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Abstract. Quadratic minimization problems with orthogonality constraints (QMPO) play an
important role in many applications of science and engineering. However, some existing methods
may suffer from low accuracy or heavy workload for large-scale QMPO. Krylov subspace methods
are popular for large-scale optimization problems. In this work, we propose a block Lanczos method
for solving the large-scale QMPO. In the proposed method, the original problem is projected into a
small-sized one, and the Riemannian Trust-Region method is employed to solve the reduced QMPO.
Convergence results on the optimal solution, the optimal objective function value, the multiplier and
the KKT error are established. Moreover, we give the convergence speed of optimal solution, and
show that if the block Lanczos process terminates, then an exact KKT solution is derived. Numerical
experiments illustrate the numerical behavior of the proposed algorithm, and demonstrate that it is
more powerful than many state-of-the-art algorithms for large-scale quadratic minimization problems
with orthogonality constraints.
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1. Introduction. We are interested in solving the following large-scale quadratic
minimization problems with orthogonality constraints (QMPO)

(1.1) min
U∈On×`

{
f(U) := tr(UTHU) + 2 tr(UTG)

}
, n > ` > 1,

where H = HT ∈ Rn×n is symmetric, G ∈ Rn×`, On×` := {U ∈ Rn×` | UTU =
I}. This problem of (1.1) arises from many practical problems such as orthogonal
least squares regression (OLSR) [39], large graph clustering [37], multidimensional
similarity structure analysis [5, Chapter 19], the Maxbet problem from canonical
correlation analysis [15, 28], multi-view subspace clustering [47], and so on.

Indeed, the famous unbalanced Procrustes problem [7, 9, 10, 17, 35, 40, 41, 42]

(1.2) min
U∈On×`

‖AU −B‖F,

is a special case of QMPO, where A ∈ Rm×n and B ∈ Rm×`. By the first-order
optimality conditions for unbalanced Procrustes problem (1.2) (cf. [7, Theorem 3.8]
and [10, Theorem 3.1]), we have following first-order optimality necessary conditions
on QMPO (1.1). There are some other types of optimality conditions on (1.1), for
more details, refer to [7, 10, 41, 42].
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Theorem 1.1. [7, Theorem 3.8] and [10, Theorem 3.1] If U ∈ On×` is a local
minimizer of (1.1), then there is a symmetric matrix Λ ∈ R`×` such that

(1.3) HU + UΛ = −G.

If U is a global minimizer of (1.1), then

(1.4) UTHU + Λ = −UTG = −GTU < O.

Moreover, if n = `, then (1.1) reduces to the balanced Procrustes problem [16, 17,
25]

(1.5) min
U∈O`×`

tr(UTG).

In this case, we have a closed-form solution of (1.5) by using the SVD decomposition
of G [16, 17]. And if ` = 1, then (1.1) reduces to the classical trust-region subproblem
[3, 6, 8, 12, 18, 20, 26, 29, 31, 45, 46].

Unfortunately, there is no closed-form solution for (1.1) generally. Some necessary
or sufficient conditions for local and/or global minimizer of (1.1) were established in
[7, 10, 41, 42]. Many iterative methods have been developed for the more general
optimization problems with orthogonal constraints, which can be applied to solve (1.1)
directly. For instance, Absil et al. proposed a Riemannian Trust-Region (RTR)
algorithm [1, 2] for optimizing a smooth function on a Riemannian manifold. In [27],
Jiang and Dai proposed a framework for a constraint preserving update scheme for
optimization on Stiefel manifold. In [38], Wen and Yin applied the Cayley transform
to preserve the orthogonal constraints and develop curvilinear search algorithms with
lower flops compared to those based on projections and geodesics. In [24], structured
quasi-Newton methods were studied for optimization problems with orthogonality
constraints. In [14], Gao et al. proposed a proximal linearized augmented Lagrangian
algorithm for solving optimization problems with orthogonality constraints. A first-
order framework was proposed in [13] for optimization problems with orthogonal
constraints.

The generalized power iteration (GPI) is one of the most popular methods for
(1.1) [30]. However, this method often suffers from the difficulty of slow convergence,
and more detailed analysis is desired for the convergence of GPI. Recently, a novel
eigenvalue-based approach was proposed in [42] to solve the unbalanced Procrustes
problem (1.2). This method also applies to the QMPO problem. It was proven that
(1.1) can be equivalently transformed into an eigenvalue minimization whose solution
can be computed by solving a related eigenvector-dependent nonlinear eigenvalue
problem. However, one has to solve an n-by-n (possibly dense) symmetric eigenprob-
lem in each iteration of this algorithm, and the algorithm may converge very slowly
if there is no subspace speeding up.

To the best of our knowledge, there are few specialized methods for solving large-
scale QMPO (1.1). Some existing methods may suffer from low accuracy or heavy
workload for large-scale QMPO. Krylov subspace method is a powerful tool for solv-
ing large-scale optimization problems [11, 18, 26, 45, 43, 44, 46]. As far as we know,
it seems that there is no (block) Krylov subspace method for the large-scale QMPO
(1.1) till now. In this paper, we propose a block Krylov subspace method to solve
(1.1), in which the large-scale QMPO (1.1) is reduced into a small-sized one by using
projection techniques. Furthermore, we establish the convergence results on the opti-
mal solution, the optimal objective function value, the multiplier, as well as the KKT
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error. We give the convergence speed of optimal solution, and show that if the block
Lanczos process terminates, then an exact KKT solution is derived, which satisfies
the first order optimality in Theorem 1.1 and also the necessary condition (1.4) for
a global minimizer. Numerical experiments on both synthetic and real-world data
sets demonstrate that the proposed algorithm is superior to many state-of-the-art
approaches for solving the large-scale QMPO (1.1).

This paper is organized as follows. In Section 2, we propose a block Lanczos
method for solving the large-scale QMPO. The convergence of the proposed method
is established in Section 3. Numerical experiments are performed in Section 4 to show
the numerical behavior of the new algorithm. Some concluding remarks are given in
Section 5. Throughout this paper, we denote by (·)T the transpose of a matrix or
vector, by R(E) the range space of a matrix E, and by E⊗F the Kronecker product
of E and F . In this paper, E < O (E � O) implies that E is symmetric semi-positive
definite (positive definite). Let F = [f1, . . . ,fp] ∈ Rp×q, then

vec(F ) = (fT1 , . . . ,f
T
p )T ∈ Rpq.

Let 0, O and I be the zero vector, zero matrix and identity matrix, respectively,
whose orders are clear from the context.

2. A block Lanczos method for solving the large-scale QMPO. In this
section, we propose a block Lanczos method to solve (1.1). Let G = V1K be the
economized QR decomposition of G, where V1 ∈ On×`. As H is a symmetric matrix,
we use the k-step block Lanczos process [16, 32, 33] to generate an orthonormal basis
Vk for the block Krylov subspace

Kk := Kk(H,V1) = span{V1, HV1, . . . ,Hk−1V1}.

Moreover, we have the following relation for this process [16, 32, 33]

(2.1) HVk = VkTk + Vk+1Nk(E
(k`)
` )T ,

where Vk := [V1, V2, . . . , Vk] ∈ Rn×k`, VT
kVk = Ik`, V

T
k Vk+1 = O, V Tk+1Vk+1 = I`,

Nk ∈ R`×` is upper triangular, and Ek`` denotes the last ` columns of the identity
matrix Ik`. Here

(2.2) Tk = VT
kHVk =



M1 NT
1

N1 M2 NT
2

. . .
. . .

. . .

. . . Mk−1 NT
k−1

Nk−1 Mk

 ∈ Rk`×k`,

is block tridiagonal, with Mj ∈ R`×`, and Nj ∈ R`×` being upper triangular, j =
1, 2, . . . , k.

