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Konstantin Häberle1,2,†, Barbara Bravi1,†, and Anthea Monod1,†

1 Department of Mathematics, Imperial College London, UK
2 Chair for Mathematical Information Science, ETH Zurich, Switzerland

† Corresponding e-mails: haeberlk@ethz.ch; b.bravi21@imperial.ac.uk;
a.monod@imperial.ac.uk

Abstract

Persistent homology is a central methodology in topological data analysis that has been successfully imple-
mented in many fields and is becoming increasingly popular and relevant. The output of persistent homology
is a persistence diagram—a multiset of points supported on the upper half plane—that is often used as a
statistical summary of the topological features of data. In this paper, we study the random nature of persis-
tent homology and estimate the density of expected persistence diagrams from observations using wavelets;
we show that our wavelet-based estimator is optimal. Furthermore, we propose an estimator that offers a
sparse representation of the expected persistence diagram that achieves near-optimality. We demonstrate
the utility of our contributions in a machine learning task in the context of dynamical systems.

Keywords: Nonparametric density estimation; wavelets; persistent homology; persistence measures.

1 Introduction

Topological data analysis (TDA) is a recent field of data science emanated from applied and computational
topology that extracts and studies topological information from complex and high-dimensional data struc-
tures using theory from algebraic topology. A fundamental method in TDA is persistent homology, which
adapts the classical algebraic topological concept of homology to study topological invariants associated with
a dataset; while the homology of a dataset corresponds to its “shape,” persistent homology captures both
the “shape” and “size” of the dataset. Persistent homology has been successfully employed in a variety of
applications including signal analysis (Perea & Harer, 2015), computer vision (Li et al., 2014), cancer patient
survival (Crawford et al., 2020), and viral evolution (Monod et al., 2019), and is becoming an increasingly
popular technique in data analysis.

Persistence diagrams are the resulting objects of persistent homology; they encode the lifetimes of topo-
logical features of datasets and thus exhibit a random nature. The randomness of persistence diagrams is a
challenging topic of study because the algebraic construction of persistent homology induces a highly complex
geometric space (Turner et al., 2014). In this paper, we focus on persistence diagrams in random settings
and study their distributional behavior nonparametrically using methods from uncertainty quantification.
Specifically, we propose a Haar wavelet estimator to estimate the expected persistence diagram, which, under
mild assumptions, is known to be absolutely continuous with respect to the Lebesgue measure and therefore
has a Lebesgue density (Chazal & Divol, 2019). We prove that the Haar wavelet estimator is minimax : its
maximal risk is minimal among all possible estimators of the expected persistence diagram. Furthermore,
we also propose a thresholding Haar wavelet estimator, which offers a sparse (or compressed) representation
of the expected persistence diagram and thus computational advantages in practical settings, and show that
it achieves near-optimal minimax rates. This paper is, to the best of our knowledge, the first to use wavelet
estimators to estimate expected persistence diagrams.

Our work is largely inspired by previous work by Chazal & Divol (2019), who propose a kernel density
estimator (KDE) and prove its convergence to the true density function in the L2-norm. However, it has
since been shown by Divol & Lacombe (2021a) that the optimal partial transport metric OTp, rather than
the L2 metric, is the natural metric for expected persistence diagrams; this metric was used to show that the
empirical mean of persistence diagrams is minimax. The resulting proposed estimator, however, does not
have a Lebesgue density in general and its support moreover tends to be very large, making it impractical in
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Figure 1: (a) 2-simplex formed by 3 affinely independent points x0, x1, x2 ∈ R2. (b) Simplicial complex
consisting of 2-simplices.

applications. In addition to our proposed Haar wavelet comprising a Lebesgue density and our thresholding
Haar wavelet being sparse, compared to KDEs, Haar wavelets have the advantage of being locally adaptive.
The local adaptivity property enables a finer local analysis, which may be more difficult to achieve with
kernels depending on choice of bandwidth.

The remainder of this paper is organized as follows. Section 2 provides the formal background to persistent
homology, persistence measures, and their resulting metric space, which is the context of our work. Section 3
presents our main result of minimaxity of wavelet estimators for expected persistence diagrams as well as
the thresholding wavelet estimators and discusses their properties. Section 4 presents numerical experiments
and verifications of our derived theory. Furthermore, we provide a practical implementation of our work to
a classification problem in the context of dynamical systems. We conclude our paper with a discussion of
our work and some ideas for future research in Section 5.

2 Preliminaries

In this section, we overview the construction of persistence diagrams from persistent homology and discuss
their properties. We then present the generalization of persistence diagrams to persistence measures as the
setting in which we work. In particular, we present the expected persistence diagram as our object of study
which we aim to estimate.

In addition, we recall basic concepts and results from wavelet theory that are essential for constructing
nonparametric density estimators.

2.1 Persistent Homology

Persistent homology studies the topological features of a simplicial complex or topological space across
multiple scales. In particular, it tracks the evolution of connected components, loops, and higher-dimensional
cavities with respect to a nested sequence of topological spaces, i.e., a filtration. For computational feasibility
due to the existence of efficient algorithms, discretizations of these topological spaces are often considered in
the form of simplices and simplicial complexes that can be seen as skeletal representations of the topological
space. A k-simplex is the convex hull of k+ 1 affinely independent points x0, x1, . . . , xk; a set of k-simplices
assembled in a combinatorial fashion forms a simplicial complex K. See Figure 1 for an illustration.

Given a point cloud X, an important and widely-used simplicial complex is the Vietoris–Rips (VR)
complex, used to build the Vietoris–Rips (or simply Rips) filtration (Kt)t≥0 := (VR(X, t))t≥0. The VR
complex for X and filtration parameter t, denoted VR(X, t), is the simplicial complex whose vertex set is
X, where {x0, . . . , xk} ⊆ X spans a k-simplex if and only if the diameter between two points, xi and xj , is
less than the threshold value, t: dX(xi, xj) ≤ t, for all i, j ∈ {0, 1, . . . , k}, where dX denotes a metric on X.
In this paper, we focus on point clouds as our topological space of interest and their discretization by VR
complexes.

Computing the kth simplicial homology groups Hk(Kt) with coefficients in a field for dynamic values
of t ≥ 0 yields a sequence of vector spaces. Note that Kt ⊆ Kt′ whenever t ≤ t′, which induces linear
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Figure 2: Constructing a simplicial complex from a point cloud using the Vietoris–Rips complex. (a)
The initial point cloud X is obtained for t = 0 corresponding to the birth of all 0-dimensional features
(connected components). (b) Some connected components have died due to the creation of 1-simplices. (c)
A 1-dimensional hole (loop) has appeared. (d) The second loop has been created while all but one of the
connected components have vanished. (e) The first loop has been filled yielding its death. (f) All loops have
disappeared; only the connected component of infinite persistence remains.

maps between Hk(Kt) and Hk(Kt′). The family of vector spaces together with their linear maps is called a
persistence module. Persistence modules are uniquely decomposable into a direct sum of interval modules up
to permutations (Zomorodian & Carlsson, 2005). The collection of these indecomposables is referred to as a
barcode where the intervals are bars, each representing the evolution of a topological feature (k-dimensional
hole). In particular, if (t1, t2) ⊂ R is such an interval, then the corresponding topological feature appears
at scale t1 in the filtration (Kt)t≥0 and disappears at scale t2. We call t1 and t2 the birth and death times,
respectively. This information can be encoded in a persistence diagram by taking birth and death times as
ordered pairs and plotting them. The persistence diagram is then the output of persistent homology, see
Figures 2 and 3.

Definition 1 (Persistence diagram). A persistence diagram is a locally finite multiset of points supported on
Ω := {(t1, t2) ∈ R2 : t1 < t2} together with points on the diagonal ∂Ω := {(t, t) ∈ R2} counted with infinite
multiplicity.

Distances Between Persistence Diagrams. The collection of all persistence diagrams constitutes a
metric space when equipped with an appropriate distance function. There exist various metrics on the
space of persistence diagrams; we focus on the following two distance functions that are widely used in
computations and applications in TDA.

