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DIRECT IMAGING METHODS FOR RECONSTRUCTING A
LOCALLY ROUGH INTERFACE FROM PHASELESS TOTAL-FIELD

DATA OR PHASED FAR-FIELD DATA

LONG LI∗, JIANSHENG YANG† , BO ZHANG‡ , AND HAIWEN ZHANG§

Abstract. This paper is concerned with the problem of inverse scattering of time-harmonic
acoustic plane waves by a two-layered medium with a locally rough interface in 2D. A direct imaging
method is proposed to reconstruct the locally rough interface from the phaseless total-field data
measured on the upper half of the circle with a large radius at a fixed frequency or from the phased
far-field data measured on the upper half of the unit circle at a fixed frequency. The presence of the
locally rough interface poses challenges in the theoretical analysis of the imaging methods. To address
these challenges, a technically involved asymptotic analysis is provided for the relevant oscillatory
integrals involved in the imaging methods, based mainly on the techniques and results in our recent
work [L. Li, J. Yang, B. Zhang and H. Zhang, arXiv:2208.00456] on the uniform far-field asymptotics
of the scattered field for acoustic scattering in a two-layered medium. Finally, extensive numerical
experiments are conducted to demonstrate the feasibility and robustness of our imaging algorithms.

Key words. direct imaging method, locally rough interface, two-layered medium, phaseless
total-field data, phased far-field data.

AMS subject classifications. 35P25, 35R30, 65N21, 78A46

1. Introduction. In this paper, we consider the problem of inverse scattering
of time-harmonic acoustic plane waves in a two-layered medium with a locally rough
interface in 2D. The background two-layered medium is composed of two unbounded
media with different physical properties. The interface between the two media is
considered to be a local perturbation with a finite height from a planar surface over a
finite interval. Such problems occur in a broad spectrum of science and engineering,
such as remote sensing, ocean acoustics, geophysical exploration and nondestructive
testing.

Many numerical algorithms have been proposed for recovering impenetrable or
penetrable locally rough surfaces from the scattered-field data or far-field data. In
[5], a continuation approach using a series of wave frequencies was proposed for recon-
structing locally rough surfaces with Dirichlet boundary conditions. Newton iteration
methods with multiple wave frequencies were developed in [36, 46] for recovering
locally rough surfaces with Dirichlet or Neumann boundary conditions. In [22], a
Kirsch-Kress method was developed for reconstructing penetrable locally rough sur-
faces. Further, linear sampling methods for recovering sound-soft or penetrable lo-
cally rough surfaces were proposed in [15, 26, 27]. Recently, a reverse time migration
method was proposed in [24] for reconstructing sound-soft, sound-hard or penetra-
ble locally rough surfaces from incident point sources. This method has also been
extended to simultaneously recover penetrable locally rough surfaces and buried ob-
stacles in [25]. Moreover, there are also some numerical studies concerning inverse
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scattering by an unbounded rough surface (i.e., the case when the surface is a nonlocal
perturbation of an infinite plane); see [2, 3, 8, 12, 30, 37, 38, 39, 45].

In many practical applications, obtaining the phase information of the wave fields
is much harder than acquiring the intensity (or the modulus) information of the
wave fields. Thus it is often desirable to study inverse scattering with phaseless
data. Some work has been made to develop numerical algorithms for recovering
locally rough surfaces or unbounded rough surfaces from phaseless data. In [4], an
efficient continuation method using a series of wave frequencies was developed to
reconstruct the shapes of periodic diffraction profiles from phaseless near-field data.
A recursive Newton iteration algorithm with multiple wave frequencies was proposed
in [6] to recover the shapes of multi-scale rough surfaces from phaseless near-field
data. By using superpositions of two plane waves with different directions as the
incident fields, a recursive Newton iteration algorithm in frequencies was developed
in [43] to determine the shape and location of locally rough surfaces from phaseless far-
field data. Recently, a direct imaging method was proposed in [41] to recover locally
rough surfaces from phaseless total-field data corresponding to incident plane waves
at a fixed frequency. Further, an iterated marching method based on the parabolic
integral equation was developed in [13] to recover unbounded rough surfaces from
phaseless single frequency data at grazing angles. It is worth mentioning that all the
above work only considered the case of impenetrable rough surfaces, and few work
is available for numerically recovering penetrable rough surfaces with phaseless data.
For more works on the mathematical and numerical studies (including uniqueness and
inversion algorithms) of relevant inverse scattering problems with phaseless data, we
refer to [11, 18, 19, 17, 20, 21, 33, 40, 44] and the references therein.

In this paper, we develop two non-iterative numerical methods for our inverse
problem of recovering the locally rough interface from the measurement data corre-
sponding to incident plane waves at a fixed frequency. Precisely, we propose two direct
imaging methods to reconstruct the locally rough interface from phaseless total-field
data measured on the upper half of the circle with a large radius R, based on the
imaging function IP (z,R) with z ∈ R2 (see formula (3.2) below), and from phased
far-field data measured on the upper half of the unit circle, based on the imaging
function IF (z) with z ∈ R2 (see formula (3.3) below). The work in this paper is a
non-trivial extension of the work [41] from the case of sound-soft locally rough surfaces
to the case of penetrable locally rough surfaces. In fact, due to the presence of the
two-layered background medium, the reflected wave and the scattered wave for the
scattering problem considered in this paper are much more complicated than those
for the scattering problem considered in [41] (cf. [41, formula (1.4) and Lemma 2.1],
formula (2.2) and Lemma 3.1). This then leads to difficulties in the theoretical analy-
sis of the proposed direct imaging methods. To overcome these difficulties, we provide
a technically involved asymptotic analysis for the relevant oscillatory integrals. It is
worth mentioning that our recent work [29] on the uniform far-field asymptotics of the
scattered wave for the two-layered medium scattering problem provides a theoretical
foundation for the proposed methods. From the theoretical analysis, it is expected
that both IP (z,R) with sufficiently large R and IF (z) will take a large value when the
sampling point z is on the locally rough interface and decay as z moves away from the
locally rough interface. Based on these properties, a direct imaging algorithm with
phaseless total-field data and a direct imaging algorithm with phased far-field data
are given to recover the locally rough interface (see Algorithm 3.1 and Algorithm 3.2
below). A main feature of our algorithms is that only inner products are needed to
compute the imaging functions and thus they are very cheap in computation. Finally,
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numerical examples are carried out to show that our imaging methods can provide an
accurate and reliable reconstruction of the locally rough interface even for the case
of multiple-scale profiles and that our imaging methods are very robust to noises.
To the best of our knowledge, the present paper is the first attempt to develop a
non-iterative method with phaseless total-field data and a non-iterative method with
phased far-field data for recovering locally rough interfaces.

The remaining part of the paper is organized as follows. In Section 2, we intro-
duce the forward and inverse scattering problems under consideration. In Section 3,
we propose the direct imaging method with phaseless total-field data and the direct
imaging method with phased far-field data for the considered inverse scattering prob-
lems. The theoretical analysis of these methods is also given in Section 3. Numerical
experiments are conducted in Section 4 to illustrate the performance of our imaging
methods. Finally, some concluding remarks are given in Section 5.

2. The forward and inverse scattering problems. In this section, we pres-
ent the considered forward and inverse scattering problems in a two-layered medium
with a locally rough interface. We restrict our attention to the two-dimensional case
by assuming that the local perturbation is invariant in the x3 direction. First, we in-
troduce some notations which will be used throughout the paper. Let Γ := {(x1, x2) :
x2 = hΓ(x1), x1 ∈ R} represent a locally rough surface, where hΓ ∈ C2(R) has a
compact support in R. Let Γp := {(x1, x2) : x2 = hΓ(x1), x1 ∈ Supp(hΓ)} denote
the local perturbation of Γ. Let Ω± := {(x1, x2) : x2 ≷ hΓ(x1), x1 ∈ R} denote the
homogenous media above and below Γ, respectively. Let k± = ω/c± > 0 be two
different wave numbers in Ω±, respectively, with ω being the wave frequency and c±
being the wave speeds in the homogenous media Ω±, respectively. Define n := k−/k+.
Let S1± := {x = (x1, x2) ∈ R2 : |x| = 1, x2 ≷ 0} denote the upper part and lower
part of the unit circle, respectively. Let BR :=

{
x ∈ R2 : |x| < R

}
be a disk with

radius R > 0. We will always assume that R > 0 is large enough so that the local
perturbation Γp ⊂ BR. Define ∂B+

R := ∂BR ∩ Ω+. For any x ∈ R2, let x = (x1, x2)
and x′ = (x1,−x2). For any x ∈ R2 with |x| 6= 0, let x̂ = x/|x| = (cos θx̂, sin θx̂) with
the angle θx̂ ∈ [ 0, 2π) . For any positive integer ℓ, let Hℓ

loc(R
2) be the space of all

functions φ : R2 → C such that φ ∈ Hℓ(B) for all open balls B ⊂ R
2. For any t ∈ R

and a > 0, let S(t, a) := S1(t − a)S2(t + a), where S1(s) and S2(s) with s ∈ R are
defined by

S1(s) :=

{√
|s|, s > 0,

− i
√
|s|, s ≤ 0,

S2(s) :=

{√
|s|, s > 0,

i
√
|s|, s ≤ 0.

It can be seen that for any t ∈ R and a > 0,

S(t, a) =
{

− i
√
a2 − t2 if a−1|t| ≤ 1,

√
t2 − a2 if a−1|t| > 1.

(2.1)

We note that for any fixed a > 0, the function S(·, a) can be continued analytically
to the complex plane slit along two half-lines {z ∈ C : Re(z) = a, Im (z) ≥ 0} and
{z ∈ C : Re(z) = −a, Im (z) ≤ 0} (see [29, Section 2] for more details of the function
S(·, ·)).

Consider the time-harmonic (e−ωt time dependence) incident acoustic plane wave
ui(x, d) := eik+x·d propagating in the direction d = (cos θd, sin θd) ∈ S1− with θd ∈
(π, 2π). Then the total field utot(x, d) = u0(x, d)+us(x, d) is the sum of the reference
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wave u0(x, d) and the scattered field us(x, d). The reference wave u0(x, d) is generated
by the incident field ui(x, d) and the two-layered medium, and is given by (see, e.g.,
(2.13a) and (2.13b) in [35] or Section 4 in [29])

u0(x, d) :=

{
ui(x, d) + ur(x, d), x ∈ R2

+,

ut(x, d), x ∈ R2
−,

where R2
+ := {(x1, x2) ∈ R2 : x2 > 0} and R2

− := {(x1, x2) ∈ R2 : x2 < 0} denote
the upper and lower half-spaces, respectively, and the reflected wave ur(x, d) and
transmitted wave ut(x, d) are given by

ur(x, d) := R(π + θd)e
ik+x·dr

, ut(x, d) := T (π + θd)e
ik−x·dt

.(2.2)

Here, dr := (cos θd,− sin θd) is the reflection direction in S1+ and dt is given by

dt := n−1(cos θd,−iS(cos θd, n)).

In particular, we can see from (2.1) that if n−1| cos θd| ≤ 1, then dt = (cos θtd, sin θ
t
d)

is the transmission direction in S1− with θtd ∈ [π, 2π] satisfying cos θtd = n−1 cos θd.
Further, R(π + θd) and T (π + θd) in (2.2) are called the reflection and transmission
coefficients, respectively, with R and T defined by

R(θ) :=
i sin θ + S(cos θ, n)
i sin θ − S(cos θ, n) , T (θ) := R(θ) + 1 for θ ∈ R.(2.3)

It is easily seen that for any d ∈ S1−, the reference wave u0(x, d) ∈ H1
loc(R

2) and
u0(x, d) satisfies the Helmholtz equations by the unperturbed two-layered medium
together with the transmission condition on Γ0 := {(x1, 0) : x1 ∈ R}, that is,

∆u0 + k2±u
0 = 0 in R

2
±,(2.4)

[u0] = 0,
[
∂u0/∂ν

]
= 0 on Γ0,(2.5)

where ν denotes the unit normal on Γ0 pointing into R2
+ and [·] denotes the jump

across the interface Γ0. Moreover, the total field utot(x, d) and the scattered field
us(x, d) satisfy the following scattering problem in the two-layered medium with the
locally rough interface Γ

∆utot + k2±u
tot = 0 in Ω±,(2.6)

[utot] = 0,
[
∂utot/∂ν

]
= 0 on Γ,(2.7)

lim
|x|→+∞

√
|x|
(
∂us

∂|x| − ik±u
s

)
= 0 uniformly for all x̂ ∈ S

1
±,(2.8)

where ν denotes the unit normal on Γ pointing into Ω+, [·] denotes the jump across the
interface Γ, (2.6) is the Helmholtz equation and (2.8) is the well-known Sommerfeld
radiation condition. See Figure 1 for the problem geometry.