In the proposed method, (1.1) reduces to the following small-sized constrained
problem:

(2.3) min
U∈On×`
R(U)⊆Kk

{
f(U) = tr(UTHU) + 2 tr(UTG)

}
.

Indeed, (2.3) can be equivalently rewritten as the following reduced QMPO:

(2.4) min
P∈Ok`×`

{
f̃(P ) = tr(PTTkP ) + 2 tr(PTGk)

}
,
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where

Gk = VT
kG=VT

k V1K=

(
K
O

)
∈ Rk`×`.

Let Pk be a solution to (2.4), then we use

(2.5) Uk = VkPk = arg min
U∈On×`
R(U)⊆Kk

f(U)

as an approximation to the optimal solution U∗, and

(2.6) f(Uk) = f(VkPk) = f̃(Pk)

is an approximation to the optimal value f(U∗). By Theorem 1.1, there is a sym-
metric matrix Λk ∈ Rk×k such that

(2.7) TkPk + PkΛk +Gk = 0.

Consequently, we reduce the large-scale QMPO (1.1) to a k`-by-k` small-sized
one. In practice, one can exploit the Riemannian Trust-Region (RTR) method [1, 2]
to solve (2.4). The proposed algorithm is given in Algorithm 1. One refers to Section
4 for more details on practical implementations.

Algorithm 1 A block Lanczos method for large-scale QMPO

Input: H ∈ Rn×n, G ∈ Rn×`, and kmax.
Output: Uk.
1: Set V0 = O ∈ Rn×`, N0 = O ∈ R`×` and k = 0;
2: Compute the economized QR decomposition: G = V1K, where V1 ∈ Rn×`;
3: Let M1 = V T1 HV1;
4: whlie k ≤ kmax

5: k = k + 1;
6: Let Lk = HVk − VkMk − Vk−1NT

k−1;
7: Compute the economized QR decomposition: Lk = Vk+1Nk;
8: Let Mk+1 = V Tk+1HVk+1;
9: Solve the reduced QMPO

Pk = arg min
P∈Ok`×`

{
tr(PTTkP ) + 2 tr(PTGk)

}
,

where Tk ∈ Rk`×k` is defined in (2.2) and Gk =

(
K
O

)
∈ Rk`×`;

10: if the convergence criterion is satisfied % Refer to (4.1)
11: Uk = VkPk;
12: end if
13: end whlie

3. Convergence analysis. In this section, we show the convergence of Algo-
rithm 1. We first need the following three lemmas. The first lemma follows from the
definition of the Kronecker product and [22, Theorem 4.4.5].
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Lemma 3.1. Let X ∈ Rs×s and Y ∈ Rm×m, then (Im⊗X)+(Y⊗Is) is nonsingular
if and only if X+λY I is nonsingular, where λY is an eigenvalue of Y . Moreover, if
X = XT and Y = Y T , then

(Im ⊗X) + (Y ⊗ Is) is symmetric,(3.1a)

λmax

(
(Im ⊗X) + (Y ⊗ Is)

)
= λmax(X) + λmax(Y ),(3.1b)

λmin

(
(Im ⊗X) + (Y ⊗ Is)

)
= λmin(X) + λmin(Y ).(3.1c)

The second lemma is from [22, Section 4.2, Problem 25].

Lemma 3.2. [22] Let C ∈ Rt×s, E ∈ Rp×q, X ∈ Rq×s and Y ∈ Rp×t. Then

(3.2) tr(CTY TEX) = yT (C ⊗ E)x

where y = vec(Y ) and x = vec(X).

The third lemma is the polar decomposition of a full column rank matrix.

Lemma 3.3. [23, Theorem 8.1] Let Y ∈ Rp×s (p ≥ s) with rank(Y ) = s. There
exists a unique matrix Q ∈ Rp×s with orthonormal columns and a unique symmetric
positive definite matrix S such that Y = QS. The matrix S is given by S = (Y TY )

1
2 .

We are ready to consider the convergence of the proposed method. Let U∗ be a
global minimizer of (1.1), then U∗ is also a local solution. It follows from Theorem
1.1 that, there is a symmetric matrix Λ∗ ∈ R`×`, such that (1.3) holds. Let the
eigendecompositions of H and Λ∗ be

H = WDWT = W diag(µ1, µ2, . . . , µn) WT , with µ1 ≥ µ2 ≥ · · · ≥ µn,(3.3a)

Λ∗ = ZΓZT = Z diag(γ1, γ2, . . . , γ`) Z
T , with γ1 ≥ γ2 ≥ · · · ≥ γ`,(3.3b)

where W ∈ Rn×n and Z=[z1, z2, . . . ,z`]∈R`×` are orthonormal matrices.
In this paper, we make the following assumption

(3.4) Assumption : H∗ := (I` ⊗H) + (Λ∗ ⊗ In) is nonsingular.

Hence, it follows from Lemma 3.1 that H + γiI are nonsingular, i = 1, 2, . . . , `. Con-
sider the two index sets

I = {i | H + γiI � O, i.e., µn + γi > 0, where 1 ≤ i ≤ `},
J = {i | H + γiI is nonsingular and µn + γi < 0, where 1 ≤ i ≤ `}.

Thus, we have that I∪J = {1, 2, . . . , `} and I∩J = ∅. It was shown in [42, Theorem
2.4] that µ1+γn ≥ 0. In other words, H+γiI will never be a negative definite matrix,
i = 1, 2, . . . , `. Therefore, if J 6= ∅, there is an integer 1 ≤ si ≤ n, such that

µn + γi ≤ · · · ≤ µsi + γi < 0 < µsi+1 + γi ≤ · · · ≤ µ1 + γi, for i ∈ J .

Consider

φi :=
aibi

|(µsi + γi)(µsi+1 + γi)|
≥ 1 for i ∈ J ,

where

ai = max
{
− (µn + γi), µ1 − µsi+1 − (µsi + γi)

}
,

bi = max
{
µ1 + γi, µs1+1 − µn + µsi + γi

}
.
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The definitions of ai and bi are due to the embedding of [µn+γi, µsi+γi] ∪ [µsi+1+
γi, µ1+γi]⊆ [−ai, µsi+γi] ∪ [µsi+1+γi, bi] into intervals of equal lengths [21, section
3.1].
• First, we consider the distance between the optimal solution U∗ and the search

subspace Kk. Indeed, a necessary condition for the convergence of the proposed
method is that the distance tends to zero.

Theorem 3.4. Let

εk = min
X∈Rk`×`

‖U∗ −VkX‖F = ‖(I −VkV
T
k )U∗‖F.

Under the previous notation and assumption, we have

(3.5) εk ≤ 2 ·

√√√√∑
i∈I

(√
κi − 1
√
κi + 1

)2(k+1)

+
∑
i∈J

(√
φi − 1√
φi + 1

)k−1
,

where κi is the 2-condition number of H + γiI for i ∈ I.

Proof. From HU∗ + U∗Λ∗ = −G and Λ∗ = ZΓZT , we have

(H + γiI)U∗zi = −Gzi for i = 1, 2, . . . , `.

Denote by K(i)
k :=Kk(H+γiI,Gzi) and let Pt be the set of polynomials with degree

no higher than t. It holds that

min
y∈K(i)

k

‖U∗zi−y‖2 = min
p∈Pk

‖U∗zi−p(H+γiI)Gzi‖2

= min
p∈Pk

‖[I+p(H+γiI)(H+γiI)]U∗zi‖2

= min
h∈Pk+1

h(0)=1

‖h(H + γiI)U∗zi‖2 ≤ min
h∈Pk+1

h(0)=1

‖h(H + γiI)‖2

(3.3a)
= min

h∈Pk+1

h(0)=1

‖h(D + γiI)‖2.