Definition 2. Let D and D′ be two persistence diagrams, and let 1 ≤ q ≤ ∞. For 1 ≤ p <∞, the
p-Wasserstein distance between D and D′ is given by

Wp,q(D,D
′) := inf

γ

( ∑
x∈D∪∂Ω

∥x− γ(x)∥pq

)1/p

, (1)
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Figure 3: Persistence diagram obtained from the Vietoris–Rips filtration of the point cloud X shown in
Figure 2 illustrating the birth and death times of the 0- and 1-dimensional holes. Here, the 0-dimensional
feature of infinite persistence is discarded.

where the infimum is taken over all bijections γ between D ∪ ∂Ω and D′ ∪ ∂Ω. For p = ∞, the bottleneck
distance is given by

W∞,q(D,D
′) := inf

γ
sup

x∈D∪∂Ω
∥x− γ(x)∥q. (2)

Whenever p = q, we write Wp(·, ·) := Wp,p(·, ·) for notational simplicity. A bijection γ that achieves (1)
(or (2)) is called an optimal matching. The p-total persistence of a persistence diagram D is given by

Persp(D) :=

(∑
x∈D

∥∥x− x⊥
∥∥p
q

)1/p

, 1 ≤ p <∞,

where x⊥ denotes the orthogonal projection of x onto ∂Ω. For p = ∞, set

Pers∞(D) := sup
x∈D

∥∥x− x⊥
∥∥
q
.

Denote by Dp the set of persistence diagrams D with finite p-total persistence, Persp(D) <∞.
The space of persistence diagrams, as random objects, is a setting where probabilistic and statistical

studies are valid: the metric space (Dp,Wp,q) is complete and separable for any 1 ≤ p < ∞ and 1 ≤ q ≤ ∞
(Mileyko et al., 2011). As a result, probability measures on (Dp,Wp,q) are well-defined, which implies
the existence of other standard statistical and probabilistic objects on (Dp,Wp,q) such as expectations and
variances. However, geometrically, the metric space of persistence diagrams when p = 2 is highly nonlinear
(and as yet geometrically uncharacterized for p > 2), which makes even simple statistical and machine
learning tasks with persistence diagrams very challenging (Turner et al., 2014). To deal with this issue,
persistence diagrams are typically embedded into a Banach or Hilbert space via vectorizations, such as
explicit feature maps (Bubenik, 2015; Adams et al., 2017) or implicit kernel methods (Reininghaus et al.,
2015). Note, however, that the metric structure of the space of persistence diagrams is not preserved by
these embeddings (Bubenik & Wagner, 2020).

Persistence Measures. Persistence diagrams generalize well to a measure-theoretic setting, which has
desirable probabilistic and statistical properties (Chazal & Divol, 2019). Since persistence diagrams are
simply multisets of points supported on Ω, it is natural to represent a persistence diagram as a discrete
measure in the following manner. Let D ∈ Dp, then

D =
∑
x

δx, (3)
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where δx denotes the Dirac measure in x ∈ Ω, and where the sum is taken over all points x = (t1, t2) that
belong to the persistence diagram D. Points in D corresponding to topological features of infinite persistence
are disregarded in the representation (3).

Typically, the underlying point cloud X of a persistence diagram D is random so that D becomes a
random measure. To analyze the expected behavior of any linear descriptor of the form Ψh(D) :=

∫
Ω
hdD,

for some Banach space-valued function h on Ω, it suffices to study the expected persistence diagram.

Definition 3 (Expected persistence diagram, (Chazal & Divol, 2019)). Let D be a persistence diagram re-
sulting from a random point cloud. The expected persistence diagram (EPD) is defined to be the deterministic
measure

E[D](A) := E[D(A)], for all Borel sets A ⊂ Ω.

Chazal & Divol (2019) show that the expected persistence diagram has a density with respect to the
Lebesgue measure. The expected persistence diagram is in general not a persistence diagram, but lies in
a natural extension of the space of persistence diagrams, namely, the space of persistence measures (Divol
& Lacombe, 2021b). The space of persistence measures Mp, 1 ≤ p ≤ ∞, is defined to be the set of all
non-negative Radon measures µ supported on Ω such that Persp(µ) <∞. Here,

Persp(µ) :=

{∫
Ω

∥∥x− x⊥
∥∥p
q
dµ(x) if 1 ≤ p <∞,

supx∈supp(µ)

∥∥x− x⊥
∥∥
q

if p = ∞,
for 1 ≤ q ≤ ∞.

Equip the space of persistence measures Mp with the following metric (Divol & Lacombe, 2021b): for
µ, ν ∈ Mp, define

OTp,q(µ, ν) := inf
γ∈Adm(µ,ν)

(∫
Ω̄×Ω̄

∥x− y∥pq dγ(x, y)
)1/p

, 1 ≤ p <∞, (4)

where Ω̄ := Ω ∪ ∂Ω, and where Adm(µ, ν) denotes the set of Radon measures γ on Ω̄× Ω̄ such that

γ(A× Ω̄) = µ(A) and γ(Ω̄×B) = ν(B), for all Borel sets A,B ⊂ Ω.

For p = ∞,

OT∞,q(µ, ν) := inf
γ∈Adm(µ,ν)

sup
(x,y)∈supp(γ)

∥x− y∥q.

Whenever p = q, we will use the simplified notation OTp(·, ·) := OTp,p(·, ·). We now recall the following
results established by Divol & Lacombe (2021b): The space (Mp,OTp,q) is complete and separable for
1 ≤ p < ∞ and 1 ≤ q ≤ ∞. The space (M∞,OT∞,q) is complete but not separable for any 1 ≤ q ≤ ∞.
Note that Dp is closed in Mp with respect to OTp,q. Moreover, for any µ, ν ∈ Dp, it holds that

Wp,q(µ, ν) = OTp,q(µ, ν).

Thus, (Mp,OTp,q) is a natural and proper extension of the space of persistence diagrams (Dp,Wp,q). Due
to its linear structure the space of persistence measures Mp is very convenient for both computation and
statistical analyses.

2.2 Wavelets

Switching perspectives, we now recall some basic elements of wavelet theory.
A wavelet expansion of a function f ∈ L2(R2) corresponds to a multiscale decomposition of f , which

is obtained by writing f as a sum of its coarse approximation and its local fluctuations. More precisely,
consider the closed linear subspace span(Vj) of L2(R2), which is generated by some function φ : R2 → R
according to

Vj :=
{
2jφ(2j ·+ℓ) : ℓ ∈ Z2

}
, j ∈ Z.
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For an appropriate choice of φ, there exists a nested sequence of closed linear subspaces

· · · ⊂ span(V−1) ⊂ span(V0) ⊂ span(V1) ⊂ · · · (5)

such that

(i) ∩j∈Z span(Vj) = {0},

(ii) ∪j∈Z span(Vj) is dense in L2(R2),

(iii) V0 is an orthonormal basis of span(V0), and

(iv) for all h ∈ L2(R2) and all j ∈ Z, h ∈ span(Vj) ⇐⇒ h(2·) ∈ span(Vj+1).

If these conditions are satisfied, {span(Vj)}j∈Z is called a multiresolution approximation of L2(R2) and

φ its scaling function (Cohen, 2003). Thus, projecting f ∈ L2(R2) onto the subspace span(Vj) gives a
coarse approximation of f if j is small and a fine approximation if j is large. The details (fluctuations)
complementing the approximation between span(Vj) and span(Vj+1) may be governed by the set

Wj :=
{
2jψa(2j ·+ℓ), 2jψb(2j ·+ℓ), 2jψc(2j ·+ℓ) : ℓ ∈ Z2

}
for some functions ψa, ψb, ψc : R2 → R according to

span(Vj+1) = span(Vj)⊕ span(Wj). (6)

Applying (6) recursively, using (5), and the fact that ∪j∈Z span(Vj) is dense in L2(R2),

L2(R2) = span(Vj0)⊕
⊕
j≥j0

span(Wj),

for every j0 ∈ N0. Thus, the wavelet expansion of f ∈ L2(R2) reads

f =
∑
ϕ∈Vj0

αϕϕ+
∑
j≥j0

∑
ψ∈Wj

βψψ,

where αϕ, βψ ∈ R are the wavelet coefficients of this expansion. This decomposition allows for a multiresolu-
tion representation of the approximated function because it is equivalent to a description at different scales,
where at each scale there exists both a coarse- and fine-grained approximation of the function. Indeed, the
first term is a (coarse) approximation of f at scale j0; the second term describes the fine details (fluctuations)
(Cohen, 2003; Härdle et al., 2012).

