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FUGLEDE-TYPE ARGUMENTS FOR ISOPERIMETRIC PROBLEMS AND

APPLICATIONS TO STABILITY AMONG CONVEX SHAPES

RAPHAËL PRUNIER

Abstract. This paper is concerned with stability of the ball for a class of isoperimetric problems
under convexity constraint. Considering the problem of minimizing P + εR among convex subsets of
RN of fixed volume, where P is the perimeter functional, R is a perturbative term and ε > 0 is a small
parameter, stability of the ball for this perturbed isoperimetric problem means that the ball is the
unique (local, up to translation) minimizer for any ε sufficiently small. We investigate independently
two specific cases where Ω 7→ R(Ω) is an energy arising from PDE theory, namely the capacity and the
first Dirichlet eigenvalue of a domain Ω ⊂ RN . While in both cases stability fails among all shapes, in
the first case we prove (non-sharp) stability of the ball among convex shapes, by building an appropriate
competitor for the capacity of a perturbation of the ball. In the second case we prove sharp stability
of the ball among convex shapes by providing the optimal range of ε such that stability holds, relying
on the selection principle technique and a regularity theory under convexity constraint.

1. Introduction

1.1. Stability in shape optimization. In this article we are interested in the question of stability of
the ball for isoperimetric-type problems under a convexity constraint. It takes place in the framework of
shape optimization problems involving the perimeter functional P , which consists in the minimization
problems

inf {P (A) +R(A), A ∈ A}
where A is a class of measurable subsets A ⊂ RN of volume |A| = 1, P (A) is the perimeter of A in the
usual De Giorgi sense, and R : A → R is a functional thought of as a perturbative term. Due to the
well-known isoperimetric inequality, any ball B ⊂ RN of unit volume is minimal for the minimization
of P + R among all sets in A when R = 0: for all measurable sets A ⊂ RN with volume |A| = 1,
P (A) ≥ P (B) with equality if and only if (up to a set of measure 0) A is a ball of unit volume. By
stability of the ball for the problem P +R we mean that, considering Rε := εR for a small parameter
ε > 0, then provided ε is close enough to 0:

The ball B is a local minimizer of P + εR in A
where by locality we mean that the L1 distance of Ω ∈ A with B is small (i.e. |Ω∆B| ≪ 1). In
other words, this notion of stability states that the ball is still a minimizer of the perimeter functional
when it is perturbed by another functional R. Another way of putting it comes from rewriting the
minimality of B as

P (A)− P (B) ≥ ε (R(B)−R(A))

so that, assuming moreover that R(B) ≥ R(A) for each A ∈ A (which is always verified for the cases
we have in mind), then the deficit of perimeter quantifies the deficit of the functional R. Let us
mention that this point of view on stability encompasses what is usually refered to in the literature
as quantitative inequalities, the most famous one being the sharp quantitative isoperimetric inequality,
proven in [FMP08]. It claims that by setting

δF (A) := inf{|A∆(B + x)|, x ∈ RN}
the Fraenkel asymmetry of a set A ⊂ RN of unit volume, then there exists cN > 0 such that

P (A)− P (B) ≥ cNδF (A)
2.

In our stability setting this can be rephrased into stability of P −δ2F among all sets of unit volume. The
literature on quantitative inequalities in shape optimization is very prolific, and we refer for instance
among many others to [FMP08], [BDPV15], [FFM+15], [AFM13], [CL12], [BNT10], [FMP10] and to
[Fus15] for a nice review of stability results linked to the isoperimetric inequality.
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2 R. PRUNIER

1.2. Stability of the ball under convexity constraint. We are more specifically interested in
shape optimization problems where A only contains convex shapes, that is

inf
{
P (K) + εR(K), K ∈ KN , |K| = 1

}

where KN denotes the class of convex bodies of RN (that is, compact convex sets with non-empty
interior). The addition of the convexity constraint is interesting since stability among all shapes fails
for the functionals we will consider. This happens for some problems where R is of PDE-type, by which
we mean that R(K) is an energy associated to a PDE which is set on K or RN \K. In this paper we
investigate independently two specific problems falling into this category. Let us now introduce them
and state the stability results associated.

1.2.1. Weak stability for P +Cap−1. We are interested in a first problem which involves a PDE set on
the exterior of the domain. For N ≥ 3 we introduce the capacity functional Cap : KN → R which we
define as the usual electrostatic capacity :

Cap(K) := inf

{∫

RN

|∇u|2, u ∈ C∞
c (RN ) with u ≥ 1K

}
.(1)

When N = 2, one can see by looking at the energy of rescaled and truncated versions of the
fundamental solution of the Laplacian that the infimum in (1) is always 0. Therefore one must proceed
differently to define the capacity for N = 2 (see Remark 2.3).

We now set the problem: letting ε > 0 be a small parameter, we are interested in the minimization

(2) inf
{
P (K) + εCap(K)−1, K ∈ KN , |K| = 1

}

for N ≥ 3. Before giving motivations and context for this problem let us state the stability result
which we obtained.

Theorem 1.1 (Weak stability of the ball for the capacity). Let N ≥ 3. There exists ε0 = ε0(N) > 0
such that for any ε ∈ (0, ε0) the centered ball of unit volume B is the unique (up to translation)
minimizer of (2).

We call this result weak stability in the sense that the ε0 found is not optimal (contrarily to Theorem
1.2 below), and is in fact not even explicit. On the other hand note that this minimality result is global.
It is the N ≥ 3 version of the two dimensional result [GNR18, Corollary 1.3], where the authors prove
weak stability of the ball with the logarithmic capacity instead. Our approach is however very different,
see Section 1.3.

Due to the isocapacitary inequality (see for instance [DPMM21]) which states that

∀Ω ⊂ RN open, |Ω| = 1, Cap(Ω) ≥ Cap(B)

and the isoperimetric inequality, there is a competition in the minimization (2) which makes the
problem non trivial. The introduction of the convexity constraint in the problem comes from the fact
that existence does not hold without any additional geometric assumption (for non-existence for any
ε > 0 and in all dimensions N ≥ 2 see [GNR15, Theorem 3.2 and Theorem 6.2]). On the other hand
(2) admits minimizers for any ε > 0 (see [GNR18, Theorem 1.1]).

1.2.2. Strong stability for P − λ1. If Ω ⊂ RN is an open set with finite volume we let λ1(Ω) be its first
Dirichlet eigenvalue, defined as the smallest number λ ∈ R such that there exists a non trivial function
u verifying {

−∆u = λu, in Ω

u ∈ H1
0 (Ω)

where the first equation holds in the distributional sense in Ω. It has a variational characterization:

λ1(Ω) := inf

{∫
Ω |∇u|2∫
Ω |u|2 , u ∈ H1

0 (Ω)

}
.

For K ∈ KN we set λ1(K) := λ1(Int(K)). Consider then the minimization problems

inf
{
P (Ω)− cλ1(Ω), Ω ⊂ RN open, |Ω| = 1

}
, inf

{
P (K)− cλ1(K), K ∈ KN , |K| = 1

}

for any fixed parameter c > 0. There is a competition between the perimeter and λ1, as it is known
from the isoperimetric and Faber-Krahn inequalities that a ball B of volume 1 minimizes them both
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among shapes of unit volume. Intuitively, we expect that the perimeter is the dominant term for small
values of c while we expect that this is no longer the case in the regime c → +∞, so that B might
be a local minimizer for small values of c and not for large values of c. As such there is no global
minimizer to any of the two problems, taking for instance a sequence of long thin rectangles of unit
volume. However, even in a loose local sense there is no stability of the ball for the first problem,
meaning that for any c > 0 there exists a sequence (Ωj,c)j∈N of open sets with

|Ωj,c| = 1, |Ωj,c∆B| → 0 and (P − cλ1)(Ωj,c) < (P − cλ1)(B) for each j ∈ N

as one sees by comparing the energy of the ball to the energy of the ball perforated by a small hole at
its center (see for instance [DL19, Proposition 6.1]). A strong geometric constraint such as convexity
of the admissible sets forbids this kind of behaviour, so that one might expect stability in this case.
This is the object of the second main result of this article, which can be seen as sharp stability of the
ball under convexity constraint for the functional P − λ1. The result is as follows.

Theorem 1.2 (Sharp stability of the ball for λ1). Let N ≥ 2. Let ωN be the volume of a ball of radius
1, and pN := NωN , lN := j2N/2−1 be respectively the perimeter and first eigenvalue of a ball of radius

1 (jN/2−1 is the first zero of the Bessel function of the first kind of order N/2− 1). Set

(3) c∗ :=
N(N + 1)pN

4lN (lN −N)ω
N+1
N

N

Let B be a ball of unit volume.

• Let 0 < c < c∗. Then there exists δc > 0 such that

(4) ∀K ∈ KN , |K| = 1 with |K∆B| ≤ δc, (P − cλ1)(K) ≥ (P − cλ1)(B).

• Let c > c∗. There exists a sequence of smooth convex bodies (Kj,c)j∈N of unit volume for which
|Kj,c∆B| → 0 and

(5) (P − cλ1)(Kj,c) < (P − cλ1)(B) for each j ∈ N.

Note that the novelty of this result comes from the first item (inequality (4)), as (5) was already
obtained by [Nit14] (see the second point below). We thus give an answer to the question of local
minimality of the ball for the problem P − cλ1 under convexity constraint for any value c > 0 (except
c = c∗). Let us place it among existing results in the literature.

• First, in a weak form the stability of the ball for P −λ1 (in the sense of (4)) was already known.
It was first obtained in two dimensions by Payne and Weinberger in [PW61] for the larger class
of simply connected domains. More precisely, the Payne-Weinberger inequality states that for
any Ω ⊂ R2 open, simply connected with unit volume it holds

(6) λ1(Ω)− λ1(B) ≤ λ1(B)
(
J1(j01)

−2 − 1
) (P (Ω)2

4π
− 1

)

where J1 is the Bessel function of the first kind of order one, and j01 is the first zero of the
Bessel function of the first kind and of order zero. While this inequality is much more general
since it gives a control of the Faber-Krahn deficit by the isoperimetric deficit for any simple
connected set, it implies in particular stability of the ball among simply connected sets Ω for
which P (Ω) is bounded from above. One can in fact derive the inequality

∀Ω ⊂ R2 open and simply connected with |Ω| = 1, (P (Ω)− P (B)) ≥ ε2
P (B) + C

(λ1(Ω)− λ1(B))

where ε2 := 4πλ1(B)−1(J1(j01)
−2 − 1)−1, provided P (Ω) ≤ C. Note that letting C → P (B)

the constant ε2/(P (B) + C) becomes

ε2(2P (B))−1 =
(√
πj201(J1(j01)

−2 − 1)
)−1 ≈ 0.036,

while the optimal constant given by (3) equals

c∗ =
3√

πj201(j
2
01 − 2)

≈ 0.077.
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On the other hand, a Payne-Weinberger type inequality for convex sets was proven in any
dimensions N ≥ 2 by Brandolini, Nitsch and Trombetti [BNT10, Theorem 1.1] using the
Brunn-Minkowski theory. They prove that for any open convex set Ω ⊂ RN it holds

λ1(Ω)− λ1(B
∗)

λ1(Ω)
≤ CN

(
P (Ω)

N
N−1 − P (B)

N
N−1

P (Ω)
N

N−1

)

for some explicit constant CN > 0, where B∗ is a ball with same perimeter as Ω. This again
implies a non-optimal local stability of the ball for convex sets in the sense given by (4).

• Second, in [Nit14, Theorem 1.2] (see also [DL19, Proposition 5.5 (ii)]) Nitsch conjectured the
optimal value c∗ > 0 by proving that (i) if c < c∗, the ball B is a minimizer of P − cλ1 among
unit volume perturbations of the ball by a smooth vector field ξ i.e. for Bξ := (Id+ ξ)(B) with
‖ξ‖C∞ ≪ 1 and (ii) if c > c∗, there exists ‖ξj‖C∞ → 0 with (P − cλ1)(Bξj ) < (P − cλ1)(B).

• Finally, one can interpret this result in the context of Blaschke-Santalo diagrams. In fact, it
provides the exact value of the tangent at (x0, y0) := (P (B), λ1(B)) of the upper boundary of
the diagram for (P, λ1, | · |) in the class of planar convex sets, that is of the set

(7) D :=
{
(x, y) ∈ R2, ∃K ∈ K2, P (K) = x, λ1(K) = y, |K| = 1

}

It was proven in [FL21] that this diagram lies between two continuous increasing functions,
meaning that

D =
{
(x, y) ∈ [x0,+∞[×R+, f(x) ≤ y ≤ g(x)

}

for some continuous increasing f, g : [x0,+∞) → R+. Relying on non minimality of the ball for

c > c∗, the authors proved that lim supx→x0

g(x)−g(x0)
x−x0

≥ 1
c∗ (see [FL21, Corollary 3.17]). On

the other hand, minimality for any c < c∗ from Theorem 1.2 ensures that the reverse inequality
holds, so that the function g admits a tangent at (x0, y0) with coefficient (c∗)−1. The precise
result is thus the following.

Corollary 1.3. Let B ⊂ R2 be a ball of unit volume and set (x0, y0) := (P (B), λ1(B)). Let c∗

be given by (3). Then the upper boundary of the diagram (7) admits a tangent at (x0, y0) with
coefficient (c∗)−1, i.e. g′(x0) = (c∗)−1.

Although the convexity constraint is a natural class for proving this strong form of stability of the ball,
our result opens up the question as to finding the more general class for which this could hold. Since a
weak form of stability holds in two dimensions for perturbations of the ball which are simply connected
(by the Payne-Weinberger inequality), we believe that it would be interesting to investigate whether
the sharp stability we obtained could be extended to this class. As shown in [DL19, Remark 6.2], one
cannot hope for such a general class when N ≥ 3, but one can however make the same conjecture for
the class of Lipschitz perturbations of the ball (see also further (ii) from Proposition 2.5).

1.3. Strategy of proof. Although the two results are independent, the strategy we employ for proving
them follows a general scheme, which is recurrent in the literature and not specific to convexity (see
[DL19] for a detailed description). We rely on the following steps:

(1) Fuglede-type computations: minimality of the ball for the functional among “smooth" pertur-
bations of the ball (Theorems 2.1 and 3.1).

(2) Local minimality of the ball for convex sets (Theorems 1.1 and 1.2).

The first step of this strategy refers to the seminal work [Fug89] of B. Fuglede, where the author
obtained it for the perimeter functional. By “smooth" perturbations of the ball B in the first step
we mean that minimality holds for domains Ω = (Id + ξ)(B) with ξ lying in some normed space of
smoothness X and ‖ξ‖X is small enough. Since they are independent of convexity, the respective
results Theorems 2.1 and 3.1 constituting the first step bear interest in themselves. On the other hand,
in the second step one studies the regularity of minimizers of the associated problem, aiming to prove
that each minimizer Ω can be written Ω = (Id+ ξ)(B) with ξ ∈ X and X is the space obtained in the
first step. The two parts of the strategy are thus closely linked to each other through the choice of the
space X.

Let us now explain separately how we proceed for proving Theorems 1.2 and 1.1.
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1.3.1. Weak stability with Lipschitz regularity. For proving Theorem 1.1 we first perform Fuglede-type
computations for Lipschitz perturbations of the ball. This is done in Theorem 2.1. It is an improvement
of previous results from [GNR15, Corollary 5.6], where the authors perform Fuglede-type computations
for a class of C1,1 sets with curvature uniformly bounded from above. The proof of Theorem 2.1 relies
on a second-order estimate of the variation of the capacity for Lipschitz perturbations of the ball,
shown in Lemma 2.2. To obtain this latter bound we take advantage of the fact that the capacity is
defined as a minimum, thus enabling us to estimate it from above by providing a natural competitor,
for which only low regularity is needed.

Theorem 1.1 is then obtained from Theorem 2.1 by using Lipschitz regularity of convex sets as in
[Fug89]. In reference to the two steps strategy described above, note that in this case the passage from
the Fuglede-type computations to local minimality of the ball in the class of convex sets is quite direct,
due to the fact that we are able to perform these computations for a space X with low regularity.

1.3.2. Strong stability with a C1,α regularity theory. Since it was proven in [Nit14, Theorem 1.2] that
minimality in (4) holds among smooth perturbations of the ball for any c ∈ (0, c∗), the idea of Theorem
1.2 is to pass from smooth to non-smooth convex perturbations of the ball in the minimality. The
strategy we will use is the so-called selection principle, which was first introduced by Cicalese and
Leonardi in [CL12] as a means to give a new proof to the sharp quantitative isoperimetric inequality.
The robustness of their method allowed it to be employed in many other contexts for proving various
inequalities for shapes, among which we can quote the sharp quantitative Faber-Krahn inequality proven
in [BDPV15]. The strategy consists in a refinement of the two steps method described above. Roughly
speaking, if one wants to prove local minimality of the ball of unit volume B for a functional J among
a class A of shapes, the idea is to reduce the proof of the inequality in A to the inequality in a class of
smooth shapes through a regularizing procedure. This is usually based on a regularity theory related
to the functional J under study.

In order to apply this selection principle method we first need to prove Fuglede-type computations for
the functional P − cλ1 for C1,α perturbations of the ball (in Theorem 3.1), which are not contained in
the available results in the literature (in [Nit14, DL19, Dam02, DP00]; see Section 3 for a justification).
On the other hand, to perform the second step of the strategy we prove a convergence result for quasi-
minimizers of the perimeter under convexity constraint (Corollary 4.3), which uses the regularity theory
from [LP23].