From the Assumption (3.4), we have that H+γiI are nonsingular, i = 1, 2, . . . , `.
Then it follows from [19, Section 3.1] that, on one hand, if i ∈ I,

min
y∈K(i)

k

‖U∗zi−y‖2 ≤ min
h∈Pk+1

h(0)=1

‖h(D + γiI)‖2

≤ min
h∈Pk+1

h(0)=1

max
t∈[µn+γi,µ1+γi]

|h(t)| ≤ 2

(√
κi − 1
√
κi + 1

)k+1

.(3.6)

On the other hand, if i ∈ J ,

min
y∈K(i)

k

‖U∗zi − y‖2 ≤ min
h∈Pk+1

h(0)=1

‖h(D + γiI)‖ ≤ min
h∈Pk+1

h(0)=1

max
t∈L
|h(t)|

≤2

( √
|aibi|−

√
|(µsi + γi)(µsi+1 + γi)|√

|aibi|+
√
|(µsi + γi)(µsi+1 + γi)|

)b k+1
2 c

= 2

(√
φi − 1√
φi + 1

)b k+1
2 c

,(3.7)
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where L = [−ai, µsi + γi] ∪ [µsi+1 + γi, bi] and b·c stands for the integer part of a
number.

From Gzi ∈ R(V1), we obtain

K(i)
k = Kk(H,Gzi)⊆Kk(H,V1) = Kk for i = 1, 2, . . . , `.

So we have

ε2k =
∥∥(I−VkVT

k )U∗
∥∥2
F

(3.3b)
=

∥∥(I−VkVT
k )U∗Z

∥∥2
F

=
∑̀
i=1

‖(I−VkVT
k )U∗zi‖22 =

∑̀
i=1

min
y∈Kk

‖U∗zi−y‖22

=
∑
i∈I

min
y∈Kk

‖U∗zi−y‖22 +
∑
i∈J

min
y∈Kk

‖U∗zi−y‖22

≤
∑
i∈I

min
y∈K(i)

k

‖U∗zi−y‖22 +
∑
i∈J

min
y∈K(i)

k

‖U∗zi−y‖22,

which, together with (3.6) and (3.7), yields (3.5).

Remark 3.1. Theorem 3.4 shows that the rate at which εk converges to 0 strictly
relies on the distribution of the spectrum of H + γiI, i = 1, 2, . . . , `. In particular,
the convergence rate of εk is comparable to that of conjugate gradient method provided
that (I` ⊗H) + (Λ∗ ⊗ In) � O.

• Second, we show the convergence of f(Uk). To this aim, we consider the upper
bound of f(Uk)−f(U∗).

Theorem 3.5. Suppose that ‖(I −VkV
T
k )U∗‖2 < 1. Then

(3.8) 0 ≤ f(Uk)− f(U∗) ≤ 2(µ1 + γ1) · ε2k.

Proof. For any U ∈ On×`, we show that

(3.9) 0 ≤ f(U)− f(U∗) = tr[(U∗ − U)TH(U∗ − U)] + tr[(U∗ − U)Λ∗(U∗ − U)T ].

Indeed,

0≤f(U)−f(U∗) = tr(UTHU)− tr(UT∗ HU∗) + 2 tr[(U − U∗)TG]

(1.3)
= tr(UTHU)−tr(UT∗HU∗) + tr[(U−U∗)TG]−tr[(U−U∗)T (HU∗+U∗Λ∗)]

= tr(UTHU)+tr[(U − U∗)TG]−tr(UTHU∗) + tr[(U∗ − U)TU∗Λ∗]

= tr[(U − U∗)T (HU +G)] + tr[(U∗ − U)TU∗Λ∗]

= tr[(U − U∗)TH(U − U∗)]+tr[(U − U∗)T (HU∗+G)]+tr[(U∗−U)TU∗Λ∗]

(1.3)
= tr[(U − U∗)TH(U − U∗)] + 2 tr[(U∗ − U)TU∗Λ∗]

= tr[(U−U∗)TH(U−U∗)]+tr[(U∗−U)T(U∗−U)Λ∗]+tr[(U∗−U)T(U∗+U)Λ∗]

= tr[(U − U∗)TH(U − U∗)] + tr[(U∗ − U)Λ∗(U∗ − U)T ],

where the last inequality is from the facts that U ∈ On×`, Λ∗ = ΛT∗ , and

tr[(U∗ − U)T (U∗ + U)Λ] = tr[(UT∗ U − UTU∗)Λ∗]
= tr(UT∗ UΛ∗)− tr(UTU∗Λ∗)

= tr(UΛ∗U
T
∗ )− tr(U∗Λ∗U

T )

= tr(UΛ∗U
T
∗ )− tr(UΛ∗U

T
∗ ) = 0,
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so we have (3.9).
We are ready to prove (3.8). It follows from [22, Theorem 3.3.16 (c)] that∣∣1− σ`(VkVT

kU∗)
∣∣ =
∣∣σ`(U∗)− σ`(VkVT

k U∗)
∣∣

≤
∥∥U∗ −VkV

T
k U∗

∥∥
2

= ‖(I−VkVT
k )U∗‖2<1.

Hence, σ`(VkV
T
k U∗) > 0, i.e., VkV

T
k U∗ ∈ Rn×` has full column rank. By Lemma 3.3,

there is a unique orthonormal matrix Ũk ∈ Cn×` and a symmetric positive definite
matrix M , such that VkV

T
k U∗= ŨkM . Thus, R(Ũk) ⊆ R(Vk) = Kk. By (2.5),

0 ≤ f(Uk)− f(U∗) ≤ f(Ũk)− f(U∗)

(3.9)
= tr[(Ũk − U∗)TH(Ũk − U∗)] + tr[(U∗ − Ũk)Λ∗(U∗ − Ũk)T ]

= tr[(Ũk − U∗)TH(Ũk − U∗)] + tr[Λ∗(U∗ − Ũk)T (U∗ − Ũk)]

(3.2)
=
[
vec(U∗ − Ũk)

]T · H∗ · vec
(
U∗ − Ũk)

(3.1b)

≤ (µ1 + γ1) ·
∥∥∥vec(U∗ − Ũk)

∥∥∥2
2

= (µ1 + γ1) ·
∥∥∥U∗ − Ũk∥∥∥2

F
.(3.10)

Notice that∥∥∥Ũk − U∗∥∥∥2
F

=
∥∥∥Ũk −VkV

T
k U∗ − (I −VkV

T
k )U∗

∥∥∥2
F

=
∥∥∥Ũk −VkV

T
k U∗

∥∥∥2
F

+
∥∥(I −VkV

T
k )U∗

∥∥2
F

=
∥∥∥Ũk −VkV

T
k U∗

∥∥∥2
F

+ ε2k.(3.11)

Next, we consider
∥∥∥Ũk −VkV

T
k U∗

∥∥∥2
F

. We have that

∥∥∥Ũk −VkV
T
k U∗

∥∥∥2
F

=‖Ũk‖2F + ‖VkVT
k U∗‖2F − 2 tr(ŨTk VkV

T
k U∗)

=‖U∗‖2F + ‖VkVT
k U∗‖2F − 2 tr(M)

=‖U∗‖2F − ‖VkVT
k U∗‖2F + 2

(
‖VkVT

k U∗‖2F − tr(M)
)

=
∥∥(I −VkV

T
k )U∗

∥∥2
F

+ 2 [tr(MTM)− tr(M)]

=ε2k + 2 [tr(MTM)− tr(M)].

From M = MT � O and σi(M) = σi(VkV
T
k U∗) ≤ 1, i = 1, 2, . . . , `, we get

tr(MTM)− tr(M) =
∑̀
i=1

σ2
i (M)−

∑̀
i=1

σi(M) =
∑̀
i=1

(
σ2
i (M)− σi(M)

)
≤ 0,

and
∥∥Ũk −VkV

T
k U∗

∥∥
F
≤ εk. A combination of (3.10) and (3.11) yields (3.8).