The following theorem presents the well-posedness of the scattering problem (2.6)–
(2.8), which is a direct consequence of Theorem 2.5 in [1]. Throughout the paper, we
assume that the total field utot(x, d) and the scattered field us(x, d) are given in the
sense of Theorem 2.1. See also [42] for the well-posedness of the two-layered medium
scattering problem.
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Phased far-field measurements

Phaseless total-field measurements

∂B
+

R

Γ

usui ur

usut

u∞

Ω+

Ω−

Fig. 1. Direct and inverse scattering problems in a two-layered medium with the locally rough
interface Γ.

Theorem 2.1 (see Theorem 2.5 in [1]). For any d ∈ S1−, there exists a unique
solution us(x, d) ∈ H1

loc(R
2) such that utot(x, d) := u0(x, d)+us(x, d) ∈ H1

loc(R
2), and

the total field utot(x, d) and the scattered field us(x, d) solve the scattering problem
(2.6)–(2.8).

Moreover, we proved in [29] that the scattered wave us(x, d) has the following
asymptotic behavior: for any d ∈ S1−,

us(x, d) =
eik+|x|
√
|x|

u∞(x̂, d) + us
Res(x, d), |x| → +∞, x ∈ Ω+,(2.9)

with the residual term us
Res(x, d) satisfying us

Res(x, d) = O(|x|−3/4
) as |x| → +∞

uniformly for all angles θx̂ ∈ (0, π), where u∞(x̂, d) is called the far-field pattern of
the scattered field us(x, d) and is given by

u∞(x̂, d) =

∫

∂BR

[
∂G∞(x̂, y)

∂ν(y)
us(y, d)− ∂us(y, d)

∂ν(y)
G∞(x̂, y)

]
ds(y), x̂ ∈ S

1
+.(2.10)

Here, G∞(x̂, y) is defined as follows: for any x̂ = (cos θx̂, sin θx̂) ∈ S1+ and y =
(y1, y2) ∈ R2

+ ∪ R2
−,

G∞(x̂, y) :=
ei

π
4

√
8πk+

{
e−ik+x̂·y +R(θx̂)e

−ik+x̂·y′

, x̂ ∈ S
1
+, y ∈ R

2
+,

T (θx̂)e
−ik+(y1 cos θx̂+iy2S(cos θx̂,n)), x̂ ∈ S

1
+, y ∈ R

2
−.

In [7, 35], it was proved that for any d ∈ S1−, the residual term us
Res(x, d) in (2.9)

satisfies us
Res(x, d) = O(|x|−3/2

) as |x| → +∞ for all angles θx̂ ∈ (0, π) except possibly
for certain critical angles (we note that there is no critical angle in (0, π) in the case
k+ < k− and that there are only two critical angles θc and π − θc in (0, π) with
θc := arccos(k−/k+) ∈ (0, π/2) in the case k+ > k−). See Remarks 4 and 5 in [29]
for discussions on the critical angles. Further, in [29] we have established the uniform
far-field asymptotics of the scattered field us(x, d); see also Lemma 3.1 below for some
of our results in [29]. For more discussions on the far-field asymptotic properties of
the scattered field us(x, d), we refer to [7, 35, 29].

We note that the well-posedness of the direct scattering problem in a two-layered
medium with a general unbounded rough interface (that is, the interface is a nonlocal
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perturbation of an infinite plane) has been studied in [32, 10, 23], where the scattered
field is required to satisfy the upward and downward propagating radiation conditions
instead of the Sommerfeld radiation condition. We mention that the well-posedness of
this kind of scattering problem will be used for the theoretical analysis of our inversion
algorithms in Section 3.

In this paper, we focus on the following two inverse problems (see Figure 1).
Inverse problem with phaseless total-field data (IP1): Given the incident

plane wave ui(x, d) with fixed wave number k+, reconstruct the shape and location of
the penetrable locally rough surface Γ from the phaseless total-field data |utot(x, d)|
for all x ∈ ∂B+

R and d ∈ S1−.
Inverse problem with phased far-field data (IP2): Given the incident plane

wave ui(x, d) with fixed wave number k+, reconstruct the shape and location of the
penetrable locally rough surface Γ from the phased far-field data u∞(x̂, d) for all
x̂ ∈ S1+ and d ∈ S1−.

3. Direct imaging methods for the inverse problems. In this section, we
will develop direct imaging methods for the inverse problems (IP1) and (IP2). For
this aim, we introduce some notations which will be used in the rest of the paper.
For the case k+ > k−, let θc ∈ (0, π/2) be the angle defined as in Section 2. For any
θ ∈ R, let R0(θ) := R(θ+ π) with the function R given in (2.3). It is easily seen that
for both the cases k+ < k− and k+ > k−, the function R0 and its (distributional)
derivative satisfy

‖R0(·)‖C[π,2π] ≤ C, ‖R′
0(·)‖L1(π,2π) ≤ C(3.1)

with some constant C > 0. For any d ∈ S1−, let d = (d1, d2). Throughout the paper,
the constants may be different at different places.

For the inverse problem (IP1), we introduce the following imaging function: for
z ∈ R2,

IP (z,R) :=

∫

∂B+
R

∣∣∣∣
∫

S1
−

{[
|utot(x, d)|2 −

(
1 + |R0(θd)|2 +R0(θd)e

2ik+x2d2
)]
eik+(x−z)·d

− eik+(x′−z′)·d
}
ds(d)

∣∣∣∣
2

ds(x),(3.2)

where x′ and z′ is given as in Section 2. For the inverse problem (IP2), we introduce
the following imaging function: for z ∈ R

2,

IF (z) :=

∫

S1+

∣∣∣∣∣

∫

S1
−

u∞(x̂, d)e−ik+z·dds(d) +

(
2π

k+

) 1
2

e−iπ/4
(
R(θx̂)e

−ik+x̂·z′ − e−ik+x̂·z
)∣∣∣∣∣

2

ds(x̂).

(3.3)

In Sections 3.1 and 3.2, we will study the asymptotic property of IP (z,R) as R → +∞
and the property of IF (z), respectively, by analyzing the asymptotic properties of
relevant oscillatory integrals. In doing so, an essential role is played by the uniform
far-field asymptotic properties of the scattered field us(x, d) obtained in our work
[29]. Based on the results in Sections 3.1 and 3.2, we will propose the direct imaging
methods for the inverse problems (IP1) and (IP2) in Section 3.3. It should be remarked
that currently there is no uniqueness result for the inverse problems (IP1) and (IP2).
However, the numerical examples carried out in Section 4 show that our inversion
algorithms can provide a satisfactory reconstruction of the locally rough surface Γ.
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3.1. Asymptotic property of the imaging function IP (z,R). We will study
the asymptotic property of the imaging function IP (z,R) given in (3.2) when the
radius R is sufficiently large. For x ∈ Ω+ and z ∈ R2, define

U1(x, z) :=

∫

S1
−

us(x, d)e−ik+z·dds(d),

U2(x, z) :=

∫

S1
−

R0(θd)e
ik+(x′−z)·dds(d),

U3(x, z) :=

∫

S1
−

−eik+(x′−z′)·dds(d),

and

W1(x, z) :=

∫

S1
−

us(x, d)e2ik+x·de−ik+z·dds(d),

W2(x, z) :=

∫

S1
−

us(x, d)R0(θd)e
2ik+x1d1e−ik+z·dds(d),

W3(x, z) :=

∫

S1
−

us(x, d)R0(θd)e
2ik+x2d2e−ik+z·dds(d),

W4(x, z) :=

∫

S1
−

|us(x, d)|2eik+(x−z)·dds(d).

Further, for x ∈ Ω+ and z ∈ R2, let U(x, z) and W (x, z) be given by

U(x, z) :=

∫

S1
−

[utot(x, d) − ui(x, d)]e−ik+z·dds(d) + U3(x, z),(3.4)

W (x, z) := W1(x, z) +W2(x, z) +W3(x, z) +W4(x, z).

It is clear that

U(x, z) = U1(x, z) + U2(x, z) + U3(x, z) for x ∈ Ω+ ∩ R
2
+ and z ∈ R

2.(3.5)

Thus, using the relations utot(x, d) = ui(x, d) + ur(x, d) + us(x, d), |ui(x, d)| = 1 and
|ur(x, d)| = |R0(θd)| for any x ∈ ∂B+

R and d ∈ S
1
−, we can rewrite IP (z,R) as

IP (z,R) =

∫

∂B+
R

|U(x, z) +W (x, z)|2 ds(x).(3.6)

Define the function space

C(S1+) := {ϕ ∈ C(S1+) : ϕ is uniformly continuous on S
1
+}

with the norm ‖ϕ‖
C(S1+)

:= supx∈S1+
|ϕ(x)| and the function space

C1(S1+) := {ϕ ∈ C1(S1+) : ϕ and Gradϕ are uniformly continuous on S
1
+}

with the norm ‖ϕ‖
C1(S1+)

:= supx∈S1+
|ϕ(x)|+supx∈S1+

|Gradϕ(x)|, where Grad denotes

the surface gradient on S1+. Then we need the following uniform far-field asymptotic
properties of the scattered field us(x, d) for x ∈ Ω+ which were obtained in [29].
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Lemma 3.1 (see Theorems 13 and 14 in [29]). Let x = |x|x̂ = |x|(cos θx̂, sin θx̂) ∈
Ω+ with θx̂ ∈ (0, π) and |x| > R, where R > 0 is large enough such that Γp ⊂ BR.
For d ∈ S1−, let us(x, d) be the scattered field of the scattering problem (2.6)–(2.8).
Then the following statements hold true.
(a) For the case k+ < k−, the scattered field us(x, d) has the asymptotic behavior

us(x, d) =
eik+|x|
√

|x|
u∞(x̂, d) + us

Res(x, d) for x ∈ Ω+\BR

with the far-field patten u∞(x̂, d) of the scattered field given by (2.10), where

u∞(x̂, d) satisfies u∞(·, d) ∈ C1(S1+) with

‖u∞(·, d)‖
C1(S1+)

≤ C for all d ∈ S
1
−,

and us
Res(x, d) satisfies

|us
Res(x, d)| ≤ C|x|−3/2, |x| → +∞,

uniformly for all θx̂ ∈ (0, π) and d ∈ S1−.
(b) For the case k+ > k−, the scattered field us(x, d) has the asymptotic behavior

us(x, d) =
eik+|x|
√

|x|
u∞(x̂, d) + us

Res(x, d) for x ∈ Ω+\BR(3.7)

with the far-field pattern u∞(x̂, d) of the scattered field given by (2.10), where

u∞(x̂, d) satisfies u∞(·, d) ∈ C(S1+) and Gradx̂ u
∞(·, d) ∈ L1(S1+) with

‖u∞(·, d)‖
C(S1+)

, ‖Gradx̂ u
∞(·, d)‖L1(S1+) ≤ C for all d ∈ S

1
−,(3.8)

and us
Res(x, d) satisfies

|us
Res(x, d)| ≤ C|x|−3/4, |x| → +∞,

uniformly for all θx̂ ∈ (0, π) and d ∈ S1−,

|us
Res(x, d)| ≤ C|θc − θx̂|−

3
2 |x|− 3

2 , |x| → +∞,

uniformly for all θx̂ ∈ (0, θc) ∪ (θc, π/2) and d ∈ S1−, and

|us
Res(x, d)| ≤ C|π − θc − θx̂|−

3
2 |x|− 3

2 , |x| → +∞,

uniformly for all θx̂ ∈ [π/2, π − θc ) ∪ (π − θc, π) and d ∈ S
1
−.

Here, C > 0 is a constant independent of x and d.

As a consequence of Lemma 3.1, we have the following lemma on the residual
term us

Res(x, d) in (3.7) for the case k+ > k−.

Lemma 3.2. Assume k+ > k−. For d ∈ S1−, let us
Res(x, d) be the residual term

given in (3.7). Then we have
∫

∂B+
R

|us
Res(x, d)|ds(x) ≤ CR−1/4,

∫

∂B+
R

|us
Res(x, d)|2ds(x) ≤ CR−1

as R → +∞ uniformly for all d ∈ S1−. Here, C > 0 is a constant independent of R.