Approximation with Wavelets. Wavelet transforms are a popular choice for modeling signals and images
and for nonparametric density estimation (Abramovich et al., 2000; Härdle et al., 2012), thanks to their
ability to approximate large classes of functions and to provide a locally accurate representation of the data
structure. Wavelets are well known to achieve considerable approximation power in connection to a broad
class of functions. Their localized structure (both in space and frequency) allows them to behave smoothly
with local irregularities and adapt efficiently to abrupt and small-scale variations in the data. As such, they
have been employed for various tasks of filtering, smoothing, and data compression (Zhao & Zhang, 2005;
Krommweh, 2010; Fryzlewicz & Timmermans, 2016). The use of wavelets in density estimation has a long
history dating back to the 1990s (Cohen, 2003; Härdle et al., 2012; Donoho et al., 1996) and wavelet-based
density estimators have been successfully applied to a wide range of observational data (Abramovich et al.,
2000; Peter & Rangarajan, 2008; Kang et al., 2013). These well-documented advantages motivate the study
of wavelet estimators for the expected persistence diagram.
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3 Minimax Density Estimation of the Expected Persistence Dia-
gram

We now present our main results, which are twofold: In our first contribution, we estimate the density
of the expected persistence diagram nonparametrically using Haar wavelets and establish its property of
minimaxity. In our second contribution, we propose a sparse thresholding wavelet estimator and show its
near-minimaxity.

3.1 Framework

Consider a probability distribution P supported on Mp, and denote the expected persistence diagram
associated to P by

E(P ) := E[µ], (7)

where µ is a random variable taking values in the set Mp distributed according to the law P . Note that, in
this context, it is natural to interpret the expected persistence diagram as the Bochner integral of µ.

Our goal is to estimate the Lebesgue density of E(P ) based on N independent and identically distributed
(i.i.d.) observations {µi}Ni=1 ∼ P . Moreover, we aim to find an estimator which is optimal in the sense of
minimax, which we will now define. Here, we use the framework introduced by Divol & Lacombe (2021a).

Definition 4. For R > 0, let

ΩR :=
{
(t1, t2) ∈ R2 :

∣∣∣t1 +R/
√
8
∣∣∣+ ∣∣∣t2 −R/

√
8
∣∣∣ ≤ R/

√
2
}
.

Denote by Ms
R,M the set of persistence measures µ ∈ Ms that are supported on ΩR and satisfy Perss(µ) ≤

M , where s ∈ [0,∞) and M > 0. Let PsR,M be the set of probability distributions on Ms
R,M . The minimax

rate for estimating E(P ) on PsR,M is defined to be

inf
µ̂N

sup
P∈PsR,M

E
[
OTpp (µ̂N ,E(P ))

]
,

where the infimum is taken over all estimators µ̂N based on the N i.i.d. samples {µi}Ni=1 ∼ P .

Theorem 5 (Lower bound on minimax rate, Theorem 2 in (Divol & Lacombe, 2021a)). Let 1 ≤ p < ∞,
s ≥ 0, and M,R > 0. Then there exists a constant cp,s > 0 depending on p and s such that

inf
µ̂N

sup
P∈PsR,M

E
[
OTpp (µ̂N ,E(P ))

]
≥ cp,sMRp−s√

N
.

Here, the infimum ranges over all possible estimators µ̂N that can be computed from the i.i.d. N -sample
{µi}Ni=1 ∼ P .

Remark 6 (Regularity of density). As noted by Chazal & Divol (2019), the density of the expected persistence
diagram is typically smooth. Hence, a natural question to ask is whether the regularity of the density can
be leveraged to obtain a faster minimax rate. The answer to this question is negative: in (Divol & Lacombe,
2021a, Theorem 3) it is established that regardless of the assumed regularity on the density, the minimax
rate cannot be faster than 1/

√
N .

Given the observed N -sample {µi}Ni=1, a very natural and simple estimator of E(P ) is the empirical mean
µ̄N defined as

µ̄N :=
1

N

N∑
i=1

µi, (8)

which can be computed efficiently. Moreover, the following result states that µ̄N achieves the minimax rate.
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Theorem 7 (Convergence rate empirical mean, Theorem 1 in (Divol & Lacombe, 2021a)). Let 1 ≤ p < ∞
and 0 ≤ s < p. Given N i.i.d. samples {µi}Ni=1 ∼ P , compute µ̄N according to (8). Then

sup
P∈PsR,M

E
[
OTpp(µ̄N ,E(P ))

]
≤ cp,sMRp−sap(N)

(
1√
N

+
1

Np−s

)
,

where cp,s > 0 is a constant depending on p and s, and where

ap(N) :=

{
log2(N) if p = 1,

1 otherwise.

Thus, whenever p > 1 and p − s ≥ 1/2, we obtain the minimax rate 1/
√
N . In particular, this holds

under the assumption that the points in the observed persistence diagrams {µi}Ni=1 are bounded by M , i.e.,
when we assume s = 0.

However, in practice, if we observe N persistence diagrams, the support of µ̄N is typically very large
since it corresponds to the union of the support of each diagram. This makes the estimator µ̄N prohibitive
for many applications (Divol & Lacombe, 2021a). Additionally, the estimator µ̄N is in general not absolutely
continuous with respect to the Lebesgue measure when observing persistence diagrams which are discrete
measures.

3.2 Wavelet-Based Estimation

To control transportation distances such as OTp from above, we construct an explicit coupling (transporta-
tion map) between two measures. Indeed, recalling (4), we take the infimum over all couplings to compute
OTp. Thus, using an explicit coupling yields an upper bound. A simple and natural way to construct an
efficient transportation map between two measures is to use a multiscale (dyadic) partition of the underlying
set (Fournier & Guillin, 2015; Weed & Bach, 2019).

Consider the following multiscale partition of ΩR: for k ∈ N0, define

Ak :=
{
x ∈ ΩR : R 2−(k+1) <

∥∥x− x⊥
∥∥
2
≤ R 2−k

}
such that ∪k∈N0

Ak = ΩR.

Let J ∈ N, consider the sequence of partitions {Qk,j−1}Jj=1 of Ak, where Qk,j−1 consists of squares whose

side length is R2−(k+1)2−j+1 such that Qk,j is a refinement of Qk,j−1, i.e., for every Q ∈ Qk,j there exists a
Q′ ∈ Qk,j−1 satisfying Q ⊆ Q′. Figure 4 illustrates this multiscale partition.

Intuitively, to construct an explicit transportation map, we recursively apply the following steps for each
k ∈ N0: given the partition Qk,0, move mass between sets in Qk,0, and then within each set in Qk,0, using
the partition Qk,1. This procedure gives the following bound.

Lemma 8 (Lemma 4 in (Divol & Lacombe, 2021a)). Let µ, ν ∈ Mp supported on ΩR, and let J ∈ N. Then

OTpp(µ, ν) ≤ 2p/2Rp
∑
k≥0

2−kp

(
2−Jp(µ(Ak) ∧ ν(Ak)) + cp|µ(Ak)− ν(Ak)|

+

J∑
j=1

2−jp
∑

Q∈Qk,j−1

|µ(Q)− ν(Q)|
)
,

where cp := 2−p/2(1 + 1/(2p − 1)).

Constructing the Wavelet-Based Estimator. We start by recalling the standard Haar system in R2.
Denote by χ the characteristic function and let φ̃ := χ[0,1]2 . Set

φ̃j,ℓ(t1, t2) := 2jφ̃(2j(t1, t2) + ℓ), (t1, t2) ∈ R2, j ∈ N0, ℓ = (m,n) ∈ Z2.

For (t1, t2) ∈ R2, define

ψ̃a(t1, t2) :=
(
χ[0,1/2)(t1)− χ[1/2,1)(t1)

)
χ[0,1](t2),

8
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Figure 4: Multiscale partition of ΩR used to bound OTp and to construct the wavelet estimator. A similar
figure appeared in (Divol & Lacombe, 2021a).