Remark 3.2. We note that

µ1 + γ1 ≤ ‖H‖2 + ‖Λ∗‖2
(1.3)
= ‖H‖2 + ‖HU∗ +G‖2 ≤ 2‖H‖2 + ‖G‖2.

That is, (µ1 + γ1) is uniformly bounded, and εk → 0 implies f(Uk)→ f(U∗).
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• Third, we show the convergence of Uk. To do this, we pay special attention
to the distance between the global optimal solution U∗ and the approximate solution
Uk.

Notice that U∗ may be non-unique. In this case, the convergence of Uk is difficult
to define. We first establish a sufficient condition for the uniqueness of U∗.

Theorem 3.6. Let U∗ be a global optimal solution of (1.1), and define

(3.12) δ(U∗) := inf
X∈U∗+On×`

X 6=O

tr(XTHX) + tr(XΛ∗X
T )

‖X‖2F
,

where
U∗ + On×` =

{
X | X = U∗ +Q where Q ∈ On×`

}
.

Then we have that
(i) δ(U∗) ≥ 0. Moreover, if δ(U∗) > 0, then U∗ is the unique global optimal

solution to (1.1).
(ii) If the infimum in (3.12) is attainable, then δ(U∗) > 0 if and only if U∗ is a

unique global optimal solution to (1.1).
(iii) We have δ(U∗) ≥ λmin

(
(I` ⊗H)+(Λ∗ ⊗ In)

)
= µn + γ`. Specifically, if `=1,

then Λ∗ ∈ R is a scalar, and δ(U∗) = λmin(H) + Λ∗ =µn+Λ∗ ≥0.

Proof. (i) We prove it by contradiction. Suppose that δ(U∗) < 0, there is a matrix

X̃ ∈ (U∗ + On×`)\{O}, such that

tr(X̃THX̃) + tr(X̃Λ∗X̃
T )

‖X̃‖2F
< 0.

Hence, there is a matrix L ∈ On×`, such that X̃ = U∗ + L. By (3.9),

0 ≤ f(−L)− f(U∗)

‖U∗ + L‖2F
=

tr(X̃THX̃) + tr(X̃Λ∗X̃
T )

‖X̃‖2F
< 0,

which is a contradiction. As a result, we have δ(U∗) ≥ 0.
Moreover, if δ(U∗) > 0 while U∗ is non-unique, then there is a matrix U∗∗ ∈ On×`

such that U∗ 6= U∗∗ and f(U∗) = f(U∗∗). As U∗ −U∗∗ ∈ (U∗ + On×`)\{O}, it follows
that

0 < δ(U∗) ≤
tr[(U∗ − U∗∗)TH(U∗ − U∗∗)] + tr[(U∗ − U∗∗)Λ∗(U∗ − U∗∗)T ]

‖U∗ − U∗∗‖2F
(3.9)
=

f(U∗∗)− f(U∗)

‖U∗ − U∗∗‖2F
= 0,

a contradiction. Thus, U∗ is a unique global optimal solution to (1.1).
(ii) If the infimum in (3.12) is attainable, then there is a matrix X∗ ∈ (U∗ +

On×`)\{O}, such that

X∗ = arg min
X∈U∗+On×`

X 6=O

tr(XTHX) + tr(XΛ∗X
T )

‖X‖2F
.

Thus, there is a matrix X̂∗ ∈ On×` such that X∗ = U∗− X̂∗. So we obtain from (3.9)
that

f(X̂∗)−f(U∗)=tr(XT
∗HX∗)+tr(X∗Λ∗X

T
∗ )=δ(U∗) · ‖X∗‖2F.
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If U∗ is the unique global optimal solution to (1.1), then f(X̂∗)− f(U∗) > 0. That is,
δ(U∗) > 0, and we have (ii) from (i).

(iii) We have that

δ(U∗)≥ inf
X∈Rn×`
X 6=O

tr(XTHX)+tr(XΛ∗X
T )

‖X‖2F
= inf

X∈Rn×`
X 6=O

tr(XTHX)+tr(Λ∗X
TX)

‖X‖2F

(3.2)
= inf

X∈Rn×`
X 6=O

(vec(X))T ·
(

(I` ⊗H)+(Λ∗ ⊗ In)
)
· vec(X)

‖vec(X)‖22
(3.1a)

= λmin(H∗)
(3.1c)

= µn + γ`.

In particular, if `=1, then (1.1) reduces to a trust-region subproblem. In this case,
Λ∗=λ∗∈R is a scalar, H∗ := H+λ∗I<O [20, Lemma 2.1], On×`= B := {x

∣∣ ‖x‖2 =1},
and

δ(U∗)= inf
x∈S

xTH∗x, with S =

{
x
∣∣∣ x =

U∗ − p

‖U∗ − p‖
, where U∗ 6= p ∈ B

}
⊆ B.

Denote by S̃ =
{
x
∣∣∣ x = p−U∗

‖p−U∗‖ , where U∗ 6= p ∈ B
}

, we see that

inf
x∈S∪S̃

xTH∗x = min

{
inf
x∈S

xTH∗x, inf
x∈S̃

xTH∗x

}
,

and infx∈S x
TH∗x = infx∈S̃ x

TH∗x. Therefore, δ(U∗) = inf
x∈S∪S̃

xTH∗x. As

S ∪ S̃ =

{
x
∣∣∣ x = ± p− U∗

‖p− U∗‖
, where U∗ 6= p ∈ B

}
is dense on B [31, p. 91], it follows that

δ(U∗) = inf
x∈B

xT (H+λ∗I)x = min
x∈B

xT (H+λ∗I)x = µn + λ∗ ≥ 0,

which completes the proof.

We are ready to consider the convergence of Uk.

Theorem 3.7. Let U∗ be the global optimal solution of (1.1). If δ(U∗) > 0 and
‖(I −VkV

T
k )U∗‖2 < 1, then we have

(3.13) ‖Uk − U∗‖F ≤

√
2(µ1 + γ1)

δ(U∗)
· εk.

Specifically, if H∗ � O, then

(3.14) ‖Uk − U∗‖F ≤
√

2κ∗ · εk,

where κ∗ is the 2-condition number of H∗.
Proof. We notice that U∗ − Uk ∈ (U∗ + On×`) ∪ (−U∗ + On×`). It follows from

(3.9) and (3.12) that

f(Uk)−f(U∗)=
tr[(U∗−Uk)TH(U∗ − Uk)] + tr[(U∗−Uk)Λ∗(U∗−Uk)T ]

‖U∗−Uk‖2F
· ‖U∗−Uk‖2F

≥ δ(U∗) · ‖U∗ − Uk‖2F,(3.15)
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so we obtain (3.13) from combining (3.15) and (3.8).
If H∗ � O, it is seen from Theorem 3.6 (iii) and (3.15) that

‖U∗−Uk‖2F ≤
δ(U∗)‖U∗−Uk‖2F

µn+γ`
≤ f(Uk)−f(U∗)

µn+γ`
(3.8)

≤ 2(µ1+γ1)

µn+γ`
· ε2k

(3.1a)
= 2κ · ε2k,

which yields (3.14).

Remark 3.3. Theorem 3.7 indicates that δ(U∗) plays an important role in the
convergence of Uk. More precisely, Uk may converge slowly as δ(U∗) is close to zero.
Specifically, Uk is difficult to define the convergence as δ(U∗) = 0, which coincides
with the results established in Theorem 3.6.

• Fourth, we consider the KKT error ‖HUk +UkΛk +G‖F and the upper bound
on ‖Λ∗ − Λk‖F, where Λk is defined in (2.7).

Theorem 3.8. Denote by

Rk = HUk + UkΛk +G.

Then
(i) We have that

(3.16) max
{
‖Rk‖F, ‖Λ∗ − Λk‖F

}
≤ ‖H∗‖2 · ‖Uk − U∗‖F.