INVERSE SCATTERING BY A LOCALLY ROUGH INTERFACE 9

Proof. Let R be large enough. Choose ε = R−1/2 and define the set S1θc,ε
:=

{(cos θ, sin θ) : θ ∈ Iε} with Iε := {θ ∈ (0, π) : |θ − θc| ≥ ε, |θ − (π − θc)| ≥ ε}. Then
it follows from the statement (b) of Lemma 3.1 that

∫

∂B+
R

|us
Res(x, d)|ds(x) = R

{∫

S1+\S1
θc,ε

+

∫

S1
θc,ε

}
|us

Res(Rx̂, d)| ds(x̂)

≤ CεR
1
4 +

C

R
1
2

(∫

(0,π/2)∩Iε

1

|θc − θx̂|
3
2

dθx̂ +

∫

[π/2,π)∩Iε

1

|π − θc − θx̂|
3
2

dθx̂

)

≤ CεR
1
4 +

C

(εR)
1
2

+
C

R
1
2

≤ CR− 1
4

and
∫

∂B+
R

|us
Res(x, d)|2ds(x) = R

{∫

S1+\S1
θc,ε

+

∫

S1
θc,ε

}
|us

Res(Rx̂, d)|2 ds(x̂)

≤ Cε

R
1
2

+
C

R2

(∫

(0,π/2)∩Iε

1

|θc − θx̂|3
dθx̂ +

∫

[π/2,π)∩Iε

1

|π − θc − θx̂|3
dθx̂

)

≤ Cε

R
1
2

+
C

(εR)2
+

C

R2
≤ CR−1.

The proof is thus complete.

We also need the following reciprocity relation of the far-field pattern.

Lemma 3.3. For x̂ ∈ S1+ and d ∈ S1−, let u∞(x̂, d) be the far-field pattern of
the scattering problem (2.6)–(2.8). Then we have the reciprocity relation u∞(x̂, d) =
u∞(−d,−x̂) for all x̂ ∈ S1+ and d ∈ S1−.

Proof. For the scattering problem (2.6)–(2.8) in the limiting case k+ = k−, it
is well-known that the reciprocity relation of the far-field pattern holds (see, e.g.,
[14, Theorem 3.23]). For the considered scattering problem, it is easily seen that
G∞(x̂, y) = eiπ/4(8πk+)

−1/2u0(y,−x̂) for x̂ ∈ S1+ and y ∈ R2
+ ∪ R2

−. Therefore, by
using similar arguments as in the proof of [14, Theorem 3.23], we can apply formulas
(2.4), (2.5), (2.6), (2.7), (2.8) and (2.10) to obtain that the assertion of this lemma
holds.

Further, we will apply the theory of oscillatory integrals to obtain some inequal-
ities. We need the following result proved in [11].

Lemma 3.4 (Lemma 3.9 in [11]). For any −∞ < a < b < ∞ let u ∈ C2[a, b]
be real-valued and satisfy that |u′(t)| ≥ 1 for all t ∈ (a, b). Assume that a = x0 <
x1 < · · · < xN = b is a division of (a, b) such that u′ is monotone in each interval
(xi−1, xi), i = 1, . . . , N . Then for any function φ defined on (a, b) with integrable
derivative and for any λ > 0,

∣∣∣∣∣

∫ b

a

eiλu(t)φ(t)dt

∣∣∣∣∣ ≤ (2N + 2)λ−1

[
|φ(b)|+

∫ b

a

|φ′(t)|dt
]
.

Remark 3.5. By the theory on function approximation (see, e.g, Section 5.3 and
Appendix C.5 in [16]), it can be seen that Lemma 3.4 still holds under the assumption
that the function φ ∈ C[a, b] ∩W 1,1(a, b).
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Define C(S1−) := {ϕ ∈ C(S1−) : ϕ is uniformly continuous on S1−} with the norm
‖ϕ‖

C(S1
−
)
:= supx∈S1

−
|ϕ(x)| and W 1,1(S1−) := {f ∈ L1(S1−) : Grad f ∈ L1(S1−)} with

the norm ‖f‖W 1,1(S1
−
) := ‖f‖L1(S1

−
)+ ‖Gradf‖L1(S1

−
), where Grad denotes the surface

gradient on S1−. By using Lemma 3.4 and Remark 3.5, we have the following lemma.

Lemma 3.6. Let x ∈ R2
+ and d ∈ S1−. For x̂ = x/|x| ∈ S1+, assume that

f(x̂, ·), g(x̂, ·) ∈ C
(
S1−
)
∩W 1,1(S1−) and define

F (x) :=

∫

S1
−

eik+x·df(x̂, d)ds(d), G(x) :=

∫

S1
−

eik+x′·dg(x̂, d)ds(d).

Then we have

|F (x)| ≤ C

(
‖f(x̂, ·)‖

C
(
S1
−

) +
∫

S1
−

|Gradd f(x̂, d)|ds(d)
)
|x|−1/2,

|G(x)| ≤ C

(
‖g(x̂, ·)‖

C
(
S1
−

) +
∫

S1
−

|Gradd g(x̂, d)|ds(d)
)
|x|−1/2

as |x| → +∞ uniformly for all θx̂ ∈ (0, π), where C > 0 is a constant independent of
x.

Proof. With the aid of Lemma 3.4 and Remark 3.5, the statement of this lemma
can be derived similarly as in the proof of Lemma 3.2 in [41] with minor modifications.
See also Lemma 2.4 in [28] for similar derivations.

Next, with the aid of the above lemmas, we study the asymptotic properties of
Uj (j = 1, 2, 3) and Wj (j = 1, 2, 3, 4), which are presented in Lemmas 3.7, 3.9 and
3.10 below.

Lemma 3.7. Let x ∈ R2
+ with |x| large enough and z ∈ R2. Then we have

|U1(x, z)| ≤ C|x|−1/2,(3.9)

|U2(x, z)| ≤ C(1 + |z|)|x|−1/2,(3.10)

|Wj(x, z)| ≤ C|x|−1/2, j = 1, 2, 3,(3.11)

|W4(x, z)| ≤ C|x|−1(3.12)

as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2, where C > 0 is a constant
independent of x and z.

Proof. The formulas (3.9), (3.11) and (3.12) can be obtained by using Lemma
3.1 and the formula (3.1). It follows from Lemma 3.6 and the formula (3.1) that the
formula (3.10) holds.

Remark 3.8. It was proved in Lemma 3.4 in [41] that U3(x, z) also satisfies the
estimate (3.10) as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2.

Lemma 3.9. Let R > 0 be large enough and z ∈ R2. Then we have
∣∣∣∣∣

∫

∂B+
R

U(x, z)W4(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)R−1/2,

∫

∂B+
R

|W4(x, z)|2 ds(x) ≤ CR−1
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as R → +∞ uniformly for all z ∈ R2, where C > 0 is a constant independent of R
and z.

Proof. This lemma is a direct consequence of Lemma 3.7, Remark 3.8 and the
formula (3.5).

Lemma 3.10. Let R > 0 be large enough and z ∈ R2. Then we have
∣∣∣∣∣

∫

∂B+
R

U(x, z)W1(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)2R−1/2,(3.13)

∫

∂B+
R

|W1(x, z)|2 ds(x) ≤ C(1 + |z|)2R−1(3.14)

and

4∑

l=1

∣∣∣∣∣

∫

∂B+
R

Wl(x, z)Wj(x, z)ds(x)

∣∣∣∣∣+
∣∣∣∣∣

∫

∂B+
R

U(x, z)Wj(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)2R−1/3,

j = 2, 3,(3.15)

as R → +∞ uniformly for all z ∈ R
2. Here, C > 0 is a constant independent of R

and z.

Proof. Let R be large enough throughout the proof. We distinguish between the
following two cases.

Case 1: k+ < k−. Due to statement (a) of Lemma 3.1 and Lemma 3.3, we can
apply similar arguments as in the derivation of (3.18) in [41] to obtain that

|W1(x, z)| ≤ C(1 + |z|)|x|−1

for all x ∈ R2
+ with |x| large enough. Note that the formula (3.5) holds. Thus it

follows from Lemma 3.7 and Remark 3.8 that (3.13) and (3.14) hold. Moreover, using
statement (a) of Lemma 3.1 and Lemma 3.3 again, we can deduce (3.15) in the same
manner as in the proof of Lemma 3.7 in [41].

Case 2: k+ > k−. Let x = |x|x̂ = |x|(cos θx̂, sin θx̂) with θx̂ ∈ (0, π) and large
enough |x| and let d = (cos θd, sin θd) with θd ∈ (π, 2π).

First, we prove that (3.13) and (3.14) hold. In terms of (3.7), we have

W1(x, z)

=
e−ik+|x|

|x|1/2
∫

S1
−

e2ik+x·du∞(x̂, d)e−ik+z·dds(d) +

∫

S1
−

e2ik+x·dus
Res(x, d)e

−ik+z·dds(d)

=: W1,1(x, z) +W1,2(x, z).
(3.16)

By applying (3.8) and Lemmas 3.3 and 3.6, we have

|W1,1(x, z)| ≤ C(1 + |z|)|x|−1.(3.17)

Then it follows from Lemma 3.7, Remark 3.8 and the formula (3.5) that
∣∣∣∣∣

∫

∂B+
R

U(x, z)W1,1(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)2R−1/2,(3.18)

∫

∂B+
R

|W1,1(x, z)|2 ds(x) ≤ C(1 + |z|)2R−1.(3.19)
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Moreover, by using Lemmas 3.2 and 3.7, Remark 3.8, (3.5) and (3.17), we arrive at

∣∣∣∣∣

∫

∂B+
R

U(x, z)W1,2(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)R−1/2

∫

S1
−

∫

∂B+
R

|us
Res(x, d)|ds(x)ds(d)

≤ C(1 + |z|)R−3/4,
∣∣∣∣∣

∫

∂B+
R

W1,1(x, z)W1,2(x, z)ds(x)

∣∣∣∣∣ ≤ C(1 + |z|)R−1

∫

S1
−

∫

∂B+
R

|us
Res(x, d)|ds(x)ds(d)

≤ C(1 + |z|)R−5/4,
∫

∂B+
R

|W1,2(x, z)|2 ds(x) ≤ π

∫

S1
−

∫

∂B+
R

|us
Res(x, d)|2ds(x)ds(d) ≤ CR−1.

These, together with (3.16), (3.18) and (3.19), imply that (3.13) and (3.14) hold.
Secondly, we prove that (3.15) holds. For θx̂ ∈ (0, π) and θd ∈ (π, 2π), define

fz(θx̂, θd) := u∞(x̂, d)R0(θd)e
−ik+z·d, gz(θx̂, θd) := u∞(x̂, d)R0(θd)e

−ik+z·d.

Then in view of (3.7), we have

W2(x, z) =
e−ik+|x|
√
|x|

wz,2(|x|, θx̂) +W2,Res(x, z),

W3(x, z) =
eik+|x|
√
|x|

wz,3(|x|, θx̂) +W3,Res(x, z),

where

wz,2(|x|, θx̂) :=
∫ 2π

π

e2ik+|x| cos θx̂ cos θdfz(θx̂, θd)dθd,

wz,3(|x|, θx̂) :=
∫ 2π

π

e2ik+|x| sin θx̂ sin θdgz(θx̂, θd)dθd,

and

W2,Res(x, z) :=

∫

S1
−

e2ik+x1d1us
Res(x, d)R0(θd)e

−ik+z·dds(d),

W3,Res(x, z) :=

∫

S1
−

e2ik+x2d2us
Res(x, d)R0(θd)e

−ik+z·dds(d).

These, together with (3.1), (3.5), Remark 3.8 and Lemmas 3.2 and 3.7, imply that

4∑

l=1

∣∣∣∣∣

∫

∂B+
R

Wl(x, z)Wj(x, z)ds(x)

∣∣∣∣∣+
∣∣∣∣∣

∫

∂B+
R

U(x, z)Wj(x, z)ds(x)

∣∣∣∣∣

≤ C(1 + |z|)
(∫ π

0

|wz,j(R, θx̂)|dθx̂ +R−1/2

∫

∂B+
R

|Wj,Res(x, z)| ds(x)
)

≤ C(1 + |z|)
∫ π

0

|wz,j(R, θx̂)|dθx̂ + C(1 + |z|)R−3/4, j = 2, 3.(3.20)
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Moreover, by using the formula (3.1) and Lemmas 3.1 and 3.3, we have that for any
θx̂ ∈ (0, π), fz(θx̂, ·) and gz(θx̂, ·) can be continuously extended from (π, 2π) to [π, 2π]
with

‖fz(θx̂, ·)‖C[π,2π], ‖gz(θx̂, ·)‖C[π,2π] ≤ C‖u∞(x̂, ·)‖
C(S1

−
)
≤ C,(3.21)

and dfz(θx̂, ·)/dθd, dgz(θx̂, ·)/dθd ∈ L1(π, 2π) with
∥∥∥∥

d

dθd
fz(θx̂, ·)

∥∥∥∥
L1(π,2π)

,

∥∥∥∥
d

dθd
gz(θx̂, ·)

∥∥∥∥
L1(π,2π)

≤ C(1 + |z|)
(
‖u∞(x̂, ·)‖

C(S1
−
)
+ ‖Gradd u

∞(x̂, ·)‖L1(S1
−
)

)
≤ C(1 + |z|),(3.22)

where the constants are independent of θx̂ and z.
Choose ε = R−1/3 and define

Iε,1 := [π/2− ε, π/2 + ε], Iε,2 := (0, π)\Iε,1,
Iε,3 := (π, π + ε] ∪ [ 2π − ε, 2π) , Iε,4 := (π, 2π)\Iε,3,
Iε,5 := (0, ε] ∪ [π − ε, π) , Iε,6 := (0, π)\Iε,5,
Iε,7 := [3π/2− ε, 3π/2 + ε], Iε,8 := (π, 2π)\Iε,7.