Note that the proof of Theorem 1.2 is much more involved than the proof of Theorem 1.1. This is
related to the fact that it relies on a regularity theory among convex shapes, but is also because in
order to prove the Fuglede-type computations we are led to perform very technical computations (see
the proof of Theorem 3.5).

1.4. Plan of the paper. Section 2 is dedicated to the proof of Theorem 1.1. Sections 3 and 4 are
independent of this first section, and deal with proving Theorem 1.2: in Section 3 we show the first step
of the selection principle method by proving minimality of the ball for P −cλ1 in a C1,α neighborhood;
then, in Section 4 we perform the regularizing procedure in itself. We provide a small appendix in
Section 5.

Acknowledgements: The author is deeply grateful to J. Lamboley for very helpful discussions
and careful readings of previous versions of this document. The author also thanks M. Goldman, M.
Novaga and B. Ruffini for valuable discussions about this work. The author warmly thanks R. Petit
for interesting discussions about convergence of smooth sets. Finally, the author wishes to thank the
referees for their precious readings and comments. This work was partially supported by the project
ANR-18-CE40-0013 SHAPO financed by the French Agence Nationale de la Recherche (ANR).

2. Stability of the ball for an isoperimetric problem with convexity constraint

involving capacity. Proof of Theorem 1.1

In this section we prove Theorem 1.1, which is the stability result associated to (2). Recall that we
have defined in (1) the capacity functional in dimensions N ≥ 3. It is proven in [CS03, Theorem 2 and
3] that provided K is sufficiently smooth, the minimization in (1) is uniquely solved by the so-called
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capacitary function uK which verifies

(8)





−∆uK = 0 in RN \K
uK = 1 over K, uK ∈ C0(RN )

uK(x) → 0 as |x| → +∞
The number Cap(K) also appears in the asymptotic expansion of uK :

uK(x) ∼ |x|2−N
(
Cap(K)σN (N − 2)−(N−1)/(N−2)

)
as |x| → +∞

with σN denoting the (N − 1)-dimensional measure of the unit sphere in RN . Finally, let us also note
that Cap(K) = (IN−2(K))−1 where IN−2 is the Riesz potential energy which is given by

IN−2(K) := inf

{∫∫

RN×RN

|x− y|2−Ndµ(x)dµ(y), µ ∈ P(K)

}

with P(K) denoting the set of probabilities supported on K (see [GNR15, Remark 2.5]).
When N = 2, one must proceed differently to define the capacity (see further Remark 2.3). Stability

of the ball among convex sets in two dimensions was obtained in [GNR18, Corollary 1.3] using the two
steps strategy we described in the Introduction, by proving (i) Fugldede-type computations in a certain
class of "smooth" perturbations and (ii) regularity of minimizers of (19). Theorem 1.1 is the N ≥ 3
version of this result. Instead, here we prove (i) for Lipschitz perturbations (in Theorem 2.1 below),
which will be enough in order to obtain local minimality of the ball for convex sets without having to
prove regularity of the minimizers. The result is as follows.

Theorem 2.1 (Fuglede-type computations for P + εCap−1: minimality for Lipschitz perturbations).
Let N ≥ 3, and let B denote the centered unit ball. For h ∈ W 1,∞(∂B) we denote Bh := {tx(1 +
h(x)), t ∈ [0, 1), x ∈ ∂B}. There exists η > 0 and ε0 > 0 such that for all h ∈ W 1,∞(∂B) verifying
‖h‖W 1,∞(∂B) ≤ η with |Bh| = |B| and such that Bh has barycenter at the origin, and for all ε ∈ (0, ε0),
then

P (Bh) + εCap(Bh)
−1 ≥ P (B) + εCap(B)−1

with equality only if Bh = B.

The proof of Theorem 2.1 importantly relies on Lemma 2.2 below, which consists in a weak (IT)
property (see the statement of Theorem 3.4 for a strong (IT) property).

2.1. Weak (IT) property. For h ∈ W 1,∞(∂B) with ‖h‖L∞(∂B) ≤ 1/2 we set Bh the Lipschitz open
set

Bh := {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B}.
In the following Lemma we estimate from above the variation of Cap for a Lipschitz perturbation

Bh of B in terms of the H1 norm of h. Since the Lemma does not use the convexity of the sets Bh it
is stated for general h ∈W 1,∞(∂B).

Lemma 2.2 (Weak (IT)H1,W 1,∞). Let N ≥ 3. There exists CN > 0 such that if h ∈ W 1,∞(∂B) with
Bh of volume |Bh| = |B| and ‖h‖L∞(∂B) ≤ 1/2 then

Cap(Bh)− Cap(B) ≤ CN‖h‖2H1(∂B).

Proof of Lemma 2.2. Fix h ∈ W 1,∞(∂B) with ‖h‖L∞(∂B) ≤ 1/2 and |Bh| = |B|. We extend h over

RN \ {0} by setting h(x) := h(x/|x|), thus getting a 0-homogenous function h : RN → R. Let then φh
be the Lipschitz homeomorphism

φh : RN −→ RN

x 7−→ x

(1 + h(x))
.(9)

Let us denote more simply h̃ := (1 + h)−1, so that φh(x) = h̃(x)x. We have Dφh(x) = h̃(x)Id + x⊗
∇h̃(x), so that using the formula det(Id+ a⊗ b) = 1 + a · b for vectors a, b and since ∇h̃(x) · x = 0 (h̃

being constant on half-lines {λx, λ ≥ 0}) it holds det(Dφh) = h̃N . As a consequence, thanks to the
change of variable y = φh(x) and using polar coordinates, the hypothesis |Bh| = |B| reads

(10)

∫

∂B
(1 + h)N =

∫

∂B
1
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Expanding (1 + h)N − 1 = Nh+
∑N

i=2

(N
i

)
hi we thus get that there exists CN > 0 such that

(11) if ‖h‖L∞(∂B) ≤ 1/2,

∫

∂B
h ≤ CN‖h‖2L2(∂B)

We set uB(x) := min{1, |x|2−N} the capacitary function for B, which is the unique solution to (8)
for K = B.

Step 11: Cap(Bh) ≤
∫
RN |∇(uB ◦ φh)|2. For R ≥ 3

2 (note that we thus have Bh ⊂ BR(0)) let

θR : RN → R be some cut-off function such that
{
θR ≡ 1 on BR(0), θR ≡ 0 on RN \B2R(0)

‖θR‖L∞(RN ) ≤ 1, ‖∇θR‖L∞(RN ) ≤ 1
R

Then vR(x) := θR(x)(uB ◦ φh)(x) ∈ W 1,∞(RN ) and has compact support, so that by standard mol-
lification vR can be approached in H1 norm by C∞

c (RN ) functions. As a consequence by (1) we
get

(12) Cap(Bh) ≤
∫

RN

|∇vR|2

We now verify that ∇vR → ∇(uB ◦ φh) in L2(RN ) as R→ +∞.
We have

‖∇vR −∇(uB ◦ φh)‖L2(RN ) = ‖∇vR −∇(uB ◦ φh)‖L2(RN\BR)

≤ ‖(θR − 1)∇(uB ◦ φh)‖L2(RN\BR) + ‖∇θR · (uB ◦ φh)‖L2(RN\BR)

≤ ‖∇(uB ◦ φh)‖L2(RN \BR) + ‖∇θR · (uB ◦ φh)‖L2(RN\BR)(13)

Since ∇(uB ◦ φh) = (Dφh)
T∇uB ◦ φh with φh ∈W 1,∞(RN ) and ∇uB ∈ L2(RN ), it holds

∫

RN

|∇(uB ◦ φh)|2 ≤ ‖Dφh‖2L∞(RN )‖det(Dφh)‖−1
L∞(RN )

∫

RN

|∇uB |2 <∞

Hence ‖∇(uB ◦φh)‖L2(RN\BR) → 0. On the other hand, as ‖1+h‖L∞(RN ) ≤ 3/2 we have for |x| ≥ 3/2,

|uB ◦ φh(x)| = |φh(x)|2−N ≤
(
3

2

)N−2

|x|2−N

Since |∇θR| ≤ R−1, using polar coordinates this gives for R ≥ 3/2

∫

B2R\BR

|∇θR · (uB ◦ φh)|2 ≤ P (B)

(
3

2

)N−2

R−2

∫ 2R

R
r2(2−N)rN−1dr

= P (B)

(
3

2

)N−2
{
(4−N)−1R−2((2R)4−N −R4−N ) if N 6= 4

R−2 log(2) if N = 4

In any case we thus get
∫

B2R\BR

|∇θR · (uB ◦ φh)|2 → 0 as R→ +∞.

Pluging this into (13) we deduce in fact

‖∇vR −∇(uB ◦ φh)‖L2(RN ) → 0, as R→ +∞
so that

Cap(Bh) ≤
∫

RN

|∇(uB ◦ φh)|2

thanks to (12).
Step 2: Estimate of the energy of uB ◦ φh. Recall that

(14) ∀x ∈ RN , Dφh(x) = h̃(x)Id + x⊗∇h̃(x)

1This argument for admissibility of uB ◦ φh was suggested to us by M. Goldman, M. Novaga and B. Ruffini.
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so that

|∇(uB ◦ φh)|2 =
∣∣(Dφh)T · ∇uB ◦ φh

∣∣2

=
∣∣∣h̃ · (∇uB ◦ φh) +∇h̃ ((∇uB ◦ φh) · x))

∣∣∣
2

Since uB is radial, the vector ∇uB(φh(x)) is thus proportionnal to φh(x) and hence to x, which yields

∇uB(φh(x)) · ∇h̃(x) = 0 (because h̃ is constant in the direction x). We deduce

|∇(uB ◦ φh)|2 = h̃2|∇uB ◦ φh|2 + ((∇uB ◦ φh) · x)2|∇h̃|2.
We can therefore write the energy of uB ◦ φh as follows

(15)

∫

RN

|∇(uB ◦ φh)|2 =
∫

RN

h̃2|∇uB ◦ φh|2 +
∫

RN

((∇uB ◦ φh) · x)2|∇h̃|2.

Let us first deal with the term
∫
RN h̃

2|∇uB(φh)|2. Recalling that det(Dφh) = h̃N we get by the
change of variable y = φh(x)∫

RN

h̃2|∇uB ◦ φh|2 =
∫

RN

(1 + h)−2|∇uB ◦ φh|2

=

∫

RN

(1 + h)N−2|∇uB |2

=

∫

RN

|∇uB |2 +
N−2∑

i=1

(
N − 2

i

)∫

RN

hi|∇uB |2

= Cap(B) +
N−2∑

i=1

(
N − 2

i

)∫

RN

hi|∇uB |2.

Letting v(r) := min{1, r2−N} be the function such that v(|x|) = uB(x) for all x ∈ RN , then using the
co-area formula we have for i ≥ 1

∫

RN

hi|∇uB|2 =
(∫ ∞

0
v′(r)2rN−1dr

)(∫

∂B
hi
)

= aN

∫

∂B
hi

where we set aN :=
∫∞
0 v′(r)2rN−1dr = P (B)−1

∫
RN |∇uB |2. For i ≥ 2, since ‖h‖L∞(∂B) ≤ 1/2 we

thus get ∫

RN

hi|∇uB|2 ≤ CN‖h‖2L2(∂B),

while if i = 1 thanks to (11) we have
∫
∂B h ≤ CN‖h‖2L2(∂B) so that

∫

RN

hi|∇uB |2 ≤ C ′
N‖h‖2L2(∂B)

These two give

(16)

∫

RN

h̃2|∇uB(φh)|2 ≤ Cap(B) + CN‖h‖2L2(∂B)

for some dimensional constant CN > 0.
We now turn to the estimate of

∫
RN ((∇uB ◦ φh) · x)2|∇h̃|2. Denoting by a(x) := x/|x|, then for

x 6= 0

∇h̃(x) = −h̃2Da(x)T∇τh(a(x))

where ∇τ is the tangential gradient. As each coefficient of Da(x) is controlled by 2|x|−1, since

‖h̃‖L∞(∂B) ≤ 2 this yields

((∇uB ◦ φh) · x)2|∇h̃(x)|2 ≤ 8|∇uB ◦ φh|2|∇τh(a(x))|2

Changing variables and using polar coordinates in the same fashion as before, this ensures that

(17)

∫

RN

((∇uB ◦ φh) · x)2|∇h̃|2 ≤ CN‖∇τh‖2L2(∂B)
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for some CN > 0. Injecting this estimate together with (16) into (15) finally yields
∫

RN

|∇(uB ◦ φh)|2 ≤ Cap(B) + CN‖h‖2H1(∂B)

for some CN > 0.
Conclusion: Thanks to Step 1 it holds

Cap(Bh) ≤
∫

RN

|∇(uB ◦ φh)|2

from which we get using Step 2

Cap(Bh) ≤ Cap(B) + CN‖h‖2H1(∂B)

This finishes the proof of the Lemma. �

Remark 2.3. In two dimensions, one defines the capacity functional as follows. We first set the Robin
constant VK of some K ∈ K2: letting

(18) CapR(K) := inf

{∫

R2

|∇u|2, u ∈ H1
0 (BR(0)), u ≥ 1 over K

}
,

then we define VK := lim
(
2πCapR(K)−1 − log(R)

)
as R→ ∞. Note that one also has

VK := inf

{
−
∫∫

K×K
log(|x− y|)dµ(x)dµ(y), µ ∈ P(K)

}

(see [Bag67, Theorem 4] and section 3 in [GNR18]). The logarithmic capacity of K is then given by

Cap(K) := e−VK

Instead of (2) we thus set the minimization problem

(19) inf
{
P (K) + εVK , K ∈ KN , |K| = 1

}

where ε > 0 is a small parameter.
We tried to apply the same strategy in the case N = 2 in order to retrieve the result from [GNR18].

However, due to the specificity of the definition of capacity in the two dimensional case, this brings
additional difficulties and we do not know whether the argument could work.

2.2. Proof of Theorems 2.1 and 1.1. Relying on Lemma 2.2, we first prove the Fuglede-type com-
putations for Lipschitz perturbations from Theorem 2.1.

Proof of Theorem 2.1. Let h ∈ W 1,∞(∂B) with ‖h‖L∞(∂B) ≤ 1/2, such that |Bh| = |B| and Bh has
barycenter at the origin. It is proven in [Fus15, Theorem 3.1] that there exists η > 0 such that

if ‖h‖W 1,∞(∂B) ≤ η, P (Bh)− P (B) ≥ 1

4
‖∇τh‖2L2(∂B).

Thanks to (10) there exists δ > 0 such that if ‖h‖L∞(∂B) ≤ δ one has the Poincaré type inequality (see
also [Fus15, Proof of Theorem 3.1])

‖h‖2L2(∂B) ≤ 2‖∇τh‖2L2(∂B).

Setting η̃ := min{η, δ}, we thus deduce thanks to Lemma 2.2 that if ‖h‖W 1,∞(∂B) ≤ η̃ then

Cap(B)−1 − Cap(Bh)
−1 =

Cap(Bh)− Cap(B)

Cap(B)Cap(Bh)
≤ CN

Cap(B)2
‖h‖2H1(∂B)

≤ 3CN

Cap(B)2
‖∇τh‖2L2(∂B)

≤ 12CN

Cap(B)2
(P (Bh)− P (B))

where we also used the isocapacitary inequality in the first line. Taking ε0 :=
Cap(B)2

12CN
we get in fact

P (Bh) + εCap(Bh)
−1 ≥ P (B) + εCap(B)−1,

for any ε ∈ (0, ε0). Furthermore, the equality case enforces P (Bh) = P (B), so that h = 0 by following
the chain of inequalities. This concludes the proof of the Theorem. �
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us first note that (2) admits a solution for any ε > 0 (it was proven in
[GNR18, Theorem 1.1]).

Due to convexity, any K ∈ KN with barycenter at the origin can always be written

K = {tx(1 + hK(x)), t ∈ [0, 1], x ∈ ∂B}
where hK : ∂B → R is such that 1 + hK(x) = sup{r ≥ 0, rx ∈ K} is the distance function to the
origin.

Let K ∈ KN be minimizing (2), and suppose that K has barycenter at the origin. Let η > 0 and
ε0 > 0 be given by Theorem 2.1. Now, by minimality

P (K)− P (B) ≤ ε
Cap(K)− Cap(B)

Cap(K)Cap(B)

≤ ε

Cap(B)

Thanks to [Fus15, Lemma 3.3] there exists δη > 0 such that provided P (K) − P (B) ≤ δη then
‖hK‖W 1,∞(∂B) ≤ η. We therefore deduce that if ε ∈ (0,Cap(B)δη), we have in fact ‖hK‖W 1,∞(∂B) ≤ η,
so that taking ε ∈ (0,min{ε0, δηCap(B)}) we can apply Theorem 2.1 to get that K is a ball. This
finishes the proof. �

2.3. Further stability results. The strategy we employed for proving Theorem 1.1 can be adapted
to the case of λ1. In fact, one can proceed likewise to get a result analogous to the Lemma 2.2 below
in the case of λ1 (see (i) in Proposition 2.5), leading to a result of the same type as Theorem 1.1. Note
that in this case the minimality of the ball is only local, since the functional has no global minimizer
(as one sees by taking a sequence of long thin rectangles of unit volume). Let us state the stability
result for the sake of clarity.

