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RANDOMIZED DOUGLAS-RACHFORD METHODS FOR LINEAR

SYSTEMS: IMPROVED ACCURACY AND EFFICIENCY

DEREN HAN, YANSHENG SU, AND JIAXIN XIE

Abstract. The Douglas-Rachford (DR) method is a widely used method for finding a
point in the intersection of two closed convex sets (feasibility problem). However, the
method converges weakly and the associated rate of convergence is hard to analyze in
general. In addition, the direct extension of the DR method for solving more-than-two-
sets feasibility problems, called the r-sets-DR method, is not necessarily convergent. To
improve the efficiency of the optimization algorithms, the introduction of randomization
and the momentum technique has attracted increasing attention. In this paper, we propose
the randomized r-sets-DR (RrDR) method for solving the feasibility problem derived from
linear systems, showing the benefit of the randomization as it brings linear convergence in
expectation to the otherwise divergent r-sets-DR method. Furthermore, the convergence
rate does not depend on the dimension of the coefficient matrix. We also study RrDR
with heavy ball momentum and establish its accelerated rate. Numerical experiments are
provided to confirm our results and demonstrate the notable improvements in accuracy and
efficiency of the DR method, brought by the randomization and the momentum technique.

1. Introduction

1.1. Problem setup. Consider the large-scale system of linear equations

(1) Ax = b,

where A ∈ R
m×n and b ∈ R

m. The problem of solving the linear system (1) arises in various

fields of science and engineering, such as optimal control [60], machine learning [19], signal

processing [15], and partial differential equations [59]. Throughout this paper, we assume

that this linear system is consistent and refer to a certain solution of (1) as x∗.

Let a⊤1 , a
⊤
2 , . . . , a

⊤
m denote the rows of A and let b = (b1, . . . , bm)⊤. Then (1) can be

rewritten as the following feasibility problem

(2) Find x∗ ∈ C =
m
∩
i=1

Ci, where Ci := {x : 〈ai, x〉 = bi}.
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A classic approach to solving (2) is the projection method. However, it can be costly to

compute the projection onto the intersection C. So a more practical strategy is to succes-

sively project the current iterate onto a single feasible set Ci at each iteration, where Ci is

chosen in a certain manner. There are numerous such methods, for instance, the Dykstra’s

method [25], the von Neumann method [5], and the Douglas-Rachford (DR) method [22].

In this paper, we focus on the DR method.

1.2. Douglas-Rachford method. The Douglas-Rachford method [47] is a notable split-

ting approach for finding zeros of the sum of maximal monotone operators. It has al-

ready been applied to various optimization problems whose objective function is a sum of

proper closed convex functions; see [2,26,46,47]. Since feasibility problems are special cases

where the operators are normal cones, it implies that the DR method can be applied to

them. For any closed set Ci, let PCi
denote the orthogonal projection operator onto Ci

and RCi
:= 2PCi

− I denote the reflection operator over Ci, where I denotes the identity

operator. Specifically, when Ci = {x : 〈ai, x〉 = bi} is a hyperplane, for any x ∈ R
n we have

PCi
(x) = x− 〈ai, x〉 − bi

‖ai‖22
ai, and RCi

(x) = x− 2
〈ai, x〉 − bi

‖ai‖22
ai.

The canonical DR method is restricted to dealing with only two sets, namely, finding a

feasible point in the intersection of C1 and C2. Starting from a proper x0, it iterates with

the format

xk+1 =
1

2
(I +RC2RC1) (x

k),

which is illustrated in Figure 1. For this reason, the DR scheme is also known as reflect-

reflect-average [11] or averaged alternating reflections [6] in the literature.

x∗

xk

yk = RC1(x
k)

zk = RC2(y
k)

xk+1C2

C1

Figure 1. One step of the Douglas-Rachford method: Reflect-reflect-
average; xk+1 = 1

2(x
k + zk) = 1

2(I +RC2RC1)(x
k).
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However, when it comes to the m-sets (m > 2) convex feasibility problem, the direct

extension of the canonical Douglas-Rachford method xk+1 = 1
2(I + RCm · · ·RC2 RC1)(x

k)

may fail even in simple instances. See an example from Artacho, Borwein, and Tam [2] in

Figure 2. To overcome this problem, Borwein and Tam [10] devised the cyclic DR method

by using only two sets at a time

(3) xk+1 =
1

2
(I +RCtk+1

RCtk
)(xk),

where tk = (k mod m) + 1. This pattern can be extended by employing more sets at

each time, and such ideas are detailed as the cyclic r-sets-DR method [1, 17]. While the

conditions for weak convergence of the canonical DR method and the cyclic r-sets-DR

method have been established, it remains difficult to obtain effective theoretical estimates

of their convergence rate. Due to the complexity of the required computations, existing

estimates are not comparable to those of other state-of-the-art iterative methods [4, 6, 8,

14,29,48]. Given this situation, we intend to introduce modern optimization techniques to

improve the properties of the DR method.

x∗

xk = RC3RC2RC1(x
k) RC1(x

k)

RC2RC1(x
k)

C1

C2C3

Figure 2. Failure of the 3-sets-DR iteration: The iteration xk :=
(
1
2I +

1
2RC3RC2RC1

)k
(x0) may cycle.

1.3. Our contribution. In this paper, we investigate the DR method with randomization

for solving feasibility problems derived from linear systems. The main contributions of this

work are as follows.

1. We introduce the randomization technique to the r-sets-DR (RrDR) method for

solving the feasibility problem (2) and demonstrate that this approach is effective in

simplifying the analysis of the r-sets-DR method and endows the otherwise divergent

r-sets-DR method with a linear convergence. Specifically, we prove that the expected
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norm of the error E[‖xk − x∗‖22] of RrDR converges linearly, with the convergence

rate depending only on the singular values of A and the relaxation parameter of the

algorithm, but not on the size of A.

2. We then focus on a variant of the RrDR method with momentum (mRrDR), which

is inspired by the success of Polyak’s heavy ball momentum method [50, 53, 61].

Although the expected norm of the error E[‖xk − x∗‖22] of mRrDR also converges

linearly, we find that its convergence rate is weaker than that of the RrDR method.

Therefore, we also consider the norm of the expected error ‖E[xk − x∗]‖22, in terms

of which mRrDR shows superiority over RrDR. To the best of our knowledge, this

is the first study to investigate the momentum variants of the r-sets-DR method.

3. Furthermore, we also compare our DR-originated method with other state-of-the-

art iterative methods for linear systems. Moveover, we even show the superiority of

the mRrDR over the built-in function of Matlab pinv and lsqminnorm when the

number of the rows of A is sufficiently larger than the number of columns.

1.4. Notations. We use Z+ to denote the set of positive integers. For any random variables

ξ and ζ, we use E[ξ] and E[ξ|ζ = ζ0] to denote the expectation of ξ and the conditional

expectation of ξ given ζ = ζ0. For vector x ∈ R
n, we use xi, x

⊤, and ‖x‖2 to denote the

i-th entry, the transpose, and the Euclidean norm of x, respectively. For matrix A ∈ R
m×n,

we use ai, Aj , A
⊤, A†, ‖A‖2, ‖A‖F , Row(A), and Range(A) to denote the i-th row, j-th

column, the transpose, the Moore-Penrose pseudoinverse, the spectual norm, the Frobenius

norm, the row space, and the range space of A, repectively. We use A = UΣV ⊤ to denote

the singular value decomposition (SVD) of A, where U ∈ R
m×m, Σ ∈ R

m×n, and V ∈ R
n×n.

The nonzero singular values of A are σ1(A) ≥ σ2(A) ≥ . . . ≥ σt(A) := σmin(A) > 0, where

t is the rank of A and σmin(A) is the smallest nonzero singular value of A.

Throughout this paper, we use x∗ to denote a certain solution of the linear system (1),

and for any x0 ∈ R
n, we set x∗0 := A†b+ (I −A†A)x0 and x∗LN := A†b. We mention that x∗0

is the orthogonal projection of x0 onto the set {x ∈ R
n|Ax = b}, and x∗LN is the least-norm

solution of the linear system.

