
A TANGENTIAL AND PENALTY-FREE FINITE ELEMENT METHOD FOR

THE SURFACE STOKES PROBLEM

ALAN DEMLOW AND MICHAEL NEILAN

Abstract. Surface Stokes and Navier-Stokes equations are used to model fluid flow on surfaces.
They have attracted significant recent attention in the numerical analysis literature because approx-

imation of their solutions poses significant challenges not encountered in the Euclidean context. One

challenge comes from the need to simultaneously enforce tangentiality and H1 conformity (conti-
nuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation.

Existing methods in the literature all enforce one of these two constraints weakly either by penal-

ization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of
surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor-

Hood, Scott-Vogelius, and other composite elements which can lead to divergence-conforming or

pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields
are tangential. They are not H1-conforming, but do lie in H(div) and do not require penalization to

achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence

of the method and demonstrate optimal-order convergence of the velocity field in L2 via numerical
experiments. The core advance in the paper is the construction of nodal degrees of freedom for the

velocity field. This technique also may be used to construct surface counterparts to many other
standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating

optimal-order convergence of nonconforming tangential surface Taylor-Hood P2 − P1 elements.

1. Introduction

In this paper, we consider the surface Stokes problem:

−ΠdivγDefγu+∇γp+ u = f on γ,(1.1a)

divγu = 0 on γ.(1.1b)

Here, γ ⊂ R3 is a smooth and connected two-dimensional surface with outward unit normal ν,
Π = I − ν ⊗ ν is the orthogonal projection onto the tangent space of γ, and ∇γ and divγ are the
surface gradient and surface divergence operators, respectively. Furthermore, Defγ is the tangential
deformation operator, and the forcing function f is assumed to be tangential to the surface to ensure
well-posedness. Further assumptions and notation are given in Section 2; cf. [20] for derivation of the
surface Stokes problem and related models and further discussion of their properties. The system of
equations (1.1) is subject to the tangential velocity constraint u · ν = 0. To address degeneracies
related to Killing fields, i.e., non-trivial tangential vector fields in the kernel of Defγ , we include a
zeroth-order mass term in the momentum equations (1.1a) (cf. Remark 4.1).

We consider surface finite element methods (SFEMs), a natural methodology mimicking the vari-
ational formulation and built upon classical Galerkin principles. In this approach the domain γ
is approximated by a polyhedral (or higher-order) surface Γh whose faces constitute the finite ele-
ment mesh. Similar to the Euclidean setting, SFEMs for the surface Stokes problem based on the
standard velocity-pressure formulation must use compatible discrete spaces. Specifically, a discrete
inf-sup condition must be satisfied. Given that SFEMs utilize the same framework as their Euclidean
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2 A. DEMLOW AND M. NEILAN

counterparts, employing mappings via affine or polynomial diffeomorphisms, one may anticipate that
numerous classical inf-sup stable Stokes pairs can be adapted to their surface analogues, readily en-
abling the construction of stable SFEMs for (1.1).

However, the tangential velocity constraint poses a significant hurdle to constructing stable and
convergent SFEMs. As Γh is merely Lipschitz continuous, its outward unit normal is discontinuous
at mesh edges and vertices. As a result, the tangential projection of continuous, piecewise smooth
functions does not lead to H1-conforming functions. Moreover, there do not exist canonical, degree-
of-freedom-preserving pullbacks for tangential H1 vector fields, in particular, the Piola transform
preserves tangentiality and in-plane normal continuity, but not in-plane tangential continuity. Fi-
nally, a continuous, tangential, and piecewise smooth vector field on Γh must necessarily vanish on
mesh corners except in exceptional cases where all incident triangles are coplanar. Indeed, at a mesh
corner there are at least three faces emanating from a common vertex, whose outward unit normal
vectors span R3. Therefore tangentiality of a continuous vector field with respect to each of the
three planes implies that it vanishes at the vertex. Thus any piecewise polynomial space simulta-
neously satisfying both tangentiality and continuity exhibits a locking-type phenomenon with poor
approximation properties.

There is a substantial recent literature on numerical approximation of the surface Stokes and re-
lated problems such as the surface vector Laplace equation. Most of these circumvent the difficulties
described above in one of three ways: by relaxing the pointwise tangential constraint, by relaxing
H1-conformity of the finite element space, or by using a different formulation of the surface Stokes
problem. For the former, one can weakly impose the tangential constraint via penalization or Lagrange
multipliers [16, 17, 25, 26, 18, 21, 4]. In principle, this allows one to use inf-sup stable Euclidean Stokes
pairs to solve the analogous surface problem. However, this methodology requires superfluous degrees
of freedom, as the velocity space is approximated by arbitrary vectors in R3 rather than tangential
vectors. In addition an unnatural high-order geometric approximation of the unit normal of the true
surface is needed to obtain optimal-order approximations. Therefore for problems in which full in-
formation of the exact surface is unknown (e.g., free-boundary problem), these penalization schemes
lead to SFEMs with sub-optimal convergence properties. However, it was shown recently in [19] that
the tangential component of the solution converges optimally for a standard isoparametric geometry
approximation in most cases assuming a correct choice of penalty parameters. The only exception is
the case where tangential L2 errors are considered along with affine (polyhedral) surface approxima-
tions. Alternatively, one may relax H1-conformity and use finite element trial and test functions that
are not continuous on the discrete surface Γh. In this direction, SFEMs utilizing tangentially- and
H(div)-conforming finite element spaces such as Raviart-Thomas and Brezzi-Douglas-Marini com-
bined with discontinuous Galerkin techniques are proposed and analyzed in [3, 23]; cf. [10] for similar
methods for Euclidean Stokes equations. Here, additional consistency, symmetry, and stability terms
are added to the method. These terms add some complexity to the implementation, especially for
higher-order surface approximations, but are standard in the context of discontinuous Galerkin meth-
ods. Optimal-order convergence is observed experimentally for a standard SFEM formulation that
does not require higher-order approximations of any geometric information. Discretizations of stream
function formulations of the surface Stokes equations have also appeared in the literature [24, 28, 5, 4].
However, as with methods weakly enforcing tangentiality, they require higher-order approximation to
the surface normal and in addition require computation of curvature information which can in and
of itself be a challenging problem. These methods are also restricted to simply connected surfaces.
As a final note, trace SFEMs, in which discretizations of surface PDE are formulated with respect
to a background 3D mesh and a corresponding 3D finite element space, are especially important in
the context of dynamic surface fluid computations. Trace formulations are well-developed for H1

conforming/tangentially nonconforming methods and stream function formulations, but have not yet
appeared for H(div)-conforming methods.

In this paper, we design a SFEM for the surface Stokes problem (1.1) using a strongly tangential
finite element space that is based on a conforming, inf-sup stable Euclidean pair. The method is
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based on the standard variational formulation for the Stokes problem and does not require additional
consistency terms or extrinsic penalization. As far as we are aware, this is the first SFEM for the
surface Stokes problem with these properties. The key issue that we address is the assignment of
degrees of freedom (DOFs) of tangential vector fields at Lagrange nodes, in particular, at vertices of
the surface triangulation.

To expand on this last point and to describe our proposed approach, consider a vertex/DOF, call a,
of the triangulation of the discrete geometry approximation Γh, and let Ta denote the set of faces in the
triangulation that have a as a vertex. We wish to interpret and define the values of tangential vector
fields forming our finite element space at this vertex in a way that ensures the resulting discrete spaces
have desirable approximation and weak-continuity properties. As the mesh elements in Th generally
lie in different planes, it is immediate that such vector fields are generally multi-valued at a.