ψ̃b(t1, t2) := χ[0,1](t1)
(
χ[0,1/2)(t2)− χ[1/2,1)(t2)

)
,

ψ̃c(t1, t2) :=
(
χ[0,1/2)(t1)− χ[1/2,1)(t1)

) (
χ[0,1/2)(t2)− χ[1/2,1)(t2)

)
,

and set, for α ∈ {a, b, c},

ψ̃αj,ℓ(t1, t2) := 2jψ̃α(2j(t1, t2) + ℓ), (t1, t2) ∈ R2, j ∈ N0, ℓ = (m,n) ∈ Z2.

To adapt the Haar system to the geometry of our setup so that the wavelet functions are piecewise constant
on the squares of our multiscale partition (see Figure 4), we apply a change of variables. First translate by
1/2 in the negative t1-direction, scale by a factor of R, and finally rotate by +π/4 to get

R2 −→ R2,

(
t1
t2

)
7→
(
u(t1, t2)
v(t1, t2)

)
:=


t1 + t2√

2R
+

1

2
t2 − t1√

2R

 . (9)

Normalizing yields

φ(t1, t2) := R−1χ[0,1]2(u(t1, t2), v(t1, t2)) = R−1χΩR(t1, t2).

The scaled and translated versions of φ then read

φj,ℓ(t1, t2) = 2jφ(2jt1 + aj,ℓ, 2
jt2 + bj,l), j ∈ N0, ℓ = (m,n) ∈ Z2,

where aj,ℓ := (m− n− 2−1 + 2j−1)R/
√
2 and bj,ℓ := (m+ n− 2−1 + 2j−1)R/

√
2. Moreover,

ψa(t1, t2) :=
1

R

(
χ[0,1/2)(u(t1, t2))− χ[1/2,1)(u(t1, t2))

)
χ[0,1](v(t1, t2)),

ψb(t1, t2) :=
1

R
χ[0,1](u(t1, t2))

(
χ[0,1/2)(v(t1, t2))− χ[1/2,1)(v(t1, t2))

)
,

ψc(t1, t2) :=
1

R

(
χ[0,1/2)(u(t1, t2))− χ[1/2,1)(u(t1, t2))

) (
χ[0,1/2)(v(t1, t2))− χ[1/2,1)(v(t1, t2))

)
,

9



and

ψαj,ℓ(t1, t2) = 2jψα(2jt1 + aj,ℓ, 2
jt2 + bj,ℓ), j ∈ N0, ℓ = (m,n) ∈ Z2, α ∈ {a, b, c}. (10)

Note that for any j0 ∈ N0, the set

Vj0 ∪
⋃
j≥j0

Wj

is a complete orthonormal system in L2(R2). We thus have the following wavelet expansion for any function
f ∈ L2(R2):

f =
∑
ϕ∈Vj0

αϕϕ+
∑
j≥j0

∑
ψ∈Wj

βψψ, (11)

where

αϕ :=

∫
R2

ϕ(x)f(x) dx, ϕ ∈ Vj0 , and βψ :=

∫
R2

ψ(x)f(x) dx, ψ ∈ Wj , j ≥ j0.

That is, the wavelet estimator of an unknown density is constructed by estimating its projection on the
wavelet basis. If f ∈ Lr(R2), 1 ≤ r <∞, the convergence of the infinite sum in (11) holds in Lr(R2).

Fix any probability distribution P ∈ PsR,M and let f be the Lebesgue density of E(P ). Given k ∈ N0,
denote the restriction of f to the set Ak by f |Ak , and consider the following wavelet expansion

f |Ak =
∑

ϕ∈Vk+1

αϕϕ+
∑
j≥k+1

∑
ψ∈Wj

βψψ,

where αϕ =
∫
ΩR

ϕ(x)f(x) dx and βψ =
∫
ΩR

ψ(x)f(x) dx. If f ∈ Lr(ΩR), r ∈ [1,∞), the convergence also

holds in Lr(ΩR). Note that since ΩR is bounded and the functions ϕ ∈ Vk+1 and ψ ∈ Wj are compactly
supported, the sums over Vk+1 and Wj consist of finitely many terms.

Haar Wavelet Estimator. Given N i.i.d. observations {µi}Ni=1 ∼ P , we construct the estimator f̂ such
that

f̂
∣∣∣
Ak

=
∑

ϕ∈Vk+1

α̂ϕϕ+

J+K∑
j=k+1

∑
ψ∈Wj

β̂ψψ, k ∈ {0, 1, . . . ,K}, (12)

where K ∈ N0, J ∈ N are fixed, and where

α̂ϕ =
1

N

N∑
i=1

∫
ΩR

ϕdµi and β̂ψ =
1

N

N∑
i=1

∫
ΩR

ψ dµi.

Set f̂
∣∣∣
Ak

= 0 for all k ≥ K + 1.

The function f̂ gives the nonparametric Haar wavelet estimator. Its construction is based on a truncation
of the series expansion onto the wavelet basis; the coefficients of the expansion are set through an empirical
estimate. We will denote by µ̂H the measure with Lebesgue density f̂ .

We have now introduced all the required quantities in order to state our first main result, namely, the
minimaxity of the Haar wavelet estimator.

Theorem 9 (Minimaxity of the Haar wavelet estimator). Let P be a probability distribution supported on
Ms

M,R such that the Lebesgue density f of E(P ) satisfies

∥f∥L∞(Ak) ≤ C2MR−s2ks, k ∈ N0, for some C > 0,

10



and let 1 ≤ p <∞, 0 ≤ s < p. Then, for µ̂H with J = K = ⌈log2(N)⌉,

E
[
OTpp(µ̂H,E(P ))

]
≤ cp,sMRp−s

(
R

Np
+
CRap(N)√

N
+

1

Np−s

)
,

where cp,s is a constant depending only on p and s, and where

ap(N) :=

{
log2(N) if p = 1,

1 otherwise.

Remark 10 (Discussion of assumption). Note that the condition on the probability distribution P holds in
particular if the Lebesgue density f belongs the class of ℓ-times continuously differentiable functions, Cℓ,
ℓ ∈ N0. It is shown in (Chazal & Divol, 2019, Theorem 3.5) that f ∈ Cℓ if the underlying dataset admits
a density of class Cℓ with respect to the Hausdorff measure. This means that whenever the data points are
sampled in a smooth manner, f will exhibit the same regularity. Also, note that the minimax rate cannot be
faster than 1/

√
N irrespective of the regularity assumed on the EPD as previously mentioned; see Remark 6.

To prove Theorem 9, we require the following property of the EPD, which is consequence of the linearity
of expectation.

Lemma 11. Let µ ∼ P . Then, for every measurable function g,

E
[∫

ΩR

g dµ

]
=

∫
ΩR

g dE(P ).

Proof. First, suppose that g is a simple function, i.e., g =
∑n
k=1 bkχBk , where n ∈ N, {bk}nk=1 ⊂ R, and

where {Bk}nk=1 ⊂ ΩR is a sequence of Borel sets. We obtain

E
[∫

ΩR

g dµ

]
= E

[∫
ΩR

n∑
k=1

bkχBk dµ

]

=

n∑
k=1

bkE
[∫

ΩR

χBk dµ

]
(13)

=

n∑
k=1

bkE [µ(Bk)]

=

n∑
k=1

bkE [µ] (Bk) (14)

=

n∑
k=1

bk

∫
ΩR

χBk dE(P ) (15)

=

∫
ΩR

n∑
k=1

bkχBk dE(P )

=

∫
ΩR

g dE(P ),

where (13) follows from linearity; (14) holds by Definition 3; and in (15), we utilized (7).
Finally, using the monotone convergence theorem, the desired result can be established for any measurable

function g.

We are now ready to prove Theorem 9. The key in this proof is first to decompose the Lebesgue density,
f , of E(P ) according the multiscale partition illustrated in Figure 4 and then to bound the distance between

the estimator f̂ and f on each dyadic square.

11



Proof of Theorem 9. Let the Haar wavelet expansion of the Lebesgue density of E(P ) be given by

f |Ak =
∑

ϕ∈Vk+1

αϕϕ+
∑
j≥k+1

∑
ψ∈Wj

βψψ, k ∈ N0, (16)

where αϕ =
∫
ΩR

ϕdE(P ) and βψ =
∫
ΩR

ψ dE(P ).