Proposition 2.4 (Weak stability of the ball for λ1). Let N ≥ 2. There exists ε0 > 0 and δ > 0 such
that for any ε ∈ (0, ε0),

∀K ∈ KN , |K| = 1 with |K∆B| ≤ δ, (P − ελ1)(K) ≥ (P − ελ1)(B).

Although this gives a simple proof of the stability of the ball in the case of λ1, this Proposition is
strictly weaker than the stronger result we prove in Theorem 1.2, since the range of ε > 0 for which the
ball is locally minimal is not optimal (and was already known, see Section 1.2). On the other hand,
since the analogues of Lemma 2.2 and Theorem 2.1 in the case of λ1 do not explicitly appear in the
literature (up to our knowledge), we think it might be of interest to state them rigorously. This is the
object of the next result.

Proposition 2.5. Let N ≥ 2.

(i) (Weak (IT)H1,W 1,∞). There exists CN > 0 such that if h ∈ W 1,∞(∂B) with Bh of volume
|Bh| = |B| and ‖h‖L∞(∂B) ≤ 1/2 then

λ1(Bh)− λ1(B) ≤ CN‖h‖2H1(∂B).

(ii) (Stability of the ball for Lipschitz perturbations). There exists η > 0 and ε0 > 0 such that for
all h ∈W 1,∞(∂B) verifying ‖h‖W 1,∞(∂B) ≤ η with |Bh| = |B| and such that Bh has barycenter
at the origin, and for all ε ∈ (0, ε0), then

P (Bh)− ελ1(Bh) ≥ P (B)− ελ1(B)

with equality only if Bh = B.

Let us comment on the second item of this Proposition. While this non-optimal stability of the ball
for Lipschitz perturbations is implied by the Payne-Weinberger inequality (6) in two dimensions, it
does not seem to be known in the case N ≥ 3. It opens up the question regarding a natural class of
sets for which the optimal stability from Theorem 1.2 might hold: can one prove optimal stability of
the ball for Lipschitz perturbations?
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3. Minimality of the ball in a C1,α neighborhood

The goal of this section consists in proving the first step of the selection principle strategy as we
described it in the Introduction, namely that the ball is a strict (up to translation) minimum in a C1,α

neighborhood of the functional P − cλ1 for c ∈ (0, c∗) and any α ∈ (12 , 1). This is stated in next result.
Let us set a few preliminary notations. The notation B refers to the open ball of unit volume

centered at 0. In this section, any function h : ∂B → R defined on the sphere is extended to the
whole of RN by setting h(x) := θ(x)h( x

|x|) (for some smooth θ with θ ≡ 1 near ∂B) into a compactly

supported function as smooth as h and which is constant near ∂B along directions normal to ∂B. Note
that this extension is different from the one we make in Section 2 (in Lemma 2.2). For any α ∈ (0, 1]
and h ∈ C1,α(∂B) we denote ξh(x) := h(x)x, so that ‖ξh‖(C1,α(RN ))N ≤ C‖h‖C1,α(∂B), for some C > 0.
We set

Bh = {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B} = (Id + ξh)(B),

which is a bounded Lipschitz open set provided ‖ξh‖(W 1,∞(RN ))N < 1 (which we will always assume in

the remainder of this section), with boundary ∂Bh = {x(1 + h(x)), x ∈ ∂B}.
Theorem 3.1 (Fuglede-type computations for P−cλ1: minimality for C1,α perturbations). Let N ≥ 2.
For c > 0 set Jc := P − cλ1 and let c∗ be given by (3). For any α ∈ (12 , 1) and 0 < c < c∗ there exists

δc,α > 0 such that for all h ∈ C1,α(∂B) with ‖h‖C1,α(∂B) ≤ δc,α and |Bh| = |B| then

Jc(Bh) ≥ Jc(B)

with equality only if (up to translating) Bh = B.

Note that this result is of interest in itself, in particular no convexity constraint of the sets Bh is
assumed. Let us emphasize on the importance of the space C1,α in which we obtain minimality of the
ball, regarding the general goal of proving minimality of Jc for all convex shapes (see Theorem 1.2).
In fact, Theorem 3.1 is to be compared to [DL19, Proposition 5.5], where the authors get minimality
of the ball for the same interval of c’s but in a W 2,p neighborhood (for any p > N), which was
an improvement of previous works for C2,α perturbations from [DP00, Dam02]. Note that neither
Theorem 3.1 nor [DL19, Proposition 5.5] implies the other result, as the Hölder space C1,α and the
Sobolev space W 2,p are not comparable in general. On the other hand, the cited C2,α and W 2,p results
are not enough to apply the selection principle strategy, as this procedure does not give more than
convergence in any C1,α sense of quasi-minimizers (see Corollary 4.3 and Remark 4.4).

One of the main ingredients of the proof of Theorem 3.1 consists in proving a so-called (IT) property
for the functional

Jc := P − cλ1.

This is achieved in Theorem 3.4. This property was introduced in [DL19, p. 3012], and describes a
suitable second-order Taylor expansion at the ball B for the functional Jc, where one identifies the
remainder as the product of some “weak" Sobolev norm of the perturbation by something which goes
to 0 as the perturbation goes to 0 in a much stronger sense (see Theorem 3.4 for a precise statement).

Let us first define the notion of shape differentiability for a shape functional. If Ω ⊂ RN is a bounded
open set and ξ ∈W 1,∞(RN ,RN ) we denote by Ωξ := (Id+ ξ)(Ω) the open Lipschitz deformation of Ω
by ξ.

Definition 3.2. Let N ≥ 2. Let J : {Ω ⊂ RN , Ω open bounded} → R be a functional. Let Ω ⊂ RN be
open bounded and let X ⊂ W 1,∞(Rn,Rn) be a normed space. For k ∈ {1, 2} we say that J is k-times
shape differentiable around Ω (for the space X) in the direction ξ ∈ X if the function

JΩ : ξ ∈ X 7→ J (Ωξ)

is k-times differentiable Fréchet-differentiable in a neighborhood of 0. We denote by J ′
Ω(ξ) ∈ L1(X,R)

(respectively J ′′
Ω(ξ) ∈ L2(X ×X,R)) the first (respectively second) derivative at ξ ∈ X.

Remark 3.3. Note that although J ′
Ω(ξ) and J ′′

Ω(ξ) are a priori linear and bilinear continuous forms
over X, provided the set Ω enjoys some regularity properties it happens very often that they can be
naturally extended to spaces of much lower regularity; for instance, the perimeter functional P has its
first derivative continuous for the L2 norm, while its second derivative can be continuously extended
in H1. In the case of λ1 it is respectively the L2 and H1/2 spaces over which the first and second
derivatives can be defined (see for instance [DL19, Lemma 2.8]).
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We can now state the second main result of this section.

Theorem 3.4 ((IT) property for Jc). Let N ≥ 2 and α ∈ (12 , 1). For c > 0 set Jc := P − cλ1. For

any c > 0 there exists δc > 0 and a modulus of continuity ωc such that for all h ∈ C1,α(∂B) with
‖h‖C1,α(∂B) ≤ δc it holds

Jc(Bh) = Jc(B) + (Jc)
′
B(0) · (ξh) +

1

2
(Jc)

′′
B(0) · (ξh, ξh) + ωc(‖h‖C1,α(∂B))‖h‖2H1(∂B)

This condition was defined in [DL19] as the (IT)H1,C1,α condition, meaning that the functional Jc

verifies a second-order Taylor expansion with the remainder term behaving as the product of ‖h‖2H1

with a modulus of continuity of ‖h‖C1,α . It was shown by Fuglede in [Fug89] that the perimeter satisfies
a stronger (IT)H1,W 1,∞ condition (see for instance [DL19, Proposition 4.5]: there exists ωP a modulus

of continuity and δP > 0 such that for all h ∈W 1,∞(∂B) with ‖h‖W 1,∞(∂B) ≤ δP it holds

(20) P (Bh) = P (B) + P ′
B(0) · (ξh) +

1

2
P ′′
B(0) · (ξh, ξh) + ωP

(
‖h‖W 1,∞(∂B)

)
‖h‖2H1

As a consequence, proving Theorem 3.4 reduces to proving an (IT)H1,C1,α condition result for λ1
(see the proof of Theorem 3.4 for this reduction), and in fact we will prove a stronger (IT)H1/2,C1,α

condition for λ1 (for any α ∈ (12 , 1)). In order to do so we follow the strategy laid out by [DL19]:
it will be convenient to show that λ1 verifies the so-called condition (IC)H1/2,C1,α , as stated in next
Theorem, which constitutes the core result of this section.

Theorem 3.5 ((IC) property for λ1). Let N ≥ 2 and α ∈ (12 , 1). For any t ∈ [0, 1] and h ∈ C1,α(∂B)
let λ1(t) := λ1(Bth). Then the functional λ1 satisfies an (IC)H1/2,C1,α condition at the ball B, i.e.

there exists δ > 0 and a modulus of continuity ωλ1 such that for any h ∈ C1,α(∂B) with ‖h‖C1,α(∂B) ≤ δ
we have

(21) ∀t ∈ [0, 1], |λ′′1(t)− λ′′1(0)| ≤ ωλ1(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)
.

The proof of this result is inspired by the strategy of [DL19, Theorem 1.4] for proving that λ1
satisfies an (IC)H1/2,W 2,p condition. Nevertheless, as C1,α functions may not be twice differentiable

even in a weak sense, some estimates require a refined analysis (see Lemma 3.7) and new methods
(see Lemma 3.6). We believe that this result is of independent interest, since it goes strictly below
spaces with second derivatives as C2,α or W 2,p spaces, which are the usual spaces for which this kind
of property is obtained (see for instance [Dam02] or [AFM13]).

Let us mention that in order to prove Theorem 3.5 we will first prove it for functions h ∈ C1,1(∂B)
instead of h ∈ C1,α(∂B), as it will allow us to consider the second-order geometric quantities of
Bh (such as the mean curvature and second fundamental form) in the classical sense as functions of
L∞(∂Bh), thus easing the computations (in particular in Lemmas 3.7, 3.9 and 3.10). We then remove
this additional regularity assumption by a density argument.

The expression of λ′′1(t) (see Lemma 3.10) involves both PDE-type terms and geometric terms. We
start this section by proving three preparatory Lemmas in Section 3.1, which provide continuity-type
estimates in the domain Ω of the quantities involved in the expression of λ′′1(t).

3.1. Continuity in the domain Ω. In this section we prove three preparatory Lemmas. Lemmas 3.6
and 3.8 will be useful for us to estimate the PDE terms in the variation |λ′′1(t)− λ′′1(0)|, while Lemma
3.7 will enable us to estimate the geometric terms. Note that we will also use them as a means to
justify the expression of λ′′1(t) from Lemma 3.10. Let us set some notations for this section.

Geometric notation. Let Ω be a C1,1 bounded open set. For the remainder of this section we
consider a vector field ξ ∈ W 1,∞(RN ,RN ) such that ‖ξ‖(W 1,∞(RN ))N < 1, so that (Id + ξ)(Ω) is a
Lipschitz open set.

We consider ξ ∈ C1,1(RN ,RN ) and set Ωξ the C1,1 open set (Id+ ξ)(Ω). The operator ∇τξ denotes
the tangential gradient over ∂Ωξ, divτξ and Dτξ respectively the tangential divergence and jacobian.

Setting nξ ∈ C0,1(∂Ωξ) the outer unit normal of Ωξ (in particular n0 denotes the outer unit normal of

Ω), we set Hξ := divτξ(nξ) ∈ L∞(∂Ωξ) (respectively bξ := Dτξnξ ∈ (L∞(∂Ωξ × ∂Ωξ))
N×N ) the mean

curvature (respectively, second fundamental form) on ∂Ωξ.
Letting φξ be the Lipschitz homeomorphism Id+ξ, when a function fξ is defined on Ωξ (respectively

∂Ωξ) we denote f̂ξ the function fξ◦φξ defined over Ω (repectively ∂Ω). We also introduce J̃ξ the surface
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Jacobian from ∂Ω to ∂Ωξ given by the expression J̃ξ = det(Dφξ)|Dφ−T
ξ n0|, meaning that for a C1(∂Ωξ)

function fξ we have

(22)

∫

∂Ωξ

fξ =

∫

∂Ω
J̃ξ f̂ξ.

PDE notation. For ξ ∈W 1,∞(RN ,RN ), we denote by vξ the first L2 normalized and nonnegative
Dirichlet eigenfunction over Ωξ, and set λξ := λ1(Ωξ).

We start by proving a continuity-type estimate of vξ and λξ in the spirit of [DL19, Lemma 4.8].

Lemma 3.6. Let Ω be a C1,1 bounded open set. Let 0 < α′ < α < 1. There exists a modulus of
continuity ω : R+ → R+ only depending on α, α′ and Ω such that for all ξ ∈ C1,α(RN ,RN ) it holds

(23) ‖v̂ξ − v0‖C1,α′ (Ω) ≤ ω(‖ξ‖(C1,α(RN ))N ).

Moreover, it holds

(24) λξ → λ0 as ‖ξ‖(W 1,∞(RN ))N < 1 and ‖ξ‖(L∞(RN ))N → 0.

To prove (23) we adapt the method used by [DP00, Proposition 4.1], which is based on a compactness
argument itself relying on a bound for an appropriate norm of v̂ξ.

Proof. Proof of (24). The condition on ξ ensures that the Ωξ are uniformly Lipschitz open sets, and
the result therefore follows for instance from [Hen06, Theorem 2.3.18].

Proof of estimate (23). The proof is divided in two steps.
Step 1: C1,α bound of v̂ξ. Let us first prove that provided ξ ∈ C1,α(RN ,RN ) verifies ‖ξ‖(C1,α(RN ))N ≤

C1 for some C1 > 0 then it holds

(25) ‖v̂ξ‖C1,α(Ω) ≤ C2

for some constant C2 independent of ξ.
This bound relies on standard elliptic estimates. In fact, the equation verified by vξ

(26)

{
−∆vξ = λξvξ in Ωξ,

vξ ∈ H1
0 (Ωξ).

translates into the following elliptic equation for v̂ξ

(27)

{
−div(Aξ∇v̂ξ) = λξJξ v̂ξ over Ω

v̂ξ ∈ H1
0 (Ω)

where

{
Jξ := det(Id +Dξ)

Aξ := Jξ(Id +Dξ)−1
(
(Id +Dξ)−1

)T

We now apply first order Schauder estimates (see [GT01, Theorems 8.33, 8.34]) to get

(28) ‖v̂ξ‖C1,α(Ω) ≤ C
(
‖v̂ξ‖L∞(Ω) + ‖λξJξ v̂ξ‖L∞(Ω)

)

where C = CN (γξ , ‖Aξ‖(C0,α(Ω))N×N ) with γξ the ellipticity constant of Aξ. Now, there exists C > 0

such that for all ξ it holds

(29) ‖Jξ‖L∞(Ω), ‖Aξ‖(C0,α(Ω))N×N ≤ C
(
1 + ‖ξ‖(C1,α(Ω))N

)
.

By assuming that ‖ξ‖(W 1,∞(RN ))N ≤ δ for some δ small enough we can suppose that γξ ≥ 1/2, and
also that Ωξ contains a fixed ball for any ξ, thus ensuring that λξ is bounded thanks to the monotonicity
of λ1. Moreover, we have the L∞ bound (see [Dav89, Example 2.1.8])

(30) ‖v̂ξ‖L∞(Ω) = ‖vξ‖L∞(Ωξ) ≤ e1/8πλ
N/4
ξ .

Inserting (29) and (30) into (28) provides the desired estimate (25).
Step 2. We proceed by contradiction, therefore assuming that there exists ε0 > 0 and a sequence

‖ξj‖(C1,α(RN ))N → 0 such that

(31) ∀j ≥ 0, ‖v̂ξj − v0‖C1,α′ (Ω) ≥ ε0

Thanks to the bound (25) we can use the Arzela-Ascoli theorem to infer the existence of v ∈ C1,α(Ω)
such that up to subsequence

v̂ξj → v in C1,α′
(Ω)
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Now, since ‖ξj‖C1,α(RN ,RN ) → 0 we have that Aξj and Jξj go respectively to Id and 1 in C0,α(Ω), and

furthermore λξj → λ0 (thanks to (24)). We can therefore pass to the limit in the sense of distribution
in (27) to get {

−∆v = λ0v, in Ω

v ∈ H1
0 (Ω)

Now, since we also have v ≥ 0 and ‖v‖L2(Ω) = 1 we deduce that v = v0, which enters in contradiction
with (31). This concludes the proof of estimate (23) and hence the proof of the Lemma.

�

In the following Lemma we prove continuity type-estimates of several geometric quantities associated
to a set Ω. Let us recall that most notations of the Lemma have been set at the beginning of Section

3.1 (nξ, J̃ξ, Hξ, bξ and so on). We also denote αξ := nξ · n0 and βξ := αξnξ − n0.

Lemma 3.7. Let Ω be a C1,1 bounded open set. For any α ∈ (0, 1) there exists C = C(α) > 0 and
δ = δ(α) > 0 independent of ξ ∈ C1,α(RN ,RN ) such that if ‖ξ‖C1,α(RN ,RN ) ≤ δ then

• ‖J̃ξ − 1‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N .