(ii) If H∗ � O and ‖(I −VkV
T
k )U∗‖2 < 1, then

(3.17) max
{
‖Rk‖F, ‖Λ∗ − Λk‖F

}
≤
√

2‖H∗‖2 · εk.

(iii) If Kq is an invariant subspace of H, then

‖Rq‖F = ‖HUq + UqΛq +G‖F = 0 and − UTq G < O.

That is, Uq satisfies the first order optimality in Theoem 1.1 and also the
necessary condition (1.4) for a global minimizer.

Proof. (i) We notice that

Pk = arg min
P∈Ok`×`

{
tr(PTTkP ) + 2 tr(PTGk)

}
,

and G = VkV
T
kG = VkGk. From (2.1),

Rk =HUk + UkΛk +G

=HVkPk + VkPkΛk +G

=
(
VkTk +Wk+1Nk(E

(k`)
` )T

)
Pk + VkPkΛk + VkGk

=Vk
(
TkPk + PkΛk +Gk

)
+Wk+1Nk(E(k`)

r )TPk(3.18)

(2.7)
= Wk+1Nk(E

(k`)
` )TPk,

and VT
kRk = O. Thus, we have from Uk = VkPk that

‖HUk + UkΛ∗ +G‖2F = ‖Rk + Uk(Λ∗ − Λk)‖2F = ‖Rk‖2F + ‖Λ∗ − Λk‖2F.
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As a result,

(3.19) max
{
‖Rk‖F, ‖Λ∗ − Λk‖F

}
≤ ‖HUk + UkΛ∗ +G‖F.

Notice that

‖HUk + UkΛ∗ +G‖F
(1.3)
= ‖HUk + UkΛ∗ − (HU∗ + U∗Λ∗)‖F
=‖H(Uk − U∗) + (Uk − U∗)Λ∗‖F

=
∥∥∥vec

(
H(Uk − U∗) + (Uk − U∗)Λ∗

)∥∥∥
2

=‖ [(I` ⊗H) + (Λ∗ ⊗ In)] vec(Uk − U∗)‖2(3.20)

≤‖H∗‖2 · ‖Uk − U∗‖F.

So we have (3.16) from (3.19) and (3.20).
(ii) If H∗ = (I` ⊗H) + (Λ∗ ⊗ In) � O, then∥∥[(I ⊗H) + (Λ∗ ⊗ I)

]
vec(Uk − U∗)

∥∥2
2

≤
∥∥H 1

2
∗
∥∥2
2
·
∥∥H 1

2
∗ vec(Uk − U∗)

∥∥2
2

=‖H∗‖2 ·
[
vec(Uk − U∗)

]T
(I ⊗H + Λ∗ ⊗ I) vec(Uk − U∗)

=‖H∗‖2 ·
(
tr[(Uk−U∗)TH(Uk−U∗)]+tr[Λ∗(Uk−U∗)T (Uk−U∗)]

)
(3.9)
= ‖H∗‖2 ·

(
f(Uk)− f(U∗)

) (3.8)

≤ 2‖H∗‖2(µ1 + γ1) · ε2k
≤2‖H∗‖22 · ε2k.

A combination of (3.19) and (3.20) gives (3.17).
(iii) In this case, we have from (2.1) thatHVq = VqTq. Recall thatG = VqV

T
q G =

VqGq. Hence,

Rq = HUq + UqΛq +G = HVqPq + Vq(PqΛq +Gq)
(2.7)
= (HVq −VqTq)Pq = O.

By (1.4), −PTq Gq < O, and −UTq G = −PTq VT
q VqGq = −PTq Gq < O.

Remark 3.4. It is known that if the block Lanczos process terminates at the q-th
step, then Kq is an invariant subspace of H, and q is no larger than the number of
distinct eigenvalues of H [32, 33, 34]. This can happen in some applications such
as the orthogonal least squares regression (OLSR) model [39] for supervised learning,
where H is often a low-rank matrix.

4. Numerical experiments. In this section, we perform numerical experiments
to illustrate the numerical behavior of the proposed method. All the numerical ex-
periments were run on a AMD R7 5800H CPU 3.20 GHz with 16GB RAM under
Windows 11 operation system. The experimental results are obtained from using
MATLAB R2022a implementation with machine precision umachine ≈ 2.22 × 10−16.
To show the efficiency of Algorithm 1, we compare it with seven state-of-the-art ap-
proaches for solving (1.1), including the RTR method [1], the SCFRTR method [42],
the PCAL method [14], the GP-BB method [13], the WYBB method [38], the JDCP
method [27], as well as the GPI method [30].

In all the experiments, we first normalize H and G by using ‖G‖F, and use the
following stopping criterion [27, 38, 42]

(4.1)
|f(Uk)− f(Uk+1)|
|f(Uk)|+1

≤ εf ,
‖Uk − Uk+1‖F√

n
≤ εU , ‖Rk‖F ≤ εg, and k ≤ kmax,
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with εf = 10−10, εU = 10−6, εg = 10−5 and kmax = 1000.

Fig. 4.1. Example 4.1: Numerical results on the synthetic data.
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(c) ` = 10: CPU time
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(e) ` = 20: KKT error
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(f) ` = 20: CPU time

In the block Lanczos process, we make use of full reorthogonalization process
when necessary. We stress that an advantage of the proposed method is that one can
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compute the KKT error cheaply. More precisely, we have from (3.18) that

‖Rk‖F = ‖HUk + UkΛk +G‖F

=

√
‖TkPk + PkΛk +Gk‖2F +

∥∥∥Nk(E
(k`)
` )TPk

∥∥∥2
F

=

√
‖TkPk+PkΛk+Gk‖2F +

∥∥NkPk((k−1)`+1 : k`, :
)∥∥2

F
.(4.2)

Moreover, f(Uk) = f̃(Pk) and f(Uk+1) = f̃(Pk+1); refer to (2.6). As k increases, the
main overhead in each iteration of our method lies in solving (2.4) by using the RTR
method. Thus, we solve (2.4) every 5 steps in practical calculations.

To measure the accuracy of the approximations from the algorithms, we make
use of the relative objective function difference defined as [3]

(4.3) f (rel)err :=
f(Ŭ∗)− f(Ubest)

|f(Ubest)|
,

where Ŭ∗ is the computed solution of each method and Ubest denotes the solution

with the smallest objective value among all the solvers. Thus, f
(rel)
err = 0 means that

Ŭ∗ = Ubest.

4.1. Test on synthetic data. In this subsection, we make experiments on some
synthetic data generated by using the MATLAB built-in function sprand:

H = B +BT , where B = sprand(n, n, density), G = randn(n, `),

where density=0.05, n=10000, 15000, 20000, . . . , 50000, and `=10, 20, respectively.
The numerical results of the eight algorithms are ploted in Figure 4.1. It is seen

from the figure that both the relative objective function difference f
(rel)
err and the KKT

errors of of Algorithm 1 are the smallest, and our algorithm is the fastest one among
the eight algorithms.

4.2. Test on the orthogonal least squares regression for feature extrac-
tion. Orthogonal least squares regression (OLSR) is a popular supervised learning
method for linear discriminant analysis (LDA) [39]. Let A = [a1, . . . ,am] ∈ Rn×m
be the whole database with ` classes, where m is the number of samples and n is
the number of features. Let Â = [â1, . . . , âm̃] ∈ Rn×m̃ be training data set, and
B = [b1, . . . , bm̃] ∈ R`×m̃ be the corresponding class indicator matrix, where m̃ is the
number of training samples, and bi = ej ∈ R` if the sample âi is in the j-th class,
1 ≤ i ≤ m̃, 1 ≤ j ≤ `, where ej is the j-th column of the identity matrix. In the
experiment, we randomly choose 30% of the total samples as the training set. The
details of of the fourteen data sets are listed in Table 4.1.

