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Abstract. This paper combines modern numerical computation with theoretical re-
sults to improve our understanding of the growth factor problem for Gaussian elimina-
tion. On the computational side we obtain lower bounds for the maximum growth for
complete pivoting for n = 1 : 75 and n = 100 using the Julia JuMP optimization pack-
age. At n = 100 we obtain a growth factor bigger than 3n. The numerical evidence
suggests that the maximum growth factor is bigger than n if and only if n ≥ 11.

We also present a number of theoretical results. We show that the maximum growth
factor over matrices with entries restricted to a subset of the reals is nearly equal to the
maximum growth factor over all real matrices. We also show that the growth factors
under floating point arithmetic and exact arithmetic are nearly identical. Finally,
through numerical search, and stability and extrapolation results, we provide improved
lower bounds for the maximum growth factor. Specifically, we find that the largest
growth factor is bigger than 1.0045n for n > 10, and the lim sup of the ratio with n
is greater than or equal to 3.317. In contrast to the old conjecture that growth might
never be bigger than n, it seems likely that the maximum growth divided by n goes
to infinity as n→∞.

1. Introduction

We begin with a sketch of the history of the subject. For an introduction to the technical
background of the field, and a more technical discussion of related work, see Subsections
1.3 and 1.4, respectively.

1.1. History of Complete Pivoting (Overview). Understanding and bounding the
growth factor for Gaussian elimination has intrigued mathematical numerical linear
algebraists for many decades. It is one of those beautiful problems that is quite easy to
state, and yet we still know so very little, especially in the context of complete pivoting.
This may seem even more surprising as the problem has been around for more than six
decades.

The 1960s-1970s: In 1961, Wilkinson [35, Equation 4.15] published a famous bound
for the growth factor for complete pivoting which was always considered pessimistic (see
Eq. (1.1) of this paper). In that same paper he writes “no matrix has been encountered
for which [the growth factor] was as large as 8."
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Accompanying software and data may be found in the online repository.
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In 1964, Leonard Tornheim wrote in a technical paper [28] “there is a conjecture, attrib-
uted to J.H. Wilkinson, that" the growth factor for complete pivoting would be at most
n. This is the first written record of this conjecture (known to be false since 1991) as
far as we are aware. Leonard Tornheim’s work is notable in that it was not published
in any journals, but rather as technical papers and Chevron research reports during a
time when Chevron had a major presence in Richmond, CA, some 20 miles from UC
Berkeley.1 One year later, in 1965, Wilkinson published the famous book The Algebraic
Eigenvalue Problem [36, p.213] in which he wrote that no matrix had yet been discov-
ered with growth greater than n for an n× n matrix. In that same year a cover letter
written by Eugene B. Reid2 for a report by Tornheim [29] writes (without any reference)
that it was a widely known conjecture that growth would always be less than or equal
to n. In 1968, Cryer [4] specifically references Wilkinson’s 1965 words as a conjecture,
though Wilkinson never explicitly put to print a formal conjecture. Nonetheless Cryer
specifically wrote in his abstract “It has been conjectured by Wilkinson. . . ". A possible
best guess is that through the rumor grape vine often known as the children’s game of
“broken telephone," the observation that none was ever seen morphed into a folk con-
jecture and thus we will attribute this conjecture not to Wilkinson (who did not write
it down) nor Cryer (who wrote it later), but to folklore.3

The 1960s saw the maximum growth computed for n = 1, 2, 3, 4 and bounded for n = 5
by the growth chasers Tornheim [28, 29, 30, 31], Cryer [4], and Cohen [2]. Hadamard
matrices (matrices with all entries ±1 and orthogonal columns) were shown by Tornheim
[28] and Cryer [4] to have last pivot n. It became natural to wonder whether Hadamard
matrices could be a counterexample to the Wilkinson conjecture.

The 1980s: After a bit of a lull, in 1988 Day and Peterson wrote a lovely article in
the American Math Monthly [5] which revisits n = 3, studies Hadamard matrices, and
notably is the first to explore the growth problem for complete pivoting with numeri-
cal optimization software, specifically the NPSOL Library out of Stanford (Nonlinear
Programming, Stanford Optimization Laboratory). In particular they were the first
to observe the number 4.1325 when n = 5 as an output of the optimization software.

1Tornheim was a rather active mathematician. In a March 2023 phone call, the first author contacted
Tornheim’s son who described how Tornheim wrote a computer program that made Chevron ten million
dollars, thus establishing in his words “what a mathematician could be good for" (in private industry).
He also mentioned that his father had moved to the east coast and as coincidence would have it, he
lived directly across the street in Brookline, MA but sadly, the first author did not know this and
recognizes what a lost opportunity this might have been.
2In March 2023, the first author telephoned the son of Eugene B. Reid who described his father as
having bought the first commercial computer on the West Coast of the US, and that his father was
not a mathematician or a statistician, but he was responsible for the computer, mathematical, and
statistical activities at Chevron. He also bought Chevron’s very first computer which his son claims
might have been the first commercial computer on the West Coast of the US.
3In another March 2023 phone call, the first author spoke to William Kahan who seemed rather certain
that Wilkinson had never stated the conjecture in so many words. Kahan described how computers
were slow enough at the time that Wilkinson would watch the bits go by and look for large growth,
and growth > n was never observed. Nonetheless, we can not completely rule out that Wilkinson may
have verbally stated or at least hinted at the conjecture. In fact, Cleve Moler stated publicly on August
16, 2023 in Oxford, UK that Wilkinson was not inclined to use terms such as “theorem," “proof," and
“conjecture," but Moler felt that Wilkinson had believed the conjecture.
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In 1989, Higham and Higham [18] pointed out that many common matrices can have
growth factors of order n (for any pivoting strategy).

The early 1990s: Interest in the growth factor was substantially rejuvenated when
Trefethen and Schreiber [34] performed average case analyses of the growth factor in
1990. One year later, Nick Gould [15] surprised everyone by finding a 13x13 matrix with
growth bigger than 13 in finite precision using his LANCELOT software. The solution
was confirmed to be near a true example in exact arithmetic in 1992 [7].

1993-Present: In the over 30 years since, there was no progress whatsoever in improv-
ing Gould’s numbers for complete pivoting through computation (which would raise a
lower bound) or lowering any mathematical upper bounds. This is a testament to the
difficulty of the problem.

1.2. Other pivoting analyses.

No Pivoting: In 2006, the celebrated smoothed analysis4 of Sankar, Spielman, and
Teng [26] showed that large growth is unlikely from a probabilistic perturbative view-
point with no pivoting, and pointed out that such an analysis could be possible for
partial and complete pivoting.

Partial Pivoting: In 1994, Foster [11] pointed out that practical problems can bump
into the unacceptable 2n−1 bound for partial pivoting. The first author remarked in
[9] that numerical experiments suggested in contrast to [34] that the growth might be
more like O(n1/2) than O(n2/3) on average. In addition to the smoothed analysis for no
pivoting, Sankar [25] also performed a smoothed analysis of partial pivoting with sub-
exponential bounds. Very recently Huang and Tikhomirov [19] obtained new results
exploring the average case analysis for partial pivoting.

Complete Pivoting for Hadamard Matrices: It remains unknown, though perhaps
it seems unlikely, that a Hadamard matrix could have an earlier pivot bigger than n,
given that the last three pivots can only be n/2, n/2 and n, and the fourth from the end
is at most n/2. Nonetheless, complete pivot patterns for Hadamard matrices remain a
fascinating topic of research. A comprehensive review of the topic including new progress
written in 2013 by Kravvaritis may be found in [21]. Of note are the investigations by
Seberry [27] and also [8, 9]. We note that the growth factor for a Hadamard matrix of
dimension n ≤ 16 is known to be n under complete pivoting.

1.3. Technical Background. The solution of a linear system, i.e., given a matrix A
and vector b, finding a vector x satisfying Ax = b, is one of the oldest problems in
mathematics. Gaussian elimination, a technique in which a matrix is factored into the
product of a lower and upper triangular matrix, is one of the most fundamental and
important techniques for solving linear systems. The algorithm proceeds by converting
4Incidentally “smoothed analysis" was named by the first author in his car while driving Dan Spielman
and Shanghua Teng in Cambridge, MA.
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A into upper triangular form through row operations. In particular, given an n × n
matrix A = (ai,j), Gaussian elimination performs the iteration

a
(1)
i,j := ai,j for i, j = 1, ..., n,

a
(k+1)
i,j := a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

for i, j = k, ..., n, k = 1, ..., n− 1.

This can be equivalently written as successive rank one updates of sub-matrices of A,
i.e.,

A(k+1) := A
(k)
k+1:n,k+1:n −

1

a
(k)
k,k

A
(k)
k+1:n,k A

(k)
k,k+1:n for k = 1, ..., n− 1,

where A(k) = (a
(k)
i,j )i,j≥k and Ai1:i2,j1:j2 is defined as the sub-matrix of A containing only

rows {i1, ..., i2} and columns {j1, ..., j2}. The resulting LU factorization of A is given by

L(i, j) =
a
(j)
i,j

a
(j)
j,j

for i ≥ j, and U(i, j) = a
(i)
i,j for j ≥ i,

and this factorization is unique (up to scaling, i.e., A = (LD)(D−1U) for any invertible
diagonal matrix D). Not all matrices have an LU factorization (issues arise if a(k)k,k = 0
for some k < n), and may require a permutation of the rows (or, equivalently, columns)
of the matrix in order for such a factorization to exist. In addition, when computations
are performed in finite precision, issues due to round-off error can occur. The backward
error due to rounding in Gaussian elimination can be estimated by the number of bits of
precision, the condition number of the matrix A, and the growth factor of the Gaussian
elimination algorithm (see [20, Theorem 2.6] or [17, Theorem 9.5] for details). For this
reason, understanding the growth factor under different permutation strategies is of
both theoretical and practical importance. Using exact arithmetic, the growth factor of
Gaussian elimination is defined as

g(A) :=
maxi,j,k |a(k)i,j |
maxi,j |ai,j|

.