• ‖n̂ξ − n0‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N , ‖α̂ξ − 1‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N , ‖β̂ξ‖C0,α(∂Ω) ≤
C‖ξ‖(C1,α(RN ))N .

Let α ∈ (0, 1) and 1−α < s < 1. Let p ∈ (1,∞) and denote by p′ its conjugate exponent. There exists
δ > 0 such that if ξ ∈ C1,1(RN ,RN ) with ‖ξ‖(C1,α(RN ))N ≤ δ, we have the following expansions

Ĥξ −H0 = ωs,p,α(ξ), b̂ξ − b0 = ωs,p,α(ξ),

∇̂τξαξ = ωs,p,α(ξ)

where the notation ωs,p,α(ξ) means that there exists a1,ξ, a2,ξ, b1,ξ, b2,ξ (independent of s, p and α)
such that ωs,pα(ξ) = a1,ξb1,ξ + a2,ξb2,ξ with

‖a1,ξ‖W−s,p′(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N , ‖b1,ξ‖C0,α(∂Ω) ≤ C,

‖a2,ξ‖W−s,p′(∂Ω) ≤ C, ‖b2,ξ‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N .

Proof. All of these estimates rely on an appropriate expression for nξ. Following [DL19, Lemma 4.3]

we write Ω = {w < 0} for some w ∈ C1,1(RN ) with ∇w not vanishing in a neighborhood of ∂Ω, so
that Ωξ = {w ◦ φ−1

ξ < 0} and

nξ =
∇(w ◦ φ−1

ξ )

|∇(w ◦ φ−1
ξ )|

=
Dφ−T

ξ ∇w(φ−1
ξ )

|Dφ−T
ξ ∇w(φ−1

ξ )|
.

Notice that nξ only involves ∇w ∈ C0,1(∂Ω) and Dξ ∈ C0,α(RN ,RN ). As a consequence, expanding

the maps A 7→ (A−1)T and A 7→ det(A) around Id and y 7→ |y| around n0 we get in fact ‖J̃ξ −
1‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N . As for n̂ξ, α̂ξ and β̂ξ, we expand x 7→ x

|x| around ∇w
|∇w| and get likewise

the announced estimates.
The case of Ĥξ, b̂ξ and ∇̂τξαξ is more involved as the second derivatives of ξ and w come into play.

As the argument is analogous in the three cases we only prove the estimate for Ĥξ. Write a(x) := x
|x|

and ψξ := Dφ−T
ξ ∇w(φ−1

ξ ). Then

Ĥξ = div(a ◦ ψξ) ◦ φξ = Da(ψξ ◦ φξ) : DψT
ξ (φξ)

where : is the matrix dot product. In particular, one has

H0 = div(a ◦ ∇w) = Da(∇w) : D2w.

Writing zξ = (Dφ−T
ξ (φξ)− Id)∇w, we let c1 := DψT

ξ (φξ) −D2w and c2 := Da(∇w + zξ)−Da(∇w).
We therefore rewrite Ĥξ = (Da(∇w) + c2) : (D

2w + c1) and we thus want to estimate

Ĥξ −H0 = (Da(∇w) + c2) : (D
2w + c1)−Da(∇w) : D2w

= Da(∇w) : c1 + c2 : D
2w + c2 : c1.(32)
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By expanding c1 at ξ = 0, we see that it is a sum of terms of the form dijk∂ijξk where dijk only involves
first derivatives of w and ξ, and of terms of the form d′ij∂ijw where d′ij only involves first derivatives of

w and ξ with ‖d′ij‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N . Using (ii) and the embedding C0,α(∂Ω) ⊂W 1−s,p′(∂Ω)

from (i) of Proposition 5.2 (note that we have in fact α > 1− s), there exists C > 0 such that

‖∂ijξk‖W−s,p′(∂Ω) ≤ C‖∇ξk‖W 1−s,p′(∂Ω)

≤ C‖ξ‖(C1,α(RN ))N .

On the other hand, it holds ‖dijk‖C0,α(∂Ω) ≤ C. Proceeding likewise for the terms d′ij∂ijw we deduce

that c1 has the form c1 = ωs,p,α(ξ).
We now expand c2 at ξ = 0: one has

c2 = Da(∇w + zξ)−Da(∇w) =
∫ 1

0
D2a(∇w + tzξ) · zξdt

As ‖zξ‖(C0,α(RN ))N ≤ C‖ξ‖(C1,α(RN ))N , using the same ideas we get
∥∥∥∥
∫ 1

0
D2a(∇w + tzξ) · zξdt

∥∥∥∥
C0,α(∂Ω)

≤ C

∥∥∥∥
∫ 1

0
D2a(∇w + tzξ)dt

∥∥∥∥
C0,α(∂Ω)

‖zξ‖(C0,α(RN ))N

≤ C
(
‖w‖C1,α(∂Ω) + ‖zξ‖(C0,α(RN ))N

)
‖zξ‖(C0,α(RN ))N

≤ C‖ξ‖(C1,α(RN ))N

for some C > 0. As a consequence ‖c2‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N .

Since c1 = ωs,p,α(ξ) and ‖c2‖C0,α(∂Ω) ≤ C‖ξ‖(C1,α(RN ))N , we deduce from (32) the announced ex-

pansion for Ĥξ, thus finishing the proof of the Lemma. �

We now prove a final preparatory Lemma, which consists in proving a continuity estimate in terms
of ξ and θ for the H1 norm of the derivative of the first Dirichlet eigenfunction on (Id + tθ)(Ωξ).

Lemma 3.8. Let Ω be a C1,1 bounded open set and let α ∈ (12 , 1). For any ξ ∈ C1,α
(
RN ,RN

)
and

θ ∈ C1,α
(
RN ,RN

)
we let v′ξ,θ be the derivative at 0 of the map t 7→ v(Id+tθ)(Ωξ) ∈ L2(RN ), where

v(Id+tθ)(Ωξ) denotes the first Dirichlet eigenfunction on (Id + tθ)(Ωξ). Then there exists a modulus of

continuity ω such that for all ξ and θ with ‖ξ‖(C1,α(RN ))N and ‖θ‖(C1,α(RN ))N sufficiently small it holds

(33) ‖v′0,θ‖H1(Ω) ≤ C‖θ‖(H1/2(∂Ω))N

and

(34) ‖v̂′ξ,θ − v′0,θ‖H1(Ω) = ωC1,α,H1/2 (ξ, θ)

where

ωC1,α,H1/2 (ξ, θ) := ω(‖ξ‖(C1,α(RN ))N )‖θ‖(H1/2(∂Ω))N + ω(‖θ‖(C1,α(RN ))N )‖ξ‖(H1/2(∂Ω))N .

Proof. We denote λ′ξ,θ := (λ1)
′
Ωξ
(0) · (θ). It is classical (see for instance [HP18, Theorem 5.3.1]) that

the functions v′ξ,θ satisfies the following equations




−∆v′ξ,θ = λξv
′
ξ,θ + λ′ξ,θvξ, in Ωξ

v′ξ,θ = −(∂nξ
vξ)θ · nξ, over ∂Ωξ∫

Ωξ
v′ξ,θvξ = 0

.

Let Hξ,θ be the harmonic extension on Ωξ of (∂nξ
vξ)θ · nξ. Then recalling the expression of λ′ξ,θ (see

for instance [HP18, Section 5.9.3]) we can write

λ′ξ,θ = −
∫

∂Ωξ

(∂nξ
vξ)

2θ · nξ = −
∫

∂Ωξ

(∂nξ
vξ)Hξ,θ = λξ

∫

Ωξ

vξHξ,θ

where we used Green’s formula and
∫
Ωξ

∇vξ∇Hξ,θ = 0. We decompose v′ξ,θ = −πξHξ,θ + wξ,θ where

πξ is the orthogonal projection onto {vξ}⊥ for the L2 scalar product on L2(Ωξ). Thanks to the above
expression for λ′ξ,θ we know that
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wξ,θ solves

(35)





(−∆− λξ)wξ,θ = −λξπξHξ,θ, in Ωξ

wξ,θ = 0, over ∂Ωξ∫
Ωξ
vξwξ,θ = 0.

,

We estimate separately Hξ,θ and wξ,θ.

Estimate of Hξ,θ. Since Hξ,θ is harmonic inside Ωξ, Ĥξ,θ satisfies −div(Aξ∇Ĥξ,θ) = 0 in Ω, where
Aξ was defined in (27). As a consequence, we have that

∆(Ĥξ,θ − H0,θ) = ∆Ĥξ,θ = −div((Aξ − Id)∇Ĥξ,θ)

so that by using standard elliptic estimates (see for instance [GT01, Corollary 8.7] combined with a
trace estimate from [DD13, Proposition 3.31]) we get

(36) ‖Ĥξ,θ − H0,θ‖H1(Ω) ≤ CN

(
‖(Aξ − Id)∇Ĥξ,θ‖L2(Ω) + ‖Ĥξ,θ − H0,θ‖H1/2(∂Ω)

)

for some CN > 0. There exists C > 0 such that

‖(Aξ − Id)∇Ĥξ,θ‖L2(Ω) ≤ ‖Aξ − Id‖L∞(Ω)

(
‖∇Ĥξ,θ −∇H0,θ‖L2(Ω) + ‖∇H0,θ‖L2(Ω)

)

≤ C‖ξ‖(W 1,∞(RN ))N

(
‖Ĥξ,θ − H0,θ‖H1(Ω) + ‖θ · n0‖H1/2(∂Ω)

)

where we used that

‖∇H0,θ‖L2(Ω) ≤ ‖H0,θ‖H1/2(∂Ω) = ‖∂n0v0(θ · n0)‖H1/2(∂Ω) ≤ C‖θ · n0‖H1/2(∂Ω)

using v0 ∈ C1,α(Ω) and the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) thanks to α > 1
2 (see (iii)

of Proposition 5.2). Assuming that ‖ξ‖(W 1,∞(RN ))N ≤ 1
2CNC we thus get from (36) that there exists

C > 0 such that

(37) ‖Ĥξ,θ − H0,θ‖H1(Ω) ≤ C
(
‖ξ‖(W 1,∞(RN ))N ‖θ‖(H1/2(∂Ω))N + ‖Ĥξ,θ − H0,θ‖H1/2(∂Ω)

)
.

Now, to estimate ‖Ĥξ,θ − H0,θ‖H1/2(∂Ω) = ‖∂̂nξ
vξ(θ̂ · nξ)− ∂n0v0(θ · n0)‖H1/2(∂Ω), we write

(38) ∂̂nξ
vξ(θ̂ · nξ)− ∂n0v0(θ · n0) = ∂̂nξ

vξ

(
(θ̂ · nξ)− (θ · n0)

)
+ (θ · n0)

(
∂̂nξ

vξ − ∂n0v0

)

Let us decompose

∂̂nξ
vξ − ∂n0v0 = (∇̂vξ −∇v0) · n0 + ∇̂vξ · (n̂ξ − n0)

=
(
Dφ−T

ξ ∇v̂ξ −∇v0
)
· n0 +Dφ−T

ξ ∇v̂ξ · (n̂ξ − n0).

Choosing some α′ ∈ (12 , α) and relying on Lemmas 3.6 and 3.7 we thus have ‖∂̂nξ
vξ−∂n0v0‖C0,α′ (∂Ω) ≤

ω
(
‖ξ‖(C1,α(RN ))N

)
. Using again the product law C0,α′

(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) we obtain

‖
(
∂̂nξ

vξ − ∂n0v0

)
(θ · n0)‖H1/2(∂Ω) ≤ C‖∂̂nξ

vξ − ∂n0v0‖C0,α′ (∂Ω)‖θ · n0‖H1/2(∂Ω)

≤ ω(‖ξ‖(C1,α(RN ))N )‖θ‖(H1/2(∂Ω))N(39)

On the other hand, we have

θ̂ · nξ − θ · n0 = (θ̂ − θ) · n̂ξ + θ · (n̂ξ − n0)

With the same tools as before we get ‖θ · (n̂ξ −n0)‖H1/2(∂Ω) ≤ C‖θ‖(H1/2(∂Ω))N ‖ξ‖(C1,α(RN ))N . For the

other term we write

θ̂(x)− θ(x) =

∫ 1

0
∇θ(x+ tξ(x)) · ξ(x)dt



FUGLEDE-TYPE ARGUMENTS FOR ISOPERIMETRIC PROBLEMS AND APPLICATIONS TO STABILITY 17

so that the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) again gives

‖θ̂ − θ‖H1/2(∂Ω) ≤ C

∥∥∥∥
∫ 1

0
∇θ(x+ tξ(x))

∥∥∥∥
(C0,α(RN ))N

‖ξ‖(H1/2(∂Ω))N

≤ C‖θ‖(C1,α(RN ))N

(
1 + ‖ξ‖(C0,α(RN ))N

)
‖ξ‖(H1/2(∂Ω))N

≤ C‖θ‖(C1,α(RN ))N ‖ξ‖(H1/2(∂Ω))N

yielding ‖(θ̂ − θ) · n̂ξ‖H1/2(∂Ω) ≤ C‖ξ‖(H1/2(∂Ω))N ‖θ‖(C1,α(RN ))N . Combining the two estimates we thus
get

‖θ̂ · nξ − θ · n0‖H1/2(∂Ω) = ωC1,α,H1/2 (ξ, θ)

This estimate together with (39) enable to estimate ‖Ĥξ,θ−H0,θ‖H1/2(∂Ω) thanks to the decomposition

(38), so that (37) becomes

(40) ‖Ĥξ,θ − H0,θ‖H1(Ω) = ωC1,α,H1/2 (ξ, θ) .

This finishes the proof of the estimate of Hξ,θ.
Estimate of wξ,θ. To estimate ‖ŵξ,θ −w0,θ‖H1(Ω) let us write the equation verified by ŵξ,θ −w0,θ.

If one writes Lξ := div(Aξ∇·), then for a function fξ : Ωξ → R one has ∆̂fξ = Lξ f̂ξ. Recalling (35) we
therefore have{

(−∆− λ0)(ŵξ,θ − w0,θ) =
[
(−∆− λ0)− (−Lξ − λξ)

]
ŵξ,θ − λξπ̂ξHξ,θ + λ0π0H0,θ in Ω

ŵξ,θ − w0,θ = 0 over ∂Ω

Using that (−∆ − λ0)
−1 : H−1(Ω) ∩ {f ∈ H−1(Ω), 〈f, v0〉 = 0} → {v0}⊥ ∩H1

0 (Ω) is an isomorphism
(recall that λ0 is simple, so that −∆− λ0 is one-to-one on {v0}⊥ thanks to the Fredholm alternative),
there exists CN > 0 such that

‖ŵξ,θ − w0,θ − γξ,θv0‖H1(Ω) ≤ CN

(
‖(Aξ − Id)∇ŵξ,θ‖L2(Ω) + |λξ − λ0|‖ŵξ,θ‖L2(Ω)

+‖λξπ̂ξHξ,θ − λ0π0H0,θ‖L2(Ω)

)

where γξ,θ ∈ R is chosen so that ŵξ,θ − w0,θ − γξ,θv0 ∈ {v0}⊥. Now, since ‖Aξ − Id‖L∞(Ω) ≤
C‖ξ‖(W 1,∞(RN ))N and |λξ − λ0| = ω(‖ξ‖(L∞(RN ))N ) (thanks to Lemma 3.6) we get

(41) ‖ŵξ,θ − w0,θ − γξ,θv0‖H1(Ω) ≤ C‖ξ‖(W 1,∞(RN ))N

(
‖ŵξ,θ‖H1(Ω) + ‖λξπ̂ξHξ,θ − λ0π0H0,θ‖L2(Ω)

)

If we denote 〈·, ·〉ξ the scalar product in L2(Ωξ), we write

(42) π̂ξHξ,θ − π0H0,θ = (Ĥξ,θ − H0,θ)− (〈Hξ,θ, vξ〉ξ v̂ξ − 〈H0,θ, v0〉0v0)
Using estimate (23) from Lemma 3.6 and the Harmonic estimate (40) we have

(43) |〈Hξ,θ, vξ〉ξ − 〈H0,θ, v0〉0| =
∣∣∣∣
∫

Ω
Ĥξ,θv̂ξJξ −

∫

Ω
H0,θv0

∣∣∣∣ = ωC1,α,H1/2 (ξ, θ)

(Jξ was defined in (27)) so that using again (23), (24) and (40) we deduce

(44) ‖λξπ̂ξHξ,θ − λ0π0H0,θ‖L2(Ω) = ωC1,α,H1/2 (ξ, θ)

Estimate (41) thus becomes

(45) ‖ŵξ,θ − w0,θ − γξ,θv0‖H1(Ω) ≤ C
(
‖ξ‖(W 1,∞(RN ))N ‖ŵξ,θ‖H1(Ω) + ωC1,α,H1/2 (ξ, θ)

)

Now, since
∫
Ωξ
wξ,θvξ =

∫
Ω w0,θv0 = 0 we have

|γξ,θ| =
∣∣∣∣
∫

Ω
(ŵξ,θ − w0,θ)v0

∣∣∣∣ =
∣∣∣∣
∫

Ω
ŵξ,θ(v̂ξJξ − v0)

∣∣∣∣ ≤ ω(‖ξ‖(C1,α(RN ))N )‖ŵξ,θ‖L2(Ω)

using again Lemma 3.6, which gives

‖ŵξ,θ − w0,θ‖H1(Ω) ≤ ω(‖ξ‖(C1,α(RN ))N )‖ŵξ,θ‖H1(Ω) + ωC1,α,H1/2 (ξ, θ)

≤ ω(‖ξ‖(C1,α(RN ))N )
(
‖ŵξ,θ − w0,θ‖H1(Ω) + ‖w0,θ‖H1(Ω)

)
+ ωC1,α,H1/2 (ξ, θ)(46)
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Using ‖w0,θ‖H1(Ω) ≤ C‖H0,θ‖L2(Ω) ≤ C‖θ‖(H1/2(∂Ω))N based on (35), and taking ω(‖ξ‖(C1,α(RN ))N ) ≤ 1
2

finally yields

(47) ‖ŵξ,θ − w0,θ‖H1(Ω) = ωC1,α,H1/2 (ξ, θ) .