Let p = pγ denote the closest point projection onto γ, and note that, because γ is smooth,
continuous and tangential vector fields are well-defined and single-valued at p(a). Thus, as the Piola
transform preserves tangentiality, a natural assignment is to construct finite element functions v
with the property v|K(a) = Pp−1Ûv∣∣

p(K)
∀K ∈ Ta for some vector field Ûv tangent at p(a), where

Pp−1 is the Piola transform of the inverse mapping p−1 : γ → Γh; see Figure 1. Imposing this
condition on Lagrange finite element DOFs likely leads to the sought out approximation and weak-
continuity properties, and thus, conceptually may lead to convergent SFEMs for (1.1). However, the
implementation of the resulting finite element method requires explicit information about the exact
surface γ and its closest point projection. Therefore this construction is of little practical value.

Instead of this idealized construction, we fix an arbitrary face Ka ∈ Ta. Given the value v|Ka
(a)

and K ∈ Ta, we then assign v|K(a) = Pp−1
Ka

v|Ka
(a), the Piola transform of v|Ka

(a) with respect to

the inverse of the closest point projection onto the plane containing Ka; see Figure 2. This transform
is linear with a relatively simple formula (cf. Definition 2.3), and it only uses geometric information
from Γh. Moreover, we show that this construction is only an O(h2) perturbation from the idealized
setting. As a result, the constructed finite element spaces possess sufficient weak continuity properties
to ensure that the resulting scheme is convergent for the surface Stokes problem (1.1).

To clearly communicate the main ideas and to keep technicalities at minimum, we focus on a
polyhedral approximation to γ and on the lowest-order MINI pair, which in the Euclidean setting
takes the discrete velocity space to be the (vector-valued) linear Lagrange space enriched with cubic
bubbles, and the discrete pressure space to be the (scalar) Lagrange space. We expect the main
ideas to be applicable to other finite element pairs (e.g, Taylor–Hood, Scott-Vogelius [29, 22, 31, 2]),
although the stability must be shown on a case-by-case basis. Below we present numerical experiments
demonstrating the viability of our approach for P2 surface approximations paired with a P2−P1 Taylor-
Hood finite element space and plan to address generalizations of our approach more fully in future
works.

The rest of the paper is organized as follows. In the next section, we introduce the notation and
provide some preliminary results. In Section 3, we define the surface finite element spaces based on the
classical MINI pair. Here, we show that the spaces have optimal-order approximation properties and
are inf-sup stable. We also establish weak continuity properties of the discrete velocity space via an
H1-conforming relative on the true surface. In Section 4, we define the finite element space and prove
optimal-order estimates in the energy norm. Finally in Section 5 we provide numerical experiments
which support the theoretical results.

2. Notation and Preliminaries

We assume γ ⊂ R3 is a smooth, connected, and orientable two-dimensional surface without bound-
ary. The signed distance function of γ is denoted by d, which satisfies d < 0 in the interior of γ
and d > 0 in the exterior. We set ν(x) = ∇d(x) to be the outward-pointing unit normal (where the
gradient is understood as a column vector) and H(x) = D2d(x) the Weingarten map. The tangential
projection operator is Π = I− ν ⊗ ν, where I is the 3× 3 identity matrix, and the outer product of
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γ

p(a) Ûv
Γh

a K
Ka

Pp−1Ûv|p(K)

Pp−1Ûv|p(Ka)

Figure 1. A pictorial description of an idealized assignment of nodal values on a
one-dimensional surface. Here, a tangential vector Ûv at the point p(a) is mapped to
each element K via the Piola transform with respect to the inverse mapping p−1|K .

Γh

a K
Ka

v|Ka(a)

P
p−1
Ka

v|Ka(a)

Figure 2. A pictorial description of our construction on a one-dimensional surface.
The value of a vector field v at vertex a restricted to Ka is mapped to K via the
Piola transform with respect to the inverse of the closest point projection onto the
plane containing Ka.

two vectors a and b satisfies (a ⊗ b)i,j = aibj . The smoothness of γ ensures the existence of δ > 0
sufficiently small such that the closest point projection

p(x) := x− d(x)ν(x)

is well defined in the tubular region U = {x ∈ R3 : dist(x, γ) ≤ δ}.
For a scalar function q : γ → R we define its extension qe : U → R via qe = q ◦ p. Likewise,

for v = (v1, v2, v3)
⊺ : γ → R3 its extension ve : U → R3 satisfies (ve)i = vei for i = 1, 2, 3. Define

the surface gradient ∇γq = Π∇qe, and for a (column) vector field v = (v1, v2, v3)
⊺ : γ → R3, we let

∇ve = (∇ve1,∇ve2,∇ve3)
⊺ denote the Jacobian matrix of ve. We then see (∇veΠ)i,: = ((∇vei )

⊺Π) =
(Π∇vei )

⊺ = (∇γvi)
⊺, i.e., the ith row of∇veΠ coincides with (∇γvi)

⊺. The tangential surface gradient
(covariant derivative) of v is defined by ∇γv = Π∇veΠ, and the surface divergence operator of v is
divγv = tr(∇γv). The deformation of a tangential vector field is defined as the symmetric part of its
surface gradient, i.e.,

Defγv =
1

2

(
∇γv + (∇γv)

⊺).
For a matrix field A : R3×3, the divergence divγA is understood to act row-wise.

Let L2(γ) denote the space of square-integrable functions on γ and let L̊2(γ) be the subspace of
L2(γ) consisting of L2-functions with vanishing mean. We let Wm

p (γ) be the Sobolev space of order m
and exponent p on γ with corresponding norm ∥ · ∥Wm

p (γ). We use the notation Hm(γ) = Wm
2 (γ) with

∥ · ∥Hm(γ) = ∥ · ∥Wm
2 (γ), and the convention | · |H0 = ∥ · ∥L2 , | · |W 0

p
= ∥ · ∥Lp . Analogous vector-valued

spaces are denoted in boldface (e.g., L2(γ) = (L2(γ))
3 and H1(γ) = (H1(γ))3). We let H1

T (γ) be the
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subspace of H1(γ) whose members are tangent to γ, and set

H(divγ ; γ) = {v ∈ L2(γ) : divγv ∈ L2(γ)}.

Let Γh be a polyhedral surface approximation of γ with triangular faces. We assume that Γh is an
O(h2) approximation in the sense that d(x) = O(h2) for all x ∈ Γh. We further assume h is sufficiently
small to ensure Γh ⊂ U , in particular, the closest point projection is well-defined on Γh. We denote by
Th the set of faces of Γh, and assume this triangulation is shape-regular (i.e., the ratio of the diameters
of the inscribed and circumscribed circles of each face is uniformly bounded). For simplicity and to ease
the presentation, we further assume that Th is quasi-uniform, i.e., h := maxK′ diam(K ′) ≈ diam(K)
for all K ∈ Th. The image of the mesh elements and the resulting set on the exact surface are given,
respectively, by

Kγ = p(K), T
γ
h = {p(K) : K ∈ Th}.

We use the notation a ≲ b (resp., a ≳ b) if there exists a constant C > 0 independent of the mesh
parameter h such that a ≤ Cb (resp., a ≥ Cb). The statement a ≈ b means a ≲ b and a ≳ b.

Set Vh to be the set of vertices in Th, and for each K ∈ Th, let VK denote the set of three vertices
of K. For each a ∈ Vh, let Ta ⊂ Th denote the set of faces having a as a vertex. For K ∈ Th, we
define the patches

ωK =
⋃

K′∈Th

K̄′∩K̄ ̸=∅

K ′, ω′
K =

⋃
K′∈Th

K̄′∩ωK ̸=∅

K ′,

so that ωK ⊂ ω′
K ⊂ Γh. The patches ωKγ and ω′

Kγ associated with Kγ = p(K) are defined analo-
gously.