Let Ã, B̃ be the centered matrix of Â, B̂, respectively. In the OLSR method, one
aims to seek U ∈ On×` such that [39]

(4.4) min
U∈On×̀

{
tr(UTHU)+2tr(UTG)

}
,

where H = ÃT Ã∈Rn×n and G= ÃT B̃ ∈Rn×`. We run the eight algorithms on the
fourteen databases, and the numerical results are reported in Table 4.2 and Table 4.3.
Specifically, if the CPU time of an algorithm exceeds 3600 seconds or the KKT error
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‖HŬ∗ + Ŭ∗Λ̆∗ +G‖F ≥ 1, we declare that the algorithm fails to converge and denote
it by “–””.

We observe from Table 4.2 and 4.3 that Algorithm 1 is more powerful than the
other seven popular algorithms for solving the OLSR model (4.4). More precisely,

Algorithm 1 is the best in terms of the values of f
(rel)
err , and the KKT errors from

Algorithm 1 is the smallest except for the ORL and Text-1 databases. Indeed, the
KKT errors of our algorithm is about two to five orders lower than those of the others.
Moreover, our algorithm is the fastest one except for the YouTubeFace database, which
ours is the second fastest one.

Table 4.1
Summary of test datasets in Example 4.2.

Datasets Feature (n)
Number of

samples (m)
Number of
classes (`)

Background

ORL1 10304 400 40
ImageYale2 10000 165 15

YouTubeFace3 16384 56653 17
CLL SUB 1114 11340 111 3

Biological
SMK CAN 187 19993 187 2
GLI 85 22283 85 2
leukemia 7070 72 2
nci9 9712 60 9
20Newsgroups5 26214 18846 20

Text

RCV1 4Class 29992 9625 4
Text-16 7511 1946 2
Cora-HA 3989 400 7
Cora-OS 6737 1246 4
Core-PL 7949 1575 9

1http://featureselection.asu.edu/datasets.php.
2https://www.face-rec.org/databases/.
3https://www.cs.tau.ac.il/∼wolf/ytfaces/.
4The databases CLL SUB 111, SMK CAN 187, GLI 85, leukemia and nci9 are available at

https://jundongl.github.io/scikit-feature/datasets.html.
5The databases 20Newsgroups and RCV1 4Class. are available at http://www.cad.zju.edu.cn/

home/dengcai/Data/TextData.html
6The databases Text-1, Cora-HA, Cora-OS and Core-PL are available at http://www.escience.

cn/people/fpnie/papers.html.

http://featureselection.asu.edu/datasets.php
https://www.face-rec.org/databases/
https://www.cs.tau.ac.il/~wolf/ytfaces/.
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.escience.cn/people/fpnie/papers.html
http://www.escience.cn/people/fpnie/papers.html
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Table 4.2
Example 4.2: Numerical experiments on the OLSR model (4.4) for some data sets in Table

4.1, where the best results are in bold.

Datasets CPU(s) KKT error f(rel)
err

ORL

Alg.1: 1.01
SCFRTR: 10.62
WYBB: 31.11
JDCP: 32.05
RTR: 24.25
GP-BB: 6.85
PCAL: 8.34
GPI: 1.22e+02

8.08e-06
8.86e-06
4.58e-05
2.55e-05
1.49e-07
1.74e-03
1.32e-03
5.30e-03

4.37e-13
1.07e-11
6.31e-08
8.21e-09
0
1.19e-05
4.76e-05
9.70e-05

Yale

Alg.1: 1.34
SCFRTR: 18.16
WYBB: 50.29
JDCP: 45.30
RTR: 75.44
GP-BB: 14.83
PCAL: 14.00
GPI: 1.80e+02

8.46e-08
8.72e-06
4.93e-05
5.07e-05
9.96e-06
1.74e-03
8.73e-04
4.60e-03

0
3.44e-09
1.92e-07
1.83e-07
6.66e-10
8.03e-05
6.20e-05
6.76e-05

YouTubeFace

Alg.1: 1.60e+02
SCFRTR: 8.15e+02
WYBB: 7.81e+02
JDCP: 1.00e+03
RTR: –
GP-BB: 41.07
PCAL: 29.08
GPI: 3.31e+02

8.46e-06
8.72e-06
1.10e-03
1.70e-03
–
4.85e-03
6.43e-03
9.76e-03

0
1.98e-06
1.24e-02
5.42e-03
–
5.81e-02
7.80e-02
1.94e-01

CLL SUB 111

Alg.1: 2.73
SCFRTR: 5.34
WYBB: 30.42
JDCP: 26.06
RTR: 25.58
GP-BB: –
PCAL: –
GPI: –

5.19e-09
6.76e-08
1.54e-03
2.80e-01
5.96e-07
–
–
–

0
1.70e-07
1.20e-03
26.56
1.83e-07
–
–
–

SMK CAN 187

Alg.1: 8.87
SCFRTR: 22.13
WYBB: 31.81
JDCP: 33.76
RTR: 25.58
GP-BB: 6.69
PCAL: 6.65
GPI: 2.96e+02

3.68e-09
1.90e-07
1.26e-05
2.05e-05
2.79e-08
1.52e-02
1.98e-02
2.71e-02

0
5.24e-13
3.33e-09
5.50e-09
0
3.80e-03
6.10e-03
8.25e-05

GLI 85

Alg.1: 5.69
SCFRTR: 15.84
WYBB: 27.99
JDCP: 22.95
RTR: 45.51
GP-BB: –
PCAL: –
GPI: –

1.80e-08
1.00e-07
1.00e-02
9.00e-02
4.72e-08
–
–
–

0
4.78e-07
1.30e-03
1.20e-01
2.17e-07
–
–
–

leukemia

Alg.1: 0.55
SCFRTR: 0.79
WYBB: 0.84
JDCP: 0.92
RTR: 1.51
GP-BB: 0.58
PCAL: 0.90
GPI: 6.25

1.48e-08
1.34e-06
2.47e-04
1.28e-05
6.89e-06
5.39e-04
4.32e-03
5.23e-04

0
3.39e-12
3.42e-08
3.37e-10
1.10e-10
3.25e-07
3.55e-05
5.50e-07

nci9

Alg.1: 0.51
SCFRTR: 2.54
WYBB: 3.70
JDCP: 3.69
RTR: 5.44
GP-BB: 1.71
PCAL: 3.35
GPI: 15.04

1.79e-08
5.89e-08
6.80e-05
2.70e-05
1.28e-07
4.47e-03
2.44e-03
5.92e-04

0
0
1.17e-08
1.50e-09
0
2.42e-06
1.19e-05
1.59e-07

Text-1

Alg.1: 1.20
SCFRTR: 3.01
WYBB: 3.79
JDCP: 3.49
RTR: 28.59
GP-BB: 1.50
PCAL: 2.20
GPI: 41.36

4.72e-06
1.07e-06
9.51e-06
9.29e-06
7.44e-08
2.87e-05
8.90e-05
3.73e-05

5.92e-10
6.60e-13
3.54e-08
1.66e-08
0
3.26e-07
8.14e-07
6.50e-07
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Table 4.3
Example 4.2: Numerical experiments on the OLSR model (4.4) for some data sets in Table

4.1, where the best results are in bold.