When performing Gaussian elimination in finite precision, say, using only numbers that
can be represented in base β with a length t mantissa, the algorithm suffers from round-
off error, and the growth factor in this setting may be larger than g(A). However, as
we will see in Section 4, when t = ω(log2β n), the maximum growth factors in exact
and floating point arithmetic are nearly identical (up to a 1−o(1) multiplicative factor)
under complete pivoting (see Theorem 4.2). For this reason, we focus almost exclusively
(save for Section 4) on exact arithmetic. The most popular and well-studied methods
for permuting a matrix in Gaussian elimination are partial pivoting (requiring |a(k)i,k | ≤
|a(k)k,k|), complete pivoting (requiring |a(k)i,j | ≤ |a

(k)
k,k|), and the slightly less well-known

rook pivoting (requiring |a(k)i,k |, |a
(k)
k,j | ≤ |a

(k)
k,k|). The growth factor for partial pivoting is

well understood in the worst case, and so, in this work, we primarily focus on complete
pivoting and, to some extent, rook pivoting as well.

Let GLn(C) be the set of n × n non-singular complex matrices. For simplicity, when
considering a given pivoting strategy, we simply restrict ourselves to the set of matrices
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that satisfy the constraints of the pivoting procedure without requiring pivoting. In
particular, we define

PPn(S) = {A ∈ GLn(C) ∩ Sn×n | |a(k)i,k | ≤ |a
(k)
k,k| for all i ≥ k},

CPn(S) = {A ∈ GLn(C) ∩ Sn×n | |a(k)i,j | ≤ |a
(k)
k,k| for all i, j ≥ k},

RPn(S) = {A ∈ GLn(C) ∩ Sn×n | |a(k)i,k |, |a
(k)
k,j | ≤ |a

(k)
k,k| for all i, j ≥ k},

where S is some arbitrary subset of C (typically R or C). For instance, when performing
Gaussian elimination with complete pivoting on a matrix in CPn(S), no pivoting is
required. Furthermore, when performing Gaussian elimination with complete pivoting
on a matrix in GLn(C) ∩ Sn×n, the resulting permuted matrix is in CPn(S). We also
stress that the role of the set S is to constrain only the entries of the input matrix
A; the sub-matrices A(k), k > 1, during Gaussian elimination need not have entries in
S (though if S = R, this will of course be the case). We denote the supremum of the
growth factor for a set X ⊂ Cn×n by g

[
X
]
, e.g., g

[
CPn({0, 1})

]
is the maximum growth

factor of a non-singular n × n binary matrix under complete pivoting. For all sets X
under consideration in this work, this supremum is a maximum. In figures and tables,
we use gn as shorthand for g

[
CPn(R)

]
.

1.4. Related Work. The maximum growth factor for partial pivoting is well under-
stood. This quantity is known to be exactly 2n−1 for n× n complex matrices, achieved
by Wilkinson’s famous example matrix [36, p.212] (see [18] for all such real matrices).
For complete pivoting, much less is known. A classical result, due to Wilkinson, bounds
the growth factor using only Hadamard’s inequality [35, Equation 4.15], and produces
the estimate

g
[
CPn(C)

]
≤
√
n
(
2 31/2 ... n1/(n−1)

)1/2 ≤ 2
√
nnln(n)/4. (1.1)

Minor improvements to this estimate are possible using the inexactness of Hadamard’s
inequality, but to date no non-trivial improvement (say, in the exponential constant)
is known, even when restricted to real numbers. This estimate has historically been
considered quite pessimistic; it was thought that the growth factor for real matrices
under complete pivoting is at most n:

Conjecture 1.1 (Folklore?5). g
[
CPn(R)

]
≤ n, with equality achieved only by Hadamard

matrices.

The complex analogue of this conjecture is clearly not true, as illustrated by the dimen-
sion three example [29, 31]

A =

1 1 1
1 z z−1

1 z−1 z

 ,

which, when z =
(
− 1 + 2

√
2i
)
/3, has growth factor 16/(3

√
3) ≈ 3.07. As noted by

Higham, Conjecture 1.1 was one of the most famous conjectures in numerical analysis
[17]. Attempting to bound or numerically compute the growth factor for small values of
n was a reasonably active area of research. For instance, there are a number of proofs
5See discussion in Section 1.1 regarding attribution.
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that the maximum third and fourth pivots are 2.25 and 4, respectively (see Cryer [4],
Tornheim [28, 29, 30, 31], Cohen [2], and Day and Peterson [5]). Tornheim also showed
that the maximum fifth pivot is bounded above by 4 17

18
[30, 31]. Conjecture 1.1 was

eventually shown to be false in dimension 13 by Gould in IEEE double precision floating
point arithmetic [15], and soon after by Edelman in exact arithmetic [7]. Since these
results, very little progress has been made on the asymptotic behavior of the maximum
growth factor under complete pivoting or the exact values of growth for small choices
of n.

Rook pivoting is relatively understudied compared to partial and complete pivoting,
despite, in some sense, containing the best characteristics of both methods. In practice,
the expected number of comparisons required should be roughly the same order of
computation as partial pivoting, see [12, 24] for empirical results and theorems of this
type for certain restrictive classes of random matrices. In addition, rook pivoting has a
quasi-polynomial upper bound on the maximal growth factor of

g
[
RPn(C)

]
≤ 3

2
n3 ln(n)/4, (1.2)

as shown by Foster [12]. Similar to complete pivoting, the gap between worst-case
constructions and upper bounds is quite large.

The growth factor has also been studied in a variety of other contexts. Trefethen
and Schreiber studied the average growth factor over some distributions and numerical
observed that for complete pivoting the growth factor appeared to exhibit a n1/2 type
behavior [34]. Higham and Higham have given numerous examples of matrices from
practical applications with order n growth factor [18], and recently produced a class of
random matrices with growth of order n/ log n [16] (both for any pivoting strategy).
Sankar, Spielman, and Teng provided a smoothed analysis of growth factor without
pivoting, proving that if a matrix is perturbed, it unlikely to have large growth factor
[26] (in Sankar’s thesis, the more complicated case of partial pivoting was also considered
[25]). Recently Huang and Tikhomirov obtained new results exploring the average case
analysis for partial pivoting [19]. Parker proved that, using random butterfly matrices,
any non-singular matrix can be transformed into one that does not require pivoting
[22]; Peca-Medlin and Trogdon further analyzed the benefits of butterfly matrices for a
variety of pivoting strategies in [23]. Townsend produced bounds for the growth factor
when non-optimal pivots are used [32].

1.5. Contributions of this paper. In this work, we prove a number of results re-
garding the maximum growth factor under complete pivoting, strengthen various con-
jectures, provide strong evidence for some results, and perform extensive numerical
computations.

Through numerical search, and stability and extrapolation results, we provide improved
lower bounds for the maximum growth factor:

Theorem 1.2. g
[
CPn(R)

]
≥ 1.0045n for all n > 10, and lim supn

(
g
[
CPn(R)

]
/n
)
≥

3.317.
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Table 1. In 1991, Gould [15] presented a Table 3.1: Maximum Growth
Factors Encountered. We thought it would be of interest to present the
maximum growth factors we encountered over 30 years later side by side.
The blue number 13.0205 is Gould’s 1991 first surprising example of a
matrix with g(A) > n. The red numbers show that it is possible to find
examples even when n = 11 and 12. The red and magenta numbers
are improvements over previously computed results. Only the bold face
black numbers are known to equal gn exactly.

gn Known Exactly
1 1
2 2
3 2.25
4 4

Ours = same as [5, 15]
5 4.1325
6 5
8 8

Ours / Gould [14]
18 21.25 20.45
20 24.71 24.25
25 33.67 32.99

Ours / Gould [15]
7 6.05 6
9 8.69 8.4305

10 9.96 9.5294
11 11.05 10.4627
12 12.55 12
13 13.76 13.0205
14 15.25 14.5949
15 16.92 16.1078
16 18.46 18.0596
Conjecture: gn > n iff n > 10

13.0205 = 1991 surprise

←− as documented in [7]

This is the first proof that Conjecture 1.1 is false for all n > 10, and also the first proof
that illustrates a multiplicative gap away from n.

In addition, we also provide asymptotic lower bounds for rook pivoting. By noting
that the set of rook pivoted matrices are closed under Kronecker products, we convert
finite results into lower bounds for the exponent of the growth factor, showing that rook
pivoting can exhibit super-linear growth:

Theorem 1.3. g
[
RPn(R)

]
> 1

641
n1.669 for all n ∈ N.

Numerical search is a key ingredient in the proofs of both Theorems 1.2 and 1.3, and
our numerical results also provide insights beyond the aforementioned theorems, which
we briefly summarize through the following figures and tables:

• Table 1 shows improvements compared to previously known data.
• Table 2 outlines the implications of our results for low order Hadamard matrices.
• Table 3 tabulates our numerical results for every n = 1 : 75 and also n = 100.
• Figure 2 plots the numerical values from Table 3.