The (piecewise constant) outward unit normal of Γh is denoted by νh, and we shall use the notation
νK = νh|K ∈ R3, its restriction to K ∈ Th. We assume that |ν◦p−νh| ≲ h. The tangential projection
with respect to Γh is Πh = I − νh ⊗ νh, and we assume there exists c > 0 independent of h such
that ν · νh ≥ c > 0 on Γh. We let µh(x) satisfy µhdσh(x) = dσ(p(x)), where dσ and dσh are surface
measures of γ and Γh, respectively. In particular,ˆ

Γh

(q ◦ p)µh =

ˆ
γ

q ∀q ∈ L1(γ).

From [11, Proposition 2.5], we have

(2.1) µh(x) = ν(x) · νh(x)

2∏
i=1

(1− d(x)κi(x)) x ∈ Γh,

and

(2.2) |1− µh(x)| ≲ h2,

where {κ1, κ2} are the eigenvalues of H, whose corresponding eigenvectors are orthogonal to ν. We
set µK = µh|K to be the restriction of µh to K ∈ Th.

Surface differential operators with respect to Γh are denoted and defined analogously to those on
γ. We also set (m ∈ N)

Hm
h (Γh) = {v ∈ L2(Γh) : v|K ∈ Hm(K) ∀K ∈ Th}, ∥v∥2Hm

h (K) =
∑

K∈Th

∥v∥2Hm(K)

to be the piecewise Hm Sobolev space and norm, respectively. Likewise, Hm
h (γ) is the piecewise

Sobolev space with respect to T
γ
h with corresponding norm ∥v∥2Hm

h (γ) =
∑

K∈Th
∥v∥2Hm(Kγ), and

Defγ,h denotes the piecewise deformation operator with respect to T
γ
h .

We end this section by stating a well-known characterization of H(divΓh
; Γh) = {v ∈ L2(Γh) :

divΓh
v ∈ L2(Γh)}. For each edge e of the mesh, denote by Ke

1 ,K
e
2 ∈ Th the two triangles in the mesh
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such that e = ∂Ke
1 ∩ ∂Ke

2 . Let ne
j denote the outward in-plane normal to ∂Ke

j , and note that in

general, ne
1 ̸= −ne

2 on e. Then a vector field v ∈ H1
h(Γh) satisfies v ∈ H(divΓh

; Γh) if and only if [23]

(2.3) v1 · ne
1|e + v2 · ne

2|e = 0 for all edges e,

where vj = v|Ke
j
.

2.1. Extensions and lifts. For the rest of the paper, we view the closest point projection as a
mapping from the discrete surface approximation to the true surface, i.e., p : Γh → γ. Restricted to
Γh the projection is a bijection, and in particular has a well-defined inverse: p−1 : γ → Γh. Recall
that for a scalar or vector-valued function q on γ, its extension (now to Γh) is q

e = q ◦p. For a scalar
or vector-valued function q defined on Γh, we define its lift via qℓ = q ◦ p−1. Note that (qℓ)e = q on γ
and likewise, (qe)ℓ = q on Γh. For q ∈ Hm

h (γ) (m = 0, 1, 2), there holds

(2.4) ∥q∥Hm(Kγ) ≈ ∥qe∥Hm(K) ∀K ∈ Th,

which follows from a change of variables, the chain rule, and the smoothness assumptions of γ (cf. [13]).

2.2. Surface Piola transforms. Following [30, 9, 3] we summarize the divergence-conforming Piola
transform with respect to a mapping between surfaces. Let S0 and S1 be two sufficiently smooth
surfaces, and let Φ : S0 → S1 be a diffeomorphism with inverse Φ−1 : S1 → S0. Let dσi be the surface
measure of Si, and let µ formally satisfy µdσ0 = dσ1. Then the Piola transform of a vector field
v : S0 → R3 with respect to Φ is given by

(PΦv) ◦ Φ = µ−1DΦv.

Likewise, for v : S1 → R3 its Piola transform with respect to Φ−1 is

(PΦ−1v)◦Φ−1=(µ◦Φ−1)DΦ−1v.

Similar to the Euclidean setting, there holds

(2.5) divS0
v = µdivS1

PΦv ∀v ∈ H(div; S0),

in particular, PΦ : H(divS0 ; S0) → H(divS1 ; S1) and PΦ−1 : H(divS1 ; S1) → H(divS0 ; S0) are bounded
mappings. Moreover, as DΦ and DΦ−1 are tangent maps, the Piola transform yields tangential vector
fields: if νj is the unit normal of the surface Sj , then (PΦv) ·ν1 = 0 on S1 and (PΦ−1v) ·ν0 = 0 on S0.

In the case Φ = p, S0 = Γh, and S1 = γ (so that µ = µh), the Piola transform of v : Γh → R3 with
Πhv = v is [9, 3]

(2.6) Ûv ◦ p := Ppv =
1

µh

[
Π− dH

]
v,

whereas the Piola transform of v : γ → R3 with respect to the inverse p−1 is given by

(2.7) v̆ := Pp−1v = µh

[
I− ν ⊗ νh

ν · νh

]
[I− dH]−1(v ◦ p).

Note that Û̆v = v on γ and Û̆v = v on Γh. Moreover, it follows from (2.5) that for all K ∈ Th,ˆ
Kγ

(divγv)q =

ˆ
K

(divΓh
v̆)qe ∀v ∈ H(divγ ;K

γ), q ∈ L2(K
γ).(2.8a)

and ˆ
K

(divΓh
v)q =

ˆ
Kγ

(divγÛv)qℓ ∀v ∈ H(divΓh
;K), q ∈ L2(K).(2.8b)

The following lemma states the equivalence of norms of vector fields and their Piola transforms.

Lemma 2.1. For K ∈ Th, let v : Kγ → R3 and v̆ = Pp−1v : K → R3 be related by (2.7) restricted
to K. Then if v ∈ Hm(Kγ) for some m ∈ {0, 1, 2}, there holds v̆ ∈ Hm(K). Moreover,

(2.9) ∥v∥Hm(Kγ) ≈ ∥v̆∥Hm(K).
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Proof. The proof for the cases m = 0, 1 is found in [3, Lemma 4.1]. The case m = 2 follows from
similar arguments and is therefore omitted. □

We also need a similar result that relates the L2 norm of the deformation tensors of v and its Piola
transform Ûv. The proof of the following result is given in the appendix.

Lemma 2.2. For K ∈ Th, let v ∈ H1
T (K) and Ûv ∈ H1

T (K
γ) be related via Ûv = Ppv. Then

|DefγÛv − (DefΓh
v) ◦ p−1| ≲ h

(
|(∇Γh

v) ◦ p−1|+ |v ◦ p−1|
)
.(2.10)

Consequently, by a change of variables,

∥DefγÛv∥L2(Kγ) ≲ ∥DefΓh
v∥L2(K) + h

(
∥∇Γh

v∥L2(K) + ∥v∥L2(K)

)
.(2.11)

We now apply the above definitions of Piola transforms to mappings between planes (surface
triangles), which is critical to our construction of vertex degrees of freedom for vector fields on Γh.

Definition 2.3. For each vertex a ∈ Vh in the triangulation, we arbitrarily choose a single (fixed)
face Ka ∈ Ta. For K ∈ Ta, we define MK

a : R3 → R3 by

(2.12) MK
a x =

(
νKa

· νK

[
I− νKa

⊗ νK

νKa · νK

])
x,

where we recall νKa
and νK are the outward unit normals of Ka and K, respectively. In particular,

MK
a x is the Piola transform of x with respect to the inverse of the closest point projection onto the

plane containing Ka (cf. (2.7)).