Datasets CPU(s) KKT error f(rel)
err

20Newsgroups

Alg.1: 56.03
SCFRTR: 6.25e+02
WYBB: 1.87e+03
JDCP: 2.36e+03
RTR: –
GPBB: 1.16e+02
PCAL: 1.00e+02
GPI: 4.40e+02

8.93e-06
2.03e-05
3.37e-03
2.70e-04
–
1.47e-02
1.31e-02
5.49e-02

0
6.93e-08
3.26e-05
5.41e-06
–
3.29e-02
2.65e-02
5.73e-01

Cora HA

Alg.1: 0.67
SCFRTR: 4.89
WYBB: 3.85
JDCP: 4.07
RTR: 50.61
GP-BB: 2.64
PCAL: 2.60
GPI: 30.50

1.06e-08
7.66e-06
4.01e-05
1.99e-05
3.24e-07
1.74e-04
7.12e-05
3.12e-03

0
1.59e-10
1.56e-07
4.07e-09
5.19e-13
2.65e-06
2.65e-07
8.64e-04

Cora OS

Alg.1: 1.04
SCFRTR: 10.47
WYBB: 10.13
JDCP: 10.59
RTR: 14.49
GP-BB: 4.37
PCAL: 4.23
GPI: 27.02

8.37e-07
7.77e-06
4.16e-05
3.31e-05
4.52e-06
1.48e-04
2.45e-04
3.40e-03

0
9.89e-10
5.67e-07
3.20e-08
1.05e-10
4.02e-06
1.85e-05
8.10e-05

Cora PL

Alg.1: 4.64
SCFRTR: 17.98
WYBB: 17.35
JDCP: 19.18
RTR: 1.73e+02
GP-BB: 7.47
PCAL: 7.92
GPI: 64.01

2.60e-08
5.13e-06
2.08e-05
3.73e-05
2.95e-07
1.95e-04
2.73e-04
4.20e-03

0
2.19e-10
6.44e-08
2.04e-07
5.90e-13
4.39e-06
1.07e-05
1.81e-05

RCV1 4Class

Alg.1: 17.87
SCFRTR: 1.37e+02
WYBB: 87.703
JDCP: 1.01e+02
RTR: 2.97e+03
GP-BB: 28.58
PCAL: 20.75
GPI: 4.48e+02

8.05e-06
9.75e-06
9.71e-06
9.72e-06
2.72e-06
1.15e-04
4.04e-04
6.84e-05

1.23e-08
0
6.73e-08
4.45e-08
2.32e-08
2.42e-06
1.70e-05
1.29e-06

4.3. Test on large graph clustering. Spectral clustering is a very popular
unsupervised machine learning methods [36]. There are two important problems in
spectral clustering [37]. First, spectral clustering consists of two successive optimiza-
tion stages, i.e., spectral embedding and spectral rotation, which may not lead to
globally optimal solutions. Second, for large-scale problems, it is well known that
spectral clustering methods are time-consuming with very high computational com-
plexities. In order to deal with these two challenging problems, a new framework
is proposed recently to perform spectral embedding and spectral rotation simultane-
ously (GCSED) [37]. Unlike the OLSR model, GCSED deals with an m-dimensional
problem, where m is the number of samples.

Given the database X = [x1,x2, . . . ,xm] ∈ Rn×m, with m samples and n features
drawn from ` classes. Let W be a similarity matrix, and D be a diagonal matrix with
the diagonal elements being the row sum of W . Denote by Ŵ = D−

1
2WD−

1
2 ∈ Rm×m,

and C = D
1
2Y (Y TDY )−

1
2 ∈ Rm×`, in each iteration of the GCSED algorithm, one

needs to solve the following QMPO problem [37]

(4.5) min
U∈Om×`

{
tr
(
UT (−Ŵ )U

)
+ 2γ tr

(
UT (−C)

)}
,
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where Y ∈ Rm×` is the cluster indicator matrix updated in each iteration, and γ
is a constant trade-off parameter. Similar to [37], we make use of the heat kernel
weighting to construct graphs, and calculate edge weights between nodes as

Wi,j = exp

{
−‖xi − xj‖2

2t2

}
for i, j = 1, 2, . . . ,m.

In the experiments, we choose t = 0.1 and γ = 0.1, 1, respectively. The data sets used
in this example are summarized in Table 4.4.

The numerical results are reported in Table 4.5, where we run eight algorithms
on the eleven data sets. Some remarks are given. First, we see that all the algorithms

are very fast in this example. Second, Algorithm 1 is the best one in terms of f
(rel)
err in

most of the situations. Third, the proposed algorithm is the best one in terms of KKT
error in most of the situations. Indeed, the accuracy of our method can be about five
to eight order higher than those of the other methods. Therefore, the proposed block
Lanczos method is very promising to large-scale quadratic minimization problems
with orthogonality constraints.

Table 4.4
Summary of test data sets in Example 4.3.

Dataset
Number of

samples (m)
Feature (n)

Number of
classes (`)

Background

AR7 1680 1200 120
Image

YaleB8 2432 4069 38

Statlog9 2310 19 7
Image

segmentation
madelon10 2600 500 2 Artificial
TDT211 9394 36771 30 Audio
MNIST12 70000 784 10

Handwritten
text

USPS13 9298 256 10
PenDigits14 10992 16 10
Reuters 8293 18933 65

Text20Newsgroups 18846 26214 20
Letters15 20000 16 4

7http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
8http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.
9https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/segment/.

10https://jundongl.github.io/scikit-feature/datasets.html.
11The databases TDT2, Reuters and 20Newsgroups are available at http://www.cad.zju.edu.cn/

home/dengcai/Data/TextData.html.
12http://yann.lecun.com/exdb/mnist/.
13https://archive.ics.uci.edu/ml/index.php.
14http://archive.ics.uci.edu/ml.
15https://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/segment/
https://jundongl.github.io/scikit-feature/datasets.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
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Table 4.5
Numerical experiments on the QMPO problem (4.5) for the data sets in Table 4.4, where the

best results are in bold.

γ = 0.1 γ = 1

Dataset CPU(s)
KKT
error

f
(rel)
err CPU(s)

