, and P. S. Wenger. Colored saturation parameters for rainbow subgraphs. J. Graph Theory, 86(4):375-386, 2017.
[3] B. Bollobás. Weakly k-saturated graphs. In Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967), pages 25-31. Teubner, Leipzig, 1968.
[4] N. Bushaw, D. Johnston, and P. Rombach. Rainbow Saturation. Graphs Combin., 38(5):Paper No. 166, 2022.
[5] P. Erdős, A. Hajnal, and J. W. Moon. A problem in graph theory. Amer. Math. Monthly, 71:1107-1110, 1964.
[6] J. R. Faudree, R. J. Faudree, and J. R. Schmitt. A survey of minimum saturated graphs. Electron. J. Combin., DS19(Dynamic Surveys):36, 2011.
[7] M. Ferrara, D. Johnston, S. Loeb, F. Pfender, A. Schulte, H. C. Smith, E. Sullivan, M. Tait, and C. Tompkins. On edge-colored saturation problems. J. Comb., 11(4):639655, 2020.
[8] A. Girão, D. Lewis, and K. Popielarz. Rainbow saturation of graphs. J. Graph Theory, 94(3):421-444, 2020.
[9] D. Hanson and B. Toft. Edge-colored saturated graphs. J. Graph Theory, 11(2):191-196, 1987.
[10] L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. J. Graph Theory, 10(2):203-210, 1986.
[11] D. Korándi. Rainbow saturation and graph capacities. SIAM J. Discrete Math., 32(2):1261-1264, 2018.
[12] L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45-86. Academic Press, London, 1977.
[13] O. Pikhurko. Results and open problems on minimum saturated hypergraphs. Ars Combin., 72:111-127, 2004.
[14] A. Shapira and M. Tyomkyn. Weakly saturated hypergraphs and a conjecture of Tuza. Proc. Amer. Math. Soc., 151(7):2795-2805, 2023.
[15] M. Truszczyński and Z. Tuza. Asymptotic results on saturated graphs. Discrete Math., 87(3):309-314, 1991.
[16] Z. Tuza. A generalization of saturated graphs for finite languages. In Proceedings of the 4 th International Meeting of Young Computer Scientists, IMYCS '86 (Smolenice Castle, 1986), number 185, pages 287-293, 1986.
[17] Z. Tuza. Extremal problems on saturated graphs and hypergraphs. Ars Combin., 25(B):105-113, 1988. Eleventh British Combinatorial Conference (London, 1987).
[18] A. A. Zykov. On some properties of linear complexes. Mat. Sbornik N.S., 24(66):163188, 1949. [In Russian].

[^0]: *Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK. This research was supported by a PIMS postdoctoral fellowship. Email: natalie.behague@warwick.ac.uk.
 ${ }^{\dagger}$ School of Mathematics, University of Bristol, Bristol, BS8 1UG, UK and Heilbronn Institute for Mathematical Research, Bristol, UK. Email: tom.johnston@bristol.ac.uk.
 ${ }^{\ddagger}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK. Email: s.letzter@ucl.ac.uk. Research supported by the Royal Society.
 ${ }^{\S}$ Department of Mathematics and Statistics, University of Victoria, Canada. Research supported by NSERC Discovery Grant RGPIN-2021-02511 and NSERC Early Career Supplement DGECR-2021-00047. Email: nmorrison@uvic.ca.
 ${ }^{\text {I }}$ Department of Mathematics and Statistics, University of Victoria, Canada. Supported by NSERC CGS M. Email: sogden@uvic.ca.