Remark 2.4. By properties of the Piola transform, MK
a x is tangential to K, i.e., (MK

a x) · νK = 0 for
all x ∈ R3.

We next show that the “ideal” and “practical” interpretations of vectors at vertices discussed in
the introduction (cf. Figures 1 and 2) do not differ by too much.

Lemma 2.5. Fix a ∈ Vh and let u lie in the tangent plane of γ at p(a). For K ∈ Ta, let ŭK =
Pp−1u|K be the Piola transform of u to K via the inverse of the closest point projection (cf. (2.7)).
Then

|ŭK −MK
a ŭKa

| ≲ h2|ŭKa
| ≤ h2|u|.(2.13)

Proof. Using Hν = 1
2∇|ν|2 = 0, we have HΠ = H. Note in addition that

î
I− ν⊗νK

ν·νK

ó
Π =î

I− ν⊗νK

ν·νK

ó
. Therefore by (2.7), (2.6), and (2.1) we have

ŭK = µK

ï
I− ν ⊗ νK

ν · νK

ò
[I− dH]

−1
u

= µK

ï
I− ν ⊗ νK

ν · νK

ò
[I− dH]

−1 1

µKa

[Π− dH] ŭKa

= µK

ï
I− ν ⊗ νK

ν · νK

ò
[I− dH]

−1 1

µKa

[I− dH]ΠŭKa

=
ν · νK

ν · νKa

ï
I− ν ⊗ νK

ν · νK

ò
ΠŭKa

=
ν · νK

ν · νKa

ï
I− ν ⊗ νK

ν · νK

ò
ŭKa

.
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Now |ν − νK | + |νKa − νK | ≲ h, |1 − ν · νK | = 1
2 |ν − νK |2 ≲ h2, and |1 − νKa · νK | ≲ h2. Thus

employing (2.12) and the identity νKa · ŭKa = 0 we have

|ŭK −MK
a ŭKa

| =
∣∣∣∣Å ν · νK

ν · νKa

ï
I− ν ⊗ νK

ν · νK

ò
− νKa

· νK

ï
I− νKa

⊗ νK

νKa
· νK

òã
ŭKa

∣∣∣∣
≲

∣∣[ [I− ν ⊗ νK ]− [I− νKa
⊗ νK ]

]
ŭKa

∣∣+ h2|ŭKa
|

= |(ν − νKa
)⊗ νKŭKa

|+ h2|ŭKa
|

= |(ν − νKa
)⊗ (νK − νKa

)ŭKa
|+ h2|ŭKa

|
≲ h2|ŭKa

|.

Finally noting that |ŭKa | = |Pp|−1
Ka

u| ≲ |u| (cf. (2.7)) completes the proof. □

Remark 2.6. In SFEMs it is common to use a higher-order surface approximation Γ to γ of polynomial
degree k (here we consider k = 1). In that case νK is no longer constant on K, and we have
|ν(a) − νK(a)| ≲ hk. The results of Lemma 2.5 easily generalize to this situation with h2k replacing
h2 on the right hand side of (2.13).

3. Finite element spaces and inf-sup stability

By utilizing Lemma 2.5, we can construct tangential finite element spaces on the surface approxi-
mation Γh using nodal (Lagrange) basis functions. The essential idea is to enforce continuity at nodal
degrees of freedom in a weak sense through the mapping MK

a given in Definition 2.3. Although this
procedure does not yield a globally continuous finite element space, it preserves in-plane normal con-
tinuity and exhibits weak continuity properties. These properties are generally sufficient for achieving
convergence in second-order elliptic problems.

In the following discussion, we focus on the construction of the lowest-order MINI Stokes pair for
simplicity [1]. However, we expect that Definition 2.3 and Lemma 2.5 provide a general framework
for constructing convergent finite element schemes based on classical and conforming finite element
pairs such as Taylor-Hood and Scott-Vogelius [2].

3.1. Surface MINI space and approximation properties. Let K̂ be the reference triangle with
vertices (0, 0), (1, 0), (0, 1), and for K ∈ Th, let FK : K̂ → K be an affine diffeomorphism. The
constant Jacobian matrix of FK is denoted by DFK ∈ R3×2. Note that the columns of DFK span the
tangential space of K. For a vector-valued function v̂ : K̂ → R2, its Piola transform with respect to
FK is given by

v(x) = (PFK
v̂)(x) :=

1

J
DFK v̂(x̂), x = FK(x̂),(3.1)

and J =
√
det(DF ⊺

KDFK).
Let bK be the standard cubic bubble function on K, i.e., the product of the three barycentric

coordinates of K. The local MINI space defined on the reference triangle is given by V̂ := P1(K̂)⊕
bK̂P0(K̂), where Pk(D) is the space of polynomials of degree ≤ k with domain D, and Pk(D) =
[Pk(D)]2. We then define the surface finite element spaces on Γh as

Vh = {v ∈ L2(Γh) : ∀K ∈ Th ∃v̂ ∈ V̂ , vK = PFK
v̂ ; vK(a) = MK

a (vKa
(a)) ∀K ∈ Ta, ∀a ∈ Vh},

Qh = {q ∈ H1(Γh) ∩ L̊2(Γh) : qK ∈ P1(K) ∀K ∈ Th},

where vK = v|K is the restriction of v to K ∈ Th, M
K
a is defined in Definition 2.3, and we recall Vh

is the set of vertices in Th.
For v ∈ Vh, we let vL denote the linear portion of v, i.e., vL is the unique tangential and piecewise

linear vector in Vh satisfying (vL)Ka
(a) = vKa

(a) for all a ∈ Vh. We then have the following identity
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on each K ∈ Th:

(3.2) v = vL + 60bK

 
K

(v − vL) ∀v ∈ Vh,

where we have used the fact
´
K
bK = |K|/60 for all K ∈ Th.

Because the columns of DFK span the tangential space of K, we see that functions in the discrete
velocity space Vh are tangential, i.e., v·νh = 0 for all v ∈ Vh. In addition, due to the normal-preserving
properties of the transform MK

a , the space is H(div)-conforming as the next result shows.

Proposition 3.1. There holds Vh ⊂ H(divΓh
; Γh).

Proof. Due to the properties of the cubic bubble, it is sufficient to show that the linear component of
v ∈ Vh satisfies the in-plane normal continuity condition (2.3) across all edges in Th.

Let a ∈ Vh be a vertex of Th, and let K1,K2 ∈ Ta be two elements that have a as a vertex and
share a common edge e = ∂K1 ∩ ∂K2. Denote by ne

j the in-plane outward unit normal vector with
respect to ∂Kj restricted to e.

Using the definitions of the finite element space and the operator MK
a , along with the Binet-Cauchy

identity, there holds for any v ∈ Vh,

vj(a) · ne
j = MKj

a (vKa
(a)) · ne

j

= (νKa
· νKj

)(vKa
(a) · ne

j)− (νKa
· ne

j)(νKj
· vKa

(a)) = (νKa
× vKa

(a)) · (νKj
× ne

j),

where vj = vKj
= v|Kj

. Therefore,

v1(a) · ne
1 + v2(a) · ne

2 = (νKa
× vKa

(a)) ·
(
(νK1

× ne
1) + (νK2

× ne
2)
)
= 0.

Because vj is a linear polynomial on e, we conclude that (2.3) is satisfied on all edges. This implies
the desired result Vh ⊂ H(divΓh

; Γh). □

Lemma 3.2. For each w ∈ C(γ) ∩H1
T (γ) ∩H2

h(γ), there exists Ihw̆ ∈ Vh such that

hm∥w̆ − Ihw̆∥Hm(K) ≲ h2∥w∥H2
h(ωKγ ) ∀K ∈ Th, m = 0, 1,

with w̆ = Pp−1w.