1.5. Organization. The remainder of the paper is organized as follows. In Section 2 we

will give a review of the related work. Section 3 and Section 4 describe randomized r-sets-

Douglas-Rachford method and its momentum variant, respectively. Section 5 reports the
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mentioned numerical experiments and Section 6 concludes the paper. Proofs of all main

results are provided in the appendix.

2. Related work

One of the most widely used projection solvers for (1) is the Kaczmarz method [42],

which can be recognized as a special kind of the Dykstra’s method. Starting from x0 ∈ R
n,

the canonical Kaczmarz method constructs xk+1 by

xk+1 = PCik
(xk) = xk − 〈aik , xk〉 − bik

‖aik‖22
aik ,

where ik is cyclically selected from {1, · · · ,m}. The sequence {xk}∞k=0 converges to x∗0 but

the convergence rate is hard to obtain. In the seminal paper [70], Strohmer and Vershynin

first investigated the randomized Kaczmarz (RK) method. Specifically, they proved that if

ik is selected with probability Pr(ik = i) =
‖ai‖

2
2

‖A‖2
F

, the method converges linearly

E[‖xk − x∗0‖22] ≤
(
1− σ2

min(A)

‖A‖2F

)k

‖x0 − x∗0‖22.

Subsequently, there has been a significant amount of work on the development of Kaczmarz-

type methods, with references available in [3, 23, 24, 33, 34, 39, 41, 45, 62, 67, 69, 74]. Among

these methods, we pay extra attention to the reflection Kaczmarz method studied by Steiner-

berger in [68], which constructs xk+1 via

xk+1 = RCik
(xk) = xk − 2

〈aik , xk〉 − bik
‖aik‖22

aik .

Although the generated sequence {xk}∞k=0 does not converge to x∗ as their distance ‖xk −
x∗‖2 ≡ ‖x0 − x∗‖2 remains constant, Steinerberger [68] proved the sublinear convergence

of the average 1
k

∑k
i=1 x

i. Moreover, the author noted that with a particular restart strat-

egy, the algorithm can reach the same complexity as the RK method. In fact, our work is

inspired by such reflection approaches [66,68], while instead of using the orthogonal projec-

tions or reflections only, we study the DR method which incorporates the reflection-average

approach.

Recently, Hu and Cai [40] studied the canonical randomized Douglas-Rachford (RDR)

method in a simple case where r = 2. They proved that E[xk] → x∗ as k → ∞, however,

without convergence rates analysis. We also note that such convergence does not lead to
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E[‖xk − x∗‖22] → 0. As an exemplification [72], consider xk = x∗ + rk, where rk are drawn

i.i.d. from N(0, I/
√
n). Such a sequence satisfies E[xk] = x∗, while E[‖xk − x∗‖22] ≡ 1.

In recent years, the momentum acceleration technique has been recognized as an ef-

fective approach to improving the performance of optimization methods. For instance,

the stochastic gradient descent (SGD) method [64] can be incorporated with the heavy

ball momentum [61], deriving the well-known stochastic heavy ball momentum (SHBM)

method [30, 65] with enhanced performance for solving large-scale optimization problems.

The RK method, as a special case of SGD (see Section 3), was studied in the momentum

framework [50, 53]. Specifically, Loizou and Richtárik [50] investigated the SHBM method

for solving stochastic problems that are reformulated from consistent linear systems, and

established the global, non-asymptotic linear convergence rates of the proposed methods.

In [34], Gower and Richtárik developed the sketch-and-project method, a versatile ran-

domized iterative method which includes the RK algorithm as a special case, for solving

consistent linear systems. The momentum variants of the sketch-and-project method has

been investigated in [51,63]. Enlightened by the success of the heavy ball momentum tech-

nique in these stochastic methods, we intend to employ such momentum acceleration in the

randomized DR method.

We note that another popular momentum acceleration is the Nesterov’s momentum

[57, 58], leading to the famous accelerated gradient descent (AGD) method [9]. Recently,

variants of Nesterov’s momentum has also been introduced for the acceleration of stochastic

optimization algorithms [44]. In [49], Liu and Wright applied the acceleration scheme of

Nesterov to the RK method. It has also been applied to the sampling Kaczmarz Motzkin

(SKM) algorithm for linear feasibility problems [54,55].

3. Randomized Douglas-Rachford method

In this section, we propose our randomized Douglas-Rachford method for solving linear

systems and analyze its convergence property. Actually, for the canonical DR algorithm,

there are a lot of modifications and relaxations in the literature. An important and use-

ful one is the approach studied by Eckstein and Bertsekas [26], known as the generalized

Douglas-Rachford (GDR) method

xk+1 =
(
(1− α)I + αRC2RC1

)
(xk), α ∈ (0, 1).
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It reduces to the DR method when α = 1
2 . The significance of introducing the relaxation

parameter α is that, in general, the performance of the optimization algorithms can be

practically accelerated under overrelaxation conditions (α > 1
2 ) [56,70].

Based on the variants of the DR method for m-sets condition discussed in Section 1.2,

we consider a more universal setting of the DR method, called the extrapolated r-sets-DR

method. At the k-th iteration, the algorithm chooses r sets Cjk1
, . . . , Cjkr

and updates xk

via

xk+1 =
(
(1− α)I + αRCjkr

RCjkr−1
. . . RCjk1

)
(xk),

where α ∈ (0, 1) is the extrapolation or relaxation parameter. The criterion of the selection

of the sets Cjk1
, · · · , Cjkr

is where the randomization is adopted. We prove that if the

set Ci is selected with probability proportional to ‖ai‖22, the method converges linearly in

expectation.

A description of the iterative procedure is presented in Algorithm 1. To demonstrate the

algorithm in a simple and straightforward form, the description is in terms of a1, . . . , am

and b = (b1, . . . , bm)⊤ rather than the operators RCi
, i = 1, . . . ,m. It can be seen that not

only the canonical RDR method is included in this framework with r = 2 and α = 1
2 , but

also the RK method can be recovered with r = 1 and α = 1
2 .

Additionally, we assume that rank(A) ≥ 2. Suppose that rank(A) = 1 and r is an even

number, now the extrapolated r-sets-DR method just reflects the iteration back and forth

through the same hyperplane. So the iteration sequence of the method satisfies x0 = x1 =

. . . = xk and the method fails. In fact, rank(A) = 1 is a trivial case where one can get the

solution by only one step of projection.

Finally, we give some comments on the connection between Algorithm 1 and the SGD

method [38,52,64]. The RK method can be viewed as SGD applied to the following least-

squares problem

(4) min
x∈Rn

f(x) :=
1

2m
‖Ax− b‖22 =

1

m

m∑

i=1

fi(x),

where fi(x) =
1
2 (〈ai, x〉 − bi)

2. For convenience, we assume that A ∈ R
m×n is normalized

such that ‖ai‖22 = 1. The SGD method solves (4) using unbiased estimates for the gradient

of the objective function. Particularly, one can employ ∇fi(x) since E[∇fi(x)] = ∇f(x).
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Algorithm 1 Randomized r-sets-Douglas-Rachford (RrDR) method

Input: A ∈ R
m×n, b ∈ R

m, r ∈ Z+, k = 0, extrapolation/relaxation parameter α ∈ (0, 1)
and an initial x0 ∈ R

n.
1: Set zk0 := xk.
2: for ℓ = 1, . . . , r do

3: Select jkℓ ∈ {1, . . . ,m} with probability Pr(row = jkℓ) =
‖ajkℓ

‖22

‖A‖2
F

.

4: Compute

zkℓ := zkℓ−1 − 2
〈ajkℓ , z

k
ℓ−1〉 − bjkℓ

‖ajkℓ‖
2
2

ajkℓ .

5: end for

6: Update
xk+1 := (1− α)xk + αzkr .

7: If the stopping rule is satisfied, stop and go to output. Otherwise, set k = k+1 and
return to Step 1.