Conclusion: Working from the decomposition (42) and using the harmonic estimate (40), estimate
(43) and also (23) from Lemma 3.6, we obtain

‖π̂ξHξ,θ − π0H0,θ‖H1(Ω) = ωC1,α,H1/2 (ξ, θ) .

This latter bound together with (47) provides the desired (34). As for (33), we have seen that
‖w0,θ‖H1(Ω) ≤ C‖θ‖(H1/2(∂Ω))N based on (35). On the other hand, ‖π0H0,θ‖L2(Ω) ≤ ‖H0,θ‖L2(Ω) by
definition and

‖∇π0H0,θ‖2L2(Ω) = ‖∇H0,θ‖2L2(Ω) − 〈H0,θ, v0〉2

since
∫
Ω∇H0,θ∇v0 = 0, thus yielding also

‖∇π0H0,θ‖L2(Ω) ≤ ‖H0,θ‖H1(Ω) ≤ C‖H0,θ‖H1/2(∂Ω) ≤ C‖θ‖(H1/2(∂Ω))N

Hence ‖π0H0,θ‖H1(Ω) ≤ C‖θ‖(H1/2(∂Ω))N , so that we finally have ‖v′0,θ‖H1(Ω) ≤ ‖π0H0,θ‖H1(Ω) +

‖w0,θ‖H1(Ω) ≤ C‖θ‖(H1/2(∂Ω))N , thus giving (33). �

3.2. Second derivative of λ1. A final preparatory step to estimate λ′′1(t) − λ′′1(0) is to justify that
the expression (48) below of the second derivative (λ1)

′′
Ω(0) is valid when Ω = (Id + ξ)(B) for some

vector field ξ which is only C1,1. Formula (48) is indeed well-known for C3 domains (see for instance
[HP18, Theorem 5.9.2 and Section 5.9.6]), but for C1,1 domains it does not seem to have been justified
in the literature. As a matter of fact, the expression (48) has been implicitly used in [DL19] without
further justification for domains (Id + ξ)(B) with ξ ∈ W 2,p(RN ,RN ). From (48) we will immediately
deduce a corresponding expression for λ′′1(t), see Lemma 3.10.

In this paragraph, if ξ is a Lipschitz vector field and fξ is defined on Ωξ or ∂Ωξ we still write f̂ξ the
function fξ ◦ φξ defined on Ω or ∂Ω.

Lemma 3.9. [Second derivative of λ1] Let Ω ⊂ RN be a bounded open set given by Ω = (Id + ζ)(B)
for some ζ ∈ C1,1(RN ,RN ). Let n, H and b denote respectively its outer unit normal, curvature and
second fundamental form. Let α ∈ (12 , 1). Denote by λΩ := λ1(Ω). Then for any θ ∈ C1,α(RN ,RN ) it
holds

(48) λ′′Ω(0) · (θ, θ) = 2

(∫

Ω
|∇v′|2 − λΩ

∫

Ω
|v′|2

)
+

∫

∂Ω
(∂nv)

2
[
H(θ · n)2 − b(θτ , θτ ) + 2∇τ (θ · n) · θτ

]

where θτ denotes the tangential component of θ, v is the first L2 normalized and nonnegative eigen-
function of Ω and v′ is uniquely determined by the equations





−∆v′ = λΩv
′ + (λ′Ω(0) · θ)v, in Ω

v′ = −∂nv(θ · n), over ∂Ω∫
Ω v

′v = 0.

Note that when Ω is C3 the term
∫
Ω |∇v′|2 − λΩ

∫
Ω |v′|2 is more commonly written as the boundary

term
∫
∂Ω v

′∂nv
′ (which we cannot justify if Ω is merely C1,1).

In our case one does not have enough regularity over Ω to perform the classical integration by parts
leading to expression (48). As a consequence, in order to prove (48) in the C1,1 case we rely on (48)
in the smooth case combined with a low-regularity formula of (λ1)

′′
Ω(0) · (θ, θ) which holds true for

bounded Lipschitz open sets, proven in [BB22, Theorem 2.1] (see also [Lau20] for an expression for the
Dirichlet energy in the same spirit).

Proof of Lemma 3.9. One can apply the second derivative formula from [BB22, Theorem 2.1] which
holds true for any Lipschitz domain and θ ∈W 1,∞(RN ,RN ):

λ′′Ω(0) · (θ, θ) =
∫

Ω

(
−2|∇v̇θ|2 + 2λΩ|v̇θ|2 + 2(SΩ : Dθ)div(θ) + (λΩ|v|2 − |∇v|2)(div(θ)2 +DθT : Dθ)

)

+

∫

Ω

(
2(2Dθ2 +DθDθT )|∇v|2 − 2λ′Ω(0) · (θ)div(θ)|v|2

)
(49)
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where : is the matrix dot product, SΩ := (|∇v|2 − λΩ|v|2)Id− 2∇v ⊗∇v, and v̇θ denotes the material
derivative of v in the direction θ, meaning the derivative at 0 in the direction θ of the function
θ ∈W 1,∞ 7→ vθ ◦ (Id + θ) ∈ H1

0 (Ω) where vθ is the first L2 normalized eigenfunction of Ωθ. Note that
v̇θ verifies the elliptic equation





−∆v̇θ − λΩv̇θ = λΩvdiv(θ) + (λ′Ω(0) · (θ)) v + div(A′
θ∇v), in Ω

v̇θ = 0 over ∂Ω∫
Ω v̇θv = −1

2

∫
Ω |v|2div(θ)

with A′
θ := div(θ)Id −Dθ −DθT .

Recall that Ω = Bζ = (Id + ζ)(B). Since ζ ∈ C1,1(RN ,RN ), there exists ζj ∈ C∞(RN ,RN )

converging locally to ζ in C1,β for each β ∈ (0, 1). Letting Ωj := Bζj = (Id + ζj)(B), we have

Ωj = (Id+ζj)◦(Id+ζ)−1(Bζ) so that Ωj = (Id+ξj)(Ω) with ξj := (Id+ζj)◦(Id+ζ)−1− Id converging

locally to 0 in C1,β for each β ∈ (0, 1). As Ωj is smooth, λ′′Ωj
(0) · (θ, θ) both equals (48) (see [HP18,

Theorem 5.9.2 and Section 5.9.6]) and (49) and we will pass to the limit in both expressions.
Through the proof we give an additionnal index j to the notations linked to Ωj: vj is the first

eigenfunction of Ωj , λ
′
j := λ′Ωj

(0)·(θ), v̇j is the material derivative of vj in direction θ and v′j := v′ξj ,θ(the

notation was introduced in Lemma 3.8). As for the geometric quantites related to Ωj, nj denotes the
outer unit normal to Ωj, and so on. The proof of the Lemma is divided into two steps.

Step 1: continuity of λ′′Ω(0) · (θ, θ) in Ω. In this step one can assume that θ ∈ W 1,∞(RN ,RN ).
Let us prove that λ′′Ωj

(0) · (θ, θ) → λ′′Ω(0) · (θ, θ).
Since Ωj → Ω in C1,β (in the sense introduced above), one can find D ⊂ RN open bounded such

that Ωj,Ω ⊂ D for every j. Setting γj :=
∫
D v̇jvj we have

‖v̇j − γjvj‖H1
0 (D) ≤ ‖λjvjdiv(θ)‖H−1(Ωj) + ‖λ′jvj‖H−1(Ωj) + ‖div(A′

θ∇vj)‖H−1(Ωj)

Now, since λ′j =
∫
Ωj

Sj : Dθ thanks to [BB22, Theorem 2.1], and using that λj is bounded and vj

is bounded in H1 (thanks to Lemma 3.6) we deduce that v̇j − γjvj is bounded in H1
0 (D), yielding in

turn that v̇j is bounded in H1
0 (D) as γj = −1

2

∫
Ωj

|vj |2div(θ). As a consequence, v̇j converges (up to

subsequence) towards some ṽ ∈ H1
0 (D) weakly in H1, strongly in L2 and almost everywhere. Using

again Lemma 3.6 we have that λj → λΩ, λ′j → λ′Ω(0) · (θ) and vj → v in H1, so that relying also on
the Hausdorff convergence Ωj → Ω one can pass to the limit in the sense of distributions in





−∆v̇j − λj v̇j = λjvjdiv(θ) + λ′jvj + div(A′
θ∇vj), in Ωj

v̇j = 0 over ∂Ωj∫
Ωj
v̇jvj = −1

2

∫
Ωj

|vj |2div(θ)

to deduce that ṽ verifies{
−∆ṽ − λΩṽ = λΩvdiv(ξ) + (λ′Ω(0) · (ξ)) v + div(A′

θ∇v), in Ω∫
Ω ṽv = −1

2

∫
Ω |v|2div(θ)

Since Ω is Lipschitz it suffices to prove that ṽ = 0 a.e. outside Ω to deduce that ṽ ∈ H1
0 (Ω) (see for

instance [HP18, Proposition 3.2.16]) and therefore that ṽ = v̇. But this is seen directly by passing to
the limit a.e. in the identity 1D\Ωj

v̇j = 0, since v̇j → ṽ a.e. and |Ωj∆Ω| → 0 (as Ωj → Ω in C1,β).

Now, the convergence of v̇j towards v̇ is strong in H1, since by multiplying the equation by v̇j and
integrating by parts we get ‖∇v̇j‖L2(D) → ‖∇v̇‖L2(D). We can therefore pass to the limit as j → +∞
in (49) to deduce that we have in fact λ′′Ωj

(0) · (θ, θ) → λ′′Ω(0) · (θ, θ).
Step 2: continuity of (48) in Ω. In this step we rather assume θ ∈ C1,α(RN ,RN ) for some

α ∈ (12 , 1). We want to pass to the limit in the expression

(50) 2

(∫

Ωj

|∇v′j|2 − λj

∫

Ωj

|v′j |2
)

+

∫

∂Ωj

(∂njvj)
2
[
Hj(θ · nj)2 − bj(θτj , θτj ) + 2∇τj (θ · nj) · θτj

]

Thanks to a change of variable, the integral on Ωj can be written

2

∫

Ω

(
|∇̂v′j |2 − λj|v̂′j |2

)
Jj = 2

∫

Ω

(
〈Aj∇v̂′j,∇v̂′j〉 − λjJj |v̂′j |2

)
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where Jj := Jξj and Aj := Aξj are defined in (27). We have that Aj and Jj go respectively to Id and

1 in L∞(Ω) as j → +∞, and also λj → λΩ, while on the other hand v̂′j converges to v′0,θ in H1(Ω)

thanks to Lemma 3.8. As a consequence the integral on Ωj converges to 2
(∫

Ω |∇v′|2 − λΩ
∫
Ω |v′|2

)
.

For the convergence of the integral on ∂Ωj , we show that
∫
∂Ωj

(∂njvj)
2Hj(θ·nj)2 →

∫
∂Ω(∂nv)

2H(θ·n)2
and the other terms can be treated similarly. We can write

∫

∂Ωj

(∂njvj)
2Hj(θ · nj)2 =

∫

∂Ω
J̃j ̂(∂njvj)

2Ĥj
̂(θ · nj)2

=

∫

∂Ω
Ĥj ĝj

for ĝj := J̃j ̂(∂njvj)
2 ̂(θ · nj)2, where J̃j := J̃ξj is the surface jacobian defined in (22). We claim that

ĝj → (∂nv)
2(θ · n)2 =: g in C0,α. This comes from Lemmas 3.6 and 3.7, and moreover one estimates(

̂(θ · nj)− θ · n
)

as follows

‖ ̂(θ · nj)− θ · n‖C0,α(∂Ω) ≤ ‖θ · (n̂j − n)‖C0,α(∂Ω) + ‖(θ̂ − θ)n̂j‖C0,α(∂Ω)

≤ ‖θ‖(C0,α(∂Ω))N ‖ξj‖(C1,α(∂Ω))N + C‖θ‖(C1,α(∂Ω))N ‖ξj‖(C0,α(∂Ω))N

where the estimate of θ̂−θ comes from writing θ̂−θ =
∫ 1
0 ∇θ((1− t) ·+tφξj ) ·ξjdt. On the other hand,

picking s ∈ (0, 1) such that 1 − α < s < α and any p ∈ (1,∞) it holds Ĥj −H = ωs,p,α(ξj) thanks to

Lemma 3.7, so that we also have Ĥj ĝj −Hg = ωs,p,α(ξj) thanks to the convergence of the ĝj . We may

therefore use a W−s,p′ ·W s,p duality estimate and the embedding C0,α(∂Ω) ⊂W s,p(∂Ω) (see (i) from
Proposition 5.2) to deduce that ∫

∂Ω
Ĥj ĝj →

∫

∂Ω
Hg.

This proves the convergence of (50) towards the corresponding expression for Ω, and thus concludes
Step 2.

Conclusion. Since each Ωj is smooth we have that λ′′Ωj
(0) · (θ, θ) both equals (50) and (49) for each

j. The two previous steps ensure that we can pass to the limit on both sides to deduce that (48) holds
for Ω. �

3.3. Estimate of λ′′1(t) and proof of the main results. Relying on the expression of the second
derivative given by Lemma 3.9 we can now tackle estimating the variation of the second derivative of
λ1(t) = λ1 ((Id + tξh)(B)). We first obtain an expression for λ′′1(t), which we state in the next Lemma.

Let us first recall and set some notations for the remainder of this section. We use the notations from
Theorems 3.1, 3.4 and 3.5: any h : ∂B → R is extended to the whole of RN into some h locally constant
in normal directions around ∂B, and we then set ξh(x) := h(x)x so that ‖ξh‖(C1,α(RN ))N ≤ C‖h‖C1,α(∂B)

for any α ∈ (0, 1] and h ∈ C1,α(∂B). We let Bh := (Id + ξh)(B) and Bt := Bth for t ∈ [0, 1]. The
notations nt, Ht and bt refer respectively to the outer unit normal, curvature and second fundamental
form of Bt.

Lemma 3.10. Let h ∈ C1,1(∂B). For all t ∈ [0, 1] it holds
(51)

λ′′1(t) = 2

(∫

Bt

|∇v′t|2 − λ1(t)

∫

Bt

|v′t|2
)
+

∫

∂Bt

(∂ntvt)
2
[
Ht(ξh · nt)2 − bt((ξh)τt , (ξh)τt) + 2∇τt(ξh · nt) · (ξh)τt

]
,

where (ξh)τt is the tangential (over ∂Bt) component of ∇ξh, vt is the first L2 normalized eigenfunction
of Bt and v′t is determined by the equations





−∆v′t = λ1(t)v
′
t + λ′1(t)vt, in Bt

v′t = −∂ntvt(ξh · nt), over ∂Bt∫
Bt
v′tvt = 0.

Proof of Lemma 3.10. By Definition 3.2 it holds

λ′′1(t) = λ′′B(tξh) · (ξh, ξh)
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but since Bs+t = (Id + (s+ t)ξh)(B) = (Id + sξh)(Bt) when ‖h‖L∞(∂B) is small we immediately get

λ′′B(tξh) · (ξh, ξh) = λ′′Bt
(0) · (ξh, ξh)

The result then follows from applying Lemma 3.9 with Ω = Bt. �

Relying on the expression of λ′′1(t) given by this Lemma we are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let us first suppose that h ∈ C1,1(∂B). We can therefore use the expression of
λ′′1(t) from Lemma 3.10 which we rewrite in the following way

λ′′1(t) = 2

(∫

Bt

|∇v′t|2 − λ1(t)

∫

Bt

|v′t|2
)
+

∫

∂Bt

(∂ntvt)
2
[
Htα

2
t − bt(βt, βt)− 2∇τtαt · βt

]
h2

−2

∫

∂Bt

(∂ntvt)
2αt(βt · ∇τth)h(52)

:= T1(t) + T2(t) + T3(t)
where we put αt := nt · n and βt := αtnt − n. We thus prove for each 1 ≤ i ≤ 3

(53) ∀t ∈ [0, 1], |Ti(t)− Ti(0)| ≤ ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)
.