The reported numerical computations were performed in Julia using the modern JuMP
(Julia for Mathematical Programming) [6] package. We note that, when n = 52 we
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Table 2. Hadamard matrices: For decades, Hadamard matrices, inter-
esting in their own right, seemed relevant to the growth factor problem.
Gould [15] shattered that notion with his computation for n = 16. We
observed that the notion can already be shattered partially at n = 8 and
fully at n = 12:

n = 4: Mathematics shows g4 = 4 and the optimum is Hadamard
n = 8: g8 = 8 remains a conjecture, however one new observation

is that the matrix need not be Hadamard.
n = 12: We are the first to report a 12x12 matrix with g12 > 12, thus

showing Hadamard matrices do not maximize growth for n = 12.
n = 16: Gould reported the discovery of a 16x16 matrix with g16 > 16,

therefore Hadamard matrices do not maximize growth for n = 16.
We observed a slightly more optimal matrix.

Table 3. GECP Data computed by JuMP for matrices of dimensions
n = 1 : 75 and 100 in exact arithmetic.

n = g ≥ ↓ n = g ≥ ↓ n = g ≥ ↓ n = g ≥ ↓ n = g ≥ ↓
1 1 16 18.46 31 45.43 46 85.85 61 137.55
2 2 17 19.86 32 47.74 47 87.54 62 141.83
3 9/4 18 21.25 33 50.36 48 91.44 63 144.72
4 4 19 22.85 34 52.78 49 94.72 64 148.05
5 4.13 20 24.71 35 54.84 50 97.24 65 153.98
6 5 21 26.21 36 57.66 51 101.82 66 157.05
7 6.05 22 28.01 37 59.91 52 104.61 67 162.20
8 8 23 29.72 38 63.18 53 108.09 68 166.89
9 8.69 24 31.63 39 64.87 54 111.19 69 171.33
10 9.96 25 33.67 40 67.52 55 114.76 70 174.45
11 11.05 26 34.96 41 70.44 56 118.18 71 182.98
12 12.55 27 36.88 42 73.49 57 121.90 72 184.91
13 13.76 28 39.05 43 77.68 58 126.23 73 190.57
14 15.25 29 41.46 44 79.25 59 129.42 74 193.28
15 16.92 30 43.40 45 82.56 60 134.27 75 196.79

...
100 331.71

have found a matrix for which the growth factor is greater than 2n, and at n = 100
the growth factor is well above 3n. We also found a matrix for which the growth factor
with rook pivoting is 640 at n = 48. We discuss our methodology for the computation
of these results and state a pair of natural conjectures in Subsection 1.6.

We also outline our more theoretical results:

We show that the maximum growth factor over matrices with entries restricted to a
subset of R is nearly equal to the maximum growth factor over all real matrices
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(a) (b)

Figure 1. We compare the (modulus of the) determinant and pivots
of A(k), k = 1, ..., n, under GECP for three examples of size n = 100:
Red: Wilkinson’s bound; Yellow: a particular n = 100 Hadamard
matrix; Blue: our observed maximum matrix. (a) reveals that at
least on an admittedly muted log scale, the observed determinant curve
qualitatively is bending in a manner resembling Wilkinson’s bound, while
the Hadamard data feels qualitatively different, and thus, less relevant.
(b) suggests the same conclusions as those of (a) and also suggests that
“slow and steady wins the race" rather than “greedy."

Theorem 1.4 (Simplified Version of Theorem 3.3). For any S ⊂ R, g
[
CP14n2(S)

]
≥(

diam(S)/[2max(S)]
)
g
[
CPn(R)

]
for all n ∈ N.

This implies that understanding the growth factor for any restricted set, say, binary
matrices, is equivalent (up to polynomial factors) to understanding growth for all real
matrices (i.e., if growth for binary matrices is polynomial, then it is polynomial for all
matrices, and if growth for all matrices is super-polynomial, then it also is for binary
matrices). We note that the O(n2) relationship is certainly pessimistic for many sets
S of interest; our purpose here is merely to show it is possible within small polynomial
factors to find such sweeping results.

We also show that the growth factors under floating point arithmetic and exact arith-
metic are nearly identical.

Theorem 1.5 (Simplified Version of Theorem 4.2). Let

t ≥ 1 + logβ
[
5n3g2

[
CPn(R)

]]
.

Then the maximum growth factor for a real n×n matrix under floating point arithmetic
with base β and mantissa length t is at most (1 + 1/n) g

[
CPn(R)

]
.

Theorem 4.2 treats a longstanding gap in the numerical analysis literature, a field where
so much energy is devoted to the distinction between floating point and exact compu-
tations, but in the context of growth factors, this has not been analyzed to date. This
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Figure 2. The ratio between numerically observed growth factors and
matrix size for n equals 1 to 75 and 100. Only the values for sizes
n = 1, 2, 3, 4 are known mathematically to be the exact maximal growth
factor though we suspect at least for the smaller values of n we are achiev-
ing the maximum with our JuMP software. This data leads us to make
Conjecture 1.7.

theorem provides a link between rounding error analyses that allow the unit round-off to
tend to zero and those that give even more pessimistic bounds because of this difference
(see, for example, [20, Theorem 2.4] and the discussion preceding it).

1.6. Maximum Growth Factors Encountered. With modern software and archi-
tecture we were able to find growth factors for matrices well beyond n = 25 as found by
Gould [15] and also we were able to find larger growth for matrices as small as n = 7.
No doubt future researchers will be able to improve our results in the same manner.

As the optimal growth problem is a constrained optimization problem it is natural
to run optimization software. In 1988, Day and Peterson [5] posed the problem as a
function of the n2 elements of the matrix and reported some success with the FOR-
TRAN77 nonlinear programming package NPSOL [13]. By contrast, Gould considered
the advantages of posing the problem as an optimization over n2 + (n − 1)2 + . . . + 1
variables with constraints. He used the FORTRAN77 LANCELOT package that he
codeveloped [3]. (LANCELOT is an acronym for “Large And Nonlinear Constrained
Extended Lagrangian Optimization Techniques).

We chose to follow Gould’s approach but chose to use the modern JuMP (acronym:
Julia for Mathematical Programming) [6] software library with IPOPT (acronym: Inte-
rior Point Optimizer) to formulate and solve the minimization problem. The software
advantage of using Julia is that the problem can be naturally formulated in a manner
very similar to the mathematics [1]. The optimization engine was the COIN-OR Ipopt
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(interior point optimizer) package called through Ipopt.jl. The software and results may
be found in the online repository [10].

JuMP was run in parallel with 64 randomly chosen starting points on 64 separate threads
and the winner, the largest growth factor, was saved. Computations were performed on
a server located at MIT consisting of two AMD EPYC 7502 32-Core Hyperthreading
Processors, typically using 64 of the 128 hyperthreads at a time so that others could
use the machine for their own work.

We studied n = 10 extensively numerically and never exceeded 9.96, so we feel the
evidence is very strong to state the following conjecture:

Conjecture 1.6. The growth factor for complete pivoting: g
[
CPn(R)

]
≥ n if and only

if n > 10.

In addition, though exact asymptotic estimates for growth factor remain elusive, we feel
that we have seen sufficient numerical evidence (see Figure 2) to conjecture that the
growth factor is super-linear (recall, f(n) = ω(g(n)) if limn→∞ f(n)/g(n) =∞):

Conjecture 1.7. g
[
CPn(R)

]
= ω(n).

1.7. Remainder of Paper. The remainder of the paper is organized as follows. In Sec-
tion 2, we prove a stability lemma, which, when combined with numerical experiments
and extrapolation results, imply lower bounds for both complete and rook pivoting. In
Section 3, we show that the maximum growth factor for matrices with entries in an
arbitrary non-trivial set S is nearly as large as the maximum growth factor over all
real matrices. In Section 4, we consider the growth factor in finite precision, and show
that only polylogarithmically many bits (in n) are needed for this quantity to be at
most a constant times the growth factor in exact arithmetic. In Section 5, we describe
the numerical programs used to search for large growth factors, prove extrapolation
results, and report our mathematically verified results. Finally, in Section 6, we study
the growth factor for rook pivoting.

2. Key Stability Lemma: Almost Completely Pivoted is Almost
Completely Pivoted

The “stability lemma" in this section is a critical technical ingredient in the majority of
the theorems that follow. One immediate application follows a longstanding tradition
of numerical analysis : backward error analysis. The lemma shows that if a numerical
computation, such as the computations described in Sections 1 and 5, provides a com-
puted growth factor for a “nearly" completely pivoted matrix, then there is a “nearby"
matrix which has a “nearby" growth factor for complete pivoting.