Output: The approximate solution xk.

At the k-th iteration, SGD draws ∇fik(x) and updates xk via

(5) xk+1 = xk − λk∇fik(x
k),

where λk is an appropriately chosen stepsize. Since here ∇fik(x
k) =

(
〈aik , xk〉 − bik

)
aik ,

one can recover the RK method by applying SGD to the problem (4). Based on this fact,

we reconsider Algorithm 1 with α = 1
2 and r = 2, where we have zk1 = xk − 2∇fjk1 (x

k),

zk2 = zk1 − 2∇fjk2 (z
k
1 ), and hence

xk+1 = xk −∇fjk1 (x
k)−∇fjk2

(
xk − 2∇fjk1 (x

k)
)
.

In fact, the last term ∇fjk2

(
xk − 2∇fjk1 (x

k)
)

is known as the stochastic extragradient

(SEG) [32]. Therefore, we state that Algorithm 1 can be regarded as a combination of SGD

and SEG.

3.1. Convergence of iterates. In this subsection, we analyze the convergence properties

of Algorithm 1. The first result demonstrates that the expected norm of the error E[‖xk −
x∗0‖22] converges linearly.

Theorem 3.1. Suppose that the linear system Ax = b is consistent, α ∈ (0, 1), and x0 ∈ R
n

is an arbitrary initial vector. Let x∗0 = A†b + (I − A†A)x0. Then the iteration sequence
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{xk}∞k=0 generated by Algorithm 1 satisfies

E[‖xk − x∗0‖22] ≤
(
α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r)k

‖x0 − x∗0‖22.

Remark 3.2. If the initial vector x0 ∈ Row(A), then we have x∗0 = A†b = x∗LN . This

implies that the iteration sequence {xk}∞k=0 generated by Algorithm 1 now converges to the

least-norm solution x∗LN . Additionally, we note that the upper bound in Theorem 3.1 is

tight. Please refer to Remark 7.4 for more details.

Remark 3.3. We note that the almost sure convergence of the iterates of the stochastic

algorithms has been extensively studied [13, 20, 65]. By utilizing Lemma 2.1 in [13] and

Theorem 3.1, it can be easily deduced that the iteration sequence {xk}∞k=0 generated by

Algorithm 1 converges almost surely to x∗0.

Remark 3.4. Let α̃ := 2α ∈ (0, 2). If r = 1, then Algorithm 1 becomes xk+1 = xk −
α̃

〈aik ,x
k〉−bik

‖aik‖
2
2

aik and Theorem 3.1 leads to

E[‖xk − x∗0‖22] ≤
(
1− α̃(2− α̃)σ2

min(A)

‖A‖2F

)k

‖x0 − x∗0‖22,

which is exactly the conclusion obtained in [16, Theorem 1] for the RK method with relax-

ation.

We now make a comparison between our method and the RK method in terms of con-

vergence rate. Since the computational cost of Algorithm 1 at each step is about r-times

as expensive as that of the RK method, the comparison can be expressed as

(6)

(
1− 4α(1 − α)σ2

min(A)

‖A‖2F

)r

≤ α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r

.

Indeed, let p = 1 − 4α(1−α)σ2
min(A)

‖A‖2
F

and q = 1 − 2
σ2
min(A)

‖A‖2
F

, then for any fixed α ∈ (0, 1), one

can verify that

g(r) :=
α2 + (1− α)2

pr
+ 2α(1 − α)

(
q

p

)r

is monotonically increasing, i.e. g(r) ≥ g(1) = 1 so that (6) holds. This implies that the

RK method is theoretically better than Algorithm 1. Nevertheless, numerical experiments

demonstrate that, with an appropriate r > 1, Algorithm 1 is more efficient and requires

fewer row-actions than the RK method (see Section 5.2.2).

Next, let us consider the convergence of the norm of the expected error ‖E[xk − x∗0]‖22.
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Theorem 3.5. Suppose that the linear system Ax = b is consistent, x0 ∈ R
n is an arbitrary

initial vector, and the relaxation parameter satisfies

0 < α < min

{
1,

1

1−
(
1− 2σ2

max(A)/‖A‖2F
)r

}
.

Let x∗0 = A†b+ (I − A†A)x0. Then the iteration sequence {xk}∞k=0 generated by Algorithm

1 satisfies

‖E[xk − x∗0]‖22 ≤
(
(1− α) + α

(
1− 2

σ2
min(A)

‖A‖2F

)r)2k

‖x0 − x∗0‖22.

Since (1 − α) + α
(
1− 2σ2

min(A)/‖A‖2F
)r ∈ (0, 1), we know that ‖E[xk − x∗0]‖22 → 0 as

k → ∞. One may be confused by the similarity between the quantity ‖E[xk − x∗0]‖22 in

Theorem 3.5 and E[‖xk − x∗0‖22] in Theorem 3.1. Actually, the convergence of the former is

much weaker than that of the later. Supposing E[x] is bounded for all x ∈ R
n, by definition,

we have

E[‖x− x∗0‖22] = ‖E [x− x∗0]‖22 + E
[
‖x− E[x]‖22

]
,

which implies that the convergence of E[‖x − x∗0‖22] leads to that of ‖E [x− x∗0]‖22, but not
vice versa. The reason why it is also considered is that we aim to systematically compare

RrDR method with its momentum variant on both quantities in Section 4.

3.2. Convergence direction. Inspired by the recent work of Steinerberger [67], in this

subsection we consider the convergence direction of Algorithm 1. The following result

shows different convergence rates along different singular vectors of A.

Theorem 3.6. Suppose that x∗ is a solution of the linear system Ax = b and α ∈ (0, 1).

For any vi being the (right) singular vector of A associated to the singular value σi(A), the

iteration sequence {xk}∞k=0 generated by Algorithm 1 satisfies

E

[〈
xk − x∗, vi

〉]
=

(
(1− α) + α

(
1− 2σ2

i (A)

‖A‖2F

)r)k 〈
x0 − x∗, vi

〉
.

Remark 3.7. Unlike the cases in Theorem 3.1 and 3.5, x∗ in Theorem 3.6 is an arbitrary

solution of the linear system. Certainly, one can take x∗0. We also note that such con-

vergence is weaker than that of E[‖xk − x∗‖22]. Consider the example given in Section 1.2

where xk = x∗ + rk with rk being drawn i.i.d. from N(0, I/
√
n). Such a sequence satisfies

E
[〈
xk − x∗, vi

〉]
= 0, while E[‖xk − x∗‖22] ≡ 1.
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Theorem 3.6 exhibits that the RrDR method converges exponentially along different

singular directions of A at different rates depending on the singular values. It accounts for

the typical semiconvergence phenomenon. That is, the residual ‖Axk − b‖22 decays faster at

the beginning, but then gradually stagnates. Recently, the semiconvergence phenomenon

has been exploited by Wu and Xiang [73] for the randomized row iterative method [34].

They generalized the study in [41] and split the total error into the low- and high-frequency

solution spaces. In the literature, several acceleration techniques have been proposed to

avoid semiconvergence phenomenon, for instance, the weighted version [69] and momentum

acceleration technique [50]. In this paper, we will introduce the momentum acceleration

technique to the RrDR method.

4. Momentum acceleration

In this section, we provide the momentum induced RrDR (mRrDR) method for solv-

ing feasibility problem derived from linear systems. First, we give a short description

of the heavy ball momentum method. Consider the unconstrained minimization problem

min
x∈Rn

f(x), where f is a differentiable convex function. To solve the problem, the gradient

descent method with momentum (HBM) of Polyak [61] takes the form

(7) xk+1 = xk − α∇f
(
xk
)
+ β

(
xk − xk−1

)
,

where α > 0 is the stepsize, β is the momentum parameter, and ∇f
(
xk
)
denotes the

gradient of f at xk. When β = 0, the method reduces to the gradient descent method. If

the full gradient in (7) is replaced by the unbiased estimate of the gradient, then it becomes

the stochastic HBM (SHBM) method. In [31], the authors showed that the deterministic

HBM method converges globally and sublinearly for smooth and convex functions. For the

SHBM, one may refer to [30,65] for more discussions.