Proof. Givenw ∈ C(γ)∩H1
T (γ)∩H2

h(γ), we uniquely define v := Ihw̆ ∈ Vh such that each component
of v is a piecewise linear polynomial and satisfies

(3.3) vKa
(a) = w̆Ka

(a) ∀a ∈ Vh.

Let w̆I be the elementwise (discontinuous), linear interpolant of w̆ with respect to the vertices in
Th, i.e., (w̆I)K ∈ P1(K) with (w̆I)K(a) = w̆K(a) for all K ∈ Th and a ∈ VK . By Lemma 2.5 (with
u = w(a)), (3.3), and the definition of Vh we have for each vertex a ∈ Vh,

|(w̆I − v)K(a)| = |(w̆K −MK
a vKa

)(a)| = |(w̆K −MK
a w̆Ka

)(a)| ≲ h2|w̆Ka
(a)| ∀K ∈ Ta.

Consequently, by standard inverse estimates,

hm∥w̆I − v∥Hm(K) ≲ ∥w̆I − v∥L2(K)

≲ h∥w̆I − v∥L∞(K) = h max
a∈VK

|(w̆I − v)K(a)| ≲ h3 max
a∈VK

|w̆Ka(a)| m = 0, 1.

Using inverse estimates once again, and applying standard interpolation results yields

max
a∈VK

|w̆Ka(a)| ≤ ∥w̆I∥L∞(ωK)

≲ h−1∥w̆I∥L2(ωK)

≲ h−1(∥w̆∥L2(ωK) + ∥w̆ − w̆I∥L2(ωK))

≲ h−1(∥w̆∥L2(ωK) + h2 |w̆|H2
h(ωK)).
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Therefore,

hm∥w̆I − v∥Hm(K) ≲ h2∥w̆∥H2
h(ωK) m = 0, 1,

and so by (2.9),

hm∥w̆ − v∥Hm(K) ≲ hm∥w̆ − w̆I∥Hm(K) + hm∥w̆I − v∥Hm(K) ≲ h2∥w∥H2
h(ωKγ ).

□

Lemma 3.3. There exists a constant α > 0 independent of h such that

(3.4) sup
v∈Vh\{0}

´
Γh

(divΓh
v)q

∥v∥H1
h(Γh)

≥ α∥q∥L2(Γh) ∀q ∈ Qh.

Proof. Fix q ∈ Qh, and let w ∈ H1
T (γ) satisfy [20, 14, 11]

(3.5) divγw = (µ−1
h q)ℓ ∈ L̊2(γ), and ∥w∥H1(γ) ≲ ∥(µ−1

h q)ℓ∥L2(γ) ≲ ∥q∥L2(Γh),

where we used (2.4) and (2.2) in the last step. Let ISZ
h we be the Scott-Zhang interpolant of the

extension we ∈ H1(Γh) onto the space of continuous piecewise linear polynomials with respect to Th

[7, 12], and set wh = Π(ISZ
h we)ℓ ∈ H1

T (γ). From (2.4), w−wh = Π(w−ISZ
h we), and approximation

properties of the Scott-Zhang interpolant, there holds on each K ∈ Th,

∥wh∥H1(Kγ) + h−1∥w −wh∥L2(Kγ) ≲ ∥(ISZ
h we)ℓ∥H1(Kγ) + h−1∥w − (ISZ

h we)ℓ∥L2(Kγ)

≲ ∥ISZ
h we∥H1(K) + h−1∥we − ISZ

h we∥L2(K)

≲ ∥we∥H1(ωK) ≲ ∥w∥H1(ωKγ ).

(3.6)

Noting wh ∈ C(γ) ∩H1
T (γ) ∩H2

h(γ), we define v ∈ Vh such that

vK =
(
Ihw̆h

)
K
+ 60bK

 
K

(w̆ − Ihw̆h) ∀K ∈ Th,

where Ihw̆h is given in Lemma 3.2. We then have
´
K
v =

´
K
w̆, and by (3.6) and Lemma 3.2,

∥v∥H1(K) ≤ ∥Ihw̆h∥H1(K) + ∥v − Ihw̆h∥H1(K)

≲ ∥w̆∥H1(K) + ∥w̆ − Ihw̆h∥H1(K) + h−1∥w̆ − Ihw̆h∥L2(K)

≤ ∥w̆∥H1(K) + ∥w̆ − w̆h∥H1(K) + ∥w̆h − Ihw̆h∥H1(K)

+ h−1(∥w̆ − w̆h∥L2(K) + ∥w̆h − Ihw̆h∥L2(K))

≲ ∥w∥H1(ωKγ ) + h∥wh∥H2
h(ωKγ ).

By (2.4), a standard inverse estimate, and the H1-stability properties of the Scott-Zhang interpolant,

h∥wh∥H2
h(ωKγ ) ≲ h∥(ISZ

h we)ℓ∥H2
h(ωKγ ) ≲ h∥ISZ

h we∥H2
h(ωK) ≲ ∥ISZ

h we∥H1(ωK) ≲ ∥w∥H1(ω′
Kγ ),

and so by (3.5),

∥v∥H1(K) ≲ ∥w∥H1(ω′
Kγ

) ∀K ∈ Th =⇒ ∥v∥H1
h(Γh) ≲ ∥w∥H1(γ) ≲ ∥q∥L2(Γh).(3.7)

Next, we recall from Proposition 3.1 that v ∈ H(divΓh
; Γh) and therefore (2.3) is satisfied. Thus,

by integration by parts, the identity
´
K
v =

´
K
w̆, and applying (2.8) yieldsˆ

Γh

(divΓh
v)q = −

ˆ
Γh

v · ∇Γh
q = −

ˆ
Γh

w̆ · ∇Γh
q =

ˆ
Γh

(divΓh
w̆)q =

ˆ
γ

(divγw)qℓ.

We then use (3.5), (2.2), and (2.4) to obtainˆ
Γh

(divΓh
v)q ≳ ∥q∥2L2(Γh)

.

This identity combined with (3.7) completes the proof. □



FEM FOR SURFACE STOKES 11

3.2. H1
T -conforming approximations to discrete functions. While the finite element space Vh

is merely H(divΓh
; Γh)-conforming (cf. Proposition 3.1), the following lemma shows that functions in

this space are “close” to an H1-conforming relative.

Lemma 3.4. Given v ∈ Vh, denote by Ûv = Ppv its Piola transform via the closest point projection
to γ. Then there exists Ûvc ∈ H1

T (γ) such that

∥Ûv − Ûvc∥L2(Kγ) + h|Ûv − Ûvc|H1
h(K

γ) ≲ h2∥Ûv∥L2(Kγ) ∀Kγ ∈ T
γ
h .(3.8)

Proof. On an element K ∈ Th, we first write v = vL + αbK , where vL is componentwise affine on
K, and α ∈ R3 is tangent to K (cf. (3.2)). Likewise, Ûv = ÛvL + ÛαbℓK is the Piola transform of v to
γ. We next let w be the unique continuous piecewise linear polynomial with respect to Th satisfying
w(a) = vKa

(a) for each vertex a ∈ Vh. We then setÛvc =
Π− dH

(1− dκ1)(1− dκ2)
wℓ + ÛαbℓK = µ−1

h ν · νh(Π− dH)wℓ + ÛαbℓK .

Note that Ûvc ∈ H1
T (γ), and Ûv − Ûvc = ÛvL − µ−1

h ν · νh(Π− dH)wℓ.