Then arguing similarly as in the derivations of the estimates (3.31) and (3.34) in [41],
we can apply Lemma 3.4, Remark 3.5 and the formulas (3.21) and (3.22) to deduce
that

∫ π

0

|wz,2(R, θx̂)|dθx̂

≤
∫

Iε,1

|wz,2(R, θx̂)|dθx̂ +

∫

Iε,2

∣∣∣∣∣

∫

Iε,3

e2ik+R cos θx̂ cos θdfz(θx̂, θd)dθd

∣∣∣∣∣ dθx̂

+

∫

Iε,2

∣∣∣∣∣

∫

Iε,4

e2ik+R cos θx̂ cos θdfz(θx̂, θd)dθd

∣∣∣∣∣ dθx̂

≤Cε+
C

Rε2
max

θx̂∈Iε,2

(
‖fz(θx̂, ·)‖C[π,2π] +

∥∥∥∥
d

dθd
fz(θx̂, ·)

∥∥∥∥
L1(π,2π)

)
≤ C(1 + |z|)

R1/3
(3.23)

and
∫ π

0

|wz,3(R, θx̂)|dθx̂

≤
∫

Iε,5

|wz,3(R, θx̂)|dθx̂ +

∫

Iε,6

∣∣∣∣∣

∫

Iε,7

e2ik+R sin θx̂ sin θdgz(θx̂, θd)dθd

∣∣∣∣∣ dθx̂

+

∫

Iε,6

∣∣∣∣∣

∫

Iε,8

e2ik+R sin θx̂ sin θdgz(θx̂, θd)dθd

∣∣∣∣∣ dθx̂

≤Cε+
C

Rε2
max

θx̂∈Iε,6

(
‖gz(θx̂, ·)‖C[π,2π] +

∥∥∥∥
d

dθd
gz(θx̂, ·)

∥∥∥∥
L1(π,2π)

)
≤ C(1 + |z|)

R1/3
.

(3.24)

Combining the formulas (3.20), (3.23) and (3.24), we obtain that (3.15) holds. The
proof is thus completed.
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Finally, as a direct consequence of Lemmas 3.9 and 3.10, we can apply the formula
(3.6) to obtain the following theorem on the imaging function IP (z,R).

Theorem 3.11. Let R > 0 be large enough and z ∈ R2. Define the function

IS(z,R) :=

∫

∂B+
R

|U(x, z)|2ds(x).(3.25)

Then the imaging function IP (z,R) can be written as

IP (z,R) = IS(z,R) + IP,Res(z,R)

with IP,Res(z,R) satisfying the estimate

|IP,Res(z,R)| ≤ C(1 + |z|)2R−1/3

as R → +∞ uniformly for all z ∈ R2. Here, C > 0 is a constant independent of R
and z.

3.2. Property of the imaging function IF (z). In this subsection, we study
the asymptotic property between the imaging function IF (z) given in (3.3) and the
function IS(z,R) given in (3.25) when the radius R is large enough. To achieve this,
we will derive the uniform far-field expansions of Ui(x, z) (i = 1, 2, 3) in what follows.

First, we have the following uniform far-field expansion of U1(x, z).

Lemma 3.12. Let x ∈ R
2
+ with sufficiently large |x| and z ∈ R

2. Then U1(x, z)
has the asymptotic behavior

U1(x, z) =
eik+|x|
√
|x|

∫

S1
−

u∞(x̂, d)e−ik+z·dds(d) + U1,Res(x, z)(3.26)

with the residual term U1,Res(x, z) satisfying

|U1,Res(x, z)| ≤
{
C|x|−3/2 in the case k+ < k−,

C|x|−3/4 in the case k+ > k−,

as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2. Here, C > 0 is a constant
independent of x and z.

Proof. This lemma is a direct consequence of Lemma 3.1.

Secondly, we analyze the uniform far-field expansions of U2(x, z) and U3(x, z). To
do this, we need the following two lemmas, which will be proved in Appendix A.

Lemma 3.13. Let a, b, λ ∈ R with a < 0 < b and λ > 0. Then the integral

I(λ) :=
∫ b

a
e−iλη2/2dη satisfies

I(λ) = e−iπ/4
√
2πλ−1/2 + IRes(λ)

with |IRes(λ)| ≤ 2λ−1(|a|−1 + b−1).

Lemma 3.14. Assume a, b, t, λ ∈ R with a < 0 < b and t, λ > 0. Define the
integral

I(λ) :=

∫ b

a

e−iλη2/2 (f(η)− f(0))dη
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with f(η) := q(η)eitp(η), where p(η) ∈ C3[a, b] is a real-valued function and q(η) ∈
C3[a, b] is a complex-valued function. Then we have

|I(λ)| ≤ C(1 + b− a)(1 + ‖p‖C3[a,b])
3‖q‖C3[a,b](1 + t)2λ−1,

where C > 0 is a constant independent of a, b, t, λ and the functions p, q.

With the aid of Lemmas 3.13 and 3.14, we have the following properties for some
relevant integrals.

Lemma 3.15. Let x = |x|x̂ = |x|(cos θx̂, sin θx̂) ∈ R2
+ with θx̂ ∈ (0, π) and z =

|z|(cos θẑ, sin θẑ) ∈ R
2 with θẑ ∈ [0, 2π). Define

V (x, z) :=

∫ 2π

π

eik+|x| cos(θd+θx̂)e−ik+|z| cos(θd−θẑ)f(θd)dθd

with f ∈ C[π, 2π]. Then the following statements hold true.
(a) If f ∈ C3[π, 2π], then V (x, z) has the form

V (x, z) =
eik+|x|

|x| 12
e−

iπ
4

(
2π

k+

)1/2

f(2π − θx̂)e
−ik+x̂·z′

+ VRes(x, z)(3.27)

with the residual term VRes(x, z) satisfying

|VRes(x, z)| ≤ C‖f‖C3[π,2π]E(θx̂, z)|x|−1

for all x ∈ R2
+ and z ∈ R2. Here, E(θx̂, z) is given by

E(θx̂, z)

:= (1 + |z|)2 + 1

| sin θx̂
2 |

+
1

| sin π−θx̂
2 |

+
1

| sin θx̂|
+ (1 + |z|)

∣∣∣∣∣

∫ π−θx̂

θx̂

1

sin2 t
dt

∣∣∣∣∣

(3.28)

and C > 0 is a constant independent of x, z and f .
(b) Let a, b ∈ R such that π < a < b < 2π and let θ0 ∈ (a, b). If f has the form

f(θ) = Sj(cos θ − cos θ0)g(θ), θ ∈ [π, 2π],

with j ∈ {1, 2}, g ∈ C3[π, 2π] and Supp(g) ⊂ (a, b), then V (x, z) has the form
(3.27) with the residual term VRes(x, z) satisfying

|VRes(x, z)| ≤ C(1 + |z|)2‖g‖C3[a,b]|x|−3/4 as |x| → +∞(3.29)

uniformly for all θx̂ ∈ (0, π) and z ∈ R2. Here, C > 0 is a constant independent
of x, z, θ0 and g but dependent of a and b.

Proof. Let θ̃x̂ := π − θx̂ and P(t) := k+ cos(t + θ̃x̂ − θẑ). A straightforward
calculation gives that

V (x, z) =

∫ π−θ̃x̂

−θ̃x̂

f(t+ π + θ̃x̂)e
ik+|x| cos tei|z|P(t)dt.(3.30)

First, we prove the statement (a). To do this, we consider the following Parts 1.1
and 1.2.
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Part 1.1: Estimate of V (x, z) with θx̂ ∈ [π/2, π) . We rewrite V as follows:

V (x, z) =

{∫ θ̃x̂

−θ̃x̂

+

∫ π−θ̃x̂

θ̃x̂

}
f(t+ π + θ̃x̂)e

ik+|x| cos tei|z|P(t)dt =: V1(x, z) + V2(x, z).

For the function V1, the change of variable η = 2 sin(t/2) gives that

V1(x, z) =

∫ α2

α1

e−ik+|x|(η2/2−1)F (0, z)dη +

∫ α2

α1

e−ik+|x|(η2/2−1) (F (η, z)− F (0, z))dη

=: V1,1(x, z) + V1,2(x, z),

where

α1 := −2 sin (θ̃x̂/2), α2 := 2 sin (θ̃x̂/2),(3.31)

F (η, z) := f(w(η) + π + θ̃x̂)e
i|z|P(w(η))w′(η) with w(η) := 2 arcsin(η/2).(3.32)

Note that ‖w‖C4[α1,α2] ≤ C due to θx̂ ∈ [π/2, π) . Thus it follows from Lemmas 3.13
and 3.14 that V1,1(x, z) has the form

V1,1(x, z) =
eik+|x|

|x| 12
e−

iπ
4

(
2π

k+

)1/2

f(2π − θx̂)e
−ik+x̂·z′

+ V1,1,Res(x, z)

with the residual term V1,1,Res(x, z) satisfying

|V1,1,Res(x, z)| ≤ C| sin(θ̃x̂/2)|−1|x|−1‖f‖C[π,2π]

and that V1,2(x, z) satisfies the estimate

|V1,2(x, z)| ≤ C(1 + |z|)2‖f‖C3[π,2π]|x|−1.

Moreover, for the function V2, we can apply an integration by parts to obtain that

|V2(x, z)| =
∣∣∣∣∣

i

k+|x|

[
f1(t)e

ik+|x| cos t
∣∣∣∣
π−θ̃x̂

t=θ̃x̂

−
∫ π−θ̃x̂

θ̃x̂

f ′
1(t)e

ik+|x| cos tdt

]∣∣∣∣∣

≤ C

(
| sin θ̃x̂|−1 + (1 + |z|)

∣∣∣∣∣

∫ π−θ̃x̂

θ̃x̂

(sin t)−2dt

∣∣∣∣∣

)
‖f‖C1[π,2π]|x|−1,

where f1(t) := f(t+ θ̃x̂ + π)ei|z|P(t)(sin t)−1. Hence, the above arguments imply that
V (x, z) has the form (3.27) with VRes(x, z) satisfying

|VRes(x, z)|

≤ C‖f‖C3[π,2π]

(
(1 + |z|)2 + 1

| sin θ̃x̂
2 |

+
1

| sin θ̃x̂|
+ (1 + |z|)

∣∣∣∣∣

∫ π−θ̃x̂

θ̃x̂

1

sin2 t
dt

∣∣∣∣∣

)
|x|−1

for all x ∈ R2
+ with θx̂ ∈ [π/2, π) and all z ∈ R2.

Part 1.2: Estimate of V (x, z) with θx̂ ∈ (0, π/2). It is clear that (3.30) can be
rewritten as

V (x, z) =

∫ π−θx̂

−θx̂

f(−t+ π + θ̃x̂)e
ik+|x| cos tei|z|P(−t)dt.
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Then, by using similar arguments as in Part 1.1, we can deduce that V (x, z) has the
form (3.27) with VRes(x, z) satisfying

|VRes(x, z)|

≤ C‖f‖C3[π,2π]

(
(1 + |z|)2 + 1

| sin θx̂
2 |

+
1

| sin θx̂|
+ (1 + |z|)

∣∣∣∣∣

∫ π−θx̂

θx̂

1

sin2 t
dt

∣∣∣∣∣

)
|x|−1

for all x ∈ R2
+ with θx̂ ∈ (0, π/2) and all z ∈ R2.

Therefore, it follows from the discussions in the above two parts that the statement
(a) holds.

Secondly, we prove the statement (b). We only consider the case j = 1 since the
proof for the case j = 2 can be obtained in the same manner. In the rest of the proof,
we assume that |x| is sufficiently large. Let δa := a− π and δb := 2π − b. Our proof
consists of the following Parts 2.1 and 2.2.