Inspired by the success of the SHBM method, in this section we incorporate the HBM into

our RrDR method, obtaining the mRrDR method described in Algorithm 2. To the best

of our knowledge, this is the first time that momentum variants of the r-sets-DR method

are investigated. In the rest of this section, we will study the convergence properties of the

proposed mRrDR method.

4.1. Convergence of iterates. We have the following convergence result for Algorithm 2.
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Algorithm 2 Randomized r-sets-Douglas-Rachford with momentum (mRrDR)

Input: A ∈ R
m×n, b ∈ R

m, r ∈ Z+, k = 1, extrapolation/relaxation parameter α, the
heavy ball momentum parameter β, and initial vectors x1, x0 ∈ R

n.
1: Set zk0 := xk.
2: for ℓ = 1, . . . , r do

3: Select jkℓ ∈ {1, . . . ,m} with probability Pr(row = jkℓ) =
‖ajkℓ

‖22

‖A‖2
F

.

4: Compute

zkℓ := zkℓ−1 − 2
〈ajkℓ , z

k
ℓ−1〉 − bjkℓ

‖ajkℓ‖
2
2

ajkℓ .

5: end for

6: Update
xk+1 := (1− α)xk + αzkr + β(xk − xk−1).

7: If the stopping rule is satisfied, stop and go to output. Otherwise, set k = k+1 and
return to Step 1.

Output: The approximate solution xk.

Theorem 4.1. Suppose that the linear system Ax = b is consistent, x1 = x0 ∈ R
n are

arbitrary initial vectors, and x∗0 = A†b+ (I −A†A)x0. Assume 0 < α < 1, β ≥ 0 and that

γ1 := α2 + (1− α)2 + (2α(1− α) + 3αβ)

(
1− 2

σ2
min(A)

‖A‖2F

)r

+ 2β2 + 3(1− α)β

and

γ2 := 2β2 + (1− α)β + αβ

(
1− 2

σ2
min(A)

‖A‖2F

)r

satisfy γ1 + γ2 < 1. Then the iteration sequence {xk}∞k=0 generated by Algorithm 2 satisfies

E[‖xk+1 − x∗0‖22] ≤ qk(1 + τ)‖x0 − x∗0‖22, ∀ k ≥ 0,

where q =
γ1+

√
γ2
1+4γ2

2 and τ = q − γ1 ≥ 0. Moreover, γ1 + γ2 ≤ q < 1.

We here provide one approach to choose the parameters α and β. Specifically, letting

τ1 := 4(1− α) + 4α

(
1− 2

σ2
min(A)

‖A‖2F

)r

and τ2 := 2α(1 − α)

(
1−

(
1− 2

σ2
min(A)

‖A‖2F

)r)
,

if the parameters α and β are chosen such that

0 < α < 1 and 0 ≤ β <
1

8

(√
τ21 + 16τ2 − τ1

)
,

then it can be verified that γ1 + γ2 < 1.

Next, we compare the convergence rates obtained in Theorems 3.1 and 4.1. From the

definition of γ1 and γ2, we know that the convergence rate q(β) in Theorem 4.1 can be
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viewed as a function of β. Since β ≥ 0, we have τ2 ≥ 0. As γ1 + γ2 < 1, it implies that

γ1γ2 + γ22 = γ2(γ1 + γ2) ≤ γ2. Therefore, γ
2
1 + 4γ2 ≥ (γ1 + 2γ2)

2 and hence,

q(β) ≥ γ1 + γ2 = 4β2 + τ1β − τ2 + 1 ≥ 1− τ2

= q(0) = α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r

.

Clearly, the lower bound on q is an increasing function of β, which implies that for any β

the rate is always inferior to that of Algorithm 1 in Theorem 3.1.

4.2. Accelerated linear rate of expected iterates. To theoretically exhibit the en-

hancement of the heavy ball momentum, we now show that with a proper selection of the

relaxation parameter α and momentum parameter β, Algorithm 2 enjoys an accelerated

linear convergence rate in terms of ‖E[xk − x∗0]‖22.

Theorem 4.2. Suppose that the linear system Ax = b is consistent, x1 = x0 ∈ R
n are

arbitrary initial vectors, and x∗0 = A†b+(I−A†A)x0. Let {xk}∞k=0 be the iteration sequence

in Algorithm 2. Assume that the relaxation parameter

0 < α < min

{
1,

1

1−
(
1− 2σ2

max(A)/‖A‖2F
)r

}

and the momentum parameter
(
1−

√

α

(
1−

(
1− 2

σ2
min(A)

‖A‖2F

)r))2

< β < 1.

Then there exists a constant c > 0 such that

‖E[xk − x∗0]‖22 ≤ βkc.

Remark 4.3. Note that the convergence factor in Theorem 4.2 is equal to the value of

the momentum parameter β. Theorem 3.5 shows that Algorithm 1 (without momentum)

converges with iteration complexity

O
(
log(ε−1)

(
α
(
1−

(
1− 2σ2

min(A)/‖A‖2F
)r))−1

)
.

In contrast, based on Theorem 4.2 we have, for β =
(
1−

√
0.99α

(
1−

(
1− 2σ2

min(A)/‖A‖2F
)r))2

,

the iteration complexity of Algorithm 2 is

O

(
log(ε−1)

√(
0.99α

(
1−

(
1− 2σ2

min(A)/‖A‖2F
)r))−1

)
,

which is a quadratic improvement on the above conclusion.
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5. Numerical experiments

In this section, we study the computational behavior of the two proposed algorithms,

RrDR and mRrDR. In particular, we focus mainly on the evaluation of the performance of

mRrDR. We compare mRrDR with some of the state-of-the-art methods, namely, RK [70],

RGS [35, 45], and RP-ADMM [71]. Moreover, we also compare the implementation of

mRrDR with the built-in function pinv and lsqminnorm in Matlab.

All the methods are implemented in Matlab R2019b for Windows 10 on a desktop PC

with the Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz and 16 GB memory.

5.1. Numerical setup. We mainly use the following three types of data for our test.

Synthetic data. For synthetic data, given different values of ‖A‖2F /σ2
min(A), we generate

a group of matrices A. We then generate the exact solution x∗ by x∗ = (A⊤w)/‖A⊤w‖2
with a random w ∈ R

m to ensure that it lies in the Row(A) and b = Ax∗ to ensure the

consistency of the system. The synthetic data are designed to investigate the influence of

the rate coefficient on the convergence process.

Real-world data. The real-world data are available via the SuiteSparse Matrix Collec-

tion [43] and LIBSVM [18]. In our experiments, we only use the matrices A of the datasets.

If m < n, then we use A⊤ as the coefficient matrix. Similarly, to ensure the consistency

of the linear system, we first generate the solution by x∗ = (A⊤w)/‖A⊤w‖2 and then set

b = Ax∗.

Average consensus. Suppose G = (V,E) is an undirected connected network with the

vertex set V = {v1, v2, · · · , vn} and the edge set E (|E| = m). In the average consensus

(AC) problem, each vertex vi ∈ V owns a private value ci ∈ R, and the goal of the problem

is to compute the average of the private values of each vertex of the network, c̄ := 1
n

∑
i ci,

where only communication between neighbours is allowed. The problem is fundamental

in distributed computing and multiagent systems [12, 51], and has many applications such

as PageRank, coordination of autonomous agents, and rumor spreading in social networks.

Recently, under an appropriate setting, the famous randomized pairwise gossip algorithm

[12] for solving the AC problem has been proved to be equivalent to the RK method. One

may refer to [51] for more details.
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For the synthetic data and real data, the initial vector is chosen as x0 = 0 (or x1 = x0 = 0

for mRrDR). For the AC problem, the initial vector is chosen as x0 = c (or x1 = x0 = c for

mRrDR). The computations are terminated once the relative solution error (RSE), defined

as RSE = ‖xk − x∗0‖22/‖x0 − x∗0‖22, is less than a specific error tolerance or the number of

iteration exceeds a certain limit. All the results below are averaged over 10 trials.