Estimate of T1(t). See that v′t = v′tξh,ξh in the notations of Lemma 3.8. Writing
∫
Bt

|∇v′t|2 =∫
B〈At∇v̂′t,∇v̂′t〉 where At := Atξh is defined in (27), we get

∣∣∣∣
∫

Bt

|∇v′t|2 −
∫

B
|∇v′0|2

∣∣∣∣ =
∣∣∣∣
∫

B
〈(At − Id)∇v̂′t,∇v̂′t〉+ (∇v̂′t −∇v′0) · (∇v̂′t +∇v′0)

∣∣∣∣
≤ ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

thanks to Lemma 3.8. On the other hand,

∣∣∣∣λ1(t)
∫

Bt

|v′t|2 − λ1(0)

∫

B
|v′0|2

∣∣∣∣ =
∣∣∣∣(λ1(t)− λ1(0))

∫

Bt

|v′t|2 + λ1(0)

∫

B
(Jt − 1)|v̂′t|2 + (v̂′t − v0)(v̂t + v0)

∣∣∣∣
≤ ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

using Lemmas 3.8 and 3.6. Putting these two together finally yields

|T1(t)− T1(0)| ≤ ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

thus finishing the proof of the estimate of T1(t).
Estimate of T2(t). Thanks to a surface change of variables we have T2(t) =

∫
∂B σ̂th where

σ̂t := (∂̂ntvt)
2
[
Ĥtα̂t

2 − b̂t(β̂t, β̂t)− 2∇̂τtαt · β̂t
]
J̃t

with J̃t the surface Jacobian. We have

(54) |T2(t)− T2(0)| =
∣∣∣∣
∫

∂B
(σ̂t − σ0)h

2

∣∣∣∣

Notice that σ̂t is a sum of terms of the form ŷt × ẑt for some ŷt ∈ {Ĥt, (b̂t)ij , (∇̂τtαt)i} with ẑt which

is a product of terms in {α̂t, ∂̂ntvt, β̂t, J̃t}. Let p ∈ (1, 2) be given by (iv) from Proposition 5.2 and
choose some s ∈ (0, 1) verifying 1− α < s < 1

2 < α, ensuring that the triple (α, s, p) satisfies both the
hypotheses of Lemma 3.7 and Proposition 5.2 (iv). We thus have that ŷt−y0 = ωs,p,α(ξh) (uniformly in
t), which we denote more simply ωs,p,α(h). On the other hand, thanks to Lemmas 3.6 and 3.7, choosing
some α′ ∈ (12 , α) there exists ω such that ‖ẑt− z0‖C0,α′ (∂B) ≤ ω(‖h‖C1,α(∂B)). As a consequence we get

that σ̂t − σ0 = ωs,p,α′(h), which we write σ̂t − σ0 = a1,hb1,h + a2,hb2,h in the notations of Lemma 3.7.

Thanks to (iv) from Proposition 5.2 the product law H1/2(∂B) ·H1/2(∂B) ⊂ W s,p(∂B) holds, and
we thus have

‖bi,hh2‖W s,p(∂B) ≤ C‖bi,hh‖H1/2(∂B)‖h‖H1/2(∂B).

Using the product law C0,α′
(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) from (iii) of Proposition 5.2 we get

‖b1,hh‖H1/2(∂B) ≤ C‖h‖H1/2(∂B),

‖b2,hh‖H1/2(∂B) = ω
(
‖h‖C1,α(∂B)

)
‖h‖H1/2(∂B).
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Using a duality estimate W−s,p′ ·W s,p we can therefore estimate (54)

|T2(t)− T2(0)| ≤ ‖a1,h‖W−s,p′ (∂B)‖b1,hh2‖W s,p(∂B) + ‖a2,h‖W−s,p′ (∂B)‖b2,hh2‖W s,p(∂B)

= ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)
.

Estimate of T3(t). Using a surface change of variables we have T3(t) =
∫
∂B h(ρ̂t · ∇τ̂th) where

ρ̂t := (∂̂ntvt)
2α̂tβ̂tJ̃t, ∇τ̂th := ∇h− (∇h · n̂t)n̂t.

We write

|T3(t)− T3(0)| =
∣∣∣∣
∫

∂B
hρ̂t · (∇τh−∇τ̂th) +

∫

∂B
h(ρ̂t − ρ0) · ∇τh

∣∣∣∣ .

Now, ∇τh − ∇τ̂th = (∇h · n̂t)n̂t = ∇τh · (n̂t − n)n̂t since ∇h · n = 0. On the other hand ‖ρ̂t −
ρ0‖C0,α′ (∂B) ≤ ω(‖h‖C1,α(∂B)) choosing some 1

2 < α′ < α, thanks to Lemmas 3.6 and 3.7. Using a

duality estimate H−1/2 ·H1/2, the product law C0,α′ ·H1/2 ⊂ H1/2 and the fact that ‖∇τh‖H−1/2(∂B) ≤
C‖h‖H1/2(∂B) (see (iii) and (ii) from Proposition 5.2) we thus get

|T3(t)− T3(0)| ≤ ‖hρ̂t(n̂t − n)n̂t‖H1/2(∂B)‖∇τh‖H−1/2(∂B) + ‖h(ρ̂t − ρ0)‖H1/2(∂B)‖∇τh‖H−1/2(∂B)

≤ ω(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

using Lemma 3.7. This finishes the proof of the T3(t) estimate.

We have thus proved (53) and hence Theorem 3.5 in the case where h ∈ C1,1(∂B). We then
reduce the regularity hypothesis made over h to h ∈ C1,α(∂B) with a density argument. Recall that
λ′′1(t) = λ′′Bth

(0) ·(ξh, ξh) since Bs+t = (Id+(s+t)ξh)(B) = (Id+sξh)(Bt) when ‖h‖L∞(∂B) is small. Let

then hj be smooth and converging to h in C1,β(∂B) for each 0 < β < α with ‖hj‖C1,α(∂B) ≤ ‖h‖C1,α(∂B).
With an argument similar to Step 1 of the proof of Lemma 3.9 we can pass to the limit in the expression
λ′′Bthj

(0) · (ξhj
, ξhj

) to get that λ′′Bthj
(0) · (ξhj

, ξhj
) → λ′′1(t). We can thus let j → +∞ in

∣∣∣λ′′Bthj
(0) · (ξhj

, ξhj
)− λ′′B(0) · (ξhj

, ξhj
)
∣∣∣ ≤ ω(‖hj‖C1,α(∂B))‖hj‖2H1/2(∂B)

and get the desired estimate. This finishes the proof in the general case.
�

Theorem 3.4 is now a consequence of Theorem 3.5. The way to pass from an (IC) to an (IT) con-
dition was shown in [DL19] (see [DL19, p.3014]), but we reproduce the short proof for the convenience
of the reader.

Proof of Theorem 3.4 . Fix c > 0 and α ∈ (12 , 1). Thanks to Theorem 3.5 we find δ > 0 and a modulus

of continuity ωλ1 such that for all h ∈ C1,α(∂B) with ‖h‖C1,α(∂B) ≤ δ it holds

(55) ∀t ∈ [0, 1], |λ′′1(t)− λ′′1(0)| ≤ ωλ1(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

We can write

λ1(Bh) = λ1(B) + (λ1)
′
B(0) · (ξh) +

1

2
(λ1)

′′
B(0) · (ξh, ξh) +

∫ 1

0
(λ′′1(t)− λ′′1(0))(1 − t)dt

using a second-order Taylor expansion with integral remainder. Using (55) we thus get

λ1(Bh) = λ1(B) + (λ1)
′
B(0) · (ξh) +

1

2
(λ1)

′′
B(0) · (ξh, ξh) + ωλ1(‖h‖C1,α(∂B))‖h‖2H1/2(∂B)

hence that λ1 satisfies an (IT)H1/2,C1,α condition. Combining this together with the expansion for P

(see (20)) we get the expansion for Jc = P − cλ1:

Jc(Bh) = Jc(B) + (Jc)
′
B(0) · (ξh) +

1

2
(Jc)

′′
B(0) · (ξh, ξh) + ωc(‖h‖C1,α(∂B))‖h‖2H1(∂B)

with ωc := ωP − cωλ1 . This concludes the proof. �

We are now able to prove Theorem 3.1, relying on the stability results proved in [DL19].
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Proof of Theorem 3.1. We proved in Theorem 3.4 that the functional Jc satisfies an (IT)H1,C1,α con-
dition in the sense of [DL19, Theorem 1.3]. It also satisfies a (CH1) hypothesis (see [DL19, Lemma
2.8]). On the other hand it was proven in [Nit14, Theorem 1.2] (see also [DL19, Proposition 5.5 (ii)])
that B is a critical and strictly stable shape under volume constraint and up to translations for Jc

whenever c ∈ (0, c∗). For any such c we therefore apply [DL19, Theorem 1.3] and get that there exists
δc > 0 such that for any h ∈ C1,α(∂B) with ‖h‖C1,α(∂B) ≤ δc and |Bh| = |B| it holds

Jc(Bh) ≥ Jc(B)

with equality only if Bh is a ball. This gives strict minimality (up to translations) of B in a C1,α

neighborhood, thus concluding the proof of the Theorem. �

4. Selection principle: minimality of the ball among convex sets. Proof of

Theorem 1.2.

This section is dedicated to the second part of the selection principle strategy which we described in
the Introduction, namely the regularizing procedure which enables to reduce the proof of the inequality
from Theorem 1.2

∀K ∈ KN with |K∆B| ≤ δc, (P − cλ1)(K) ≥ (P − cλ1)(B)

for general convex perturbations K of B to the same inequality for C1,α perturbations of B. As is usual
in this procedure (as was originally done by [CL12], see also among many others [AFM13], [BDPV15],
[AKN21]) the argument goes by contradiction: we assume that (4) does not hold, meaning that there
exists a sequence (Kj) converging to the ball in the L1 sense but for which Jc(Kj) < Jc(B). The

strategy is then to replace the sequence Kj by a sequence K̃j also converging to B, for which (4) is

still not verified and in which each K̃j is meant to be much smoother than Kj. The convergence of the

sequence K̃j and the fact that it still contradicts (4) is somehow built-in the construction of these sets

itself, as minimizers of an auxiliary minimization problem involving the Kj . The regularity of K̃j then
comes from the fact that it is a minimizer of an isoperimetric problem under convexity constraint: it
was shown in [LP23] that such minimizers are C1,1, and we will provide a uniform version of this result
(see Theorem 4.2). This will enable us to apply the result of minimality in a smooth neighborhood
proven in Section 3 (see Theorem 3.1) to finally get a contradiction.

In this section B ⊂ RN still denotes the open unit ball centered at 0.

4.1. Regularity theory for the quasi-minimizer of the perimeter under convexity con-
straint. This subsection is dedicated to the regularity theorem which is central to the selection prin-
ciple we perform in Section 4. When working in the framework of quasi-minimizer of the perimeter
without convexity constraint, a very useful type of results concerns the strengthening of convergence for
a sequence of quasi-minimizers converging to the ball: if a sequence (Ej) of (uniform) quasi-minimizers

converges to the ball in a L1 sense, then Ej is C1,1/2 for large j and it converges (up to subsequence)
to the ball in C1,α for each α ∈ (0, 1/2) (see for instance [AFM13, Theorem 4.2] for a rigorous state-

ment). This is a compactness-type result, which is a direct consequence of the C1,1/2 regularity of
quasi-minimizers and an estimate of their norm. We want here to prove an analogous result in our
convexity constrained case. The regularity result we state below (Theorem 4.2) importantly relies
on the C1,1 regularity results from [LP23] (see [LP23, Theorem 2.3]). Nevertheless, in comparison
with [LP23, Theorem 2.3] we have to follow the constants in the proof in order to show that a quasi-
minimizer is locally parametrized in cartesian graphs by C1,1 functions with norm only depending on
the relevant constants. We then pass from this quantified local cartesian C1,1 regularity to a global
spherical estimate. Although this passage often comes as classical in the literature, it does not seem
to be so well referenced and we believe that a careful examination of all the arguments can be of use
(see also [Pet22, Appendix B] for similar arguments).

Let us first define the notion of quasi-minimizer of the perimeter under convexity constraint which
was introduced in [LP23, Definition 2.1].

Definition 4.1 ((Λ, ε)-q.m.p.c.c.). Let N ≥ 2. Let Λ > 0, ε > 0. We say that K ∈ KN is a
(Λ, ε)-quasi-minimizer of the perimeter under convexity constraint (or (Λ, ε)-q.m.p.c.c. for short) if

(56) ∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ ε, P (K) ≤ P (K̃) + Λ|K \ K̃|.
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For x ∈ RN , let νB(x) := x. Any function h : ∂B → R is extended to RN as in Section 3 (see
the beginning of Section 3). For r > 0 and z ∈ RN , the notation Br(z) denotes the ball of radius r
centered at z. The q.m.p.c.c. regularity result is the following.

Theorem 4.2 (Regularity of q.m.p.c.c). Let N ≥ 2, Λ > 0, ε > 0 and 0 < m < M . Let K be a
(Λ, ε)-q.m.p.c.c. verifying Bm(z) ⊂ K ⊂ BM(z) for some z ∈ RN . Then there exists h ∈ C1,1(∂B)
such that (up to translation) K can be written

K = (Id + hνB)(B) = {tx(1 + h(x)), t ∈ [0, 1], x ∈ ∂B}, with ‖h‖C1,1(∂B) ≤ C

with C = C(N,Λ, ε,m,M) > 0 only depending on the indicated parameters.

Let us postpone the proof of this Theorem and show first how we deduce from this result a conver-
gence type result of quasi-minimizers (as in the classical setting).

Corollary 4.3 (Convergence of q.m.p.c.c). Let N ≥ 2, Λ > 0, ε > 0. If (Kj) is a sequence of
(Λ, ε)-q.m.p.c.c. such that |Kj∆B| → 0, then there exists a sequence hj ∈ C1,1(∂B) such that

∀j ∈ N, Kj = (Id + hjνB)(B),

and for all α ∈ (0, 1) it holds hj → 0 in C1,α.

Remark 4.4. Let us note here that this C1,α convergence for all α ∈ (0, 1) is essentially optimal in
the sense that one cannot hope for more than C1,1 regularity for a q.m.p.c.c. (see [LP23, Proposition
3.18] for a counter-example to higher Hölder regularity in two dimensions).

Proof of Corollary 4.3. Since |Kj∆B| → 0, one also has that Kj → B in the Hausdorff sense thanks

to Proposition 5.4. As a consequence, there exists z ∈ RN and 0 < m < M such that

∀j ∈ N, Bm(z) ⊂ Kj ⊂ BM (z).

The existence of the upper ball follows directly from the definition of the Hausdorff convergence; we
refer for instance to [LP23, Proposition 2.8, 2.] for the existence of a lower ball. Therefore, thanks to
Theorem 4.2 we deduce that there exists hj : ∂B → R such that

∀j ∈ N, Kj = (Id + hjνB)(B) and ‖hj‖C1,1(∂B) ≤ C

for some C > 0 independent of j. From this bound on the C1,1 norms we deduce for each α ∈ (0, 1)
the convergence (up to subsequence) of hj in C1,α norm to some h ∈ C1,1(∂B), using the Arzela-Ascoli
Theorem. Since Kj → B in the Hausdorff sense we must have h = 0, which ensures also that the whole
sequence (hj) converges to 0. This finishes the proof of Corollary 4.3. �

We can now pass to the proof of Theorem 4.2.

Proof of Theorem 4.2. Step 1: cartesian estimates of K. Let x̂0 ∈ ∂K be fixed. We claim that
there exists

• a hyperplane H ⊂ RN containing x̂0 and a unit vector ξ ∈ RN normal to H,

• a (N − 1) dimensional ball BN−1
β := BN−1

β (x̂0) centered at x̂0 and of radius β = β(m,M) > 0

with BN−1
β ⊂ H,

such that, denoting by (x, t) a point in H×R coordinates (according to the orthonormal frame H×Rξ)
and defining u : BN−1

β → R by the formula u(x) := min{t ∈ R, (x, t) ∈ K} we have

{(x, u(x)), x ∈ BN−1
β } ⊂ ∂K(57)

K ∩ (BN−1
β × Rξ) ⊂ {(x, t) ∈ BN−1

β × Rξ, u(x) ≤ t}(58)

and u ∈ C1,1
(
BN−1

β

)
with

(59) ‖u‖
C1,1(BN−1

β )
≤ C, where C = C(N,Λ, ε,m,M)

In this Step, for any z ∈ H and r > 0, we denote by BN−1
r (z) ⊂ H the (N − 1)-dimensional ball of

radius r centered at z.
The existence of H, ξ, β′, u such that

β′ = β′(m,M)
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u ∈ C0,1(BN−1
β′ (x̂0)), with ‖∇u‖L∞(BN−1

β′ (x̂0))
≤ C(m,M)

and such that (57) and (58) are satisfied for BN−1
β′ (x̂0) comes from the convexity of K (it is proven for

instance in [LP23, Proposition 4.3]). We now prove (59) for β := β′/2. Let y ∈ BN−1
β = BN−1

β (x̂0),

p ∈ ∂u(y) and set for each r ∈ (0, β)

Mr(y) := sup
BN−1

r (y)

(u− (u(y) + 〈p, · − y〉)

Using quasi-minimality of K and the estimates of β′ and ‖∇u‖L∞(BN−1
β′ (x̂0))

above, we can use [LP23,

Theorem 2.3] (see last equation of the proof of Theorem 2.3) to deduce that there exists

C = C (N,Λ, ε,m,M)

r0 = r0 (ε,m,M)

such that

∀y ∈ BN−1
β , ∀r ∈ (0, r0), Mr(y) ≤ Cr2

We now apply Lemma 3.2 in [DPF15] which ensures that u ∈ C1,1
(
BN−1

β

)
. More precisely, it is proven

in [DPF15, Lemma 3.2] that there exists ρ0 > 0 and η > 0 only depending on r0 and the Lipschitz

character of BN−1
β (hence only on β) such that

∀x ∈ BN−1
β , ∀y ∈ BN−1

β ∩BN−1
ρ0 (x), |∇u(x) −∇u(y)| ≤ C ′|x− y|

where C ′ = 6η−1. As we also have

∀x ∈ BN−1
β , ∀y ∈ BN−1

β with |y − x| ≥ ρ0,

|∇u(x)−∇u(y)| ≤ 2‖∇u‖L∞(BN−1
β )ρ

−1
0 |x− y|

then gathering the two we get that

∀x, y ∈ BN−1
β , |∇u(x) −∇u(y)| ≤ C̃|x− y|

by setting C̃ := max
{
C ′, 2‖∇u‖L∞(BN−1

β )ρ
−1
0

}
. This together with the bound on ‖∇u‖L∞(BN−1

β′ (x̂0))

above, and

‖u‖L∞(BN−1
β ) ≤ diam(K)

yield the desired estimate on ‖u‖
C1,1(BN−1

β )
.