For a given ε = (ε1, ..., εn−1) ∈ Rn−1, εi > −1 for i = 1, ..., n− 1, we define

CPε
n(S) = {A ∈ GLn(C) ∩ Sn×n | |a(k)i,j | ≤ (1 + εk)|a(k)k,k| for all i, j ≥ k, (i, j) ̸= (k, k)},

https://github.com/alanedelman/CompletePivotingGrowth
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Algorithm 1 Practical Algorithm to turn optimization output to theory:
Convert A ∈ GLn(R) to B ∈ CPn(R)

1: B(1) ← Rational(A) ▷ Convert floating point matrix to rational matrix
2: for k = 1 : n− 1 do
3: B(k+1) ← B(k) −B

(k)
:,k B

(k)
k,: /B

(k)
k,k

4: end for
5: for k = (n− 1) : −1 : 1 do
6: δ ← max

{
maxi>k

(
B

(k)
i,k /B

(k)
k,k

)2
, maxj>k

(
B

(k)
k,j /B

(k)
k,k

)2
, maxi,j>k

∣∣B(k)
i,j /B

(k)
k,k

∣∣}
7: if δ > 1 then ▷ else matrix is already CP
8: δh ← Rational

(
NextFloat(δ1/2)

)
▷ Approx. δ1/2, round up, make rational

9: B
(k)
:,k ← δhB

(k)
:,k , B(k)

k,: ← δhB
(k)
k,:

10: if k > 1 then
11: for i = 1 : (k − 1) do
12: B

(i)
k,k ← B

(i)
k,k + (δ2h − 1)B

(k)
k,k

13: B
(i)
k,k+1:n ← B

(i)
k,k+1:n + (δh − 1)B

(k)
k,k+1:n

14: B
(i)
k+1:n,k ← B

(i)
k+1:n,k + (δh − 1)B

(k)
k+1:n,k

15: end for
16: end if
17: end if
18: end for
19: B ← B(1)

where S is some arbitrary subset of C (typically R or C), e.g., the set of matrices that
are “almost" completely pivoted (or, for εk < 0, “overly" completely pivoted) up to a
multiplicative error of εk at the kth step of Gaussian elimination. When ε1 = ... =
εn−1 > 0, these sets are generally referred to as threshold-pivoted matrices.

We first prove the following lemma, showing that every matrix in CPε
n(S) is close to a

matrix in CPδ
n(S), where εi ≥ 0 ≥ δi for all i = 1, ..., n − 1. The statement and proof

for the more general case in which εi and δi may have the same sign is similar, but is
slightly more complicated and not needed for our purposes. We also give an algorithmic
description of the procedure in the proof of Lemma 2.1 for the case δ = 0 in Algorithm
1, as this subroutine is a crucial part of converting numerically computed results to
mathematical proofs of lower bounds.

Lemma 2.1. Let ε = (ε1, ..., εn−1) and δ = (δ1, ..., δn−1) satisfy −1 < δi ≤ 0 ≤ εi for
i = 1, ..., n − 1. Then, for every A ∈ CPε

n(S), where S equals R or C, there exists a
matrix B ∈ CPδ

n(S) such that b(k)n,n = a
(k)
n,n for all k = 1, ..., n, and

∣∣b(k)i,j − a
(k)
i,j

∣∣ ≤ max
min{i,j}≤ℓ≤n−1

[(
1 + εℓ
1 + δℓ

)2

− 1

]∣∣a(ℓ)ℓ,ℓ

∣∣
ℓ−1∏

p=min{i,j}

1 + δp

+
ℓ−1∑

m=min{i,j}

(εm − δm)
∣∣a(m)

m,m

∣∣
m∏

p=min{i,j}

1 + δp

.
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Proof. To construct B ∈ CPδ
n(S), we iteratively define the entries b

(k)
i,j , starting with

k = n and working backwards from k = n to k = 1. The key to this construction is
that we scale the row and column of the pivot entry of each matrix A(k) by a fixed
multiplicative factor. This operation leaves entries a

(ℓ)
i,j , i, j > k, unchanged, and so

during our procedure each entry is changed at most once. The factor depends on both
the maximum magnitude entry |a(k)i,j | over all i, j > k and the maximum over i = k, j > k
and j = k, i > k. This allows error to propagate additively rather than multiplicatively.

Let B(n) := A(n) and

B(k) :=

(
(1 + γk) a

(k)
k,k

√
1 + γk A

(k)
k,k+1:n√

1 + γk A
(k)
k+1:n,k A

(k)
k+1:n,k+1:n +B(k+1) − A(k+1)

)
for k = 1, ..., n− 1, where γn := 0 and

γk := max

{(
1 + εk
1 + δk

)2

− 1,
εk − δk +maxi>k γi|a(i)i,i |/|a

(k)
k,k|

1 + δk

}
.

The quantity γk|a(k)k,k| is monotonically decreasing with k (as δk ≤ 0), and so we may
equivalently write

γk|a(k)k,k| = max

{[(
1 + εk
1 + δk

)2

− 1

]
|a(k)k,k|,

(εk − δk)|a(k)k,k|+ γk+1|a(k)k+1,k+1|
1 + δk

}
,

or

γk|a(k)k,k| = max
ℓ≥k

[(
1 + εℓ
1 + δℓ

)2

− 1

]
|a(ℓ)ℓ,ℓ |

ℓ−1∏
p=k

1

1 + δp
+

ℓ−1∑
m=k

(εm − δm)|a(m)
m,m|

m∏
p=k

1

1 + δp
.

Our definitions of B(k) are consistent with one another, as

B
(k)
k+1:n,k+1:n−

B
(k)
k+1:n,kB

(k)
k,k+1:n

b
(k)
k,k

= A
(k)
k+1:n,k+1:n+B(k+1)−A(k+1)−

A
(k)
k+1:n,kA

(k)
k,k+1:n

a
(k)
k,k

= B(k+1).

Furthermore, as εk ≤
√
1 + γk, for i ≤ j (j > i is similar),

|b(k)i,j − a
(k)
i,j | = |b

(i)
i,j − a

(i)
i,j | ≤ max{γi|a(i)i,i |, (

√
1 + γi − 1)|a(i)i,j |}

≤ max{γi, (1 + εi)(
√

1 + γi − 1)}|a(i)i,i |

= γi|a(i)i,i |.

What remains is to verify that B ∈ CPδ
n(S). We proceed by induction from k = n− 1

to k = 1. We need only consider entries in the lower right block of B(k), as, for i > k,

|b(k)i,k | =
√

1 + γk|a(k)i,k | ≤ (1 + εk)
√
1 + γk|a(k)k,k| =

1 + εk√
1 + γk

|b(k)k,k| ≤ (1 + δk)|b(k)k,k|,

and the same bound holds for b
(k)
k,j , j > k.

When k = n− 1,

|b(n−1)
n,n | = |a(n−1)

n,n | ≤ (1 + εn−1)|a(n−1)
n−1,n−1| =

1 + εn−1

1 + γn−1

|b(n−1)
n−1,n−1| ≤ (1 + δn−1)|b(n−1)

n−1,n−1|.
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Suppose the statement holds for k = ℓ+1, ..., n−1, ℓ < n−1, and consider b(ℓ)i,j , ℓ < i ≤ j
(ℓ < j < i is similar). We have

|b(ℓ)i,j | ≤ |a
(ℓ)
i,j |+ |b

(i)
i,j − a

(i)
i,j |

≤ (1 + εℓ)|a(ℓ)ℓ,ℓ |+ γi|a(i)i,i |

= |a(ℓ)ℓ,ℓ |
(
(1 + εℓ) + γi|a(i)i,i |/|a

(ℓ)
ℓ,ℓ |
)

= (1 + δℓ)|b(ℓ)ℓ,ℓ |
(1 + εℓ) + γi|a(i)i,i |/|a

(ℓ)
ℓ,ℓ |

(1 + δℓ)(1 + γℓ)

≤ (1 + δℓ)|b(ℓ)ℓ,ℓ |,

and therefore B ∈ CPδ
n(S). □

A simpler, but weaker version of the above result, relating the maximum growth factor
under threshold complete pivoting to that of complete pivoting, is as follows.

Corollary 2.2. Let S equal R or C, and ε = (ϵ, ..., ϵ), ϵ > 0. Then

g
[
CPn(S)

]
≥

g
[
CPε

n(S)
]

1 + ϵ(2 + ϵ)g
[
CPε

n−1(S)
]
+ ϵ
∑n−2

i=1 g
[
CPε

i (S)
]

for all n ∈ N.

Proof. The result follows from choosing an A ∈ CPε
n(S) that achieves the maxi-

mum growth factor and choosing B ∈ CPn(S) from Lemma 2.1 as a lower bound
for g

[
CPn(S)

]
. By Lemma 2.1, we have

g(A) =
|a(n)n,n|

maxi,j |ai,j|
=

|b1,1|
maxi,j |ai,j|

g(B) ≤ |b1,1|
|a1,1|

g(B) = (1 + γ1) g(B),

where

γ1 ≤ max
ℓ<n

ϵ(2 + ϵ)
|a(ℓ)ℓ,ℓ |
|a1,1|

+ ϵ
ℓ−1∑
m=1

|a(m)
m,m|
|a1,1|

≤ ϵ(2 + ϵ)g
[
CPε

n−1(S)
]
+ ϵ

n−2∑
m=1

g
[
CPε

m(S)
]
.

□

In addition to being a crucial ingredient for our results, Corollary 2.2 also has some
historical significance. This result, and the associated algorithm illustrates a way to
convert almost completely pivoted matrices into matrices that are completely pivoted,
without losing much in the growth factor. This has key similarities to Edelman’s exact
arithmetic extension of Gould’s finite precision counterexample to Conjecture 1.1, and
provides some answers to Edelman’s perturbation question for growth factor [7].
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3. Growth Factor for Constrained Entries

In this section, we study the maximum growth factor of matrices in GLn(R) ∩ Sn×n

when S is a small set (e.g., {0, 1}). In particular, we aim to show that the maximum
growth factor for matrices with entries restricted to some subset S ⊂ R is nearly the
same as the growth factor over R, up to a quadratic factor in the input n. To do so, we
proceed as follows: First, we show that the maximum growth factor for matrices at least
some prescribed distance from the boundary is almost as large as the maximum growth
factor over the entire set (Lemma 3.1). Combining this result with the stability lemma
of the previous section (Lemma 2.1) produces a lower bound for the maximum growth
factor of sets of matrices that cover CPn(S) sufficiently well (Lemma 3.2). Finally,
using this lower bound, we show that if our restricted set S is non-trivial (i.e., |S| > 1),
then we can almost achieve the maximum growth factor, up to a quadratic factor in n.