Part 2.1: Estimate of V (x, z) with θx̂ ∈ [δb/2, π − δa/2]. By the change of
variable η = 2 sin(t/2), (3.30) can be rewritten as

V (x, z) =

∫ α3

α1

e−ik+|x|(η2/2−1)F (η, z)dη,(3.33)

where α1 and F (η, z) are given as in (3.31) and (3.32), respectively, and α3 :=

2 sin ((π − θ̃x̂)/2). For this part, due to θx̂ ∈ [δb/2, π − δa/2], it is clear that

−2 cos(δb/4) ≤ α1 ≤ −2 sin(δa/4), 2 sin(δb/4) ≤ α3 ≤ 2 cos(δa/4), ‖w‖C4[α1,α3] ≤ C,
(3.34)

where w(·) is defined as in (3.32). Let ϑ0 := 2π − θ0. It is easy to see that

sin ((t+ 2π − ϑ0 − θx̂)/2) > min[sin(δa/2), sin(δb/2)],(3.35)

cos ((t± (θx̂ − ϑ0))/4) > min[sin(δa/4), sin(δb/4)](3.36)

for t ∈ [−θ̃x̂, π − θ̃x̂]. Thus it follows that for t ∈ [−θ̃x̂, π − θ̃x̂],

cos(t− θx̂)− cosϑ0 =
sin
(
t+2π−ϑ0−θx̂

2

)
cos
(
t+ϑ0−θx̂

4

) [
4 sin

(
t+ϑ0−θx̂

4

)
cos
(
t+θx̂−ϑ0

4

)]

cos
(
t+θx̂−ϑ0

4

)

=
sin
(
t+2π−ϑ0−θx̂

2

)
cos
(
t+ϑ0−θx̂

4

)

cos
(
t+θx̂−ϑ0

4

)
[
2 sin

(
t

2

)
− 2 sin

(
θx̂ − ϑ0

2

)]
,

which yields S1 (cos(t− θx̂)− cosϑ0) = S1(2 sin(t/2) − β)h(t) with β := 2 sin((θx̂ −
ϑ0)/2) and h(t) given by

h(t) :=

S1

(
sin

(
t+ 2π − ϑ0 − θx̂

2

))
S1

(
cos

(
t+ ϑ0 − θx̂

4

))/
S1

(
cos

(
t+ θx̂ − ϑ0

4

))
.

Hence, we have

F (η, z) = F1(η, z)S1(η − β) for η ∈ [α1, α3],(3.37)

where F1(η, z) is given by

F1(η, z) := ei|z|P(w(η))w′(η)g(w(η) + θ̃x̂ + π)h(w(η)).(3.38)
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It is clear from (3.35) and (3.36) that

‖h‖C3[−θ̃x̂,π−θ̃x̂]
≤ C.(3.39)

This, together with (3.34), implies that

‖F1(·, z)‖Cj[α1,α3] ≤ C(1 + |z|)j‖g‖Cj[a,b], j = 1, 2.(3.40)

The rest proof of this part is divided into three cases.
Case 1: θx̂ ∈ [δb/2, π − δa/2] with | sin((θx̂ − ϑ0)/2)| ≤ (2

√
k+|x|)−1 (that is,√

k+|x||β| ≤ 1). Let λ := k+|x| and σ :=
√
λβ. Then in terms of (3.33) and (3.37),

we can introduce the change of variable η = y/
√
λ+ β to obtain that

V (x, z) =

∫ √
λα3−σ

√
λα1−σ

e−i(σ2

2 −λ)λ−3/4e−i y
2+2yσ

2 S1(y)F1

(
y + σ√

λ
, z

)
dy.(3.41)

In this case, we claim that

|V (x, z)| ≤ C(1 + |z|)2‖g‖C2[a,b]|x|−3/4 as |x| → +∞(3.42)

uniformly for all θx̂ ∈ [δb/2, π − δa/2] with | sin((θx̂ − ϑ0)/2)| ≤ (2
√
k+|x|)−1 and all

z ∈ R2. To prove this, we set γ0 := max(2 sin−1(δa/4), 2 sin
−1(δb/4), 1) and choose |x|

to be large enough such that
√
λ > γ0. Noting that

√
λα1−σ < −3 and

√
λα3−σ > 3

due to (3.34), we can rewrite (3.41) as

V (x, z) =

{∫ −2

√
λα1−σ

+

∫ 2

−2

+

∫ √
λα3−σ

2

}
e−i(σ2

2 −λ)

λ−3/4
e−i y

2+2yσ
2 S1(y)F1

(
y + σ√

λ
, z

)
dy

=: V1(x, z) + V2(x, z) + V3(x, z).(3.43)

Clearly, |V2(x, z)| ≤ C‖F1(·, z)‖C[α1,α3]λ
−3/4. Moreover, an integration by parts gives

that

ei(
σ2

2 −λ)λ
3
4V1(x, z) =

e−i y
2+2yσ

2 S1(y)F1

(
y+σ√

λ
, z
)

−i(y + σ)

∣∣∣∣
−2

y=
√
λα1−σ

−
e−i y

2+2yσ
2

d
dy

(
iS1(y)
y+σ F1

(
y+σ√

λ
, z
))

−i(y + σ)

∣∣∣∣
−2

y=
√
λα1−σ

+

∫ −2

√
λα1−σ

e−i y
2+2yσ

2
d

dy

(
i

y + σ

d

dy

(
iS1(y)

y + σ
F1

(
y + σ√

λ
, z

)))
dy =: D1 +D2 +D3.

Since
√
λα1 − σ < −3 and |σ| ≤ 1, it can be seen that |S1(y)/(y + σ)| ≤ 1/(

√
|y| −√

2/2) ≤
√
2, |1/(y+σ)| ≤ 1 and |1/S1(y)| ≤ 1/

√
2 for y ∈ [

√
λα1−σ,−2]. From this

together with λ > 1 and the fact that

dS1(s)/ds = (S1(s))
−1/2 for s ∈ R\{0},(3.44)

we can use direct but patient calculations to obtain that |D1| ≤ C‖F1(·, z)‖C[α1,α3],
|D2| ≤ C‖F1(·, z)‖C1[α1,α3] and

|D3| ≤ C‖F1(·, z)‖C2[α1,α3]

∫ −2

−∞

1

|y + 1|(
√
|y| −

√
2/2)

dy ≤ C‖F1(·, z)‖C2[α1,α3].
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Thus, it follows that |V1(x, z)| ≤ C‖F1(·, z)‖C2[α1,α3]λ
−3/4. Similarly to the analysis

of V1, we also have |V3(x, z)| ≤ C‖F1(·, z)‖C2[α1,α3]λ
−3/4. Combining the above esti-

mates of V1, V2 and V3 and the formulas (3.40) and (3.43) gives that V (x, z) satisfies
(3.42) uniformly for all θx̂ ∈ [δb/2, π − δa/2] with | sin((θx̂ − ϑ0)/2)| ≤ (2

√
k+|x|)−1

and all z ∈ R2.
Note that | cos θx̂ − cosϑ0| = |2 sin ((ϑ0 + θx̂)/2) sin ((ϑ0 − θx̂)/2)| ≤ C|x|−1/2

under the assumption | sin((θx̂ − ϑ0)/2)| ≤ (2
√
k+|x|)−1. Thus we have that |f(2π−

θx̂)| ≤ C|x|−1/4‖g‖C[a,b]. This, together with (3.42), implies that V (x, z) has the form
(3.27) with VRes(x, z) satisfying (3.29) uniformly for all θx̂ ∈ [δb/2, π − δa/2] with
| sin((θx̂ − ϑ0)/2)| ≤ (2

√
k+|x|)−1 and all z ∈ R

2.

Case 2: θx̂ ∈ [δb/2, π − δa/2] with sin((θx̂ − ϑ0)/2) > (2
√
k+|x|)−1 (that is,√

k+|x|β > 1). Note that α1 < 0 < α3. Then by using (3.37), we divide V in (3.33)
into three parts:

V (x, z) =

∫ α3

α1

e−ik+|x|(η2/2−1)F (0, z)dη

+

∫ α3

α1

e−ik+|x|(η2/2−1)F1(η, z) (S1(η − β)− S1(−β)) dη

+

∫ α3

α1

e−ik+|x|(η2/2−1)S1(−β) (F1(η, z)− F1(0, z))dη

=:J1(x, z) + J2(x, z) + J3(x, z).

For J1(x, z), it easily follows from (3.34) and Lemma 3.13 that

J1(x, z) =
eik+|x|

|x| 12
e−

iπ
4

(
2π

k+

)1/2

f(2π − θx̂)e
−ik+x̂·z′

+ J1,Res(x, z)

with the residual term J1,Res(x, z) satisfying

|J1,Res(x, z)| ≤ C|x|−1‖g‖C[a,b].

Next, we estimate J2(x, z). Note that α1 < β < α3. Then with the aid of (3.44) and
the facts that |S1(η − β) + S1(−β)| ≥ √

β > 0 for η ∈ R and
∫ α3

α1
|S−1

1 (η − β)|dη is
bounded, we can apply an integration by parts to obtain that

e−ik+|x|J2(x, z) =

∫ α3

α1

e−ik+|x|η2/2 ηF1(η, z)

S1(η − β) + S1(−β)
dη

=
i

k+|x|
e−ik+|x|η2/2F1(η, z)

S1(η − β) + S1(−β)

∣∣∣∣
α3

η=α1

+
0.5i

k+|x|

∫ α3

α1

e−ik+|x|η2/2F1(η, z)

(S1(η − β) + S1(−β))
2S1(η − β)

dη

− i

k+|x|

∫ α3

α1

e−ik+|x|η2/2F ′
1(η, z)

S1(η − β) + S1(−β)
dη =: J (1)

2 (x, z) + J (2)
2 (x, z) + J (3)

2 (x, z).

It follows from (3.34) that

|J (1)
2 (x, z)|+ |J (3)

2 (x, z)| ≤ C

|x|
√
β
‖F1(·, z)‖C1[α1,α3].(3.45)

Since

|S1(η − β) + S1(−β)| =
{√

β − η +
√
β, η ∈ (α1, β),√

η, η ∈ (β, α3),
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we have
∣∣∣J (2)

2 (x, z)
∣∣∣

≤ ‖F1(·, z)‖C[α1,α3]

2k+|x|

[∫ β

α1

1
(√

β − η +
√
β
)2 √

β − η
dη +

∫ α3

β

1

η
√
η − β

dη

]

=
‖F1(·, z)‖C[α1,α3]

k+|x|

[
1√

β − η +
√
β

∣∣∣
β

η=α1

+

∫ √
α3−β

0

1

t2 + β
dt

]

≤ (1 + π/2)‖F1(·, z)‖C[α1,α3]

k+|x|
√
β

.

This, together with (3.40), (3.45) and the assumption
√
k+|x|β > 1, yields that

|J2(x, z)| ≤ C(1 + |z|)‖g‖C1[a,b]|x|−3/4.

Further, for J3(x, z), it follows from the formulas (3.34), (3.38) and (3.39) and Lemma
3.14 that

|J3(x, z)| ≤ C(1 + |z|)2‖g‖C3[a,b]|x|−1.

Based on the above discussions, we now obtain that V (x, z) has the form (3.27) with
the residual term VRes(x, z) satisfying (3.29) uniformly for all θx̂ ∈ [δb/2, π − δa/2]
with sin((θx̂ − ϑ0)/2) > (2

√
k+|x|)−1 and all z ∈ R2.

Case 3: θx̂ ∈ [δb/2, π − δa/2] with sin((θx̂ − ϑ0)/2) < −(2
√
k+|x|)−1 (that is,√

k+|x|β < −1). Using similar arguments as in Case 2, we can obtain that V (x, z)
has the form (3.27) with the residual term VRes(x, z) satisfying (3.29) uniformly for
all θx̂ ∈ [δb/2, π − δa/2] with sin((θx̂ − ϑ0)/2) < −(2

√
k+|x|)−1 and all z ∈ R2.

Part 2.2: Estimate of V (x, z) with θx̂ ∈ (0, δb/2)∪ (π − δa/2, π). In this part, it
is easy to see that for θd ∈ [a, b],

| sin(θx̂ + θd)| > min[sin(δa/2), sin(δb/2)],

| cos θd − cos θ0| ≥ (2/π)min(sin δa, sin δb)|θd − θ0|.