Fixing K ∈ Th, by norm equivalence (cf. (2.9)) we prove (3.8) by establishing that

∥vL −

(

µ−1
h ν · νh(Π− dH)wℓ ∥L2(K) + h|vL −

(
µ−1
h ν · νh(Π− dH)wℓ |H1

h(K) ≲ h2∥v∥L2(K),(3.9)

where

(

µ−1
h ν · νh(Π− dH)wℓ = Pp|−1

K
µ−1
h ν · νh(Π− dH)wℓ. We show (3.9) in three steps.

(i) Employing (2.7), (2.1), and Πh(ν · νh − ν ⊗ νh)Π = ν · νh − ν ⊗ νh, we have that(

µ−1
h ν · νh(Π− dH)wℓ = ΠK ((ν · νK)I− ν ⊗ νK)w.

Here we interchangeably write νh = νK = νh|K and Πh = ΠK in order to better distinguish
dependence on the element K. Using vL · νK = 0 and ΠKvL = vL, we then have

vL−

(

µ−1
h ν · νh(Π− dH)wℓ = ΠK [vL − ((ν · νK)I− ν ⊗ νK)w]

= [(1− ν · νK)vL] + [ν · νKΠK(vL −w)] + [νK · (w − vL)ΠK(ν − νK)]

=: I + II + III.

(3.10)

(ii) We next bound the terms I, II, and III in L2. Using |1− ν · νK | = 1
2 |ν − νK |2 ≲ h2 yields

∥I∥L2(K) ≲ h2∥vL∥L2(K).(3.11)

Next we use (2.12) and recall that vKa(a) · νKa = 0 to compute that for each vertex a ∈ K

|ΠK(vL −w)(a)| = |ΠK(MK
a − I)vKa

(a)|
= |ΠK [((νKa

· νK)I− νKa
⊗ νK)− I]vKa

(a)|
= |(νKa

· νK − 1)ΠKvKa
(a)− (νK − νKa

) · vKa
(a)ΠK(νKa

− νK)|
≲ h2|vKa(a)| ≲ h2|vK(a)|.

(3.12)

In the last step we have employed (2.6) and (2.7) to obtain |vKa
(a)| = | 1

νK ·νKa
ΠKa

vK(a)| ≲ |vK(a)|.
We then use the fact that ΠK(vL −w) and vL are affine, along with inverse inequalities, to obtain

∥II∥L2(K) ≲ ∥ΠK(vL −w)∥L2(K) ≲ h max
a∈VK

|ΠK(vL −w)(a)|

≲ h3∥vL∥L∞(K) ≲ h2∥vL∥L2(K).
(3.13)

In order to bound III, we first proceed similarly as (3.12) to obtain

|(vL −w)(a)| = |(νKa
· νK − 1)vKa

(a)− (νK − νKa
) · vKa

(a)νKa
| ≲ h|vK(a)|.
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Using |ΠK(ν − νK)| ≲ h, we thus have similar to above that

∥III∥L2(K) ≲ h∥vL −w∥L2(K) ≲ h2∥vL∥L2(K).(3.14)

Recalling that v = vL +αbK and bK(a) = 0 at vertices a, we again use inverse inequalities to obtain

∥vL∥L2(K) ≲ h∥vL∥L∞(K) = h max
a∈VK

|vL(a)| ≤ h∥v∥L∞(K)≲∥v∥L2(K).(3.15)

Collecting the inequalities (3.11), (3.13)–(3.15) yields ∥Ûv − Ûvc∥L2(Kγ) ≲ h2∥Ûv∥L2(Kγ).

(iii) In order to bound ∥∇Γh
(vL−

(

µ−1
h ν · νh(Π− dH)wℓ)∥L2(K), we recall (3.10) and consider first

∇Γh
I. First note that |∇(1− ν · νK)| = |HνK | = |H(νK − ν)| ≲ h. Thus using an inverse inequality

and |1− ν · νK | ≲ h2, we obtain

∥∇Γh
I∥L2(K) ≲ ∥1− ν · νK∥L∞(K)∥∇Γh

vL∥L2(K) + ∥∇(1− ν · νK)∥L∞(K)∥vL∥L2(K) ≲ h∥vL∥L2(K).

Employing inverse inequalities, |∇(ν · νK)| ≲ h, and (3.13) also yields

∥∇Γh
II∥L2(K) ≤ ∥∇(ν · νK)∥L∞(K)∥ΠK(vL −w)∥L2(K) + ∥ν · νK∥L∞(K)∥∇Γh

[ΠK(vL −w)]∥L2(K)

≲ h∥ΠK(vL −w)∥L2(K) + h−1∥ΠK(vL −w)∥L2(K)

≲ h∥vL∥L2(K).

We finally compute using inverse inequalities and (3.14) that

∥∇Γh
III∥L2(K) ≲ ∥∇[ΠK(ν − νK)]∥L∞(K)∥vL −w∥L2(K)

+ ∥ΠK(ν − νK)∥L∞(K)∥∇Γh
(vL −w)∥L2(K)

≲ (1 + hh−1)∥vL −w∥L2(K) ≲ h∥vL∥L2(K).

Collecting the above inequalities and employing (3.15) yields

∥∇Γh
(I + II + III)∥L2(K) ≲ h∥vL∥L2(K) ≲ h∥v∥L2(K),

which completes the proof. □

3.3. Discrete Korn-type inequalities. From Lemma 3.4, we immediately obtain a discrete Korn-
type inequality on the exact surface γ.

Lemma 3.5. Given v ∈ Vh, there holds

∥Ûv∥H1
h(γ)

≲ ∥Ûv∥L2(γ) + ∥Defγ,hÛv∥L2(γ),(3.16)

where Ûv = Ppv.

Proof. Given v ∈ Vh, let Ûvc ∈ H1
T (γ) satisfy (3.8). A continuous Korn inequality holds for Ûvc, so

using (3.8) we have

∥Ûv∥H1
h(γ)

≲ ∥Ûvc∥H1(γ) + ∥Ûvc − Ûv∥H1
h(γ)

≲ ∥Ûvc∥L2(γ) + ∥DefγÛvc∥L2(γ) + ∥Ûvc − Ûv∥H1
h(γ)

≲ ∥Ûv∥L2(γ) + ∥Defγ,hÛv∥L2(γ) + ∥Ûvc − Ûv∥H1
h(γ)

≲ (1 + h)∥Ûv∥L2(γ) + ∥Defγ,hÛv∥L2(γ).

(3.17)

□

From this result, we obtain a discrete Korn inequality for Vh on Γh.

Lemma 3.6. There holds

∥v∥H1
h(Γh) ≲ ∥v∥L2(Γh) + ∥DefΓh

v∥L2(Γh) ∀v ∈ Vh.(3.18)
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Proof. We apply Lemma 3.5, (2.11), and an inverse estimate:

∥v∥H1
h(Γh) ≲ ∥Ûv∥H1

h(γ)

≲ ∥Ûv∥L2(γ) + ∥Defγ,hÛv∥L2(γ)

≲ ∥v∥L2(Γh) + ∥DefΓh
v∥L2(Γh) + h∥v∥H1

h(Γh)

≲ ∥v∥L2(Γh) + ∥DefΓh
v∥L2(Γh).

□

4. Finite element method and convergence analysis

For piecewise smooth w,v with v ∈ H(divγ ; γ) and q ∈ L2(γ), we define the bilinear forms

aγ(w,v) =

ˆ
γ

Defγ,hw : Defγ,hv +

ˆ
γ

w · v,

bγ(v, q) = −
ˆ
γ

(divγv)q.

The variational formulation for the Stokes problem (1.1) seeks (u, p) ∈ H1
T (γ)× L̊2(γ) satisfying

(4.1)
aγ(u,v) + bγ(v, p) =

ˆ
γ

f · v ∀v ∈ H1
T (γ),

bγ(u, q) = 0 ∀q ∈ L̊2(γ).