We begin by characterizing a subset of CPn(S) that is stable under entry-wise perturba-
tions of size at most ε, i.e., matrices A such that {B ∈ Sn×n | |ai,j−bi,j| ≤ ε} ⊂ CPn(S).
We have the following lemma.

Lemma 3.1. Let A ∈ CPn(S), S equal R or C, and ε > 0. If |a(k)i,j | ≤ |a
(k)
k,k|− 2× 4k−1ε

for all i, j = k, ..., n (except i = j = k), k = 1, ..., n− 1, then

{B ∈ Sn×n | |ai,j − bi,j| ≤ ε} ⊂ CPn(S),

and
g
[
{B ∈ Sn×n | |ai,j − bi,j| ≤ ε}

]
≥ g(A)− ε(4n−1 + g(A))/|a1,1|.

Proof. Let B ∈ Sn×n satisfy b
(1)
i,j = a

(1)
i,j + θ

(1)
i,j , where |θ(1)i,j | ≤ ε. Then

b
(2)
i,j =

[
(a

(1)
i,j + θ

(1)
i,j )−

(a
(1)
i,1 + θ

(1)
i,1 )(a

(1)
1,j + θ

(1)
1,j )

(a
(1)
1,1 + θ

(1)
1,1)

]
+ a

(2)
i,j −

[
a
(1)
i,j −

a
(1)
i,1 a

(1)
1,j

a
(1)
1,1

]
= a

(2)
i,j + θ

(2)
i,j ,

where

θ
(2)
i,j := θ

(1)
i,j + θ

(1)
1,1

a
(1)
i,1 a

(1)
1,j

a
(1)
1,1(a

(1)
1,1 + θ

(1)
1,1)
−

θ
(1)
i,1 a

(1)
1,j + θ

(1)
1,ja

(1)
i,1 + θ

(1)
i,1 θ

(1)
1,j

a
(1)
1,1 + θ

(1)
1,1

.

Since |a(1)i,1 |, |a
(1)
1,j | ≤ |a

(1)
1,1| − 2ε < |a(1)1,1| − ε ≤ |a(1)1,1 + θ

(1)
1,1|, we have

|θ(2)i,j | ≤ ε

(
1 +

2|a(1)1,j |+ |a
(1)
i,1 + θ

(1)
i,1 |

|a(1)1,1 + θ
(1)
1,1|

)
≤ 4ε.

Repeating this estimate for k = 3, ..., n with ε replaced by 4k−2ε, we have |a(k)i,j − b
(k)
i,j | ≤

4k−1ε for all i, j, k. Suppose that g(A) is achieved by entry a
(k)
i,j . Then

g(B) ≥
|a(k)i,j | − 4k−1ε

|a1,1|+ ε
= g(A)−

4k−1ε|a1,1|+ ε|a(k)i,j |
(|a1,1|+ ε)|a1,1|

≥ g(A)− ε(4n−1 + g(A))/|a1,1|.

□
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Combining Lemmas 2.1 and 3.1, we are now prepared to prove a lemma regarding the
maximum growth factor over sets that cover Rn×n (or Cn×n) sufficiently well.

Lemma 3.2. Let n > 1, 0 < ε < 2−(2n−1), and S equal R or C. Let X ⊂ Sn×n be
a subset such that, for all A ∈ CPn(S), there exists an α ∈ S and B ∈ X satisfying
|ai,j − α bi,j| ≤ ε|a1,1| for all i, j = 1, ..., n. Then CPn(S) ∩X is non-empty and

g
[
CPn(S) ∩X

]
≥
(
1− εn4n−1g

[
CPn(S)

]
/(2ε; 4)n

)
g
[
CPn(S)

]
,

where (·; ·)n is the q-Pochhammer symbol.

Proof. The main idea of the proof is as follows. We consider a matrix A ∈ CPn(S),
a1,1 = 1, that maximizes growth factor (i.e., g(A) = g

[
CPn(S)

]
) and, using Lemma

2.1 applied to CPn(S) and CPδ
n(S) for δ entry-wise negative, find a nearby matrix

C ∈ CPδ
n(S). Then, we find a matrix B ∈ X nearby C and, using Lemma 3.1, conclude

that B ∈ CPn(S). Finally, using the bounds on |a(k)i,j − c
(k)
i,j | and |bi,j − ci,j| we argue

that g(B) is fairly large.

So that we may apply Lemma 3.1, we define δk = −2×4k−1ε and let C ∈ CPδ
n(S) be the

matrix resulting from the proof of Lemma 2.1. Because A maximizes g(A), |a(k)k,k| ≥ 1

for k = 1, ..., n and therefore |c(k)k,k| ≥ 1 for k = 1, ..., n as well. In this case, C satisfies

|c(k)i,j | ≤ (1 + δk)|c(k)k,k| = |c
(k)
k,k| − 2× 4k−1ε|c(k)k,k| ≤ |c

(k)
k,k| − 2× 4k−1ε,

and so, by Lemma 3.1 combined with our lemma hypothesis, there exists a matrix
B ∈ CPn(S) ∩X (w.l.o.g. α = 1) with |bi,j − ci,j| ≤ ε.

What remains is to bound the differences |a1,1 − b1,1| and |a(n)n,n − b
(n)
n,n|, and compute a

lower bound for g(B). By Lemmas 2.1 and 3.1,

|a1,1 − b1,1| ≤ |a1,1 − c1,1|+ |b1,1 − c1,1|

≤ g(A)

[(
1− 2× 4n−2ϵ

)−2 − 1∏n−2
p=1 (1− 2× 4p−1ε)

+
n−2∑
m=1

2× 4m−1ε∏m
p=1(1− 2× 4p−1ε)

]
+ ϵ

= ε

(
1 + g(A)

[
2× 4n−2

1− 2× 4n−2ε
(2ε; 4)−1

n−1 +
n−1∑
m=1

2× 4m−1(2ε; 4)−1
m

])
≤ ε
(
1 + 2n 4n−2g(A)/(2ε; 4)n

)
,

and

|a(n)n,n − bn,n| ≤ |a(n)n,n − c(n)n,n|+ |b(n)n,n − c(n)n,n| ≤ 4n−1ε.
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Therefore,

|b(n)n,n|
|b1,1|

≥ g(A)− 4n−1ε

1 + ε
(
1 + 2n 4n−2g(A)/(2ε; 4)n

)
= g(A)− ε

4n−1 + g(A)
(
1 + 2n 4n−2g(A)/(2ε; 4)n

)
1 + ε

(
1 + 2n 4n−2g(A)/(2ε; 4)n

)
≥ g(A)− ε

(
4n−1 + g(A)

(
1 + 2n 4n−2g(A)/(2ε; 4)n

))
= g(A)

(
1− ε(4n−1/g(A) + 1 + 2n 4n−2g(A)/(2ε; 4)n)

)
≥ g(A)

(
1− εn4n−1g(A)/(2ε; 4)n

)
.

□

The requirement on the cover that X provides in the previous lemma is quite strong;
for a non-trivial result we require ε to be exponentially small in n. However, the set
of m×m matrices A(n−m+1) resulting from many steps of Gaussian elimination applied
to the set of A ∈ Sn×n, for S finite, does indeed provide an approximation to any
m×m matrix with error exponentially small in m (where m is a sufficiently small fixed
polynomial in n). We formalize this concept in the proof of the following theorem, which
relates the maximum growth of CPm(S), S ⊂ R, |S| > 1, to that of CPn(R).

Theorem 3.3. If S ⊂ R, then

g
[
CPm(S)

]
≥ diam(S)

2maxs∈S |s|
g
[
CPn(R)

]
for all m > 4n(3n+ 1).

Proof. The main idea of the proof is to build a matrix B ∈ Sm×m, m = n + p, such
that iterates B(i), i = 1, ..., p, are completely pivoted, |b(p+1)

p+1,p+1| ≥ |b1,1|, and B(p+1)

approximates an arbitrary A ∈ CPn(R) exponentially well. If we can approximate an
arbitrary A up to error 2−3n, i.e., |ai,j − αb

(k+1)
i,j | ≤ 2−3n|a1,1| for some fixed α, then,

by Lemma 3.2 combined with Wilkinson’s bound (Inequality 1.1) for g
[
CPn(C)

]
(for

n > 1),

g
[
CPm(S)

]
≥ (1− 2−(n+1)nln(n)/4+3/2/(21−3n; 4)n)g

[
CPn(R)

]
≥ 1

2
g
[
CPn(R)

]
.

What remains is to construct the matrix B.