Thus by the fact that Supp(g) ⊂ (a, b) and an integration by parts, we arrive at
f(2π − θx̂) = 0 and

|V (x, z)| =
∣∣∣∣∣

i

k+|x|

∫ b

a

d

dθd

(
eik+|x| cos(θd+θx̂)

) e−ik+|z| cos(θd−θẑ)f(θd)

sin(θd + θx̂)
dθd

∣∣∣∣∣

≤ C‖g‖C1[a,b]

|x|

[
(1 + |z|)

∫ b

a

|S1(cos θd − cos θ0)|dθd +
∫ b

a

|S1(cos θd − cos θ0)|−1dθd

]

≤ C(1 + |z|)|x|−1‖g‖C1[a,b].

These imply that V (x, z) has the form (3.27) with VRes(x, z) satisfying (3.29) uni-
formly for all θx̂ ∈ (0, δb/2) ∪ (π − δa/2, π) and all z ∈ R2.

Therefore, we obtain that the statement (b) holds and the proof of this lemma is
complete.

Based on Lemma 3.15, we have the following uniform far-field expansions of U2

and U3.
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Lemma 3.16. Let x = |x|x̂ = |x|(cos θx̂, sin θx̂) ∈ R2
+ with θx̂ ∈ (0, π) and z ∈ R2.

Then the following statements hold true.
(a) U2(x, z) has the asymptotic behavior

U2(x, z) =
eik+|x|

|x|1/2 e−
iπ
4

(
2π

k+

)1/2

R(θx̂)e
−ik+x̂·z′

+ U2,Res(x, z)(3.46)

with the residual term U2,Res(x, z) satisfying

(3.47)

(3.48)

|U2,Res(x, z)| ≤





CE(θx̂, z)

|x| in the case k+ < k−,

C

[
E(θx̂, z)

|x| +
(1 + |z|)2
|x|3/4

]
in the case k+ > k−,

as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2.
(b) U3(x, z) has the asymptotic behavior

U3(x, z) = −eik+|x|

|x|1/2 e−
iπ
4

(
2π

k+

)1/2

e−ik+x̂·z + U3,Res(x, z)(3.49)

with the residual term U3,Res(x, z) satisfying

|U3,Res(x, z)| ≤ CE(θx̂, z)|x|−1

as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2.
Here, E(θx̂, z) is given by (3.28) and C > 0 is a constant independent of x, z.

Proof. We only prove the statement (a). The proof of the statement (b) is similar
and easier, and thus we omit it.

Let θẑ be given as in Lemma 3.15. Then it easily follows that

U2(x, z) =

∫ 2π

π

eik+|x| cos(θd+θx̂)e−ik+|z| cos(θd−θẑ)R0(θd)dθd.(3.50)

We note that

R0(2π − θ) = R(θ) for θ ∈ (0, π).(3.51)

We distinguish between the two cases k+ < k− and k+ > k− to estimate U2.
Case 1: k+ < k−. Since n > 1, it easily follows that ‖R0‖C3[π,2π] ≤ C. This,

together with (3.51) and the statement (a) of Lemma 3.15, implies that U2(x, z)
has the asymptotic behavior (3.46) with U2,Res(x, z) satisfying (3.47) as |x| → +∞
uniformly for all θx̂ ∈ (0, π) and z ∈ R2.

Case 2: k+ > k−. It is easy to see that for θ ∈ [π, 2π],

R0(θ) =
2i sin θS(cos θ, n)

1− n2
+

n2 − 1 + 2 sin2 θ

1− n2
=: R1(θ) +R2(θ).

Due to k+ > k−, we notice that

S(cos θ, n) = S1(cos θ − cos θc)S2(cos θ + cos θc)

= S1(cos θ − cos θ(2)c )S2(cos θ − cos θ(1)c )(3.52)



22 L. LI, J. YANG, B. ZHANG, AND H. ZHANG

with θ
(1)
c := π + θc ∈ (π, 3π/2) and θ

(2)
c := 2π − θc ∈ (3π/2, 2π), which implies that

S(cos θ, n) is infinitely differentiable for all θ ∈ [π, 2π] except for the points θ
(1)
c and

θ
(2)
c .

Let ε > 0 be a fixed number such that [θ
(1)
c − 2ε, θ

(1)
c +2ε] ⊂ (π+ θc/2, 3π/2) and

[θ
(2)
c − 2ε, θ

(2)
c +2ε] ⊂ (3π/2, 2π− θc/2). Choose the cutoff functions χ1, χ2 ∈ C∞

0 (R)
such that

0 ≤ χl ≤ 1 in R, χl = 1 in [θ(l)c − ε, θ(l)c + ε], Supp(χl) ⊂ [θ(l)c − 2ε, θ(l)c + 2ε]

for l = 1, 2. Then R0(θ) can be rewritten as

R0(θ) = χ1(θ)R1(θ) + χ2(θ)R1(θ) + [(1− χ1(θ) − χ2(θ))R1(θ) +R2(θ)]

=: R̃1(θ) + R̃2(θ) + R̃3(θ), θ ∈ [π, 2π],

and thus we have from (3.50) that U2(x, z) = U2,1(x, z) + U2,2(x, z) + U2,3(x, z) with

U2,m(x, z) :=

∫ 2π

π

eik+|x| cos(θd+θx̂)e−ik+|z| cos(θd−θẑ)R̃m(θd)dθd, m = 1, 2, 3.

It follows from (3.52) that R̃1(θ) = S2(cos θ − cos θ
(1)
c )G1(θ) and R̃2(θ) = S1(cos θ −

cos θ
(2)
c )G2(θ) with

G1(θ) :=
2i sin θS1(cos θ − cos θ

(2)
c )χ1(θ)

1− n2
, G2(θ) :=

2i sin θS2(cos θ − cos θ
(1)
c )χ2(θ)

1− n2
.

Clearly, we have that Supp(Gm) ⊂ (π+θc/2, 2π−θc/2) and ‖Gm‖C3[π+θc/2,2π−θc/2] ≤
C (m = 1, 2) and that ‖R̃3‖C3[π,2π] ≤ C. Hence, by using (3.51), applying the
statement (b) of Lemma 3.15 to U2,m (m = 1, 2) and applying the statement (a) of
Lemma 3.15 to U2,3, we have that U2(x, z) has the asymptotic behavior (3.46) with
U2,Res(x, z) satisfying (3.48) as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2.

Therefore, the proof is complete.

Remark 3.17. It was proved in [41, Lemma A.3] that U3(x, z) has the asymptotic
behavior (3.49) with the residual term U3,Res(x, z) satisfying

|U3,Res(x, z)| ≤C

(
|z|+ 1

| sin θx̂
2 |

+
1

| sin π−θx̂
2 |

+
1

| sin θx̂|

+

∫ θx̂

0

(1 + |z|)3t2
sin2 t

dt+

∫ π−θx̂

0

(1 + |z|)3t2
sin2 t

dt

)
1

|x|

as |x| → +∞ uniformly for all θx̂ ∈ (0, π) and z ∈ R2. We note that the statement
(b) of Lemma 3.16 improves the above result due to the fact that for any θx̂ ∈ (0, π),

(1 + |z|)2 + (1 + |z|)
∣∣∣∣∣

∫ π−θx̂

θx̂

1

sin2 t
dt

∣∣∣∣∣

≤ C(1 + |z|)2
(∫ π/2

0

t2

sin2 t
dt+

∫ max(θx̂,π−θx̂)

π/2

t2

sin2 t
dt

)

≤ C

(∫ θx̂

0

(1 + |z|)2t2
sin2 t

dt+

∫ π−θx̂

0

(1 + |z|)2t2
sin2 t

dt

)
,

where C > 0 is a constant independent of θx̂ and z.
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Based on the above lemmas, we now have the following theorem on the relation
between IF (z) given in (3.3) and IS(z,R) given in (3.25).

Theorem 3.18. Let z ∈ R2 and R > 0 be large enough, then we have IS(z,R) =
IF (z) + IS,Res(z,R) with the residual term IS,Res(z,R) satisfying

|IS,Res(z,R)| ≤ C(1 + |z|)3R−1/4 as R → +∞

uniformly for all z ∈ R2. Here, C > 0 is a constant independent of R and z.

Proof. We only consider the case k+ > k− since the proof for the case k+ < k−
is similar. Let R be large enough throughout the proof. It follows from (3.5), (3.26),
(3.46) and (3.49) that for x ∈ ∂B+

R and z ∈ R2, we can write U(x, z) = U0(x, z) +
URes(x, z) with U0(x, z) and URes(x, z) given by

U0(x, z) :=

eik+|x|
√
|x|

[∫

S1
−

u∞(x̂, d)e−ik+z·dds(d) +

(
2π

k+

) 1
2

e−iπ/4
(
R(θx̂)e

−ik+x̂·z′ − e−ik+x̂·z
)]

,

URes(x, z) := U1,Res(x, z) + U2,Res(x, z) + U3,Res(x, z).

Then it is clear that

IS(z,R) = IF (z) +

∫

∂B+
R

[
U0(x, z)URes(x, z) + U(x, z)URes(x, z)

]
ds(x).(3.53)

By using the fact that ‖R‖C[0,π] ≤ C, the formula (3.5), Lemma 3.7 and Remark 3.8,

we obtain that for x ∈ ∂B+
R and z ∈ R2,

|U0(x, z)| ≤ CR−1/2 and |U(x, z)|, |URes(x, z)| ≤ C(1 + |z|)R−1/2.(3.54)

Let δ := R−1/4 to be small enough and define ∂B+
R,δ := {x = R(cos θx̂, sin θx̂) ∈ R2 :

θx̂ ∈ (0, δ) ∪ (π − δ, π)}. It is easy to see that for θx̂ ∈ [δ, π − δ] and z ∈ R2,

|E(θx̂, z)| ≤ (1 + |z|)2 + Cδ−1 + (1 + |z|)
∫ π−δ

δ

1

sin2 t
dt ≤ C(1 + |z|)2δ−1,

where E(θx̂, z) is given as in (3.28). Thus we have from Lemmas 3.12 and 3.16 that
for x ∈ ∂B+

R\∂B+
R,δ and z ∈ R2,

|URes(x, z)| ≤ C

[
1

R3/4
+

(1 + |z|)2
δR

+
(1 + |z|)2
R3/4

]
≤ C(1 + |z|)2R−3/4.

This, together with (3.53) and (3.54), implies that

|IS(z,R)− IF (z)|

=

∣∣∣∣∣

{∫

∂B+
R\∂B+

R,δ

+

∫

∂B+
R,δ

}[
U0(x, z)URes(x, z) + U(x, z)URes(x, z)

]
ds(x)

∣∣∣∣∣

≤ CR

[
1

R1/2

(1 + |z|)2
R3/4

+
1 + |z|
R1/2

(1 + |z|)2
R3/4

]
+ CRδ

[
1

R1/2

1 + |z|
R1/2

+
1 + |z|
R1/2

1 + |z|
R1/2

]

≤ C(1 + |z|)3R−1/4.

Therefore, the proof is complete.
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3.3. Direct imaging methods. With the analysis in Sections 3.1 and 3.2, now
we are ready to study the direct imaging methods for the inverse problems (IP1)
and (IP2). In the rest of the paper, let K be a bounded domain containing the
local perturbation Γp of the locally rough surface Γ. Note that the imaging function
IF (z) is independent of the radius R. Thus it can be seen from Theorems 3.11 and
3.18 that when R is sufficiently large, the imaging functions IP (z,R) and IF (z) are
approximately equal to the function IS(z,R) for any z ∈ K. This means that when R
is sufficiently large, IP (z,R) and IF (z) have similar properties as IS(z,R) for z ∈ K.

Next, we study the properties of IS(z,R) by employing the theory of scattering
by a penetrable unbounded rough surface. To this end, we introduce some notations.
For b ∈ R, let U±

b :=
{
(x1, x2) ∈ R2 : x2 ≷ b

}
and Γb :=

{
(x1, x2) ∈ R2 : x2 = b

}
. For

V ⊂ Rn (n = 1, 2), denote by BC(V ) the set of bounded and continuous functions
in V , a Banach space under the norm ‖φ‖∞,V := supx∈V |φ(x)|. For 0 < α < 1 and
V ⊂ Rn (n = 1, 2), denote by BC0,α(V ) the Banach space of functions φ ∈ BC(V ),
which are uniformly Hölder continuous with exponent α, with the norm ‖ · ‖0,α,V
defined by ‖φ‖0,α,V := ‖φ‖∞,V + supx,y∈V,x 6=y |φ(x) − φ(y)|/|x− y|α. Further, for

V ⊂ R2, define BC1(V ) :=
{
φ ∈ BC(V ) : ∂jφ ∈ BC(V ), j = 1, 2

}
with the norm

‖φ‖1,V := ‖φ‖∞,V +
∑2

j=1 ‖∂jφ‖∞,V , where ∂jφ denotes the derivative ∂φ/∂xj for

j = 1, 2. Moreover, for 0 < α < 1 and the surface Γ, let BC1,α(Γ) := {ϕ ∈ BC(Γ) :
Gradϕ ∈ BC0,α(Γ)} under the norm ‖ϕ‖1,α,Γ := ‖ϕ‖∞,Γ+‖Gradϕ‖0,α,Γ where Grad
denotes the surface gradient. Then the scattering problem by a penetrable unbounded
rough surface can be formulated as follows.