5.2. Optimal selection of the parameters. As observed in the convergence theorems

presented in sections 3 and 4, the parameters of RrDR and mRrDR have an influence on

the convergence rate. In this subsection, we aim to find relatively favorable choices via

numerical tests. All computations are terminated once RSE < 10−12.

5.2.1. Choice of α and β. In this subsection, we demonstrate the computational behavior of

mRrDR with respect to different parameters α and β. (Note that for β = 0 it is equivalent

to RrDR.) We measure the performance of the method with respect to the number of

iterations. From Figures 3, 4, 5, and 6, it is obvious that the introduction of momentum

term leads to an improvement in the performance of RrDR. More specifically, from the

figures we observe the following.

1. The momentum technique can improve the convergence behavior of the method.

For any fixed value of α, with appropriate momentum parameters 0 < β ≤ 0.9,

mRrDR typically converges faster than its non-momentum variant RrDR.

2. For the RrDR method (β = 0), a larger value of α can help achieve a faster conver-

gence. This is consistent with the observation in the literature that the overrelax-

ation parameter is more advisable for better performance [56,70].

3. For different values of ‖A‖2F /σ2
min(A) (well- or ill-conditioned linear systems), and

different choices of r, (α, β) = (0.5, 0.4) is typically a good option for a sufficient

fast convergence of mRrDR.

5.2.2. Choice of r. In this subsection, we investigate the computational performance of

mRrDR with respect to the parameter r. We plot the performance of the method in terms

of the number of row actions. Figures 7 and 8 illustrate our experimental results. Note

again that β = 0 represents the RrDR method and r = 1 represents the RK method.
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Figure 3. Performance of mRrDR with different parameters α and β for
consistent linear systems with Gaussian matrix A, where r = 2. The ti-
tle of each plot indicates the dimensions of the matrix A and the value of
‖A‖2F /σ2

min(A).
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Figure 4. Performance of mRrDR with different parameters α and β for
consistent linear systems with Gaussian matrix A, where r = 3. The ti-
tle of each plot indicates the dimensions of the matrix A and the value of
‖A‖2F /σ2

min(A).
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Figure 5. Performance of mRrDRwith different parameters α and β on real
data from SuiteSparse Matrix Collection [43]. Franz1: (m,n) = (2240, 768),
WorldCites: (m,n) = (315, 100), nemsafm: (m,n) = (2348, 334), where
r = 3.
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Figure 6. Performance of mRrDR with different parameters α and β on
the AC problem, where r = 2.

It is can be seen that a larger r may lead to slower convergence and r ∈ [1, 10] is a good

option. Besides, with an appropriate r, the mRrDR method may converge faster than the

mRK method (r = 1). For example, the first row in Figure 7 shows that mRrDR with r = 4

performs better than the mRK method.

5.3. Comparison to the cyclic DR method. In this subsection, we compare the mRrDR

method to the cyclic DR method (3) to demonstrate the effectiveness of randomization.

During the test, mRrDR is implemented with r = 2 and (α, β) = (0.5, 0) or (α, β) =

(0.5, 0.4). For the cyclic DR method (3), we set r = 2 and α = 0.5. From Figure 9, we can

observe the significant improvement in efficiency that randomization and momentum bring.

5.4. Comparison to the other methods. We now compare mRrDR to other related

methods for solving linear systems, including RK [70], randomized Gauss-Seidel (RGS)
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Figure 7. Performance of mRrDR with different values of r. r = 1 refers
to the mRK method. The parameters α = 0.5, β = 0. The title of each plot
indicates the test data. The number of row actions is employed to illustrate
the evolutions for the different settings of mRrDR.
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Figure 8. Performance of mRrDR with different values of r. r = 1 refers to
the mRK method. The parameters α = 0.5, β = 0.4. The title of each plot
indicates the dimensions of the matrix A and the value of ‖A‖2F /σ2

min(A).
The number of row actions is employed to illustrate the evolutions for the
different settings of mRrDR.
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Figure 9. Comparison of mRrDR (r = 2, α = 0.5) and the cyclic DR
(α = 0.5), where Franz1 from SuiteSparse Matrix Collection [43], aloi and
heart-scale from LIBSVM [18]. We stop the algorithms if RSE < 10−12

or if the number of iteration exceeds a certain limit.

method [35, 45], and randomly permuted alternating direction method of multipliers (RP-

ADMM) [71]. The RGS, also known as the randomized coordinate descent (RCD) method,

updates with the following iterative strategy:

xk+1 := xk −
A⊤

jk
(Axk − b)

‖Ajk‖22
ejk ,

where jk ∈ {1, 2, . . . , n} is selected with probability Pr(jk = j) =
‖Aj‖22
‖A‖2

F

, and Aj , j = 1, . . . , n

represent the columns of A and ej is a column vector with the j-th entry being one and all

other entries being zero.
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The RP-ADMM tackles the following constrained problem

min
x∈Rn

0 subject to Ax = b,

whose augmented Lagrangian function is defined by

L(x;µ) := −µ⊤(Ax− b) +
ρ

2
‖Ax− b‖22,

where ρ > 0 is a given penalty parameter and µ denotes the Lagrangian multiplier. Then

the RP-ADMM method proceeds as follows: Given an approximation (xk, µk), it picks a

permutation σ of {1, . . . , n} uniformly at random, and constructs (xk+1, µk+1) from (xk, µk)

via

(xk+1)σ(i) = argmin
xσ(i)

L((xk+1)σ(1), . . . , (x
k+1)σ(i−1), xσ(i), (x

k)σ(i+1), . . . , (x
k)σ(n);µ

k)

and µk+1 = µk − (Axk+1 − b). We note that the alternating direction method of multipliers

(ADMM) is equivalent to the DR method [26,36] in the sense that the sequences generated

by both algorithms coincide with a careful choice of starting point [7, Remark 3.14].

Since there are seldom differences in the numerical performance for r ∈ [1, 10], here we

only show the cases where r = 2. For the RP-ADMM method, during our test, we set ρ = 1

and the initial vector µ0 = 0. Figures 10 and 11 summarize the results of the experiment.

It can be seen that mRrDR is more efficient than the other considered methods.
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Figure 10. Performance of RK, mRrDR, RGS, and RP-ADMM for syn-
thetic data. We stop the algorithms if RSE < 10−12 or if the number of
iterations exceeds a certain limit.

5.5. Comparison to pinv and lsqminnorm. In this subsection, we compare the perfor-

mance of mRrDR with Matlab functions pinv and lsqminnorm. To easily obtain the least-

norm solution, we first generate full column rank coefficient matrices as follows. For given
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Figure 11. Performance of RK, mRrDR, RGS, and RP-ADMM for real
world data and the AC problem, where crew1 and model1 from SuiteSparse
Matrix Collection [43], ijcnn1 from LIBSVM [18]. We stop the algorithms
if RSE < 10−12 or if the number of iterations exceeds a certain limit.

m ≥ n, and κ > 1, we set A = UDV ⊤, where U ∈ R
m×n,D ∈ R

n×n, and V ∈ R
n×n. Us-

ing Matlab notation, these matrices are generated by [U,∼]=qr(randn(m,n),0), [V,∼]=
qr(randn(n,n),0), and D=diag(1+(κ-1).*rand(n,1)). Note that the condition number

of A is now upper bounded by κ. Next, we generate the solution vector x∗ by setting

x∗ = randn(n, 1), and then we calculate b = Ax∗ to obtain the right-hand side vector of the

linear system. It can be observed that x∗ is the desired unique solution of the constructed

linear system.