Given any s1, s2 ∈ S, |s1| < |s2|, and matrix C ∈ CPm−1({0, 1}), the matrix

B =

(
s2 s21

T

s21 s211
T + (s1 − s2)C

)
is in CPm(S) and satisfies B(2) = (s1 − s2)C. Therefore, we may assume that S =
{0, 1} at the cost of one step of Gaussian elimination and a multiplicative factor of
diam(S)/maxs∈S |s| in the growth factor. However, we would like a matrix with entries
in {0, 1/2, 1}. To do so, we note that three steps of Gaussian elimination applied to the
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(m− 1)× (m− 1) block matrix

C =


1 1 0 0T 0
1 0 1 0T 0
0 1 1 0T 1
0 0 x E y


where x ∈ {0, 1}m−4, E ∈ {0, 1}(m−4)×(m−5), and y ∈ {0, 1}m−4, produces a (m − 4) ×
(m − 4) matrix with its first m − 5 columns given by E and its last column given by
y − x/2. Performing this operation ℓ times produces a ℓ× ℓ {0, 1/2, 1} matrix, where ℓ
must be such that 4ℓ+1 ≤ m. We are now prepared to approximate an arbitrary matrix
A ∈ CPn(R) using matrices in CPℓ({0, 1/2, 1}). Suppose (w.l.o.g.) that a1,1 = 1, and
let ri,j,k denote the kth bit in the binary expansion of ceil(ai,j) − ai,j (we write −1 as
−0.1̄ in binary), and set ri,j,0 to be the integer part of ai,j (i.e., either 0 or 1). To obtain
an approximation of A of order 2−3n, we set ℓ = 3n2 + n and define E as follows

E =


I 0 · · · 0 1

2
I

1
2
I I

. . . ... 1
2
I

... . . . . . . 0
...

1
2
I · · · 1

2
I I 1

2
I

R1 R2 · · · R3n R0

 ,

where each block is n × n, and Rk = (ri,j,k)
n
i,j=1 for k = 0, 1, ..., 3n. After n steps of

Gaussian elimination, we have

E(n+1) =


I 0 · · · 0 1

4
I

1
2
I I

. . . ... 1
4
I

... . . . . . . 0
...

1
2
I · · · 1

2
I I 1

4
I

R2 R3 · · · R3n R0 − 1
2
R1

 ,

and finally, after 3n2 steps we have that E(3n2+1) = R0 − 1
2
R1 − 1

4
R2 − ...− 1

23n
R3n and

approximates A up to error 2−3n. We have ℓ = 3n2 + n and require 4ℓ + 1 ≤ m, so we
set m = 4n(3n+ 1) + 1. □

A similar result (with a worse multiplicative constant) holds for C given a set S which
either contains {0, 1, i}, or can be converted to such a set after relatively few iterates of
Gaussian elimination (e.g., {−1, 1, 1+ i}). We leave the details to the motivated reader.

4. Growth Factor in Floating Point Arithmetic

In this section, we aim to bound the growth factor encountered in practice in floating
point arithmetic. The term “growth factor” in the literature is used ambiguously to
refer to two closely related quantities: growth factor under exact arithmetic or under
floating point arithmetic, leading to some confusion. The exact case is clear, and shows
up in theoretical discussions. The floating point arithmetic case, by contrast refers to
the largest element (in absolute value) seen during a floating point computation. As
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previously mentioned in Section 1, error estimates for Gaussian elimination typically
involve the growth factor under floating point arithmetic rather than exact arithmetic.
In this section, we show that when using sufficiently high precision (ω(log2 n) bits), the
maximum growth factor for exact and floating point arithmetic are identical up to a
1 + o(1) multiplicative factor (Theorem 4.2).

We consider the maximum growth factor when performing Gaussian elimination in base
β with t digits of precision. For simplicity, we ignore issues of overflow and underflow.
Here, we focus exclusively on real-valued matrices, but the analogous theorem for com-
plex matrices follows quickly from the below analysis by simply adjusting the error due
to multiplication and division for a given base and mantissa. We leave further details
to the interested reader. Under floating point arithmetic, the procedure of Gaussian
elimination is given by

â
(1)
i,j := ai,j(1 + ϕ

(0)
i,j ) for i, j = 1, ..., n,

â
(k+1)
i,j :=

[
â
(k)
i,j − si,kâ

(k)
k,j(1 + θ

(k)
i,j )
]
(1 + ϕ

(k)
i,j ) for i, j = k, ..., n, k = 1, ..., n− 1.

where

si,k =
â
(k)
i,k

â
(k)
k,k

(1 + φi,k),

and |θ(k)i,j |, |ϕ
(k)
i,j |, |φi,k| ≤ u := β1−t/2 for all i, j, k (u is commonly referred to as the

unit round-off). When partial pivoting is employed, we may assume that |si,k| ≤ 1 and
|si,k(1 + θ

(k)
i,j )| ≤ 1 for all i, j, k. Similar to the sets CPn(S) and PPn(S) defined in

Section 1, we define

ĈPn(S) = {A ∈ GLn(C) ∩ Sn×n | â(k)k,k ̸= 0 for all k, |â(k)i,j | ≤ |â
(k)
k,k| for all i, j ≥ k},

P̂Pn(S) = {A ∈ GLn(C) ∩ Sn×n | â(k)k,k ̸= 0 for all k, |â(k)i,k | ≤ |â
(k)
k,k| for all i ≥ k}.

To avoid a proliferation of indices, here and in what follows the dependence of the
above sets and the growth factor on β and t is implicit. We note that, for any partially
pivoted matrix, we may assume that |si,k| ≤ 1 for all i, k. The growth factor under
finite arithmetic is denoted by

G(A) :=
maxi,j,k |â(k)i,j |
maxi,j |â(1)i,j |

,

and we define G[X] to be the maximum growth factor under finite arithmetic (with base
β and length t mantissa) over all matrices in X. The quantity G[X] is a key ingredient
in stability theorems of Gaussian elimination (see [20, Theorem 2.6] or [17, Theorem
9.5]). In general, the best known bounds for partial, rook, and complete pivoting is
given by

G(A) ≤
[
1 + (1 + u)2

]n−1
= 2n−1 +O(nu), (4.1)

and when β = 2, this bound can simply be replaced by 2n−1 (see [20, Section 1.2] for
details). For rook and complete pivoting, 2n−1 is much more pessimistic than Inequalities
1.1 and 1.2 for exact arithmetic.

As the mantissa length t tends to infinity, intuitively, the maximum growth factor under
floating point arithmetic will converge to its exact arithmetic counterpart. However,
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given a single matrix, the growth factor in floating point can be very different from
exact arithmetic due to “near ties" causing the elimination to follow a different branch.
That branch, however, is the exact branch of some nearby matrix, as the following
lemma illustrates (for partial pivoting).

Lemma 4.1. For every A ∈ P̂Pn(R), there exists a matrix B ∈ PPn(R) with b
(k)
i,j = â

(k)
i,j

for i = k or j = k, and

∣∣â(k)i,j − b
(k)
i,j

∣∣ ≤ u

min{i,j}−1∑
ℓ=k

[
|â(ℓ)i,j |+ |â

(ℓ)
ℓ,j |(3 + u)

]
for all i, j = k, ..., n and k = 1, ..., n− 1.

Proof. The main idea is to iteratively update the lower right block of each matrix Â(k)

so that successive matrices agree exactly, i.e., B(k+1) = B
(k)
k+1:n − B

(k)
k+1:n,kB

(k)
k,k+1:n/b

(k)
k,k.

To this end, we iteratively define B so that B(n) = Â(n) and

B(k) =

(
â
(k)
k,k Â

(k)
k,:

Â
(k)
:,k B(k+1) + Â

(k)
k+1:n,kÂ

(k)
k,k+1:n/â

(k)
k,k

)
for k = 1, ..., n− 1.

Clearly, successive iterates of B agree with each other, and b
(k)
i,j = â

(k)
i,j for i = k or j = k.

What remains is to bound the error in the lower right block. Consider the entry b
(k)
i,j ,

where i, j > k and let m = min{i, j}. We have

b
(k)
i,j = â

(m)
i,j +

m−1∑
ℓ=k

â
(ℓ)
i,ℓ â

(ℓ)
ℓ,j/â

(ℓ)
ℓ,ℓ

=
[
â
(m−1)
i,j − si,m−1â

(m−1)
m−1,j(1 + θ

(m−1)
i,j )

]
(1 + ϕ

(m−1)
i,j )

+ â
(m−1)
m−1,j

(
si,m−1 − φi,m−1â

(m−1)
i,m−1 /â

(m−1)
m−1,m−1

)
+

m−2∑
ℓ=k

â
(ℓ)
i,ℓ â

(ℓ)
ℓ,j/â

(ℓ)
ℓ,ℓ

=

[
ϕ
(m−1)
i,j â

(m−1)
i,j − si,m−1â

(m−1)
m−1,j(θ

(m−1)
i,j + ϕ

(m−1)
i,j + θ

(m−1)
i,j ϕ

(m−1)
i,j )

− â
(m−1)
m−1,jφi,m−1â

(m−1)
i,m−1 /â

(m−1)
m−1,m−1

]
+

[
â
(m−1)
i,j +

m−2∑
ℓ=k

â
(ℓ)
i,ℓ â

(ℓ)
ℓ,j/â

(ℓ)
ℓ,ℓ

]
.

Repeating this procedure, we have

b
(k)
i,j = â

(k)
i,j +

m−1∑
ℓ=k

[
ϕ
(ℓ)
i,j â

(ℓ)
i,j − si,ℓâ

(ℓ)
ℓ,j(θ

(ℓ)
i,j + ϕ

(ℓ)
i,j + θ

(ℓ)
i,j ϕ

(ℓ)
i,j )− â

(ℓ)
ℓ,jφi,ℓâ

(ℓ)
i,ℓ /â

(ℓ)
ℓ,ℓ

]
.