Transmission scattering problem (TSP). Let α ∈ (0, 1), h1 > supx1∈R hΓ(x1)
and h2 < infx1∈R hΓ(x1). Given g1 ∈ BC1,α(Γ) and g2 ∈ BC0,α(Γ), determine a pair
of solutions (v1, v2) with v1 ∈ C2(Ω+)∩BC1(Ω+ \U+

h1
) and v2 ∈ C2(Ω−)∩BC1(Ω− \

U−
h2
) such that the following hold:

(i) v1 is a solution of the Helmholtz equation ∆v1 + k2+v1 = 0 in Ω+ and v2 is a
solution of the Helmholtz equation ∆v2 + k2−v2 = 0 in Ω−.

(ii) v1 and v2 satisfy the transmission boundary condition

v1 − v2 = g1, ∂v1/∂ν − ∂v2/∂ν = g2 on Γ.

(iii) v1 and v2 satisfy the growth conditions in the x2 direction: for some β ∈ R,

sup
x∈Ω+

|x2|β|v1(x)| < +∞, sup
x∈Ω−

|x2|β |v2(x)| < +∞.(3.55)

(iv) v1 satisfies the upward propagating radiation condition (UPRC): for some
φ1 ∈ L∞(Γh1),

v1(x) = 2

∫

Γh1

∂Φk+(x, y)

∂y2
φ1(y)ds(y), x ∈ U+

h1
.(3.56)

v2 satisfies the downward propagating radiation condition (DPRC): for some φ2 ∈
L∞(Γh2),

v2(x) = −2

∫

Γh2

∂Φk−
(x, y)

∂y2
φ2(y)ds(y), x ∈ U−

h2
.(3.57)

Here, Φk(x, y) with k > 0 is the fundamental solution of the Helmholtz equation
∆u + k2u = 0 in two dimensions, that is, Φk(x, y) := (i/4)H1

0 (k|x − y|), x, y ∈ R2,
x 6= y, where H1

0 denotes the Hankel function of the first kind of order zero.
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The well-posedness of the problem (TSP) has been established in [10, 32, 23] by
using the integral equation method.

To proceed further, we need the following property of the total-field utot(x, d).

Lemma 3.19. For any d ∈ S1−, we have utot(·, d)|Ω±
∈ C2(Ω±) and utot(·, d) ∈

BC1(R2).

Proof. Let d ∈ S1−. It easily follows from Theorem 2.1 and elliptic regularity
estimates (see, e.g., [16, Section 6.3]) that utot(·, d) ∈ H2

loc(R
2) and that utot(·, d)|V0 ∈

Hℓ(V0) for any positive integer ℓ and any bounded open set V0 satisfying V0 ⊂ Ω+∪Ω−,
which implies that utot(·, d) ∈ C(R2) and utot(·, d)|Ω±

∈ C2(Ω±). Moreover, it can
be seen from [29, Theorems 13 and 14] that for both the case k+ < k− and the case
k+ > k−, the scattered field us(x, d) has the asymptotic behavior

us(x, d) =
eik−|x|
√
|x|

u∞(x̂, d) + us
Res(x, d) for x ∈ Ω−\BR,

where the far-field patten u∞(x̂, d) of the scattered field us(x, d) satisfies u∞(·, d) ∈
C(S1−) and us

Res(x, d) satisfies

|us
Res(x, d)| ≤ C|x|−3/4, |x| → +∞,

uniformly for all θx̂ ∈ (π, 2π) and d ∈ S1− (the expression of u∞(x̂, d) with x̂, d ∈ S1−
can be seen in [29, formula (110)], which is similar to (2.10)). Note further that
u0(·, d) ∈ BC(R2). Thus, it follows from the above discussions and Lemma 3.1 that
utot(·, d) ∈ BC(R2). This, together with the local regularity estimate in [9, Theorem
2.7], implies that utot(·, d) ∈ BC1(R2).

For x ∈ Ω+ and z ∈ R2, let U(x, z) be given as in (3.4), which is involved in
IS(z,R). For x ∈ Ω− and z ∈ R2, define V (x, z) :=

∫
S1
−

utot(x, d)e−ik+z·dds(d). Then

with the aid of Lemma 3.19, we show in the following theorem that for any fixed
z ∈ R2, the pair of functions (U(x, z), V (x, z)) is the unique solution to the problem
(TSP) with the boundary data related to the Bessel function of order 0.

Theorem 3.20. For any fixed z ∈ R2, the pair of functions (U(x, z), V (x, z))
solves the problem (TSP) with the boundary data

g1(x) = −2πJ0(k+|x− z|), g2(x) = −2π∂J0(k+|x− z|)/∂ν(x), x ∈ Γ,

where J0 is the Bessel function of order 0.

Proof. Let d ∈ S1−, h1 > supx1∈R
hΓ(x1) and h2 < infx1∈R hΓ(x1). Define

ṽ1(x, d) = utot(x, d) − ui(x, d) for x ∈ Ω+ and ṽ2(x, d) = utot(x, d) for x ∈ Ω−. It
follows from Lemma 3.19 that ṽ1(·, d) ∈ C2(Ω+)∩BC1(Ω+ \U+

h1
), ṽ2(·, d) ∈ C2(Ω−)∩

BC1(Ω− \ U−
h2
), and ṽ1(·, d) and ṽ2(·, d) satisfy (3.55) with β = 0. Furthermore, we

note that ṽ1(x, d) = us(x, d) + ur(x, d) for x ∈ U+
h1

and ṽ2(x, d) = us(x, d) + ut(x, d)

for x ∈ U−
h2
. Thus, applying (2.2) and (2.8) and using [9, Theorem 2.9 and Re-

mark 2.14] give that ṽ1(·, d) and ṽ2(·, d) fulfill (3.56) and (3.57), respectively. More-
over, we can obtain from (2.6) and (2.7) that ∆xṽ1(x, d) + k2+ṽ1(x, d) = 0 in Ω+,
∆xṽ2(x, d) + k2−ṽ2(x, d) = 0 in Ω−, and ṽ1(x, d) and ṽ2(x, d) satisfy the transmission
boundary condition

ṽ1(x, d) − ṽ2(x, d) = −eik+x·d,
∂ṽ1(x, d)

∂ν(x)
− ∂ṽ2(x, d)

∂ν(x)
= −∂eik+x·d

∂ν(x)
on Γ.
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Based on the above discussions, we obtain that the pair of functions (ṽ1(x, d), ṽ2(x, d))
is the solution of the problem (TSP) with the boundary data g1(x) = −eik+x·d and
g2(x) = −∂eik+x·d/∂ν(x) on Γ, whence the statement follows with the aid of [45,
Theorem 3.2].

Remark 3.21. In [30, Section 3.1], the properties of the solution to the problem
(TSP) with the boundary data g1(x) = aJ0(k+|x − z|) and g2(x) = a∂J0(k+|x −
z|)/∂ν(x), x ∈ Γ, for some constant a ∈ C have been studied in the case when Γ is
a globally rough surface. With the help of the discussions in [30, Section 3.1] and
Theorem 3.20, it is expected that for any x in the bounded subset of Ω+, U(x, z) will
take a large value when z ∈ Γ and decay as z moves away from Γ. Consequently, it is
expected that for any fixed R > 0 such that Γp ⊂ BR, IS(z,R) will take a large value
when z ∈ Γ and decay as z moves away from Γ.

With these preparations, we then turn to the direct imaging method for the
inverse problem (IP1). Based on the discussions at the beginning of this subsection
and Remark 3.21, it is expected that if R is sufficiently large, then for z ∈ K the
imaging function IP (z,R) will take a large value when z ∈ Γ ∩ K and decay as z
moves away from Γ∩K. This property is indeed confirmed in the numerical examples
carried out later. In the numerical experiments, we measure the phaseless total-field
data |utot(x(p), d(q))| with p = 1, 2, . . . ,MP and q = 1, 2, . . . , NP , where x(p) and
d(q) are uniformly distributed points on ∂B+

R and S
1
−, respectively. Accordingly, the

imaging function IP (z,R) can be approximated as

IP (z,R) ≈ Rπ3

MPN2
P

MP∑

p=1

∣∣∣∣∣

NP∑

q=1

{[∣∣∣utot(x(p), d(q))
∣∣∣
2

−A
(1)
P (x(p), d(q))

]
eik+(x(p)−z)·d(q)

−A
(2)
P (x(p), d(q), z)

}∣∣∣∣∣

2

,(3.58)

where A
(1)
P (x, d) := 1 + |R0(θd)|2 + R0(θd)e

2ik+x2d2 for x ∈ ∂B+
R and d ∈ S1−, and

A
(2)
P (x, d, z) := exp(ik+(x

′ − z′) · d) for x ∈ ∂B+
R , d ∈ S1− and z ∈ R2. Then for the

inverse problem (IP1), we expect that the locally rough surface Γ can be reconstructed
by using the formula (3.58). Now the direct imaging method for the inverse problem
(IP1) is described in Algorithm 3.1.

Algorithm 3.1 Direct imaging method for the inverse problem (IP1)

Let K be the sampling region which contains the local perturbation Γp of the pene-
trable locally rough surface Γ.

1: Choose Tm to be a mesh of K and let R be sufficiently large.
2: Collect the phaseless total-field data |utot(x(p), d(q))|, p = 1, 2, . . . ,MP , q =

1, 2, . . . , NP , with x(p) ∈ ∂B+
R and d(q) ∈ S1−, generated by the incident plane

waves ui(x, d(q)) = eik+x·d(q)

, q = 1, 2, . . . , NP .
3: For each sampling point z ∈ Tm, approximately compute the imaging function

IP (z,R) by using (3.58).
4: Locate all those sampling points z ∈ Tm such that IP (z,R) takes a large value,

which represent the part of the locally rough surface Γ in the sampling region K.

Next, we consider the direct imaging method for the inverse problem (IP2). By
using the discussions at the beginning of this subsection and Remark 3.21 again, it
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is expected that for z ∈ K, the imaging function IF (z) will take a large value when
z ∈ Γ∩K and decay as z moves away from Γ∩K. This property is also confirmed in
the numerical examples carried out later. In numerical experiments, we measure the
phased far-field data u∞(x̂(p), d(q)) with p = 1, 2, . . . ,MF and q = 1, 2, . . . , NF , where
x̂(p) and d(q) are uniformly distributed points on S

1
+ and S

1
−, respectively. Accordingly,

IF (z) can be approximated as

IF (z) ≈
π

MF

MF∑

p=1

∣∣∣∣∣
π

NF

(
NF∑

q=1

u∞(x̂(p), d(q))e−ik+z·d(q)

)
+AF (x̂

(p), z)

∣∣∣∣∣

2

,(3.59)

where AF (x̂, z) := (2π/k+)
1/2

e−iπ/4[R(θx̂)e
−ik+x̂·z′−e−ik+x̂·z] for x̂ ∈ S1+ and z ∈ R2.

Then similarly to Algorithm 3.1, we describe the direct imaging method for the inverse
problem (IP2) in Algorithm 3.2.

Algorithm 3.2 Direct imaging method for the inverse problem (IP2)

Let K be the sampling region which contains the local perturbation Γp of the pene-
trable locally rough surface Γ.

1: Choose Tm to be a mesh of K.
2: Collect the phased far-field data u∞(x̂(p), d(q)), p = 1, 2, . . . ,MF , q = 1, 2, . . . , NF ,

with x̂(p) ∈ S1+ and d(q) ∈ S1−, generated by the incident plane waves ui(x, d(q)) =

eik+x·d(q)

, q = 1, 2, . . . , NF .
3: For each sampling point z ∈ Tm, approximately compute the imaging function

IF (z) by using (3.59).
4: Locate all those sampling points z ∈ Tm such that IF (z) takes a large value, which

represent the part of the locally rough surface Γ in the sampling region K.