Apply Lemma 8 to the measures µ̂H and E(P ), and split the sum over k into two parts to obtain

OTpp(µ̂H,E(P )) ≤ S1 + S2, (17)

where S1 contains the first K + 1 terms and S2 the remaining terms:

S1 := 2p/2Rp
K∑
k=0

2−kp

(
2−Jp(µ̂H(Ak) ∧E(P )(Ak)) + cp|µ̂H(Ak)−E(P )(Ak)|

+

J∑
j=1

2−jp
∑

Q∈Qk,j−1

|µ̂H(Q)−E(P )(Q)|
)
,

(18)

S2 := 2p/2Rp
∑

k≥K+1

2−kp

(
2−Jp(µ̂H(Ak) ∧E(P )(Ak)) + cp|µ̂H(Ak)−E(P )(Ak)|

+

J∑
j=1

2−jp
∑

Q∈Qk,j−1

|µ̂H(Q)−E(P )(Q)|
)
.

(19)

The proof may be divided into three steps. In Step 1 and Step 2, we will estimate S1 and S2 in expectation,
respectively. The desired result will be established in Step 3.

Step 1 (Estimation of S1). Let k ∈ {0, 1, . . . ,K}. First observe that for Q ∈ Qk,j−1 with j ≥ 1,
R−12k+jχQ ∈ Vk+j . Since Vk+j ∪

⋃
j′≥k+jWj′ forms an orthonormal system in L2(R2), it holds that∫

Q

ψ dx =

∫
R2

χQψ dx = 0, for all ψ ∈
⋃

j′≥k+j

Wj′ . (20)

Therefore, we have, for Q ∈ Qk,j−1 with 2 ≤ j ≤ J ,

|µ̂H(Q)−E(P )(Q)| =

∣∣∣∣∣∣
∑

ϕ∈Vk+1

(α̂ϕ − αϕ)

∫
Q

ϕdx+

k+j−1∑
j′=k+1

∑
ψ∈Wj′

(β̂ψ − βψ)

∫
Q

ψ dx

∣∣∣∣∣∣ (21)

≤
∑

ϕ∈Vk+1

|α̂ϕ − αϕ|
∫
Q

ϕdx+

k+j−1∑
j′=k+1

∑
ψ∈Wj′

∣∣∣β̂ψ − βψ

∣∣∣ ∫
Q

|ψ|dx

≤ R−1|Q|

 ∑
ϕ∈Vk+1

supp(ϕ)⊇Q

2k+1 |α̂ϕ − αϕ|+
k+j−1∑
j′=k+1

∑
ψ∈Wj′

supp(ψ)⊇Q

2j
′
∣∣∣β̂ψ − βψ

∣∣∣
 , (22)

where we used in (21) the wavelet expansions (12) and (16) as well as the orthogonality relation (20); and
where (22) holds because ∥ϕ∥L∞(R2) = R−12k+1 for ϕ ∈ Vk+1, ∥ψ∥L∞(R2) = R−12j

′
for ψ ∈ Wj′ , and

|Q| =
∫
Q

dx. Note that, for Q ∈ Qk,0, R
−12k+jχQ ∈ Vk+1 so that, by (20),

∫
Q
ψ dx = 0 for all ψ ∈ Wj′

with j′ ≥ k + 1. Thus, whenever Q ∈ Qk,0, it holds that

|µ̂H(Q)−E(P )(Q)| =

∣∣∣∣∣∣
∑

ϕ∈Vk+1

(α̂ϕ − αϕ)

∫
Q

ϕdx

∣∣∣∣∣∣ ≤ R−12k+1|Q|
∑

ϕ∈Vk+1

supp(ϕ)⊇Q

|α̂ϕ − αϕ| .
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Next, we will derive an upper bound for the expected error of the wavelet coefficients. To this end, let µ ∼ P .
Because {µi}Ni=1 ∼ P are i.i.d., we obtain, using Lemma 11, the following identity:

E
[
(α̂ϕ − αϕ)

2
]
= E

( 1

N

N∑
i=1

∫
ΩR

ϕdµi −
∫
ΩR

ϕdE(P )

)2


= E

 1

N2

N∑
i=1

N∑
j=1

∫
ΩR

ϕ dµi

∫
ΩR

ϕdµj −
2

N

N∑
i=1

∫
ΩR

ϕdµi

∫
ΩR

ϕdE(P ) +

(∫
ΩR

ϕ dE(P )

)2


=
1

N
E

[(∫
ΩR

ϕdµ

)2
]
+
N − 1

N

(∫
ΩR

ϕ dE(P )

)2

−
(∫

ΩR

ϕdE(P )

)2

=
1

N

(
E

[(∫
ΩR

ϕ dµ

)2
]
−
(∫

ΩR

ϕdE(P )

)2
)
.

Applying Jensen’s inequality yields

E [|α̂ϕ − αϕ|] ≤

√
Var(

∫
ΩR

ϕ dµ)

N
≤

√√√√√E
[(∫

ΩR
ϕdµ

)2]
N

. (23)

Likewise,

E
[∣∣∣β̂ψ − βψ

∣∣∣] ≤
√

Var(
∫
ΩR

ψ dµ)

N
≤

√√√√√E
[(∫

ΩR
ψ dµ

)2]
N

. (24)

To bound the second moment E
[(∫

ΩR
ϕ dµ

)2]
, we may assume µ(supp(ϕ)) > 0 almost surely; indeed,

otherwise E
[(∫

ΩR
ϕdµ

)2]
= 0. We then get:

E

[(∫
ΩR

ϕdµ

)2
]
= E

(∫
supp(ϕ)

ϕ dµ

)2


= E

µ(supp(ϕ))2(∫
supp(ϕ)

ϕ
dµ

µ(supp(ϕ))

)2


≤ E

[
µ(supp(ϕ))2

∫
supp(ϕ)

ϕ2
dµ

µ(supp(ϕ))

]
(25)

≤MR−s2ksE

[∫
supp(ϕ)

ϕ2 dµ

]
(26)

=MR−s2ks
∫
supp(ϕ)

ϕ2 dE(P ) (27)

=MR−s2ks
∫
supp(ϕ)

ϕ2f dx

≤MR−s2ks∥f∥L∞(Ak)

∫
supp(ϕ)

ϕ2 dx

=MR−s2ks∥f∥L∞(Ak)

≤
(
CMR−s2ks

)2
, (28)
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where (25) follows from Jensen’s inequality; in (26) we used that supp(ϕ) ⊂ Ak and the following fact stated
in (Divol & Lacombe, 2021a, (A.5)): for any µ ∈ Ms

M,R,

µ(B) =

∫
B

dist(x, ∂Ω)s

dist(x, ∂Ω)s
dµ(x) ≤MR−s2ks, for all B ⊆ Ak; (29)

the identity (27) is due to Lemma 11; and where (28) holds based on our assumption that ∥f∥L∞(Ak) ≤
C2MR−s2ks. Likewise,

E

[(∫
ΩR

ψ dµ

)2
]
≤
(
CMR−s2ks

)2
. (30)

Now observe that card ({ϕ ∈ Vk+1 : supp(ϕ) ⊇ Q}) = 1 for all Q ∈ Qk,j−1 with j ≥ 1. Thanks to (23)
and (28), we have

∑
ϕ∈Vk+1

supp(ϕ)⊇Q

2k+1E [|α̂ϕ − αϕ|] ≤
∑

ϕ∈Vk+1

supp(ϕ)⊇Q

2k+1

√√√√√E
[(∫

ΩR
ϕ dµ

)2]
N

≤ CMR−s2k(s+1)+1

√
N

. (31)

Similarly, since card ({ψ ∈ Wj′ : supp(ψ) ⊇ Q}) = 3 (see (10)), it follows from (24) and (30) that

∑
ψ∈Wj′

supp(ψ)⊇Q

E
[∣∣∣β̂ψ − βψ

∣∣∣] ≤ ∑
ψ∈Wj′

supp(ψ)⊇Q

√√√√√E
[(∫

ΩR
ψ dµ

)2]
N

≤ 3CMR−s2ks√
N

.