Because our matrix is partially pivoted, |si,ℓ| and |â(ℓ)i,ℓ |/|â
(ℓ)
ℓ,ℓ | are at most one, and so

∣∣â(k)i,j − b
(k)
i,j

∣∣ ≤ u

min{i,j}−1∑
ℓ=k

[
|â(ℓ)i,j |+ |â

(ℓ)
ℓ,j |(3 + u)

]
.

□
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By combining the above lemma with Lemma 2.1, we obtain a bound on growth factor
for complete pivoting.

Theorem 4.2. Let 0 < C < 1 and

t ≥ 1 + logβ

[
(1 + C)(4 + 5C)

C

n−1∑
m=1

n−m∑
ℓ=1

g
[
CPℓ(R)

]
g
[
CPm(R)

]]
.

Then G
[
ĈPn(R)

]
≤ (1 + C) g

[
CPn(R)

]
.

Proof. Suppose A ∈ ĈPn(R) maximizes growth, i.e., G(A) = G
[
ĈPn(R)], and let

B ∈ PPn(R) be a matrix satisfying b
(k)
k,k = â

(k)
k,k for all k, and the bounds of Lemma 4.1.

Then B ∈ CPε
n(R), ε = (ε1, ..., εn−1), for ϵk := (4 + u)u

∑n−k
ℓ=1 G

[
ĈPℓ(R)], as

|b(k)i,j | ≤ |â
(k)
i,j |+ u

n−1∑
ℓ=k

[
|â(ℓ)i,j |+ |â

(ℓ)
ℓ,j |(3 + u)

]
≤ |b(k)k,k|

(
1 + u

n−1∑
ℓ=k

|â(ℓ)i,j |
|â(k)k,k|

+
|â(ℓ)ℓ,j |
|â(k)k,k|

(3 + u)

)
.

In addition, G
[
ĈPn(R)] = G(A) = |b(n)n,n|/|b1,1|. Using Lemma 2.1 applied to B, we can

find a matrix C ∈ g
[
CPn(R)

]
that satisfies b

(n)
n,n = c

(n)
n,n and

|c1,1| =
(
1 + max

ℓ≤n−1
εℓ(2 + εℓ)|â(ℓ)ℓ,ℓ |/|â1,1|+

ℓ−1∑
m=1

εm|â(m)
m,m|/|â1,1|

)
.

For the sake of space, we define γ := (4 + u)u, g(n) := g
[
CPn(R)

]
, and G(n) :=

G
[
ĈPn(R)], and note that

G(n) ≤ g(n)

(
1 + max

ℓ≤n−1
εℓ(2 + εℓ)G(ℓ) +

ℓ−1∑
m=1

εmG(m)

)

≤ g(n)

(
1 + γ max

ℓ≤n−1
G(ℓ)

[
1 + γ

n−ℓ∑
p=1

G(p)

] n−ℓ∑
p=1

G(p) +
ℓ∑

m=1

n−m∑
p=1

G(p)G(m)

)
(4.2)

≤ g(n)

(
1 + γ

[
2 + γ

n−1∑
ℓ=1

G(ℓ)

] n−1∑
m=1

n−m∑
p=1

G(p)G(m)

)
.

The result follows from noting that if

1

γ
≥ (1 + C)2

C

(
2 + C/2(1 + C)

) n−1∑
m=1

n−m∑
ℓ=1

g(ℓ)g(m) (4.3)

for some C > 0, then G(k) ≤ (1 + C)g(k) for all k = 1, ..., n. Indeed, we have G(1) =
g(1), and, assuming G(ℓ) ≤ (1 + C)g(ℓ) for ℓ = 1, ..., k,

G(k + 1)

g(k + 1)
≤ 1 + γ(1 + C)2

[
2 + γ(1 + C)

n−1∑
ℓ=1

g(ℓ)

] n−1∑
m=1

n−m∑
p=1

g(p)g(m)

≤ 1 + γ(1 + C)2
[
2 +

C

2(1 + C)

] n−1∑
m=1

n−m∑
p=1

g(p)g(m) ≤ 1 + C.
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Table 4. Lower bounds for the largest n satisfying the conditions of
Theorem 4.2 for IEEE 754 Double and Quadruple precision, with C =

1/2 (i.e., G
[
ĈPn(R)

]
≤ (3/2) g

[
CPn(R)

]
) under various assumptions on

upper bounds for g
[
CPn(R)

]
.

g
[
CPn(R)

]
≤ ... Double Prec. (t = 52) Quadruple Prec. (t = 112)
3n 4188 137266926

n2/2 660 676504
Inequality 1.1 554 29563

□

The above theorem is incredibly pessimistic, but nevertheless still provides useful some
useful information. First, by using Wilkinson’s bound, we note that G

[
ĈPn(R)

]
≤ (1+

1/Poly(n)) g
[
CPn(R)

]
for t = ω(log2β(n)), and, under the assumption that g

[
CPn(R)

]
is bounded by a polynomial, only a t = ω(logβ(n)) length mantissa is required. In Table
4, we include a number of possible bounds on the growth factor (including Wilkinson’s
Inequality 1.1), and list lower bounds on the largest value of n for which Theorem 4.2
guarantees that G

[
ĈPn(R)

]
≤ (3/2) g

[
CPn(R)

]
.

5. Computer-Assisted Lower Bounds

In this section, we detail lower bounds for growth factor found using computer search,
and discuss how such computer-generated matrices in finite arithmetic lead to mathe-
matically provable lower bounds for growth factor in exact arithmetic (Theorem 5.2).

5.1. Computer-Assisted Lower Bounds for Small Dimension. We are indebted
to the early pioneering numerical optimization given by Day & Peterson [5] and Gould
[15]. We are the beneficiary of more readily usable quality software (JuMP [6]), the
ready availability of faster processors, and also modern parallel computing.

Our methodology is to run 64 threads each with a random n × n starting matrix of
standard normals which has rows and columns permuted so that the matrix is completely
pivoted. We then normalize by dividing by the (1, 1) element. Our optimization is over
the 1 + 22 + . . . + n2 elements that are seen by Gaussian Elimination as suggested by
Gould [15]. Therefore the starting point requires using all of these ≈ n3/3 elements.
We store the variables in a 3-d array xi,j,k, 1 ≤ k ≤ n, k ≤ i, j ≤ n. Thus k = 1 is the
original matrix, k = 2 is the n− 1× n− 1 matrix obtained after one step of Gaussian
elimination.

We include a listing of the high level function from the online repository [10] that
performs the optimization in Figure 3; it is quite easy to read as it is similar to the
mathematics. We invite readers to note the six lines of code that indicate the nonlinear

https://github.com/alanedelman/CompletePivotingGrowth
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� �
# maximize pivot growth for real matrix with complete pivoting
function run_model(n)

model = Model(Ipopt.Optimizer)
indices = [ (i, j, k) for k = 1:n for i = k:n for j = k:n]

startmatrix = randn(n, n)
thestart = genp(geperm(startmatrix))
thestart = genp(thestart[:,:,1] * Diagonal(sign.(thestart[k,k,k] for k = 1:n)))
thestart ./= thestart[1,1,1]

@variable(model, x[i=indices], start = thestart[i[1],i[2],i[3]] ) # random starts
for k in 1:(n - 1), i in (k + 1):n, j in (k + 1:n)

@NLconstraint(model,
x[(k, k, k)] *( x[(i, j, k + 1)] - x[(i, j, k)] ) + x[(i, k, k)] * x[(k, j, k)] == 0 )

end
for k = 1:n

@constraint(model, x[(k, k, k)] ≥ 0)
end
@constraint(model, x[(1, 1, 1)] == 1)
for i in 1:n, j in 1:n

@constraint(model, -1 ≤ x[(i, j, 1)] ≤ 1)
end
for k in 2:n - 1, i in k:n, j in k:n

@constraint(model, x[(i, j, k)] ≤ x[(k, k, k)])
@constraint(model, -x[(k, k, k)] ≤ x[(i, j, k)] )

end
w = n
@objective(model, Max, x[(w, w, w)])
set_optimizer_attribute(model, "max_iter", 500)
set_silent(model)
optimize!(model)
A = reshape((value.(x)).data[1:nˆ2], n, n)
B = convert_to_cp(Rational{BigInt}.(A))
B = B/B[1,1]
val = genp(B)[n,n,n]
# return the optimization and the argmax
val,B,MOI.FEASIBLE_POINT

end� �
Figure 3. Our run_model function performs growth optimization from
a random start. We encourage the reader to examine the constraints:
they correspond to the mathematical constraints a completely pivoted
matrix satisfies and are easy to read. The variable x is a three-dimensional
array that stores the Gaussian elimination “pyramid,” e.g., x[(i, j, k)] is
the (i, j)th entry of the kth step of Gaussian elimination and the (k, k, k)
entry is the kth pivot.

constraints (@NLconstraint) and linear constraints (@constraint), the first one
of which is the constraint of Gaussian elimination:

Very importantly we also wish to discuss the line towards the bottom that begins
B = convert_to_cp(Rational... as this line turns a floating point answer to
a rigorous mathematical answer. A simple observation is that an output of optimiza-
tion software is not yet a theoretical lower bound because of floating point effects. In
particular it is possible that an output of a program is not completely pivoted. The
examples from Gould [15, 14] were close in the floating point sense to being optimums
and some minor tweaking was needed [7] for the purpose of exact mathematics. In
[7] the first author asked if there would always be a nearby floating point matrix. In
this paper, we show that Lemma 2.1 theoretically states there would be nearby matrix,
and Algorithm 1 as embodied in the convert_to_cp function working on a rational
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Figure 4. The above figure shows that we can go from matrices that
are completely pivoted in floating point to matrices that are completely
pivoted in exact arithmetic. Lemma 2.1 proves that this is possible and
Algorithm 1 provides a pseudocode implementation (a Julia implementa-
tion may be found in the online repository [10]). For instance, Algorithm
1 has fully automated Edelman’s exact arithmetic extension of Gould’s
finite precision counterexample to Conjecture 1.1, and provides some an-
swers to Edelman’s perturbation question for growth factor [7].

form allows us to state that our computer assisted solutions constitute exact rigorous
mathematics rather than a floating point approximation.