Step 2: local spherical estimates of ∂K. This step and the next one are similar to [Pet22,
Appendix B]. Fix x̂0 ∈ ∂K. We apply Step 1 at x̂0, and up to translating and rotating we assume
without loss of generality that z = 0 (so that Bm(0) ⊂ K ⊂ BM (0)) and ξ = eN is the N th canonical
direction. In this step we consider z as the origin, so that the coordinates (x, t) ∈ H ×R will now take

this into account. As a consequence, x̂0 is now written x̂0 = (0, t0) for some t0 < 0, and if Ω := BN−1
β

denotes the (N − 1)-dimensional ball found in Step 1, we have

∀x ∈ Ω, û(x) := (x, u(x) + t0) ∈ ∂K
Since H is orthogonal to ξ = eN and contains x̂0 we have

H = x̂0 + {xN = 0}
We write more simply Bm := Bm(0). Let θ be the map

θ : Ω → ∂Bm

x 7→ m
û(x)

|û(x)|
which associates to x ∈ Ω the spherical coordinates corresponding to û(x). Let now ρK : ∂Bm → (0,∞)
be the distance function of the convex set K, meaning that for any φ ∈ ∂Bm, ρK(φ) is the unique
t > 0 such that tφ ∈ ∂K. Then for each x ∈ Ω, it holds θ(x)ρK(θ(x)) = û(x), so that

(60) ρK(θ(x)) =
|û(x)|
m
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As a consequence, ρK ◦ θ ∈ C1,1(Ω) with norm only depending on the C1,1 norm of u. The rest of
Step 2 consists in showing that ρK itself is C1,1 in a neighborhood of θ(x0) and to estimate its norm,
by using a suitable version of the inverse function Theorem.

We let θ′ be the map

θ′ : Ω× R → RN

(x, t) 7→ θ(x)(1 + t)

Note that θ′ ∈ C1,1(Ω× R) and θ′|Ω×{0} = θ. Then it holds

(61) Dθ′(x̂0) = m




0

0
0 0 1

|t0|−1IN−1




Using a quantitative version of the inverse function Theorem (see Theorem 5.1) we deduce the
existence of a radius r0 = r0

(
‖θ′‖C1,1(V0), |Dθ′(x0)−1|, β

)
, V0 and W0 respectively open neighborhoods

of x̂0 and θ′(x̂0) such that θ′ is a C1,1-diffeomorphism from V0 onto W0, with

(62) Br0(x̂0) ⊂ V0, Br0(θ
′(x̂0)) ⊂W0

and

(63) ‖(θ′)−1‖C1,1(W0) ≤ C
(
‖θ′‖C1,1(V0), |Dθ′(x0)−1|

)

Now, by definition of θ′ and θ, and since |û(x)| ≥ m, it holds ‖θ′‖C1,1(V0) ≤ C
(
‖u‖C1,1(Ω),m

−1
)
. On

the other hand, by (61) we have |(Dθ′)(x0)−1| ≤ C(|t0|,m−1). As K ⊂ BM (0) we have |t0| ≤ M so
that (62) and (63) become respectively

(64) Br0(x̂0) ⊂ V0, Br0(θ
′(x̂0)) ⊂W0, with r0 = r0

(
β,m,M, ‖u‖C1,1(Ω)

)

and
‖(θ)′−1‖C1,1(W0) ≤ C

(
m,M, ‖u‖C1,1(Ω)

)

Recalling that θ′|Ω×{0} = θ there exists a constant C > 0 such that ‖θ−1‖C1,1(W0∩∂Bm) ≤ ‖(θ′)−1‖C1,1(W0).

Hence, by (60) and the latter estimate of θ′ we get

‖ρK‖C1,1(W0∩∂Bm) ≤ ‖ρK ◦ θ‖C1,1(V0∩H)‖θ−1‖C1,1(W0∩∂Bm)

≤ C, with C = C
(
m,M, ‖u‖C1,1(Ω)

)
(65)

Using the estimates of β and ‖u‖C1,1(Ω) found in Step 1 we finally get that the radius r0 and constant
C respectively from (64) and (65) only depend on N,Λ, ε,m,M .

Step 3: global estimate of ρK: relying on the local estimate (65) of ρK proven in Step 2 we now
estimate ‖ρK‖C1,1(∂Bm).

According to Step 2, for any φ ∈ ∂Bm there exists Wφ ⊂ RN an open neighborhood of φ such that

Br0(φ) ⊂Wφ

‖ρK‖C1,1(Wφ∩∂Bm) ≤ C

where r0 = r0(N,Λ, ε,m,M) and C = C(N,Λ, ε,m,M). Using a standard compactness argument over
∂Bm we find η > 0 only depending on r0 such that for any φ,ψ ∈ ∂Bm with |φ− ψ| ≤ η

|ρK(φ)− ρK(ψ)|
|φ− ψ| ≤ C,

|∇ρK(φ)−∇ρK(ψ)|
|φ− ψ| ≤ C

Combining these with a global bound ‖ρK‖W 1,∞(∂Bm) ≤ C we deduce that the same estimates hold
for |φ− ψ| ≥ η so that we finally have

(66) ‖ρK‖C1,1(∂Bm) ≤ C

for some C = C(N,Λ, ε,m,M).
Conclusion. Let h(φ) := ρK(mφ) − 1 for each φ ∈ ∂B. Then we have that K = (Id + hnB)(B)

and (66) ensures that
||h‖C1,1(∂B) ≤ C

for some C = C(N,Λ, ε,m,M) > 0. This concludes the proof. �
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4.2. Proof of Theorem 1.2. In this subsection we perform the selection principle, relying both on
the convergence result for quasi-minimizers (Corollary 4.3) and the strict minimality of the ball in a
C1,α neighborhood shown in Theorem 3.1.

We will use the fact that λ1 satisfies some kind of Lipschitz hypothesis for the Volume distance.
This is stated in next Proposition.

Proposition 4.5. Let N ≥ 2. Let D ∈ KN and 0 < V0 < |D|. There exists C = C(V0,D) such that
for all convex bodies K1,K2 ⊂ D with |K1|, |K2| ≥ V0 it holds

(67) |λ1(K1)− λ1(K2)| ≤ C|K1∆K2|.
Note that this Lipschitz-type property is an improvement of the result obtained for λ1 in [LP23,

Theorem 3.2 and Remark 3.3]. We refer also to [BL08, Theorem 4.23] for a similar result proven for a
different class of sets.

Proof of Proposition 4.5. It was proven in [LP23, Theorem 3.2 and Remark 3.3] that for any D′ ⊂ D ∈
KN there exists C = C(D′,D) such that for all D′ ⊂ K1 ⊂ D, D′ ⊂ K2 ⊂ D it holds

(68) |λ1(K1)− λ1(K2)| ≤ C|K1∆K2|
Let then K1,K2 ⊂ D with |K1|, |K2| ≥ V0. Assume first that |K1∆K2| ≥ V0/2. Thanks to (ii)

in Proposition 5.3 we can find ε = ε(V0,D) > 0 independent of K1,K2 such that the inradii satisfy
rK1 , rK2 ≥ ε. As a consequence, for i = 1, 2 there exists xi ∈ RN such that Bε(xi) ⊂ Ki. By
monotonicity of λ1 we deduce

(69) |λ1(K1)− λ1(K2)| ≤ 2λ1(Bε(0)) ≤ 4V −1
0 λ1(Bε(0))|K1∆K2|

Assume otherwise that |K1∆K2| ≤ V0/2. Then we have

|K1 ∩K2| = |K1| − |K1 \K2| ≥ V0/2

Using again (ii) from Proposition 5.3 we can therefore find ε′ = ε′(V0,D) > 0 such that the inradius
of the convex body K1 ∩K2 ⊂ D satisfies rK1∩K2 ≥ ε′. Hence, there exists x ∈ D such that Bε′(x) ⊂
K1 ∩K2 ⊂ Ki, i = 1, 2. Letting R > 0 be such that BR(x) ⊃ D, we have Bε′(0) ⊂ Ki − x ⊂ BR(0) for
i = 1, 2 and we therefore use property (68) to deduce

|λ1(K1)− λ1(K2)| = |λ1(K1 − x)− λ1(K2 − x)|
≤ C|(K1 − x)∆(K2 − x)|
= C|K1∆K2|

This estimate together with (69) gives the conclusion. �

We can now pass to the proof of Theorem 1.2.
For convex bodiesK1 andK2 the notation dH(K1,K2) refers to the usual Hausdorff distance between

K1 and K2 (see Section 5.3 in the Appendix for some facts about the Hausdorff distance for convex
sets).

Proof of Theorem 1.2. Step 1: penalization. As a preparation of the selection procedure from
Step 2 below, we prove in this step that if we let D ∈ KN , 0 < V0 < |D|, a ∈ R, µ ≥ 0 and set
R = −λ1 + µ||K∆B| − a|, then a minimizer K∗ of

(70) inf
{
P (K) +R(K),K ∈ KN , K ⊂ D, |K| = V0

}

verifying δ := d(K∗, ∂D) > 0 is a (Λ, ε)-q.m.p.c.c. (see Definition 4.1) for some Λ = Λ(V0, δ, µ,D) and
ε = ε (V0, δ, µ,D). This result is an adaptation of [LP23, Lemma 2.11].

Let K∗ be such a minimizer, and set 0 < v0 ≤ V0 and δ := d(K∗, ∂D) > 0. We introduce the class

Av0,δ := {K ∈ KN , K ⊂ D, |K| ≥ v0, d(K,∂D) ≥ δ}
which is compact for dH , by Proposition 5.3 and continuity of the volume for the Hausdorff distance.
Note that the set K∗ belongs to this class for v0 = V0. Set

∀ε > 0, Oε(K
∗) := {K ∈ KN , K ⊂ K∗, |K∗ \K| ≤ ε}

and let for any convex body K ⊂ D and t ∈ [0, 1]

Kt := (1− t)K + tD
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We first claim that there exists constants (ε0, c, t0) ∈ (0,∞)3 depending only on V0, δ and D (hence
independent of the minimizer K∗) such that

(71) ∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], |Kt| − |K| ≥ ct.

Setting fK(t) := |Kt|, it is shown in [LP23, Lemma 2.11] that fK is a polynomial in t of degree N
with coefficients continuous in K for dH , and that f ′K(0) is positive whenever K ( D. Set ε0 := V0/2.
By compactness of Aε0,δ inside {K ∈ KN ,K ( D} and continuity of K 7→ f ′K(0) for dH , then one
can find c = c(V0, δ,D) > 0 such that for any K ∈ Aε0,δ it holds f ′K(0) ≥ c. Any K ∈ Oε0(K

∗)
verifies |K| ≥ V0/2, so that for such K it holds K ∈ Aε0,δ hence f ′K(0) ≥ c. Since the coefficients of
the polynomial fK(t) are continuous in K for dH , they are uniformly bounded for K ∈ Aε0,δ. This
together with the lower bound on f ′K(0) yields the above estimate.

The existence of C = C(D) such that

∀t ∈ [0, 1],∀K ∈ KN with K ⊂ D, P (Kt)− P (K) ≤ Ct

is proven in [LP23, equation (54)]. As a consequence, this together with (71) gives

(72) ∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], P (Kt)− P (K) ≤ C ′ (|Kt| − |K|)

with C ′ := C/c.
Since any K ∈ Oε0(K

∗) verifies |K| ≥ V0/2 we can apply Proposition 4.5 to get the existence of
C = C(V0,D) such that for all t ∈ [0, 1] and K ∈ Oε0(K

∗)

R(Kt)−R(K) = λ1(K)− λ1(Kt) + µ (||Kt∆B| − a| − ||K∆B| − a|) ,
≤ C|Kt \K|+ µ||Kt∆B| − |K∆B||,
≤ (C + µ)|Kt \K|.(73)

Let us now show that for ε := min{ε0, ct0} there exists Λ = Λ(V0, δ,D, µ) such that a minimizer K∗

of (70) is a minimizer of

(74) inf{P +R+ Λ||K| − V0|, K ∈ Oε(K
∗)}.

Since |Kt0 | − |K∗| = |Kt0 | − |K|+ |K| − |K∗| ≥ ct0 − ε ≥ 0 then by continuity of t 7→ |Kt| there exists
t ∈ [0, t0] such that |Kt| = |K∗| = V0. Hence by minimality and using (72) and (73) we get

P (K∗) +R(K∗) ≤ P (Kt) +R(Kt) ≤ P (K) +R(K) + Λ||K| − V0||
for some Λ = Λ(V0, δ,D, µ), which ensures the minimality of K∗ for (74).

Therefore, if K ∈ KN with K ⊂ K∗ and |K∗ \K| ≤ ε then the computation leading to (73) with
(K∗,K) in place of (Kt,K) gives

P (K∗)− P (K) ≤ (C + µ+ Λ) |K∗ \K|
so that K∗ is a (Λ′, ε)-q.m.p.c.c where Λ′ := Λ + C + µ and ε only depend on V0, δ, µ and D. This
finishes the proof of the first step.

Step 2: selection procedure. Although the selection principle was first introduced in [CL12],
the way we display the argument in this step is more inspired of [AFM13]. Let 0 < c < c∗. Recall
the notation Jc := P − cλ1. Let us assume in order to obtain a contradiction that the conclusion of
Theorem 1.2 is false. Then there exists a sequence of convex bodies (Kj)j∈N such that

{
∀j ∈ N, Jc(Kj) < Jc(B),

|Kj∆B| → 0.

Thanks to Proposition 5.4, Kj → B in the Hausdorff sense, so that there exists D ∈ KN such that
Kj ⊂ D for every j. We can assume without loss of generality that B ⋐ Int(D). Thanks to Proposition
4.5 the functional λ1 is lower-semi-continuous for the volume distance, and we can apply the existence
result [LP23, Theorem 3.4 (i)] to get that for any fixed µ > 0 there exists for each j a solution to the
problem

(75) inf
{
Jc(K) + µ ||K∆B| − |Kj∆B|| , |K| = |B|, K ⊂ D, K ∈ KN

}
.

Assuming that the value of µ has been fixed (we choose µ later on), we let K̃j be a solution.

Thanks to (i) from Proposition 5.3 there exists a convex body K̃ ⊂ D with |K̃| = |B| such that

(up to subsequence) K̃j → K̃ in the Hausdorff sense and in measure. We have λ1(K̃j) → λ1(K̃) using
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Proposition 4.5, and P (K̃j) → P (K̃) by [BB05, Proposition 2.4.3 (ii)]. Now, from optimality and
recalling Jc(Kj) < Jc(B) we can write

(76) Jc(K̃j) + µ||K̃j∆B| − |Kj∆B|| ≤ Jc(Kj) < Jc(B)

so that we get at the limit

(77) Jc(K̃) + µ|K̃∆B| ≤ Jc(B).

Thanks to Proposition 4.5 and using the isoperimetric inequality we get

Jc(K̃)− Jc(B) =
(
P (K̃)− P (B)

)
+ c

(
λ1(B)− λ1(K̃)

)

≥ c(λ1(B)− λ1(K̃))

≥ −C|K̃∆B|
where the constant C only depends on c, D and N . Injecting this into (77) provides

−C|K̃∆B|+ µ|K̃∆B| ≤ 0

so that we get K̃ = B if µ is chosen bigger than C in (75).

Therefore K̃j → B in measure and Hausdorff distance. Since we have chosen B ⋐ Int(D) we find a

convex body D̃ ⊂ D with d(D̃, ∂D) > 0 and such that for j sufficiently large

K̃j ⊂ D̃.