Figure 12 illustrates our experimental results with fixed n. The mRrDR method is

implemented with r = 1 and (α, β) = (0.5, 0.4), or r = 2 and (α, β) = (0.5, 0.4). We

terminate the mRrDR method if the accuracy of its approximate solution is comparable

to that of the approximate solution obtained using pinv and lsqminnorm. In Figure 12,

we plot the computing time against the increasing number of rows. It can be observed

that when the number of rows exceeds certain thresholds, mRrDR outperforms pinv and

lsqminnorm. We can also find that the performance of the mRrDR method is more sensitive

to the increase of the condition number κ, as the convergence bound implies.
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Figure 12. Figures depict the CPU time (in seconds) vs increasing number
of rows. The title of each plot indicates the values of n and κ.

6. Concluding remarks

In this work, we studied the r-sets-Douglas-Rachford method enriched with random-

ization and heavy ball momentum for solving linear systems. We proved global linear

convergence rates of the method as well as an accelerated linear rate in terms of the norm

of expected error. Our convergence analysis showed the effectiveness of randomization in

simplifying the analysis of the DR method and making the divergent r-sets-DR method con-

verge linearly. We corroborated our theoretical results with extensive experimental testing

and confirmed the better performance of the mRrDR method.

There are still many possible future venues of research. A bunch of advanced schemes

for the selection of sets to project have been investigated in the literature of the Kaczamarz

method, such as the greedy selection rule [3], its weighted variant in [69] and the approach

with sampling in [21]. These criteria are convenient to be adopted to the DR context for

further improvement in efficiency. Moreover, the linear systems arising in practical problems

are very likely to be inconsistent due to noise, which contradicts the basic assumption in

this paper. The extended randomized Kaczmarz [23, 75] was proposed for such cases. It

should also be a valuable topic to explore the extensions of DR methods for inconsistent

linear systems.
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[34] Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM J.
Matrix Anal. Appl., 36(4):1660–1690, 2015.

[35] Michael Griebel and Peter Oswald. Greedy and randomized versions of the multiplicative Schwarz
method. Linear Algebra Appl., 437(7):1596–1610, 2012.

[36] DeRen Han. A survey on some recent developments of alternating direction method of multipliers. J.
Oper. Res. Soc. China, 10(1):1–52, 2022.

[37] Deren Han and Jiaxin Xie. On pseudoinverse-free randomized methods for linear systems: Unified
framework and acceleration. arXiv preprint arXiv:2208.05437, 2022.

[38] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In Proc. 33th Int. Conf. Machine Learning, pages 1225–1234. PMLR, 2016.

[39] Ahmed Hefny, Deanna Needell, and Aaditya Ramdas. Rows versus columns: Randomized Kaczmarz or
Gauss-Seidel for ridge regression. SIAM J. Sci. Comput., 39(5):S528–S542, 2017.

[40] Leyu Hu and Xingju Cai. Convergence of a randomized Douglas-Rachford method for linear system.
Numer. Algebra Control Optim., 10(4):463–474, 2020.

[41] Yuling Jiao, Bangti Jin, and Xiliang Lu. Preasymptotic convergence of randomized Kaczmarz method.
Inverse Probl., 33(12):125012, 2017.
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7. Appendix. Proof of the main results

For any i ∈ {1, . . . ,m}, we set

TCi
:= I − 2

aia
⊤
i

‖ai‖22
.

It is easy to verify that TCi
TCi

= I, and thus for any y ∈ R
n, ‖TCi

y‖2 = ‖y‖2.

7.1. Proof of Theorems 3.1 and 4.1. We first prove some crucial facts about the algo-

rithms.

Lemma 7.1. Let {zkr }∞k=0 be the iteration sequence generated by Algorithm 1 or Algorithm

2. Then

‖zkr − x∗‖2 = ‖xk − x∗‖2.

Proof. Note that

(8)

zkr − x∗ =zkr−1 − x∗ − 2
〈ajkr , zkr−1〉 − bjkr

‖ajkr ‖22
ajkr = zkr−1 − x∗ − 2

〈ajkr , zkr−1 − x∗〉
‖ajkr ‖22

ajkr

=

(
I − 2

ajkra
⊤
jkr

‖ajkr ‖22

)
(zkr−1 − x∗) = TCjkr

(zkr−1 − x∗)

=TCjkr
TCjkr−1

· · ·TCjk1
(zk0 − x∗) = TCjkr

TCjkr−1
· · ·TCjk1

(xk − x∗).

Note that for any y ∈ R
n, it holds that ‖y‖2 = ‖TCjkr

TCjkr−1
· · ·TCjk1

y‖2. Hence, we have

‖zkr − x∗‖2 = ‖TCjkr
TCjkr−1

· · ·TCjk1
(xk − x∗)‖2 = ‖xk − x∗‖2

as desired. �

Lemma 7.2. Let {xk}∞k=0 and {zkr }∞k=0 be the sequences generated by Algorithm 1 or Algo-

rithm 2. Then

‖(1− α)xk + αzkr − x∗‖22 =
(
α2 + (1− α)2

)
‖xk − x∗‖22 + 2α(1 − α)〈zkr − z∗, xk − x∗〉.

Proof. We have

‖(1− α)xk + αzkr − x∗‖22 =‖(1− α)(xk − x∗) + α(zkr − x∗)‖22
=‖(1− α)(xk − x∗)‖22 + 2α(1 − α)〈xk − x∗, zkr − x∗〉+ ‖α(zkr − x∗)‖22
=
(
α2 + (1− α)2

)
‖xk − x∗‖22 + 2α(1 − α)〈zkr − x∗, xk − x∗〉,

where the last equality follows from Lemma 7.1. �
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Lemma 7.3. Let {xk}∞k=0 be the sequences generated by Algorithm 1 or Algorithm 2 (x1 =

x0) and x∗0 = A†b+ (I −A†A)x0. Then xk − x∗0 ∈ Row(A).

Proof. Since Algorithm 1 is a special case of Algorithm 2 with β = 0, we only concentrate

on the proof for Algorithm 2. We first prove that xk ∈ x0 + Row(A) for any k ≥ 0 by

induction. Initially, x1 = x0 ∈ x0+Row(A). If xk ∈ x0+Row(A) holds for all k ≤ t(t ≥ 1),

then

ztr = xt − 2
〈ajt1 , x

t − x∗〉
‖ajt1‖

2
2

ajt1 − · · · − 2
〈ajtr , ztr−1 − x∗〉

‖ajtr‖22
ajtr ∈ x0 +Row(A),

and xt − xt−1 ∈ Row(A). Therefore,

xt+1 = (1− α)xt + αztr + β(xt − xt−1)

∈ (1− α)(x0 +Row(A)) + α(x0 +Row(A)) + Row(A)

= x0 +Row(A).

Thus xk ∈ x0 + Row(A) holds for all k ≥ 0. Note that x∗0 = A†b + (I − A†A)x0 =

A†(b−Ax0) + x0 ∈ x0 +Row(A), we arrive at the conclusion xk − x∗0 ∈ Row(A). �

Now we are ready to prove the main results. In fact, Theorem 3.1 can be directly derived

from Theorem 4.1 by letting β = 0. We include an individual proof of Theorem 3.1 for

readability, meanwhile showing the tightness of the convergence rate in a clear way.

Proof of Theorem 3.1. From Lemma 7.2 and taking the conditional expectation under the

probability Pr(row = jkℓ) =
‖ajkℓ

‖22

‖A‖2
F

, we get

(9)

E
jkr ,...,jk1

[
‖xk+1 − x∗0‖22|xk

]
= E

jkr ,...,jk1

[
‖(1 − α)xk + αzkr − x∗0‖22|xk

]

=
(
α2 + (1− α)2

)
‖xk − x∗0‖22 + 2α(1 − α) E

jkr ,...,jk1

[〈
TCjkr

TCjkr−1
. . . TCjk1

(xk − x∗0), x
k − x∗0

〉]

=
(
α2 + (1− α)2

)
‖xk − x∗0‖22 + 2α(1 − α)

〈
E
jkr

[TCjkr
] . . . E

jk1

[TCjk1
](xk − x∗0), x

k − x∗0

〉

=
(
α2 + (1− α)2

)
‖xk − x∗0‖22 + 2α(1 − α)

〈(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0), x
k − x∗0

〉
.