Using
∑k+j−1
j′=k+1 2

j′ ≤ 2k+j , we obtain

k+j−1∑
j′=k+1

∑
ψ∈Wj′

supp(ψ)⊇Q

2j
′
E
[∣∣∣β̂ψ − βψ

∣∣∣] ≤ 3CMR−s2k(s+1)+j

√
N

. (32)

Substituting (31) and (32) into (22) yields

E [|µ̂H(Q)−E(P )(Q)|] ≤ |Q|√
N
CMR−s−12k(s+1)+1

(
1 + 3 · 2j−1

)
. (33)

Since Qk,j−1 is a partition of Ak and |Ak| = R22−(k+1), we get, by summing (33) over all Q ∈ Qk,j−1, for
j ≥ 2, ∑

Q∈Qk,j−1

E [|µ̂H(Q)−E(P )(Q)|] ≤ |Ak|√
N
CMR−s−12k(s+1)+1

(
1 + 3 · 2j−1

)
=

1√
N
CMR−s+12ks

(
1 + 3 · 2j−1

)
. (34)

When j = 1, ∑
Q∈Qk,j−1

E [|µ̂H(Q)−E(P )(Q)|] ≤ |Ak|√
N
CMR−s−12k(s+1)+1 =

1√
N
CMR−s+12ks. (35)

Moreover, since

|µ̂H(Ak)−E(P )(Ak)| =

∣∣∣∣∣∣
∑

Q∈Qk,0

µ̂H(Q)−E(P )(Q)

∣∣∣∣∣∣ ,
14



it follows from (35) that

E [|µ̂H(Ak)−E(P )(Ak)|] ≤
1√
N
CMR−s+12ks. (36)

Thanks to (29), we also have

µ̂H(Ak) ∧E(P )(Ak) ≤MR−s2ks. (37)

Using the estimates (34) to (37) we can bound S1, defined in (18), in expectation:

E [S1] ≤ 2p/2MRp−s+1
K∑
k=0

2−k(p−s)

2−Jp + cp
C√
N

+

J∑
j=1

2−jp

(
C
(
1 + 3 · 2j−1

)
√
N

)
≤ 2p/2MRp−s+1

K∑
k=0

2−k(p−s)

2−Jp + cp
C√
N

+
2C√
N

J∑
j=1

2−j(p−1)

 . (38)

Step 2 (Estimation of S2). Let k ≥ K+1. Note that, by definition, µ̂H(B) = 0 for any B ⊆ Ak. Thanks
to (29), we get ∑

Q∈Qk,j−1

|µ̂H(Q)−E(P )(Q)| =
∑

Q∈Qk,j−1

E(P )(Q) = E(P )(Ak) ≤MR−s2ks, (39)

|µ̂H(Ak)−E(P )(Ak)| ≤MR−s2ks, (40)

and

µ̂H(Ak) ∧E(P )(Ak) = 0. (41)

Hence, substituting the estimates (39) to (41) into (19) gives

S2 ≤ 2p/2Rp
∑

k≥K+1

2−kp

cpMR−s2ks +

J∑
j=1

2−jpMR−s2ks


≤ 2p/2 (cp + 1/(2p − 1))MRp−s

∑
k≥K+1

2−k(p−s)

= c′pMRp−s
∑

k≥K+1

2−k(p−s)

= c′pMRp−s
2−(p−s)K

2p−s − 1
, (42)

where c′p := 2p/2 (cp + 1/(2p − 1)) = (2p/2 + 2p)/(2p − 1).

Step 3. Finally, combining (17), (38) and (42) results in

E
[
OTpp(µ̂H,E(P ))

]
≤ 2p/2MRp−s+1

K∑
k=0

2−k(p−s)

2−Jp + cp
C√
N

+
2C√
N

J∑
j=1

2−j(p−1)

+ c′pMRp−s
2−(p−s)K

2p−s − 1
.

Setting K = ⌈log2(N)⌉ and J = ⌈log2(N)⌉ yields the desired estimate

E
[
OTpp(µ̂H,E(P ))

]
≤ cp,sMRp−s

(
R

Np
+
CRap(N)√

N
+

1

Np−s

)
,

where cp,s is a constant depending only on p and s.

Theorem 9 also provides an estimate of the optimal rate of convergence of the Haar wavelet estimator,
defined up to constants and variable factors depending on s and p which stay bounded.
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Thresholding Haar Wavelet Estimator. We now turn to our practical contribution, which entails a
class of nonparametric density estimators and uses a Haar wavelet basis that discards small coefficients
by introducing a threshold below which coefficients are set to zero (hard thresholding). The threshold is
set following the procedure proposed in (Donoho et al., 1996), where it was designed to attain exactly or
approximately optimal convergence rates.

Consider the following hard thresholding technique: fix τ > 0 and let

τj := CMR−sτ2j/p
j√
N
.

For any ψ ∈ Wj , consider

β̃ψ :=

{
β̂ψ if |β̂ψ| > τj ,

0 otherwise.

Construct the estimator f̃ according to

f̃
∣∣∣
Ak

=
∑

ϕ∈Vk+1

α̂ϕϕ+

J+K∑
j=k+1

∑
ψ∈Wj

β̃ψψ, k ∈ {0, 1, . . . ,K},

and f̃
∣∣∣
Ak

= 0, k ≥ K + 1. The function f̃ represents the thresholding Haar wavelet estimator as first

proposed by Donoho et al. (1996). Let µ̃H be the measure whose Lebesgue density is f̃ .

Corollary 12 (Near-optimal minimaxity of the thresholding Haar wavelet estimator). Under the assump-
tions of Theorem 9, we have that

E
[
OTpp(µ̃H,E(P ))

]
≤ c̃p,sMRp−s

(
R

Np
+
CRap(N)√

N
+
CRτ log2(N)√

N
+

1

Np−s

)
,

where c̃p,s is a constant depending only on p and s, and where

ap(N) :=

{
log2(N) if p = 1,

1 otherwise.

Proof. Let ψ ∈ Wj′ . Using the triangle inequality, we compute

E
[
|β̃ψ − βψ|

]
≤ E

[
|β̃ψ − β̂ψ|+ |β̂ψ − βψ|

]
= E

[
|β̂ψ|1{|β̂ψ|≤τj′}

+ |βψ − β̂ψ|
]

≤ τj′ + E
[
|βψ − β̂ψ|

]
.

Thus,

k+j−1∑
j′=k+1

∑
ψ∈Wj′

supp(ψ)⊇Q

2j
′
E
[∣∣∣β̃ψ − βψ

∣∣∣] ≤ k+j−1∑
j′=k+1

∑
ψ∈Wj′

supp(ψ)⊇Q

2j
′
(
E
[
|βψ − β̂ψ|

]
+ τj′

)

≤ 3CMR−s2k(s+1)+j

√
N

+ 3

k+j−1∑
j′=k+1

2j
′
τj′ , (43)

where we used (32) and card ({ψ ∈ Wj′ : supp(ψ) ⊇ Q}) = 3 in the last inequality. Computing

k+j−1∑
j′=k+1

2j
′
τj′ ≤ CMR−sτ2(k+j)/p

j + k√
N
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and substituting this into (43), we get

k+j−1∑
j′=k+1

∑
ψ∈Wj′

supp(ψ)⊇Q

2j
′
E
[∣∣∣β̃ψ − βψ

∣∣∣] ≤ 3CMR−s (2k(s+1)+j + τ(k + j)2(j+k)/p
)

√
N

. (44)

The remainder of this proof follows exactly the same steps as in the proof of Theorem 9, where we replace
µ̂H by µ̃H and where (44) plays the role of (32).

Thus, the thresholding Haar wavelet estimator achieves near-optimal rates. Because of the truncation,
only a few wavelet coefficients are nonzero and contribute to the estimator f̃ . Therefore, f̃ can be considered
as a sparse representation of the expected persistence diagram E(P ). This is in contrast to the empirical
mean µ̄N whose support tends to be very large. The sparsity of the thresholding Haar wavelet estimator
has been leveraged for data compression in several contexts (Krommweh, 2010; Fryzlewicz & Timmermans,
2016) and may be more practical in TDA applications where the use of µ̄N may be restrictive due to its
large support.

4 Numerical Experiments

We will now verify our theoretical results established in Section 3 by numerical experiments and illustrate the
practical use of the presented estimation techniques in a classification problem in the context of dynamical
systems. Here, persistent homology is computed using the GUDHI library (The GUDHI Project, 2015) as
well as the giotto-tda library (Tauzin et al., 2020) for Python. The implementation of the optimal partial
transport metric is based on tools from the POT library (Flamary et al., 2021) for Python.