4. Numerical experiments. In this section, we will present several numer-
ical examples to illustrate the applicability of our direct imaging methods for the
inverse problems (IP1) and (IP2). To generate the synthetic data, the direct scat-
tering problem (2.6)–(2.8) is solved by the perfectly matched layer-based boundary
integral equation method proposed in [31]. In all the examples, we will present the
imaging results of IP (z,R) with phaseless total-field data (i.e. the results of Al-
gorithm 3.1) and the imaging results of IF (z) with phased far-field data (i.e. the
results of Algorithm 3.2). Further, the noisy phaseless total-field data |utot

δ (x(p1), d)|
with x(p1) ∈ ∂B+

R , d ∈ S1− (p1 = 1, 2, . . . ,MP ) and the noisy phased far-field data

u∞
δ (x̂(p2), d) with x̂(p2) ∈ S1+, d ∈ S1− (p2 = 1, 2, . . . ,MF ) are given by

|utot
δ (x(p1), d)| = |utot(x(p1), d)|+ δ

ξ(p1)

√∑MP

l=1 |ξ(l)|2

√√√√
MP∑

l=1

|utot(x(l), d)|2,

u∞
δ (x̂(p2), d) = u∞(x̂(p2), d) + δ

ζ(p2) + iη(p2)

√∑MF

l=1 |ζ(l) + iη(l)|2

√√√√
MF∑

l=1

|u∞(x̂(l), d)|2,

where δ is the noise ratio and where ξ(p1) (p1 = 1, 2, . . . ,MP ) and ζ(p2), η(p2) (p2 =
1, 2, . . . ,MF ) are the standard normal distributions.

In each figure presented below, we use a solid line to represent the actual locally
rough surface against the reconstructed locally rough surface.
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Example 1. We consider the case when the locally rough surface is given by

hΓ(x1) =

{
0.4 sin

[
(x2

1 − 16/25)2
]
sin3 (2πx1/3), |x1| ≤ 4/5,

0, |x1| > 4/5.

We choose the wave numbers k+ = 40 and k− = 80 and set the noise ratio δ =
10%. First, we consider the inverse problem (IP1) and investigate the effect of the
radius R of the measurement circle ∂B+

R on the imaging results. The numbers of the
measurement points and the incident directions are chosen to be MP = NP = 300.
Figures 2(a), 2(b) and 2(c) present the imaging results of IP (z,R) with the measured
phaseless total-field data with the radius of the measurement circle ∂B+

R to be R = 1.5,
2, 3, respectively. It is shown in Figures 2(a)–2(c) that the reconstruction result is
getting better if the radius of the measurement circle is getting larger. Secondly,
we consider the inverse problem (IP2). The numbers of the measured observation
directions and the incident directions are chosen to be MF = NF = 100. Figure
2(d) presents the imaging result of IF (z) with the measured phased far-field data.
As shown in Figure 2, the reconstruction result of IF (z) with the measured phased
far-field data is better than those of IP (z,R) with the measured phaseless total-field
data.

(a) 10% noise, k+ = 40, k− =
80, R = 1.5

(b) 10% noise, k+ = 40, k− =
80, R = 2

(c) 10% noise, k+ = 40, k− =
80, R = 3

(d) 10% noise, k+ = 40, k− =
80

Fig. 2. (a), (b) and (c) show the imaging results of IP (z,R) with the measured phaseless
total-field data for different values of the radius R. (d) shows the imaging result of IF (z) with the
measured phased far-field data. The solid line represents the actual curve.

Example 2. We now investigate the effect of the noise ratio δ on the imaging
results. The locally rough surface considered is given by

hΓ(x1) =

{
0.2 sin

[
(x2

1 − 16/25)3
]
sin(3πx1)e

−x2
1 , |x1| ≤ 4/5,

0, |x1| > 4/5.

We choose the wave numbers k+ = 40 and k− = 80. First, we consider the inverse
problem (IP1). The radius of the measurement circle ∂B+

R is set to be R = 3.
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The numbers of the measurement points and the incident directions are chosen to
be MP = NP = 300. Figure 3 presents the imaging results of IP (z,R) from the
measured phaseless total-field data without noise, with 20% noise and with 40% noise,
respectively. Next, we consider the inverse problem (IP2). We choose the numbers of
the measured observation directions and the incident directions to be MF = NF =
100. Figure 4 presents the imaging results of IF (z) from the measured phased far-field
data without noise, with 20% noise and with 40% noise, respectively.

(a) No noise, k+ = 40, k− =
80, R = 3

(b) 20% noise, k+ = 40, k− =
80, R = 3

(c) 40% noise, k+ = 40, k− =
80, R = 3

Fig. 3. Imaging results of IP (z, R) with the measured phaseless total-field data for different
noise ratios. The solid line represents the actual curve.

(a) No noise, k+ = 40, k− =
80

(b) 20% noise, k+ = 40, k− =
80

(c) 40% noise, k+ = 40, k− =
80

Fig. 4. Imaging results of IF (z) with the measured phased far-field data for different noise
ratios. The solid line represents the actual curve.

Example 3. In this example, we compare the imaging results in the case k+ > k−
with those in the case k+ < k−. The locally rough surface is given by

hΓ(x1) =

{
0.2 exp

[
16/(25x2

1 − 16)
]
[0.5 + 0.1 sin(16πx1)], |x1| ≤ 4/5,

0, |x1| > 4/5.

Here, hΓ(x1) consists of a macroscale represented by 0.1 exp
[
16/(25x2

1 − 16)
]
and a

microscale represented by 0.02 exp
[
16/(25x2

1 − 16)
]
sin(16πx1). We choose the noise

ratio to be δ = 10%. First, we consider the inverse problem (IP1). The radius of the
measurement circle ∂B+

R is chosen to be R = 3. The numbers of the measurement
points and the incident directions are set to be MP = NP = 400. Figures 5(a) and
5(b) present the imaging results of IP (z,R) with the measured phaseless total-field
data with the pair of wave numbers (k+, k−) = (90, 180), (90, 45), respectively. Next,
we consider the inverse problem (IP2). We choose the numbers of the measured
observation directions and the incident directions to be MF = NF = 100. Figures
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5(c) and 5(d) present the imaging results of IF (z) with the measured phased far-field
data with the pair of wave numbers (k+, k−) = (90, 180), (90, 45), respectively.

(a) 10% noise, k+ = 90, k− =
180, R = 3

(b) 10% noise, k+ = 90, k− =
45, R = 3

(c) 10% noise, k+ = 90, k− =
180

(d) 10% noise, k+ = 90, k− =
45

Fig. 5. (a) and (b) show the imaging results of IP (z, R) with the measured phaseless total-field
data. (c) and (d) show the imaging results of IF (z) with the measured phased far-field data. The
solid line represents the actual curve.

Example 4. In this example, we set the ratio k−/k+ to be a fixed number and
investigate the effect of the wave numbers k+, k− on the imaging results. The locally
rough surface is chosen to be a multiscale curve given by

hΓ(x1) =




0.2 exp
[
16/(25x2

1 − 16)
]
[0.5 + 0.1 sin(10πx1) + 0.1 cos(8πx1)] sin(πx1), |x1| ≤

4

5
,

0, |x1| >
4

5
.

Here, the function hΓ(x1) has two scales: the macro scale is represented by the func-
tion 0.1 exp

[
16/(25x2

1 − 16)
]
sin(πx1), and the micro scale is represented by the func-

tion 0.2 exp
[
16/(25x2

1 − 16)
]
[0.1 sin(10πx1) + 0.1 cos(8πx1)] sin(πx1). The noise ratio

is set to be δ = 10%. First, we consider the inverse problem (IP1). The radius of the
measurement circle ∂B+

R is set to be R = 3. The numbers of the measurement points
and the incident directions are chosen to be MP = NP = 400. Figure 6 presents the
imaging results of IP (z,R) with the measured phaseless total-field data with the pair
of wave numbers (k+, k−) = (60, 30), (90, 45), (120, 60), respectively. Second, we con-
sider the inverse problem (IP2). We choose the numbers of the measured observation
directions and the incident directions to be MF = NF = 100. Figure 7 presents the
imaging results of IF (z) with the measured phased far-field data with the pair of wave
numbers (k+, k−) = (60, 30), (90, 45), (120, 60), respectively. From Figures 6 and 7,
it can be seen that the reconstruction result is getting better with the wave numbers
k+ and k− getting larger.
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(a) 10% noise, k+ = 60, k− =
30, R = 3

(b) 10% noise, k+ = 90, k− =
45, R = 3

(c) 10% noise, k+ = 120, k− =
60, R = 3

Fig. 6. Imaging results of IP (z, R) with the measured phaseless total-field data for different
values of the wave numbers k+ and k−. The solid line represents the actual curve.

(a) 10% noise, k+ = 60, k− =
30

(b) 10% noise, k+ = 90, k− =
45

(c) 10% noise, k+ = 120, k− =
60

Fig. 7. Imaging results of IF (z) with the measured phased far-field data for different values of
the wave numbers k+ and k−. The solid line represents the actual curve.

5. Conclusion. In this paper, we considered the problem of inverse scattering
of time-harmonic acoustic plane waves by a locally rough interface in a two-layered
medium in 2D. We have developed the direct imaging method with phaseless total-
field data and the direct imaging method with phased far-field data for reconstructing
the penetrable locally rough interface. We have also given the theoretical analysis of
the proposed methods by studying the asymptotic properties of relevant oscillatory
integrals. In doing so, an important role is played by the uniform far-field asymptotic
properties of the scattered wave for the acoustic scattering problem in the two-layered
medium obtained in our recent work [29]. Through various numerical experiments, it
has been shown that our methods are effective for both cases k+ > k− and k+ < k−.
Moreover, for the considered scattering model, it is interesting to study uniqueness of
the inverse scattering problem in a two-layered medium with a locally rough interface
in 2D associated with phaseless total-field data and with phased far-field data, which
is still open and challenging.
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Appendix A. Proofs of Lemmas 3.13 and 3.14.
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Proof of Lemma 3.13. By a straightforward calculation, we have

I(λ) =

∫ +∞

−∞
e−iλ η2

2 dη −
∫ +∞

b

e−iλ η2

2 dη −
∫ a

−∞
e−iλ η2

2 dη

=: I1(λ) + I2(λ) + I3(λ).

It follows from [34, the last formula on page 98] that

I1(λ) = 2

∫ +∞

0

e−iλt

√
2t

dt =
e−iπ4

√
2π√

λ
.

Further, by the change of variable η =
√
2t and an integration by parts, we have

|I2(λ)| =
∣∣∣∣∣

∫ +∞

b2

2

e−iλt 1√
2t
dt

∣∣∣∣∣ =
∣∣∣∣∣
ie−iλt

λ
√
2t

∣∣∣∣
+∞

t= b2

2

+
i

λ

∫ +∞

b2

2

e−iλt 1

2
√
2t3/2

dt

∣∣∣∣∣ ≤
2

λb
.

Similarly as the estimate of I2(λ), it can be deduced that |I3(λ)| ≤ 2/(λ|a|). Thus
the statement of this lemma is obtained by the above discussions.

Proof of Lemma 3.14. Let η ∈ [a, b] and define g(η) := f ′(η)η − (f(η) − f(0)).
Now we claim that

|g(η)| ≤ C(1 + ‖p‖C3[a,b])
3‖q‖C3[a,b](1 + t)2η2, η ∈ [a, b].(A.1)

In fact, it is clear that g(0) = g′(0) = 0. Thus for any η ∈ [a, b], there exists η1 = θη
with some θ ∈ (0, 1) such that

g(η) =
1

2
g′′(η1)η

2 =
1

2
[f ′′′(η1)θη + f ′′(η1)] η

2.(A.2)

Hence, if |η| ≤ (1 + t)−1, we have

|g(η)| ≤ C(1 + ‖p‖C3[a,b])
3‖q‖C3[a,b](1 + t)2η2.(A.3)

On the other hand, if |η| > (1 + t)−1, we have

∣∣∣∣
g(η)

η2

∣∣∣∣ =
∣∣∣∣
f ′(η)η − (f(η)− f(0))

η2

∣∣∣∣ ≤ |f ′(η)|(1 + t) + |f(η)− f(0)|(1 + t)2

≤ C(1 + ‖p‖C1[a,b])‖q‖C1[a,b](1 + t)2.(A.4)

Therefore, it follows from (A.3) and (A.4) that (A.1) holds.
Define the function h(η) := [f(η)−f(0)]/η for η ∈ [a, b]\{0}. Since g(η) = h′(η)η2

for η ∈ [a, b]\{0}, it easily follows from (A.1) and (A.2) that h and its derivative can
be continuously extended from [a, b]\{0} to [a, b], and h has the estimate

‖h‖C1[a,b] ≤ C(1 + ‖p‖C3[a,b])
3‖q‖C3[a,b](1 + t)2.(A.5)

On the other hand, an integration by parts gives that

I(λ) =
i

λ

[
e−iλ η2

2 h(η)

∣∣∣∣
b

η=a

−
∫ b

a

e−iλ η2

2 h′(η)dη

]
.

This, together with (A.5), implies that the statement of this lemma holds.
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