For the smaller values of n, we tend to believe that the the lower bounds found may
well be close to g

[
CPn(R)

]
as we have on occasion rerun these values, and found the

same answers. For larger values of n, we imagine that the lower bounds are just that,
lower bounds.

5.2. Provable Lower Bounds. Next, we prove global lower bounds for the growth
factor under complete pivoting by converting estimates for growth factor for small n
into estimates for all n. We begin with the following extrapolation lemma.

Lemma 5.1. Let S equal R or C. Then

(i) g
[
CPn(S)

]
is non-decreasing,

(ii) g
[
CP2n(S)

]
≥ 2 g

[
CPn(S)

]
for all n ∈ N,

(iii) if g
[
CPn(S)

]
≥ Cn for n = k, ..., 2k − 1, then g

[
CPn(S)

]
≥ (1/k;1/2)∞

1−1/k
Cn for all

n ≥ k, where (·; ·)∞ is the q-Pochhammer symbol.

Proof. Properties (i) and (ii) follow simply from the operations(
1 0Tn
0n A

)
and A⊗H1, where H1 :=

(
1 1
1 −1

)
,

https://github.com/alanedelman/CompletePivotingGrowth
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applied to a matrix A ∈ CPn(S), respectively (Property (ii) is also proved in [31]). If
g
[
CPn(S)

]
≥ C n for all n ∈ [k, 2k), then by Properties (i) and (ii),

g
[
CP2n+1(S)

]
≥ g
[
CP2n(S)

]
≥ 2Cn =

2n

2n+ 1
C(2n+ 1) ≥ 2k

2k + 1
C(2n+ 1)

for all n ∈ [k, 2k), i.e., g
[
CPn(S)

]
≥ 2k

2k+1
Cn for all n ∈ [k, 4k). Repeating this

argument, we obtain the lower bound

g
[
CPn(S)

]
≥ Cn

j∏
i=1

2ik

2ik + 1
≥ Cn

j∏
i=1

(
1− 1

2ik

)
=

(1/k; 1/2)j+1

1− 1/k
Cn

for n ∈
[
k, 2j+1k

)
, where (·; ·)j is the q-Pochhammer symbol. Noting that (·; ·)j is

monotonically non-increasing with respect to j for non-negative inputs of magnitude at
most one completes the proof of Property (iii). □

Combining Lemma 5.1 with the computer-assisted (and mathematically provable) lower
bounds of Table 3 immediately implies a lower bound for all values of n.

Theorem 5.2 (Restatement of Theorem 1.2). g
[
CPn(R)

]
≥ 1.0045n for all n > 10,

and lim supn

(
g
[
CPn(R)

]
/n
)
≥ 2.525.

Proof. The lower bound for all n > 10 follows from checking n = 11, 12, 13 by hand
and applying Property (iii) of Lemma 5.1 to k = 14 (with C = 1.08). The asymptotic
bound follows directly from our lower bound for n = 100 combined with Property (ii)
of Lemma 5.1. □

6. Rook Pivoting

The majority of this work focuses on complete pivoting, due to its theoretical and
practical importance. Rook pivoting by comparison is relatively understudied, yet the
quasi-polynomial bound on growth factor combined with a reduced computational com-
plexity compared to complete pivoting in practice makes this an attractive technique.
Many of the results of this paper also apply to rook pivoting, sometimes leading to even
stronger results. These details are left to the interested reader.

Through a stability lemma, tensor argument, and numerically computed lower bounds
for a fixed value of n, we provide improved lower bounds for the maximum growth factor
with rook pivoting. Let

RPε
n(S) = {A ∈ GLn(C) ∩ Sn×n | |a(k)i,k |, |a

(k)
k,j | ≤ (1 + εk)|a(k)k,k| for all i, j ≥ k}.

We have the following proposition (in the spirit of Lemma 2.1).

Proposition 6.1. For every A ∈ RPε
n(S), where S equals R or C and εi ≥ 0 for

i = 1, ..., n− 1, there exists a matrix B ∈ RPn(S) such that

a(k)n,n = b(k)n,n for k = 1, ..., n,
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and ∣∣a(k)i,j − b
(k)
i,j

∣∣ ≤ (2 + εℓ)εℓ
∣∣a(ℓ)ℓ,ℓ

∣∣, ℓ := min{i, j},
for all i, j = k, ..., n, k = 1, ..., n− 1.

Proof. Given A ∈ RPε
n(S), the result follows immediately from the construction B(n) :=

A(n) and

B(k) :=

(
(1 + εk)

2 a
(k)
k,k (1 + εk)A

(k)
k,k+1:n

(1 + εk)A
(k)
k+1:n,k A

(k)
k+1:n,k+1:n +B(k+1) − A(k+1)

)
for k = 1, ..., n− 1. □

Similar to Lemma 2.1, the construction of B ∈ RPn(S) is algorithmic in nature, and this
procedure (a variant of Algorithm 1) converts inexact numerically computed instances
of large growth into provable lower bounds. In particular, through the combination of
numerical computation and an algorithmic implementation of the procedure of Lemma
6.1, we have the following lower bound (see Subsection 5.1 and our repository [10] ).

Proposition 6.2. g
[
RP48(R)

]
> 640.4861.

Next, we prove the following extrapolation lemma, from which lower bounds for rook
pivoting immediately follow.

Lemma 6.3. Let S equal R or C. Then

(i) g
[
RPn(S)

]
is non-decreasing,

(ii) g
[
RPmn(S)

]
≥ g
[
RPm(S)

]
× g
[
RPn(S)

]
for all m,n ∈ N,

(iii) if g
[
RPk(S)

]
≥ kα for some k, then g

[
RPn(S)

]
≥ k−αnα for all n ∈ N.

Proof. Property (i) follows from the construction
(
1 0Tn
0n A

)
. Property (ii) follows from

the fact that if A ∈ RPm(S), B ∈ RPn(S), and S is closed under addition and
multiplication, then A ⊗ B ∈ RPmn(S), where ⊗ is the matrix Kronecker product,
which we now prove. Let C = A ⊗ B, and, for the sake of space, define the following
three auxilary matrices, consisting of B(k) for some k = 2, ..., n and some zeros:

B(k)
r =

(
0n−k+1,k−1 B(k)

)
, B(k)

c =

(
0k−1,n−k+1

B(k)

)
, B

(k)
f =

(
0k−1,k−1 0k−1,n−k+1

0n−k+1,k−1 B(k)

)
,

so that B(k)
r ∈ Sn×(n−k+1), B(k)

c ∈ S(n−k+1)×n, and B
(k)
f ∈ Sn×n. It suffices to complete n

steps of Gaussian elimination, show that at each step the rook pivoting condition holds
(|c(k)k,k| ≥ |c

(k)
i,k |, |c

(k)
k,j | for k = 1, ..., n), and note that C(n+1) = A(2)⊗B. Initially, we have

C(1) = A⊗B =

a1,1B · · · a1,mB
... . . . ...

am,1B · · · am,mB

 ,

https://github.com/alanedelman/CompletePivotingGrowth
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and the rook pivoting condition holds initially for any Kronecker product A⊗B of rook
pivoted matrices A and B, as

|a1,1b1,1| = |a1,1| |b1,1| ≥ max
i,j=1,...,m

{|ai,1|, |a1,j|} max
i,j=1,...,n

{|bi,1|, |b1,j|}.

On the kth step of Gaussian elimination, we have

C(k) =


a1,1B

(k) a1,2B
(k)
r · · · a1,mB

(k)
r

a2,1B
(k)
c a

(2)
2,2B + (a2,2 − a

(2)
2,2)B

(k)
f · · · a

(2)
2,mB + (a2,m − a

(2)
2,m)B

(k)
f

...
... . . . ...

am,1B
(k)
c a

(2)
m,2B + (am,2 − a

(2)
m,2)B

(k)
f · · · a

(2)
m,mB + (am,m − a

(2)
m,m)B

(k)
f

 ,

and still the rook pivoting condition holds, as both A and B(k) are rook pivoted. Finally,
after the nth step, we note that the remainder term (ai,j − a

(2)
i,j )B

(n)
f disappears, as

(ai,j − a
(2)
i,j )B

(n)
f −

ai,1a1,j
a1,1

B
(n)
c B

(n)
r

b
(n)
n,n

= 0n×n,

and so C(n+1) = A(2) ⊗B.

Property (iii) follows quickly from Properties (i) and (ii). Let n > k (if n ≤ k, the
result trivially holds), and let ℓ ∈ N be the largest number such that kℓ ≤ n. We have

g
[
RPn(S)

]
≥ g
[
RPkℓ(S)

]
≥ kαℓ =

[
kℓ/n

]α
nα ≥ k−αnα.

□

Using Proposition 6.2 and Lemma 6.3, we obtain our desired lower bound.

Theorem 6.4 (Restatement of Theorem 1.3). g
[
RPn(R)

]
> 1

641
n1.669 for all n ∈ N.
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