4.1 Convergence Rates: Three Examples

To investigate the convergence rates of the aforementioned estimators, we need to compute OTp(µ̂N ,E(P )),
where µ̂N is an arbitrary estimator. Note, however, that the (true) expected persistence diagram cannot
be computed explicitly in general. A closed-form solution of the expected persistence diagram is known for
only a few examples (Divol & Lacombe, 2021a). To deal with this issue, we approximate OTp(µ̂N ,E(P ))

by OTp(µ̂N , µ̄M ), where µ̄M = 1
M

∑M
i=1 µi, and where M is significantly larger than N , assuming we have

access to M samples.
We study three datasets, the torus and double torus, as well as a clustered process.

Torus. We observe the point clouds {Xi}Mi=1,M = 10, 000, consisting of n = 1000 points which are sampled
from a torus with inner radius 0.5, outer radius 2 perturbed by additive Gaussian noise with variance 0.5.
We compute the persistence diagrams {µi}Mi=1.

The convergence rates of the Haar wavelet estimator µ̂H are shown in Figure 5 for p ∈ {1, 2, 3, 4}, where
µ̄N is based on N samples from {µi}Mi=1, and where N takes values between 10 and 500. We obtain the
convergence rates predicted by Theorem 9, namely 1/

√
N for p > 1 and log2(N)/

√
N for p = 1.

Evaluating the convergence behavior of the thresholding Haar wavelet estimator for τ ∈ {5, 10, 15} (see
Figure 6), we deduce that the obtained rates are consistent with Corollary 12; namely, we get a rate of
log2(N)/

√
N for each τ ∈ {5, 10, 15}. From Table 1 it becomes apparent that thresholding significantly

reduces the number of nonzero wavelet coefficients. In particular, we have a compression rate of up to
99% compared to the Haar wavelet estimator (τ = 0). In addition, we can observe that describing the
estimator µ̄N requires substantially more information (as quantified by the cardinality of its support) than
the thresholding Haar wavelet estimators, making the latter more convenient in applications where, for
example, fast subsequent computations are required or storage is limited.

Notice that there is a trade-off between sparsity and convergence rate of the (thresholding) Haar wavelet
estimator: a very sparse estimator entails an extra factor of log2(N) in terms of convergence rate (see the
τ > 0 compared to τ = 0 curves in Figure 6). Also, note that the error OTpp(µ̃H, µ̄M ) increases as τ
gets larger, i.e., with a more stringent thresholding of the wavelets coefficients, the approximation becomes
increasingly coarse, compromising accuracy.
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Figure 5: Convergence rates of the Haar wavelet estimator µ̂H, averaged over 10 iterations, for different
sample sizes N ranging from 10 to 500. We take N 7→ a · N−b · log2(N) as a model function (dashed line)
for p = 1 and N 7→ a ·N−b for p > 1, where a, b ∈ R are the parameters to fit.
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Figure 6: Convergence rates of the thresholding Haar wavelet estimator µ̃H, averaged over 10 iterations,
where N ∈ {10, . . . , 500} and p = 3. We consider the model function (dashed line) N 7→ a · N−b · log2(N)
whenever τ > 0 with a, b ∈ R being the model parameters.

N = 100 N = 300 N = 500

Support of µ̄N 456, 900 1, 370, 700 2, 284, 500

Nonzero µ̃H coefficients, τ = 0 272, 206 370, 999 420, 456
Nonzero µ̃H coefficients, τ = 5 20, 000 (c.r.≈ 93%) 21, 101 (c.r.≈ 94%) 21, 930 (c.r.≈ 95%)
Nonzero µ̃H coefficients, τ = 10 7, 602 (c.r.≈ 97%) 8, 280 (c.r.≈ 98%) 9, 056 (c.r.≈ 98%)
Nonzero µ̃H coefficients, τ = 15 4, 668 (c.r.≈ 98%) 5, 571 (c.r.≈ 98%) 6, 154 (c.r.≈ 99%)

Table 1: Cardinality of the support set of the empirical mean µ̄N and the number of nonzero coefficients of
µ̃H, τ ∈ {0, 5, 10, 15}, averaged over 10 runs, for different sample sizes N . The corresponding compression
rates (c.r.) from thresholding (τ > 0) compared to the case τ = 0 are provided in brackets.

In Figure 7, we see that for low τ , the estimated density contains fine details, due to the presence of many
small coefficients. By increasing τ , these fine details vanish, and we obtain a rougher density estimator.
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Figure 7: (a) The density of the Haar wavelet estimator, denoted f̂ , based on persistence diagrams of samples
of a torus. (b) The density of a thresholding Haar wavelet estimator, denoted f̃ . Here, we used grey contour
lines to indicate the support of the density functions.
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Figure 8: Computing time of Haar wavelet estimator for sample sizesN ∈ {50, . . . , 500}, where we normalized
to the computing time corresponding to N = 50 (≈ 200 seconds on one CPU core).

We have analyzed the computational cost of the Haar wavelet estimator as a function of N , and Figure 8
shows that the runtime scales as O(N log2(N)). This is consistent with what we would also expect in theory.
Indeed, according to (12), the Haar wavelet estimator requires computing at most O(J +K) = O(log2(N))
wavelet coefficients, and computing a wavelet coefficient has complexity of order O(N). Thus, compared to

the empirical mean µ̄N = 1
N

∑N
i=1 µi, which clearly exhibits a computational complexity of O(N), the Haar

wavelet estimator is computationally more expensive, but only by a logarithmic factor.

Double torus. We sample n = 1000 points uniformly at random from a double torus with inner and outer
radii of 0.5 and 2, respectively, and add Gaussian noise with variance 0.5 to generate the point clouds {Xi}Mi=1

and the persistence diagrams {µi}Mi=1, whereM = 10, 000. As in the previous example, the convergence rates
of the Haar wavelet estimator (see Figure 9) coincide with the rates predicted by Theorem 9. In Figure 10,
the convergence rates of the thresholding Haar wavelet estimator are shown, corresponding to the rates from
Corollary 12.
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Figure 9: Convergence rates of the Haar wavelet estimator µ̂H, averaged over 10 iterations, for different
sample sizes N ranging from 10 to 500.
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Figure 10: Convergence rates of the thresholding Haar wavelet estimator µ̃H, averaged over 10 iterations,
where N ∈ {10, . . . , 500} and p = 3.

Clustered process. Consider the following clustered process consisting of n = 1000 points. We first
select uniformly at random nc = 4 points from the square [0, 1]2, denoted {ci}nci=1, which serve as the
clusters’ centers. For each center ci, i ∈ {1, . . . , nc}, we generate n/nc = 250 points by sampling from a
Gaussian distribution with mean ci and variance 0.1. Following this procedure, we create the point clouds
{Xi}Mi=1 and compute the corresponding persistence diagrams {µi}Mi=1, M = 10, 000. Also in this example
of a multimodal distribution, the convergence rates of the Haar wavelet estimator and the thresholding
Haar wavelet estimator, provided respectively in Figures 11 and 12, verify the results from Theorem 9
and Corollary 12.

4.2 An Application: Classification of a Dynamical System

We now demonstrate the utility of our proposed wavelet-based estimators by applying it to a core task in
machine learning, namely, classification. We consider a discrete-time dynamical system previously studied
topologically by (Conti et al., 2022). The dynamical system models fluid flow as a linked twisted map
and Poincaré section, in particular, which is the discretization of a continuous dynamical system given by
following the location path of a particle at discrete time intervals. This linked twisted map is given by the
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Figure 11: Convergence rates of the Haar wavelet estimator µ̂H, averaged over 10 iterations, for N ∈
{10, . . . , 500}.
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Figure 12: Convergence rates of the thresholding Haar wavelet estimator µ̃H, averaged over 10 iterations,
for N ∈ {10, . . . , 500}, where p = 3.

following system of equations:

xk+1 = (xk + ryk(1− yk)) mod 1,

yk+1 = (yk + rxk+1(1− xk+1)) mod 1,
(45)

where the time index k ∈ N0, the initial conditions (x0, y0) ∈ (0, 1)2 and r > 0. The orbits of this dynamical
system, {(xk, yk) : k ∈ N0}, are used to model fluid flow. As shown by Conti et al. (2022), the shape of the
orbit depends on the parameter r but not on the initial condition (x0, y0) ∈ (0, 1)2 in general; see Figure 13.
A machine learning task relevant to the study of such dynamical systems is to classify the value of the
parameter r into the classes, based on the observed orbit {(xk, yk) : k ∈ N0}. We take the classes to be
specified by five labels R := {2, 3.5, 4, 4.1, 4.3} as in (Conti et al., 2022). To address this problem, we
construct a dataset as follows.