The first equality follows from Step 6 in Algorithm 1; the second equality follows from (8);

the third equality follows from the linearity of the expectation and the independence of



28 DEREN HAN, YANSHENG SU, AND JIAXIN XIE

jk1 , . . . , jkr ; the last equality follows from the fact that for any ℓ ∈ {1, . . . , r},

(10) E
jkℓ

[
TCjkℓ

]
=

m∑

i=1

‖ai‖22
‖A‖2F

(
I − 2

aia
⊤
i

‖ai‖22

)
= I − 2

A⊤A

‖A‖2F
.

By Lemma 7.3, we know that xk − x∗0 ∈ Row(A) = Range(A⊤). Then we have

(11) (xk − x∗0)
⊤

(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0) ≤
(
1− 2

σ2
min(A)

‖A‖2F

)r

‖xk − x∗0‖22,

which implies

E
jkr ,...,jk1

[
‖xk+1 − x∗0‖22|xk

]
≤
(
α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r)
‖xk − x∗0‖22.

Taking the expectation over the entire history we have

E[‖xk+1 − x∗0‖22] ≤
(
α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r)
E

[
‖xk − x∗0‖22

]
.

By induction on the iteration index k, we can obtain the desired result. �

Remark 7.4. If σ1(A) = σmin(A), that is, all nonzero singular values of A are equal, then

the inequality in (11) becomes equality. As a result, the upper bound in Theorem 3.1 is also

equality, indicating that the upper bound in Theorem 3.1 is tight.

To prove Theorem 4.1, the following result is required.

Lemma 7.5 ( [37], Lemma 8.1). Fix F 1 = F 0 ≥ 0 and let {F k}k≥0 be a sequence of

nonnegative real numbers satisfying the relation

F k+1 ≤ γ1F
k + γ2F

k−1, ∀ k ≥ 1,

where γ2 ≥ 0, γ1 + γ2 < 1 and at least one of the coefficients γ1, γ2 is positive. Then the

sequence satisfies the relation

F k+1 ≤ qk(1 + τ)F 0, ∀ k ≥ 0,

where q =
γ1+

√
γ2
1+4γ2

2 and τ = q− γ1 ≥ 0. Moreover, q ≥ γ1 + γ2, with equality if and only

if γ2 = 0.

Now, we are going to prove Theorem 4.1.
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Proof of Theorem 4.1. First, we have

(12)

‖xk+1 − x∗0‖22 = ‖(1− α)xk + αzkr + β(xk − xk−1)− x∗0‖22
= ‖(1 − α)xk + αzkr − x∗0‖22︸ ︷︷ ︸

a○

+2β〈(1 − α)xk + αzkr − x∗0, x
k − xk−1〉︸ ︷︷ ︸

b○

+β2‖xk − xk−1‖22︸ ︷︷ ︸
c○

.

We now analyze the three expressions a○, b○, c○ separately. From Lemma 7.2, we have

a○ =
(
α2 + (1− α)2

)
‖xk − x∗0‖22 + 2α(1 − α)〈zrk − x∗0, x

k − x∗0〉.

We now bound the second expression. First, we have

b○ =2(1 − α)β〈xk − x∗0, x
k − xk−1〉+ 2αβ〈zkr − x∗0, x

k − xk−1〉

=2(1 − α)β〈xk − x∗0, x
k − x∗0〉+ 2(1 − α)β〈xk − x∗0, x

∗
0 − xk−1〉+ 2αβ〈zkr − x∗0, x

k − xk−1〉

=2(1 − α)β‖xk − x∗0‖22 + 2(1 − α)β〈xk − x∗0, x
∗
0 − xk−1〉+ 2αβ〈zkr − x∗0, x

k − xk−1〉.

Noting that 2〈xk − x∗0, x
∗
0 − xk−1〉 ≤ ‖xk − x∗0‖22 + ‖xk−1 − x∗0‖22, which implies

b○ ≤ 3(1 − α)β‖xk − x∗0‖22 + (1− α)β‖xk−1 − x∗0‖22 + 2αβ〈zkr − x∗0, x
k − xk−1〉.

The third expression can be bounded by

c○ ≤ 2β2‖xk − x∗0‖22 + 2β2‖xk−1 − x∗0‖22.

By substituting all the bounds into (12), we obtain

‖xk+1 − x∗0‖22 ≤
(
α2 + (1− α)2

)
‖xk − x∗0‖22 + 2α(1 − α)〈zkr − x∗0, x

k − x∗0〉

+ 3(1− α)β‖xk − x∗0‖22 + (1− α)β‖xk−1 − x∗0‖22 + 2αβ〈zkr − x∗0, x
k − xk−1〉

+ 2β2‖xk − x∗0‖22 + 2β2‖xk−1 − x∗0‖22
≤
(
α2 + (1− α)2 + 3(1− α)β + 2β2

)
‖xk − x∗0‖22 +

(
(1− α)β + 2β2

)
‖xk−1 − x∗0‖22

+ 2α(1 − α)〈zkr − x∗0, x
k − x∗0〉+ 2αβ〈zkr − x∗0, x

k − xk−1〉
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Now taking the conditional expectation under the probability Pr(row = jkℓ) =
‖ajkℓ

‖22

‖A‖2
F

, we

get

(13)

E
[
‖xk+1 − x∗0‖22|xk

]
≤
(
α2 + (1− α)2 + 3(1− α)β + 2β2

)
‖xk − x∗0‖22

+
(
(1− α)β + 2β2

)
‖xk−1 − x∗0‖22

+ 2α(1 − α)

〈(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0), x
k − x∗0

〉

︸ ︷︷ ︸
d○

+ 2αβ

〈(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0), x
k − xk−1

〉

︸ ︷︷ ︸
e○

.

Similar to the argument in (11), we know that

d○ ≤ 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r

‖xk − x∗0‖22.

For expression e○, we have

e○ = 2αβ

〈(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0), x
k − x∗0

〉
+ 2αβ

〈(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗0), x
∗
0 − xk−1

〉

≤ 3αβ

∥∥∥∥∥

(
I − 2

A⊤A

‖A‖2F

)r/2

(xk − x∗0)

∥∥∥∥∥

2

2

+ αβ

∥∥∥∥∥

(
I − 2

A⊤A

‖A‖2F

)r/2

(x∗0 − xk−1)

∥∥∥∥∥

2

2

≤ 3αβ

(
1− 2

σ2
min(A)

‖A‖2F

)r

‖xk − x∗0‖22 + αβ

(
1− 2

σ2
min(A)

‖A‖2F

)r

‖xk−1 − x∗0‖22,

where the first inequality follows from 2〈v, u〉 ≤ ‖v‖22 + ‖u‖22 and the second inequality

follows from the fact that xk − x∗0 ∈ Row(A), xk−1 − x∗0 ∈ Row(A), and (11). Hence

E
[
‖xk+1 − x∗0‖22|xk

]
≤
(
2β2 + (1− α)β + αβ

(
1− 2

σ2
min(A)

‖A‖2F

)r)

︸ ︷︷ ︸
γ2

‖xk−1 − x∗0‖22

+

(
α2 + (1− α)2 + (2α(1 − α) + 3αβ)

(
1− 2

σ2
min(A)

‖A‖2F

)r

+ 2β2 + 3(1− α)β

)

︸ ︷︷ ︸
γ1

‖xk − x∗0‖22.

By taking expectation over the entire history, and letting F k := E[‖xk − x∗0‖22], we get the

relation

(14) F k+1 ≤ γ1F
k + γ2F

k−1.
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Noting that the requirements for the coefficients γ1 and γ2 in Lemma 7.5 are fulfilled, i.e.