Remark 4.1. In order to ensure the well-posedness of (4.1) and avoid technical complications associated
with Killing fields, we include the zeroth-order mass term in the momentum equations, as mentioned
earlier in the introduction. A method for incorporating Killing fields into surface finite element
methods for the Stokes problem is presented in [3], and the main ideas presented there are applicable
to the proposed discretization below.

We define the analogous bilinear forms with respect to the discrete surface Γh:

aΓh
(w,v) =

ˆ
Γh

DefΓh
w : DefΓh

v +

ˆ
Γh

w · v,

bΓh
(v, q) = −

ˆ
Γh

(divΓh
v)q,

where the differential operator DefΓh
is understood to act piecewise with respect to Th. Then the

finite element method seeks (uh, ph) ∈ Vh ×Qh such that

(4.2)
aΓh

(uh,v) + bΓh
(v, ph) =

ˆ
Γh

fh · v ∀v ∈ Vh,

bΓh
(uh, q) = 0 ∀q ∈ Qh,

where fh is some approximation of f that is defined on Γh.
By the inf-sup condition (3.4), the discrete Korn-like inequality (3.18), and standard theory of

saddle-point problems, there exists a unique solution (4.2). To derive error estimates, we restrict (4.2)
to the discretely divergence–free subspace Xh := {v ∈ Vh :

´
Γh

(divΓh
v)q = 0 ∀q ∈ Qh}. Then

uh ∈ Xh is uniquely determined by the problem

(4.3) aΓh
(uh,v) =

ˆ
Γh

fh · v ∀v ∈ Xh.

Now set Ûuh = Ppuh, Ûv = Ppv, and note thatˆ
Γh

fh · v =

ˆ
Γh

fh · Pp−1Ûv =

ˆ
γ

Fh · Ûv,
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where Fh = (M⊺fh)
ℓ, and

(4.4) M =
[
I− ν ⊗ νh

ν · νh

]
[I− dH]−1

is the matrix arising in the definition of Pp−1 . Therefore (4.3) is equivalent to the statement

(4.5) aγ(Ûuh, Ûv) = ˆ
γ

Fh · Ûv +Gh(uh,v) ∀v ∈ Xh,

where the bilinear form Gh : H1
h(Γh)×H1

h(Γh) → R given by

Gh(w,v) = aγ(Ùw, Ûv)− aΓh
(w,v)

encodes geometric error.

Lemma 4.2. There holds

(4.6) |Gh(w,v)| ≲ h∥Ùw∥H1
h(γ)

∥Ûv∥H1
h(γ)

for all tangential w,v ∈ H1
h(Γh).

Proof. We writeˆ
γ

Defγ,hÙw : Defγ,hÛv −
ˆ
Γh

DefΓh
w : DefΓh

v

=

ˆ
γ

Defγ,hÙw : Defγ,hÛv −
ˆ
γ

(µ−1
h DefΓh

w) ◦ p−1 : (DefΓh
v) ◦ p−1

=

ˆ
γ

(
Defγ,hÙw − (µ−1

h DefΓh
w) ◦ p−1

)
: Defγ,hÛv

−
ˆ
γ

(µ−1
h DefΓh

w) ◦ p−1 :
(
(DefΓh

v) ◦ p−1 −Defγ,hÛv) .
Applying (2.10), (2.2), and Lemma 2.1, we obtain∣∣∣∣∣

ˆ
γ

Defγ,hÙw : Defγ,hÛv −
ˆ
Γh

DefΓh
w : DefΓh

v

∣∣∣∣∣ ≲ h∥Ùw∥H1
h(γ)

∥Ûv∥H1
h(γ)

.(4.7)

Next, we use the formula of the Piola transform involving M to obtainˆ
γ

Ùw · Ûv −
ˆ
Γh

w · v =

ˆ
γ

Ùw · Ûv −
ˆ
γ

(µh ◦ p−1)Ùw⊺M⊺MÛv
=

ˆ
γ

Ùw⊺[Π− (µh ◦ p−1)M⊺M]Ûv.
A short computation using (2.2) yields |Π− (µh ◦ p−1)M⊺M| ≲ |(ν − νh

ν·νh
)⊗ (ν − νh

ν·νh
)|+ h2 ≲ h2.

Thus

(4.8)

∣∣∣∣∣
ˆ
γ

Ùw · Ûv −
ˆ
Γh

w · v
∣∣∣∣∣ ≲ h2∥Ùw∥L2(γ)∥Ûv∥L2(γ).

The result (4.6) follows from (4.7)–(4.8). □

The next lemma states the approximation properties of the discretely divergence–free subspace
Xh. The result essentially follows from the inf-sup condition (3.4) and the arguments in [6, Theorem
12.5.17]. For completeness we provide the proof.

Lemma 4.3. Let u ∈ H1(γ) satisfy div γu = 0. Then there holds

inf
v∈Xh

∥u− Ûv∥H1
h(γ)

≲ inf
v∈Vh

∥u− Ûv∥H1
h(γ)

.
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Proof. Fix v ∈ Vh. The inf-sup condition (3.4) implies there exists w ∈ Vh such that bΓh
(w, q) =

bγ(u−Ûv, qℓ) for all q ∈ Qh, and ∥w∥H1
h(Γh) ≲ ∥u−Ûv∥H1

h(γ)
. Thenw+v ∈ Xh and ∥u−(Ùw+Ûv)∥H1

h(γ)
≤

∥u− Ûv∥H1
h(γ)

+ ∥Ùw∥H1
h(γ)

≲ ∥u− Ûv∥H1
h(γ)

. This implies the desired result. □

Theorem 4.4. Let (uh, ph) ∈ Vh×Qh satisfy the finite element method (4.2). Let Ûuh = Ppuh denote
the Piola transform of uh with respect to the closest point projection p, and let pℓh = ph ◦ p−1. Then
there holds

∥u− Ûuh∥H1
h(γ)

≲ inf
(v,q)∈Vh×Qh

(
∥u− Ûv∥H1

h(γ)
+ ∥p− qℓ∥L2(γ)

)
+ h2∥f∥L2(γ) + ∥f − Fh∥L2(γ)(4.9a)

+ h
(
∥p∥L2(γ) + ∥u∥H1(γ) + ∥fh∥L2(Γh)

)
,

∥p− pℓh∥L2(γ) ≲ inf
q∈Qh

∥p− qℓ∥L2(γ) + ∥u− Ûuh∥H1
h(γ)

+ h2∥f∥L2(γ) + ∥f − Fh∥L2(γ)(4.9b)

+ h
(
∥p∥L2(γ) + ∥u∥H1(γ) + ∥fh∥L2(Γh)

)
.

Therefore, by Lemma 3.2, if (u, p) ∈ H2(γ)×H1(γ), there holds

∥u− Ûuh∥H1
h(γ)

+ ∥p− pℓh∥L2(γ) ≲ h(∥u∥H2(γ) + ∥p∥H1(γ) + ∥fh∥L2(Γh)) + ∥f − Fh∥L2(γ).(4.10)

Proof. For v ∈ Xh, we denote by Ûvc ∈ H1
T (γ) the conforming relative of Ûv = Ppv satisfying (3.8).

Using (4.1), (4.5) and (2.8), we write

aγ(u− Ûuh, Ûv) = aγ(u, Ûvc) + aγ(u, Ûv − Ûvc)−
ˆ
γ

Fh · Ûv −Gh(uh,v)

=

ˆ
γ

f · Ûvc −
ˆ
γ

Fh · Ûv − bγ(Ûvc, p) + aγ(u, Ûv − Ûvc)−Gh(uh,v)

=

ˆ
γ

f · (Ûvc − Ûv)− ˆ
γ

(Fh − f) · Ûv − bγ(Ûv, p− qℓ)− bγ(Ûvc − Ûv, p)
+ aγ(u, Ûv − Ûvc)−Gh(uh,v) ∀q ∈ Qh.