For each class (label) r ∈ R, N = 100 orbits {Xr
i }Ni=1 of the form {(xk, yk) : 0 ≤ k ≤ n−1}, each consisting

of n = 1000 points, are generated. From the orbits {Xr
i }Ni=1, which can be viewed as point clouds in [0, 1)2,

the persistence diagrams {µri }Ni=1 are computed. Based on the persistence diagrams {µri }Ni=1, we compute
the normalized Haar density estimator µ̂rH, for each class r ∈ R. To successfully perform classification, it
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Figure 13: Examples of orbits {(xk, yk) : 0 ≤ k ≤ n−1} of the dynamical system (45), consisting of n = 1000
points in [0, 1)2. The orbits in (a) and (b) correspond to the same parameter, r = 4, but they have different
initial conditions, namely, (0.2, 0.1) and (0.4, 0.9), respectively. The initial conditions in (c) and (d) are also
(0.2, 0.1) and (0.4, 0.9), respectively.

essential that the estimated densities are sufficiently distinguishable, i.e., that µ̂rH and µ̂r
′

H are dissimilar
for all distinct r, r′ ∈ R. Since these probability measures admit Lebesgue densities, we can quantify their
(dis)similarity using the Hellinger distance, which is a metric between probability measures.

Definition 13 (Hellinger distance). Let ν1 and ν2 be two probability measures on Ω with Lebesgue densities
g1 and g2, respectively. The Hellinger distance between ν1 and ν2 is defined as H(ν1, ν2) :=

√
H2(ν1, ν2),

where

H2(ν1, ν2) :=
1

2

∫
Ω

(√
g1(x)−

√
g2(x)

)2
dx.

The Hellinger distance H(ν1, ν2) between two probability measures ν1 and ν2 admitting a Lebesgue
density is symmetric, nonnegative, and it is zero if and only if ν1 = ν2. Moreover, an application of the
Cauchy–Schwarz inequality shows that 0 ≤ H(ν1, ν2) ≤ 1.

Computing the pairwise distances H(µ̂rH, µ̂
r′

H ), r, r′ ∈ R, results in the 5×5 dissimilarity matrix presented

in Figure 14(a). A value of 1 indicates complete dissimilarity between µ̂rH and µ̂r
′

H , whereas 0 implies equality.
Performing the same computations with the thresholding Haar wavelet estimator µ̃rH yields the results shown

in Figure 14(b). Note that H(µ̃rH, µ̃
r′

H ) is systematically smaller than H(µ̂rH, µ̂
r′

H ), for all distinct r, r′ ∈ R,
which results from the loss of accuracy when enforcing sparsity through thresholding. Nevertheless, we
obtain that both H(µ̂rH, µ̂

r′

H ) and H(µ̃rH, µ̃
r′

H ) are close to 1 for all distinct r, r′ ∈ R. Thus, we can conclude
that both the Haar wavelet estimator and the thresholding Haar wavelet estimator capture the topological
differences in the trajectories generated by the different values of r and can be used to discriminate them.

Considering the case where only N = 10 orbits (and hence persistence diagrams) can be accessed, we
infer from Figures 14(c) and 14(d) that these results still hold, showing that the classification performance
of Haar wavelet-based estimators is robust to a decrease in sample size N .

Software and Data Availability

The Python code to implement all numerical experiments presented in this paper is publicly available and
located on the Persistence Wavelets GitHub repository at

https://github.com/konstantin-haberle/PersistenceWavelets.

5 Discussion

In this work, we studied the distributional behavior of persistence diagrams in terms of the expected persis-
tence diagram. We used the flexibility and accuracy of wavelets to nonparametrically estimate the density
function describing the distribution. Specifically, we have shown that the Haar wavelet estimator µ̂H is a
minimax estimator for the expected persistence diagram. In contrast to the empirical mean, which is a
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Figure 14: Pairwise Hellinger distances between the Haar wavelet estimators {µ̂rH}r∈R for (a) N = 100 and
(c) N = 10 as well as between the thresholding Haar wavelet estimators {µ̃rH}r∈R for (b) N = 100 and (d)
N = 10. Values close to 1 (blue) indicate dissimilarity, while a value of 0 (red) represents equality.

discrete measure whose support is typically very large, µ̂H has a Lebesgue density. We also considered a
Haar wavelet estimator which employs hard thresholding of the expansion coefficients, showing that it also
achieves near-optimal convergence rates. This estimator, by retaining only the coefficients above a given
threshold, offers a sparse representation of the expected persistence diagram. We verified the theoretical
results by numerical experiments on two prototypical datasets in TDA, the torus and the double torus, as
well as on a clustered process. These numerical results support our findings that Haar wavelets can provide
an efficient and accurate density estimation of the expected persistence diagram. The theoretical conver-
gence rates are already apparent for modest sample sizes (N ∼ 100), moreover, for the same sample size
regime, a rather high degree of accuracy is achieved (OTp < 10−5 for p > 1 and OTp ∼ 10−2 for p = 1).
The computational complexity evaluating the Haar wavelet-based density estimator at a point in Ω scales
as O(N log2(N)). We characterized the effect of sparsity induced by hard thresholding, both at the level of
the estimated density and its accuracy, showing that the OTp magnitude stays comparable to that of Haar
for a large set of thresholds and that there is a reduction in the occurrence of finely detailed features in the
estimated density. Finally, we demonstrated the practical utility of the Haar wavelet density estimator by
applying it to a classification task for dynamical trajectories. Our results illustrated that the proposed Haar
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wavelet estimation techniques can effectively distinguish between classes of trajectories.
The application of tools from uncertainty quantification in TDA has a number of advantages. Density

function estimation enables extrapolation to regions at low sampling as well as the reconstruction of structural
features of the distribution of random persistence diagrams, such as gaps, which can lead to more robust
insights into the underlying data topology. Due to their localized nature, wavelet transforms are particularly
well-suited to capture the local features of the approximated signal. Hard thresholding of wavelet coefficients
provides meaningful and sparse representation of the inputs that has been exploited for various applications,
such as image compression and denoising (Krommweh, 2010; Fryzlewicz & Timmermans, 2016). This sparsity
property may be exploited for various data reduction tasks when persistence diagrams consist of numerous
points, and to facilitate feature extraction, which can be then leveraged for additional inference tasks, such
as prediction and classification.

In general, wavelet transforms provide a multiresolution representation that is especially useful for signal
decomposition and processing (Mallat, 1989). Thanks to their multiresolution representational properties,
cascades of filters implementing wavelet transforms have been incorporated in convolutional neural networks,
showing advantages in several settings (Bruna & Mallat, 2013; Pedersen et al., 2022), and have been proposed
as a mathematical framework to analyze deep convolutional architectures (Mallat, 2016). Multiresolution
representations of the distribution of persistence diagrams are a promising perspective for further studies for
their potential to gain a better understanding of the topology of complex datasets by enabling multiscale
separation and the discovery of scale invariant features. These advantages may be incorporated in the
advancement and development of machine learning algorithms for persistence diagrams.

Finally, the Haar basis is the simplest wavelet basis, but other bases, such as Symmlet wavelets, are
often more suitable to approximate smooth functions. In particular, choosing an appropriate wavelet basis
can lead to a sparser representation thanks to the regularity of the function to be estimated. Also the
investigation on convergence could be extended to studying different wavelet transforms, such as Symmlet
and Daubechies wavelets and Coiflets (Härdle et al., 2012; Daubechies, 1992). These studies, however, would
require alternative proof techniques since the construction employed here does not immediately extend to
other types of wavelets. The majority of wavelet-based density estimation approaches rely on the empirical
estimate of the wavelet series coefficients, as we did in this work, but it is also possible to take into account
cases where the basis coefficients are learned via parametric estimators such as maximum likelihood (see,
e.g., (Peter & Rangarajan, 2008)).
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