γ2 ≥ 0, γ1 + γ2 < 1 and at least one of the coefficients γ1, γ2 is positive. Indeed, since

α ∈ (0, 1) and β ≥ 0, we know that γ2 ≥ 0. If γ2 = 0, then β = 0 and now we have

γ1 = α2 + (1− α)2 + 2α(1 − α)

(
1− 2

σ2
min(A)

‖A‖2F

)r

> 0,

which implies that at least one of the coefficients γ1, γ2 is positive. The condition γ1+γ2 < 1

holds by the assumption. Then apply Lemma 7.5 to (14), one can get the theorem. �

Remark 7.6. In (13), the inequality 2〈v, u〉 ≤ ‖v‖22 + ‖u‖22 was used to estimate the ex-

pression e○. For future work, one may improve this estimate by using the parameterized

Young’s inequality 2〈v, u〉 ≤ ε‖v‖22 + 1
ε‖u‖22 and optimizing ε over ε > 0.

7.2. Proof of Theorems 3.5, 4.2, and 3.6. The following lemmas are useful for our

proof.

Lemma 7.7. Consider the singular value decomposition A = UΣV ⊤ and let {xk}∞k=0 be the

sequences generated by Algorithm 2 or Algorithm 1 (β = 0). Then

V ⊤
E[xk+1 − x∗] =

(
(1− α+ β)I + α

(
I − 2Σ⊤Σ

‖A‖2F

)r)
V ⊤

E[xk − x∗]− βV ⊤
E[xk−1 − x∗].

Proof. First, we have

xk+1 − x∗ = (1− α)xk + αzkr + β(xk − xk−1)− x∗

= (1− α)(xk − x∗) + α(zkr − x∗) + β(xk − xk−1).

Taking expectations, we have

E
[
xk+1 − x∗|xk

]
= (1− α)(xk − x∗) + αE

[
zkr − x∗|xk

]
+ β(xk − xk−1)

= (1− α)(xk − x∗) + α

(
I − 2

A⊤A

‖A‖2F

)r

(xk − x∗) + β(xk − xk−1)

=

(
(1− α+ β)I + α

(
I − 2

A⊤A

‖A‖2F

)r)
(xk − x∗)− β(xk−1 − x∗),

where the second equality follows from (10). Taking the expectations again, we have

(15) E[xk+1 − x∗] =

(
(1− α+ β)I + α

(
I − 2

A⊤A

‖A‖2F

)r)
E[xk − x∗]− βE[xk−1 − x∗].

Plugging A⊤A = V Σ⊤ΣV ⊤ into (15), and multiplying both sides form the left by V ⊤, we

can get the lemma. �
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Lemma 7.8. Suppose the nonzero singular values of A ∈ R
m×n are σ1(A) ≥ σ2(A) ≥ . . . ≥

σt(A) = σ2
min(A) and r ∈ Z+. Then for any 1 ≤ i ≤ t,

(16)

(
1− 2

σ2
i (A)

‖A‖2F

)r

≤
(
1− 2

σ2
min(A)

‖A‖2F

)r

.

Proof. Since

1− 2
σ2
i (A)

‖A‖2F
≤ 1− 2

σ2
min(A)

‖A‖2F
,

we know that (16) holds provided that r is odd. Next, we consider the case where r is even.

Since
(
1− 2

σ2
i (A)

‖A‖2F

)2

−
(
1− 2

σ2
min(A)

‖A‖2F

)2

=
4
(
σ2
min(A) − σ2

i (A)
) (

‖A‖2F − σ2
min(A)− σ2

i (A)
)

‖A‖4F
≤ 0,

we know that
∣∣∣1− 2

σ2
i (A)

‖A‖2
F

∣∣∣ ≤
∣∣∣1− 2

σ2
min(A)

‖A‖2
F

∣∣∣. This implies that (16) holds for the case where

r is even. �

Lemma 7.9 ( [27,28]). Consider the second degree linear homogeneous recurrence relation:

rk+1 = γ1r
k + γ2r

k−1

with initial conditions r0, r1 ∈ R. Assume that the constant coefficients γ1 and γ2 satisfy

the inequality γ21 + 4γ2 < 0 (the roots of the characteristic equation t2 − γ1t− γ2 = 0 are

imaginary). Then there are complex constants c0 and c1 (depending on the initial conditions

r0 and r1) such that:

rk = 2Mk (c0 cos(θk) + c1 sin(θk))

where M =

(√
γ2
1
4 +

(−γ2
1−4γ2)
4

)
=

√−γ2 and θ is such that γ1 = 2M cos(θ) and
√

−γ21 − 4γ2 =

2M sin(θ).

We first prove Theorem 4.2.

Proof of Theorem 4.2. Set sk := V ⊤
E[xk − x∗0]. Then from Lemma 7.7 we have

sk+1 =

(
(1− α+ β)I + α

(
I − 2Σ⊤Σ

‖A‖2F

)r)
sk − βsk−1,

which can be rewritten in a coordinate form as follows:

(17) sk+1
i =

(
(1− α+ β) + α

(
1− 2σ2

i (A)/‖A‖2F
)r)

ski − βsk−1
i , ∀ i = 1, 2, . . . , n,

where ski indicates the i-th coordinate of sk.

We now consider two cases: σi(A) = 0 or σi(A) > 0.
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If σi(A) = 0, then (17) takes the form:

sk+1
i = (1 + β)ski − βsk−1

i .

Since x1 − x∗0 = x0 − x∗0 = A†(Ax0 − b), we have s0i = s1i = v⊤i A
†(Ax0 − b) = 0. So

ski = 0 for all k ≥ 0.

If σi(A) > 0. We use Lemma 7.9 to establish the desired bound. By the selection

constraints of α, one can verify that (1− α) + α
(
1− 2σ2

i (A)/‖A‖2F
)r ≥ 0 and since β ≥ 0,

we have (1− α) + β + α
(
1− 2σ2

i (A)/‖A‖2F
)r ≥ 0 and hence

γ21 + 4γ2 =
(
1− α+ β + α

(
1− 2σ2

i (A)/‖A‖2F
)r)2 − 4β

≤
(
1− α+ β + α

(
1− 2σ2

min(A)/‖A‖2F
)r)2 − 4β

< 0,

where the first inequality follows from Lemma 7.8 and the last inequality follows from the

assumption that
(
1−

√
α
(
1−

(
1− 2σ2

min(A)/‖A‖2F
)r))2

< β < 1. Using Lemma 7.9, the

following bound can be deduced

ski = 2 (−γ2)
k/2 (c0 cos(θk) + c1 sin(θk)) ≤ 2βk/2pi,

where pi is a constant depending on the initial conditions (we can simply choose pi =

|c0|+ |c1| .) Now put the two cases together, for all k ≥ 0 we have

‖E[xk − x∗0]‖22 = ‖V ⊤
E[xk − x∗0]‖22 = ‖sk‖2 =

n∑

i=1

(ski )
2 =

∑

i:σi(A)=0

(ski )
2 +

∑

i:σi(A)>0

(ski )
2

=
∑

i:σi(A)>0

(ski )
2 ≤

∑

i:σi(A)>0

4βkp2i = βkc,

where c = 4
∑

i:λi>0 p
2
i . �

Proof of Theorem 3.5. Theorem 3.5 can be directly derived from Lemma 7.7. Indeed, using

similar arguments as that in the proof of Theorem 4.2, we can get

‖E[xk − x∗0]‖22 =
∑

i:σi(A)>0

(ski )
2,

where ski =
(
(1− α) + α

(
1− 2σ2

i (A)/‖A‖2F
)r)

sk−1
i , i = 1, . . . , n. It follows from Lemma

7.8, we have

‖E[xk − x∗0]‖22 ≤
(
1− α+ α

(
1− 2σ2

min(A)/‖A‖2F
)r )2k‖x0 − x∗0‖22.

This completes the proof of the theorem. �
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Proof of Theorem 3.6. By Lemma 7.7 and using similar arguments as that in the proof of

Theorem 4.2 and (17), we know that

sk+1
i =

(
(1− α) + α

(
1− 2σ2

i (A)/‖A‖2F
)r)

ski , ∀ i = 1, 2, . . . , n,

where sk+1
i = E[〈xk+1 − x∗, vi〉] and hence the theorem holds. �
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