KKT
error

f
(rel)
err

AR

Alg.1: 0.56
SCFRTR: 1.57
GBB: 0.31
AFBB: 0.29
RTR: 0.49
GP-BB: 0.17
PCAL: 0.46
GPI: 1.71

3.11e-09
1.29e-06
5.60e-06
1.00e-05
1.54e-06
1.75e-05
2.93e-05
1.39e-06

0
1.35e-13
1.43e-12
7.18e-12
1.19e-13
8.11e-12
2.55e-11
2.68e-12

0.39
0.87
0.32
0.30
0.52
0.14
0.35
0.34

2.71e-13
5.50e-06
1.38e-06
6.14e-07
1.20e-08
5.39e-06
1.53e-05
7.18e-07

0
9.72e-12
2.33e-13
1.06e-13
0
2.76e-12
5.79e-11
3.16e-12

YaleB

Alg.1: 0.13
SCFRTR: 0.47
GBB: 0.14
AFBB: 0.10
RTR: 0.31
GP-BB: 0.06
PCAL: 0.10
GPI: 0.48

5.82e-09
7.14e-07
3.77e-05
2.06e-05
4.59e-08
4.79e-05
6.64e-05
2.21e-06

0
3.95e-14
1.19e-10
1.80e-11
1.15e-15
5.31e-11
2.82e-10
3.97e-12

0.09
0.22
0.07
0.06
0.10
0.03
0.06
0.08

2.06e-11
7.14e-06
1.46e-06
4.58e-06
2.46e-08
3.73e-06
3.71e-06
9.27e-07

0
1.42e-11
6.34e-13
3.15e-12
1.00e-15
2.00e-12
3.15e-12
1.11e-12

Statlog

Alg.1: 0.01
SCFRTR: 0.02
GBB: 0.01
AFBB: 0.01
RTR: 0.01
GP-BB: 0.01
PCAL: 0.01
GPI: 0.05

3.14e-09
3.51e-07
2.10e-05
3.08e-06
1.45e-06
9.85e-06
5.22e-05
1.55e-06

0
5.13e-15
1.64e-10
1.24e-11
8.30e-13
2.46e-11
2.33e-09
1.17e-11

0.01
0.05
0.01
0.01
0.01
0.01
0.01
0.01

6.62e-08
1.22e-05
1.09e-06
7.18e-06
1.90e-07
9.85e-06
2.60e-06
5.73e-07

0
3.91e-11
2.02e-13
1.87e-11
7.45e-15
4.82e-12
1.23e-12
1.61e-13

madelon

Alg.1: 0.002
SCFRTR: 0.006
GBB: 0.007
AFBB: 0.015
RTR: 0.007
GP-BB: 0.004
PCAL: 0.011
GPI: 0.027

1.72e-13
2.09e-13
8.10e-06
4.10e-08
9.85e-10
4.20e-08
9.60e-05
9.23e-06

0
4.60e-15
5.48e-12
1.29e-14
1.59e-14
2.51e-15
7.68e-10
1.29e-14

0.002
0.006
0.003
0.005
0.004
0.002
0.002
0.005

1.58e-14
3.72e-14
1.43e-08
1.38e-09
4.68e-09
5.33e-09
4.57e-05
1.07e-06

8.37e-16
4.45e-16
3.76e-15
4.60e-15
0
5.23e-15
6.96e-10
1.92e-13

TDT2

Alg.1: 0.29
SCFRTR: 0.44
GBB: 0.28
AFBB: 0.23
RTR: 1.79
GP-BB: 0.16
PCAL: 0.34
GPI: 1.29

3.43e-14
4.79e-06
7.82e-06
8.64e-05
1.04e-08
1.15e-04
1.23e-05
2.44e-06

0
1.97e-12
1.61e-12
5.12e-13
6.50e-15
1.09e-10
1.29e-11
8.40e-12

0.28
0.35
0.20
0.19
0.36
0.10
0.20
0.20

2.19e-13
2.81e-08
4.31e-06
6.03e-07
5.64e-11
2.29e-07
1.59e-05
6.87e-07

0
3.69e-15
3.87e-12
4.28e-14
2.39e-15
1.11e-14
4.29e-11
9.80e-13

MNIST

Alg.1: 0.15
SCFRTR: 0.64
GBB: 1.05
AFBB: 1.56
RTR: 0.59
GP-BB: 0.25
PCAL: 0.38
GPI: 4.15

1.71e-12
1.60e-12
8.72e-06
1.11e-05
9.57e-12
1.82e-06
8.58e-05
4.15e-06

2.43e-14
7.33e-14
6.42e-12
1.03e-11
0
4.41e-14
6.13e-10
1.16e-11

0.11
0.39
0.44
0.52
0.38
0.15
0.23
0.36

1.37e-13
2.96e-13
3.98e-06
7.71e-06
9.67e-12
2.05e-06
1.89e-05
9.55e-07

9.73e-15
0
5.32e-12
1.90e-11
9.36e-15
3.85e-13
1.18e-10
8.54e-13

USPS

Alg.1: 0.13
SCFRTR: 0.40
GBB: 0.08
AFBB: 0.07
RTR: 0.11
GP-BB: 0.05
PCAL: 0.07
GPI: 0.28

6.55e-07
5.57e-06
3.61e-05
4.02e-05
5.88e-06
1.48e-05
1.77e-04
4.50e-06

0
1.40e-12
1.11e-10
1.37e-10
9.16e-13
2.86e-12
2.66e-09
1.24e-11

0.08
0.38
0.07
0.05
0.05
0.03
0.05
0.06

5.96e-08
2.81e-05
2.15e-06
7.19e-06
2.03e-06
1.73e-05
6.10e-05
9.65e-07

0
2.45e-10
1.52e-12
2.11e-11
1.03e-12
1.24e-10
6.55e-10
8.14e-13

PenDigits

Alg.1: 0.01
SCFRTR: 0.04
GBB: 0.05
AFBB: 0.06
RTR: 0.04
GP-BB: 0.01
PCAL: 0.02
GPI: 0.24

2.23e-13
6.18e-13
1.26e-06
4.78e-08
2.14e-10
4.14e-06
4.51e-04
4.19e-06

0
1.68e-15
1.56e-13
2.43e-15
6.55e-15
3.89e-13
1.69e-08
1.14e-11

0.01
0.04
0.08
0.07
0.06
0.02
0.03
0.05

1.06e-10
8.62e-12
3.21e-06
2.54e-07
2.27e-10
2.79e-06
1.55e-04
9.71e-07

2.62e-15
2.24e-15
8.68e-13
1.31e-14
0
7.17e-13
7.99e-09
2.62e-15

Reuters

Alg.1: 1.10
SCFRTR: 5.02
GBB: 2.78
AFBB: 1.68
RTR: 2.36
GP-BB: 0.66
PCAL: 1.29
GPI: 6.35

1.32e-08
1.10e-06
6.62e-05
1.97e-05
2.87e-07
1.21e-05
7.50e-05
1.88e-06

0
6.12e-14
3.69e-10
9.54e-12
7.45e-12
3.51e-12
4.93e-11
7.38e-12

0.40
2.28
0.47
0.47
0.95
0.20
0.53
0.48

2.28e-07
4.16e-06
5.32e-06
1.73e-06
3.15e-09
5.00e-05
5.28e-06
5.30e-07

1.50e-14
4.62e-12
3.30e-12
3.44e-13
0
2.61e-10
6.44e-12
9.72e-13

20Newsgroups

Alg.1: 0.14
SCFRTR: 0.37
GBB: 0.82
AFBB: 0.73
RTR: 1.36
GP-BB: 0.22
PCAL: 0.58
GPI: 1.63

9.89e-13
2.46e-07
3.98e-08
8.64e-05
1.22e-06
4.94e-06
2.32e-07
3.01e-06

0
3.44e-15
1.58e-15
5.66e-11
1.66e-14
2.03e-12
5.42e-15
1.15e-11

0.18
0.26
0.28
0.31
0.34
0.10
0.19
0.28

4.70e-13
1.68e-03
1.08e-05
4.60e-06
1.59e-08
7.73e-06
2.64e-05
6.87e-07

0
4.71e-07
1.18e-11
2.37e-12
4.10e-15
1.80e-11
2.31e-10
7.69e-13

Letters

Alg.1: 0.34
SCFRTR: 2.86
GBB: 0.82
AFBB: 0.73
RTR: 1.05
GP-BB: 0.74
PCAL: 0.58
GPI: 2.80

1.59e-09
3.84e-06
1.41e-05
2.63e-05
8.74e-09
1.49e-04
1.15e-04
3.03e-06

0
1.32e-12
1.63e-12
5.50e-11
4.47e-15
2.11e-09
1.24e-09
8.07e-12

0.28
1.32
0.36
0.38
0.52
0.29
0.42
0.38

2.85e-10
3.26e-06
2.41e-05
2.28e-06
8.87e-06
2.07e-05
5.50e-05
1.22e-06

0
1.60e-12
7.58e-11
1.32e-12
2.30e-11
5.37e-11
4.17e-10
3.02e-12
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5. Concluding remarks. In this paper, we propose a block Lanczos method
for the large-scale quadratic minimization problems with orthogonality constraints.
Convergence analysis on the optimal value, the optimal solution, the multipliers and
the KKT error is given. Theoretical results show that the convergence speed of the
new method strictly depends on the distribution of the spectrum of (I`⊗H)+(Λ∗⊗In).
Specifically, if (I` ⊗ H) + (Λ∗ ⊗ In) � O, the convergence rate of the solution from
the proposed method is comparable to that of conjugate gradient method. Numerical
experiments demonstrate that the new algorithm is superior to many state-of-the-art
methods for large-scale QMPO in terms of accuracy, KKT error and running time,
especially when `� n.

There are still something deserve further investigation. For instance, as the step
k increases, the main workload of Algorithm 1 is to solve (2.4). The computational
overhead will be prohibitive if k is large, and we have to restrict the value of k, and
efficient restarting techniques [32, 33, 34] are required for our block Krylov subspace
method. On the other hand, we assume that the matrix (I`⊗H)+(Λ∗⊗In) is nonsin-
gular in the convergence analysis. An interesting topic is to weaken this assumption
for the analysis.
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