By construction of the K̃j , we deduce from Step 1 that each K̃j is a (Λ, ε)-q.m.p.c.c. with parameters
independent of j. We can therefore apply Corollary 4.3 to get the existence of hj ∈ C1,1(∂B) such
that up to subsequence

K̃j = (Id + hjνB)(B) and ‖hj‖C1,α(∂B) → 0

for α chosen to satisfy Theorem 3.1. We can therefore apply Theorem 3.1 to deduce that for sufficiently
large j,

Jc(K̃j) ≥ Jc(B)

But this enters in contradiction with (76), thus concluding the proof of the Theorem. �

5. Appendix

5.1. Quantified Inverse Function Theorem.

Theorem 5.1 (Quantified IFT). Let N ∈ N∗. Let V := Br(x̂0) ⊂ RN for some x̂0 ∈ V and
r > 0. Let f ∈ C1,1(V,RN ) with Df(x̂0) invertible. Then there exists V0 ⊂ V,W0 ⊂ RN and
ρ = ρ

(
‖f‖C1,1 , |Df(x0)−1|, r

)
only depending on the indicated parameters such that f is a C1,1 diffeo-

morphism from V0 onto W0 and

Bρ(x̂0) ⊂ V0, Bρ(f(x̂0)) ⊂W0,

‖f−1‖C1,1(W0,V0) ≤ C
(
‖f‖C1,1(V,RN ), |Df(x0)−1|, r

)
.

Proof. Step 1: By following the usual proof of the Inverse function Theorem we first show that f is
a C1 diffeomorphism from V ′

0 ⊂ V to W ′
0 := Bδ(f(x̂0)) with

δ = δ
(
‖Df‖C0,1(V ), |Df(x̂0)−1|

)
.

Since the proof is classical we only emphasize on the details needed to quantify the size of the neigh-
borhood W ′

0.
We will keep the notation V for the set V := Br(x̂0). Let for any y ∈ RN the function φy : V → RN

be defined by

∀x ∈ V, φy(x) := x− (Df(x̂0))
−1 (f(x)− y).

Then φy is C1,1, for x ∈ V its differential Dφy(x) = Id − (Df(x̂0))
−1Df(x) is independent of y, and

we have for x ∈ V ,

|Dφy(x)| ≤ |Df(x̂0)−1||Df(x)−Df(x̂0)|,
≤ |Df(x̂0)−1|‖Df‖C0,1(V )|x− x̂0|.
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As a consequence there exists

r′ = r′
(
|Df(x̂0)−1|, ‖Df‖C0,1(V ), r

)
> 0

such that for all x ∈ Br′(x̂0) it holds |Dφy(x)| ≤ 1/2. We thus get that for all y ∈ RN , φy is
1/2-Lipschitz over Br′(x̂0). Now, we have

|Df(x̂0)−1(f(x̂0)− y)| ≤ |Df(x̂0)−1||f(x̂0)− y| ≤ r′/2

when y ∈ Bδ(f(x̂0)) with δ := r′

2 |Df(x̂0)−1|. Hence,

∀y ∈ Bδ(f(x̂0)), ∀x ∈ Br′(x̂0), |φy(x)− x̂0| ≤ |φy(x)− φy(x̂0)|+ |φy(x̂0)− x̂0|,
≤ |x− x̂0|/2 + r′/2,

≤ r′.

As a consequence, for all y ∈ Bδ(f(x̂0)), φy sends Br′(x̂0) into itself and is 1/2-Lipschitz. Therefore,

for such y the mapping φy has a unique fixed point in Br′(x̂0), meaning that f(x) = y for a unique x ∈
Br′(x̂0). This gives the existence of f−1 :W ′

0 → V ′
0 with W ′

0 := Bδ(f(x̂0)) and V ′
0 := f−1(W ′

0), and one
classically shows that f is C1 diffeomorphism from V ′

0 to W ′
0 with furthermore Df−1 = (Df(f−1))−1.

Step 2: Using an explicit expansion of the inverse mapping about Df(x̂0) we have that

(78) |Df(x)−1| ≤ 2|Df(x̂0)−1|
whenever |Df(x)−Df(x̂0)| ≤ 1/(2|Df(x̂0)−1|). But this latter condition is fulfilled if x ∈ V0 := Br̃(x̂0)
for some r̃ depending on r′, |Df(x̂0)−1| and ‖f‖C1,1(V ) only. Moreover, f is a C1 diffeomorphism from

V0 to W0 := f(V0), and one can find δ̃ = δ̃
(
r̃, ‖f−1‖C0,1(W0)

)
such that W0 ⊃ B

δ̃
(f(x̂0)). Now, thanks

to (78) and Df−1 = (Df(f−1))−1 we have

(79) ‖f−1‖L∞(W0) ≤ r, ‖Df−1‖L∞(W0) ≤ 2|Df(x̂0)−1|.
Letting y, y′ ∈W0, since f−1(y), f−1(y′) ∈ V0 we can use (78) and (79) to get

|Df−1(y)−Df−1(y′)| ≤ ‖(Df)−1‖2L∞(V0)
|Df(f−1(y))−Df(f−1(y′))|

≤ C|y − y′|

for some C = C
(
|Df(x̂0)−1|, ‖f‖C1,1(V ), r

′
)
. Combined with (79), and recalling the estimate of r′ from

Step 1 we thus get

‖f−1‖C1,1(W0) ≤ C
(
|Df(x̂0)−1|, ‖f‖C1,1(V ), r

)
.

Setting ρ := min{δ̃, r̃} we have proved the Theorem. �

5.2. Fractional Sobolev spaces. In this paragraph we state some standard facts about Sobolev
spaces on the boundary of a C1,1 open set Ω ⊂ RN .

Let us first quickly recall the definition of the Sobolev-Slobodeckij spaces W s,p(∂Ω) for s ∈ [−2, 2].
For k ∈ {0, 1, 2} and p ∈ [1,∞) the set W k,p(∂Ω) is defined as the usual space of functions with k first
derivatives lying in Lp(∂Ω). For any s ∈ (0, 2) \ {1} and p ∈ [1,∞) we let the vector space

W s,p(∂Ω) :=

{
a ∈W [s],p(∂Ω) : ∀|α| = [s],

|Dαa(x)−Dαa(y)|
|x− y|

N−1
p

+{s}
∈ Lp(∂Ω × ∂Ω)

}

with |α| :=∑N
i=1 αi for a multi-index α = (α1, . . . , αN ) ∈ NN , and where {s} and [s] stand respectively

for the fractional and integer parts of s. We then define the W s,p norm accordingly: for a ∈W s,p(∂Ω),
we set

‖a‖W s,p(∂Ω) :=


‖a‖p

W [s],p(∂Ω)
+
∑

|α|=[s]

|Dαa|p
W {s},p(∂Ω)




1
p

,

with | · |W {s},p(∂Ω) the W {s},p(∂Ω) semi-norm, i.e.

|Dαa|p
W {s},p(∂Ω)

:=

∫∫

∂Ω×∂Ω

|Dαa(x)−Dαa(y)|p
|x− y|N−1+{s}p

dHN−1
x dHN−1

y
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where HN−1 denotes the (N − 1)-dimensional Hausdorff measure. If p′ denotes the conjugate Hölder

exponent to p (i.e. 1
p′ +

1
p = 1), the space W−s,p′(∂Ω) is defined as the dual space of W s,p(∂Ω):

W−s,p′(∂Ω) := W s,p(∂Ω).

We can now state some facts about the spaces W s,p(∂Ω).

Proposition 5.2. 2Let N ≥ 2 and Ω ⊂ RN be a C1,1 bounded open set.

(i) Let s ∈ (0, 1). Then for all α ∈ (s, 1) and p ∈ [1,∞) it holds

C0,α(∂Ω) ⊂W s,p(∂Ω), C1,α(∂Ω) ⊂W 1+s,p(∂Ω),

with continuous injections.
(ii) Let s ∈ (0, 1) and p ∈ (1,∞). Then there exists C > 0 such that for any a ∈ W 1−s,p(∂Ω) it

holds

‖∇τa‖W−s,p(∂Ω) ≤ C‖a‖W 1−s,p(∂Ω).

(iii) For each α ∈ (12 , 1) the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) holds, meaning that for

each α ∈ (12 , 1) and any (a, b) ∈ C0,α(∂Ω)×H1/2(∂Ω) it holds

‖ab‖H1/2(∂Ω) ≤ C‖a‖C0,α(∂Ω)‖b‖H1/2(∂Ω),

for some constant C > 0 independent of a and b.
(iv) There exists p ∈ (1, 2) such that the product law H1/2(∂Ω) · H1/2(∂Ω) ⊂ W s,p(∂Ω) holds for

any s ∈ (0, 12 ), meaning that for each s ∈ (0, 12) and any (a, b) ∈ H1/2(∂Ω)×H1/2(∂Ω) it holds

‖ab‖W s,p(∂Ω) ≤ C‖a‖H1/2(∂Ω)‖b‖H1/2(∂Ω),

for some constant C > 0 independent of a and b.

Proof. (i) If a ∈ C0,α(∂Ω),

∀x, y ∈ ∂Ω, |a(x)− a(y)|p
|x− y|N−1+sp

≤ |a|p
C0,α(∂Ω)

|x− y|−(N−1−p(α−s))

where | · |C0,α(∂Ω) is the C0,α semi-norm on ∂Ω. The integrability of

(x, y) ∈ ∂Ω× ∂Ω 7→ |x− y|−(N−1−p(α−s))

thus ensures the continuous injection C0,α(∂Ω) ⊂ W s,p(∂Ω). The injection C1,α(∂Ω) ⊂
W 1+s,p(∂Ω) then follows from applying this to ∇a for some a ∈ C1,α(∂Ω).

(ii) This claim is deduced from the same statement over W s,p(RN−1) spaces by working in local
charts (for the RN−1 case see for instance [Bha12, Remark 8.10.14]).

(iii) Let a ∈ C0,α(∂Ω) and b ∈ H1/2(∂Ω). Then the following chain of inequalities holds:

|ab|H1/2(∂Ω) =

(∫∫

∂Ω×∂Ω

|a(x)b(x) − a(y)b(y)|2
|x− y|N dHN−1

x dHN−1
y

) 1
2

≤
(∫∫

∂Ω×∂Ω

|a(x)− a(y)|2
|x− y|N |b(x)|2dHN−1

x dHN−1
y

) 1
2

+

(∫∫

∂Ω×∂Ω

|b(x)− b(y)|2
|x− y|N |a(y)|2dHN−1

x dHN−1
y

)1
2

≤ |a|C0,α(∂Ω)

(∫

∂Ω

(∫

∂Ω

dHN−1
y

|x− y|N−2α

)
|b(x)|2dHN−1

x

) 1
2

+ ‖a‖L∞(∂Ω)|b|H1/2(∂Ω).

Now as α ∈ (12 , 1), N − 2α < N − 1 so that

sup
x∈∂Ω

∫

∂Ω

dHN−1
y

|x− y|N−2α
<∞,

2The author is very grateful to the anonymous referee for pointing out the facts (iii) and (iv) and for providing short
proofs, thus enabling to improve the results from Section 3.
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thus yielding

|ab|H1/2(∂Ω) ≤ C|a|C0,α(∂Ω)‖b‖L2(∂Ω) + ‖a‖L∞(∂Ω)|b|H1/2(∂Ω),

for some constant C = C(N, ∂Ω, α), which finishes the proof.

(iv) Let s ∈ (0, 12), a, b ∈ H1/2(∂Ω) and put

p =

{
2N−2
2N−3 ∈ (1, 2), for N ≥ 3,

any exponent lying in (1, 2) if N = 2.

Then we claim that ab ∈W s,p(∂Ω). In fact, one has

|ab|W s,p(∂Ω) =

(∫∫

∂Ω×∂Ω

|a(x)b(x) − a(y)b(y)|p
|x− y|N−1+sp

dHN−1
x dHN−1

y

) 1
p

≤
(∫∫

∂Ω×∂Ω

|a(x)− a(y)|p
|x− y|N−1+sp

|b(x)|pdHN−1
x dHN−1

y

) 1
p

+

(∫∫

∂Ω×∂Ω

|b(x)− b(y)|p
|x− y|N−1+sp

|a(y)|pdHN−1
x dHN−1

y

) 1
p

≤ |a|H1/2(∂Ω)

(∫∫

∂Ω×∂Ω

|b(x)|
2p
2−p

|x− y|N+ 2
2−p

(sp−1)
dHN−1

x dHN−1
y

) 2−p
2p

+ |b|H1/2(∂Ω)

(∫∫

∂Ω×∂Ω

|a(y)|
2p
2−p

|x− y|N+ 2
2−p

(sp−1)
dHN−1

x dHN−1
y

) 2−p
2p

where we used Hölder inequality with exponents 2
p and 2

2−p in the last line. Now thanks to the

choice of p it holds {
2p
2−p = 2(N−1)

N−2 = 2∗1/2 for N ≥ 3,
2p
2−p ∈ [2,∞) if N = 2,

where 2∗1/2 is the critical (N − 1-dimensional) Sobolev exponent related to 1
2 and 2, so that the

continuous embedding

H1/2(∂Ω) ⊂ L
2p
2−p (∂Ω)

holds. On the other hand, as

2

2− p
(sp− 1) < −1

since s ∈ (0, 12), we deduce

sup
x∈∂Ω

∫

∂Ω

dHN−1
y

|x− y|N+ 2
2−p

(sp−1)
<∞.

These yield the conclusion

‖ab‖W s,p(∂Ω) ≤ C‖a‖H1/2(∂Ω)‖b‖H1/2(∂Ω)

for some constant C = C(N, ∂Ω, s, p).
�

5.3. Compactness in classes of convex sets. In this paragraph we gather some classical facts about
Hausdorff distance and compactness in some classes of convex bodies.

If C1 and C2 are non-empty compact subsets of RN , the Hausdorff distance dH(C1, C2) between C1

and C2 is defined as the quantity

dH(C1, C2) := max

{
sup
x∈C1

d(x,C2), sup
x∈C2

d(x,C1)

}

where d(·, ·) denotes the euclidean distance. The Hausdorff distance dH is a distance over the class of
non-empty compact sets of RN . We say that a sequence Aj ⊂ RN of non-empty compact sets converges
in the Hausdorff sense when it converges for dH .



FUGLEDE-TYPE ARGUMENTS FOR ISOPERIMETRIC PROBLEMS AND APPLICATIONS TO STABILITY 33

Proposition 5.3. Let D ∈ KN and 0 < V0 < |D| and set

C1 :=
{
K compact convex of RN ,K ⊂ D

}

C2 :=
{
K ∈ KN , |K| = V0, K ⊂ D

}

(i) The classes C1 and C2 are compact for the Hausdorff distance.
(ii) There exists ε = ε(V0,D) > 0 such that for each K ∈ C2 the inradius rK of K satisfies rK ≥ ε.

Proof. (i) The Blaschke selection Theorem states that the class C1 is compact for the Hausdorff
distance (see for instance [Sch14, Theorem 1.8.7]). Compactness of C2 then follows from the
fact that C2 is a closed subset of C1, thanks to the continuity of the volume for dH .

(ii) Let us show that the inradius mapping K ∈ KN 7→ rK is l.s.c. for dH . Let K ∈ KN and
Kj ∈ KN with Kj → K in Haudorff distance, and let r > 0 and x ∈ RN be such that
Br(x) ⋐ Int(K). Thanks to [LP23, Proposition 2.8, 2.], we have that Kj ⊃ Br(x) for large
enough j, so that lim inf rKj ≥ r. This is valid for any r < rK , so that lim inf rKj ≥ rK , thus

showing that K ∈ KN 7→ rK is l.s.c. Since furthermore C2 is compact for dH , we deduce that
K ∈ C 7→ rK has a minimum ε > 0, thus finishing the proof.

�

Proposition 5.4. Let B ⊂ RN be the centered unit ball. Let Kj ∈ KN be a sequence of convex bodies
such that |Kj∆B| → 0. Then Kj → B in the Hausdorff sense.

Proof. It suffices to show that there exists a bounded set D ⊂ RN such that Kj ⊂ D for each j,
since the Blaschke selection Theorem then applies to provide compactness of the sequence Kj for dH
and therefore the convergence of the whole sequence Kj to B. Fix j ∈ N; since |Kj∆B| → 0 we can
suppose j large enough so that Kj ∩B 6= ∅.

Suppose now that Kj 6⊂ B2(0). Since Kj ∩ B 6= ∅, by convexity of Kj we can find xj ∈ Kj with
|xj | = 2, which we will suppose (up to changing coordinates) to be written xj := x = (0, . . . , 0, 2).
Let x0 := (−1, 0 . . . , 0) and set x1 := (1, 0 . . . , 0), x2 = (0, 1, 0 . . . , 0) until xN−1 := (0, . . . , 0, 1, 0). Let
finally C := conv{x, x0, x1 . . . , xN−1} and some ball B′ ⋐ Int(C \B).

Let f : RN+1 → KN be defined by

f(y1, . . . , yN+1) = conv{y1, . . . , yN+1} =

{
N+1∑

i=1

λiyi,

N+1∑

i=1

λi = 1, λi ≥ 0

}

Then f is continuous for the Hausdorff distance, so that there exists ε > 0 such that if for all 0 ≤ i ≤
N−1, |zi−xi| ≤ ε then conv{x, z1, . . . , zN} ⊃ B′ (see for instance [LP23, Proposition 2.8, 2.]). Now, let
δ := mini{|B∩Bε(xi)|} > 0. Taking j sufficiently large so that |Kj∆B| < δ, this implies that for such j

there exists for each i = 0, . . . , N−1 some yji ∈ Kj∩Bε(xi). By convexity, Kj ⊃ conv{x, yj0 . . . , yjN−1},
which itself contains B′, thus giving |Kj \B| ≥ |B′|. This does not happen for sufficiently large j, and
as a consequence there exists j0 ≥ 0 such that Kj ⊂ B2(0) for j ≥ j0. This proves the claim. �
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