Applying continuity estimates of the bilinear forms, (3.8), and (4.6) yield

aγ(u− Ûuh, Ûv)
≲

(
h2∥f∥L2(γ) + ∥f − Fh∥L2(γ) + ∥p− qℓ∥L2(γ) + h∥p∥L2(γ) + h∥u∥H1(γ) + h∥Ûuh∥H1

h(γ)

)
∥Ûv∥H1

h(γ)
.

The estimate ∥Ûuh∥H1
h(γ)

≲ ∥uh∥H1
h(Γh) ≲ ∥fh∥L2(Γh), and standard arguments then yield

∥u− Ûuh∥H1
h(γ)

≲ inf
(v,q)∈Xh×Qh

(
∥u− Ûv∥H1

h(γ)
+ ∥p− qℓ∥L2(γ)

)
+ h2∥f∥L2(γ) + ∥f − Fh∥L2(γ)

+ h(∥p∥L2(γ) + ∥u∥H1(γ) + ∥fh∥L2(Γh)).

The estimate (4.9a) then follows by applying Lemma 4.3.
For the pressure error, we similarly apply (2.8), (4.5), (3.8), and (4.5)–(4.6) to obtain for all v ∈ Vh

and q ∈ Qh,

bΓh
(v, ph − q) =

ˆ
Γh

fh · v − aΓh
(uh,v)− bγ(Ûv, qℓ)

=

ˆ
γ

Fh · Ûv − aγ(Ûuh, Ûv)− bγ(Ûv, qℓ) +Gh(uh,v)

=

ˆ
γ

f · (Ûv − Ûvc) +

ˆ
γ

(Fh − f) · Ûv + aγ(u− Ûuh, Ûv) + bγ(Ûv, p− qℓ) +Gh(uh,v)

− aγ(Ûu, Ûv − Ûvc)− bγ(Ûv − Ûvc, p)

≲
(
h2∥f∥L2(γ) + ∥f − Fh∥L2(γ) + ∥u− Ûuh∥H1

h(γ)
+ ∥p− qℓ∥L2(γ)

+ h
(
∥Ûuh∥H1

h(γ)
+ ∥u∥H1(γ) + ∥p∥L2(γ)

))
∥Ûv∥H1

h(γ)
.
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We conclude from the inf-sup condition (3.4) and the estimates ∥Ûuh∥H1
h(γ)

≲ ∥fh∥L2(Γh), ∥Ûv∥H1
h(γ)

≲
∥v∥H1

h(Γh) that

∥p− pℓh∥L2(γ) ≤ ∥p− qℓ∥L2(γ) + ∥pℓh − qℓ∥L2(γ)

≲ ∥p− qℓ∥L2(γ) + ∥ph − q∥L2(Γh)

≲ h2∥f∥L2(γ) + ∥f − Fh∥L2(γ) + ∥u− Ûuh∥H1
h(γ)

+ ∥p− qℓ∥L2(γ)

+ h
(
∥u∥H1(γ) + ∥p∥L2(γ) + ∥fh∥L2(γ)

)
.

By taking the infimum over q ∈ Qh we obtain (4.9b). □

Remark 4.5. In order to obtain a final O(h) energy error bound from (4.10) we must choose fh so
that ∥f − Fh∥L2(γ) ≲ h. A short calculation shows that fh = Pp−1f yields ∥f − Fh∥L2(γ) ≲ h2; a
variety of other choices also yield optimal convergence.

Remark 4.6. Analysis of L2 errors in the velocity is the subject of ongoing work. Numerical exper-
iments presented below indicate that ∥ŭ − uh∥L2(Γh) ≲ h2, as expected. However, the conforming

approximation error estimate given in Lemma 3.4 seems insufficient to obtain an O(h2) convergence
rate in L2. In addition, the O(h) geometric error estimate in Lemma 2.2 is sufficient to establish opti-
mal O(h) convergence in the energy norm, but not an optimal O(h2) L2 convergence rate. Obtaining
O(h2) geometric error estimates sufficient to achieve optimal L2 convergence is likely possible using
techniques introduced in [18] but is significantly more technical than the energy case analyzed here.

5. Numerical Experiments

In this section we briefly comment on the implementation of the finite element method (4.2) and
then present numerical experiments demonstrating optimal convergence rates in the energy and L2

norms for both MINI and lowest-order Taylor-Hood elements.

5.1. Implementation notes. The main additional complication in the implementation of the surface
MINI method as compared to the Euclidean case arises in choosing two individual degrees of freedom
at each vertex and interpreting them on each incident element. In the Euclidean case it is natural to
choose individual degrees of freedom to align with the canonical Euclidean basis vectors. Thus natural
global basis functions corresponding to a vertex a are (φa, 0)

⊤ and (0, φa)
⊤, with φa the usual affine

hat function corresponding to a. In the surface case there is no such natural choice, so at each vertex
a ∈ Vh one must first fix the master element Ka along with two arbitrary but mutually orthogonal
unit vectors v1,a,Ka and v2,a,Ka tangent to Ka. The two global degrees of freedom corresponding to
a are then uh|Ka

(a) · v1,a,Ka
and uh|Ka

(a) · v2,a,Ka
.

Once Ka, v1,a,Ka
, and v2,a,Ka

are fixed, the Piola transform formula (2.12) is used to interpret these
quantities appropriately on each element K ∋ a. These bookkeeping steps are naturally implemented
as a precomputation in which the necessary information is encoded into a DOF handler structure.
The precomputation step costs O(#Vh) and does not add significantly to the overall computational
cost. Once this step is completed the rest of the FEM is implemented in a standard way, but using
the DOF handler to correctly compute basis functions on each element.

We now describe more precisely some elements of the precomputation step. Consider the reference
element K̂ with associated natural degrees of freedom for the MINI element (cf. Figure 3). Given a

vertex ẑj ∈ K̂, let ϕ̂1,j and ϕ̂2,j be the basis functions corresponding to the vertex degrees of freedom

in Figure 3, i.e., ϕ̂1,j(ẑi) =

Å
δij
0

ã
and ϕ̂2,j(ẑi) =

Å
0
δij

ã
. We translate vertex degrees of freedom from

the reference element to physical elements as follows. For each vertex a ∈ Vh:

(1) Specify a master element Ka ∋ a.
(2) Choose arbitrary unit orthogonal vectors v1,a,Ka

, v2,a,Ka
lying in the plane containing Ka.

(3) For each triangle K ∈ Ta, compute vi,a,K = MK
a vi,a,Ka

, i = 1, 2.
(4) For each K ∈ Ta, let jK ∈ {1, 2, 3} be the local numbering of a in K.
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ẑ2ẑ1

ẑ3

Figure 3. Degrees of freedom for the reference MINI element

(5) For eachK ∈ Ta, let PFK
be as in (3.1). Solve for αi,ℓ,a,K , i, ℓ ∈ {1, 2}, such that αi,1,a,KPFK

ϕ̂1,jK (ẑjK )+

αi,2,a,KPFK
ϕ̂2,jK (ẑjK ) = vi,a,K . With degrees of freedom as pictured in Figure 3, this expres-

sion reduces to the linear system

PFK
αi,a,K = vi,a,K with αi,a,K =

Å
αi,1,a,K

αi,2,a,K

ã
.

This system is solved by application of the Moore-Penrose psuedoinverse (P⊺
FK

PFK
)−1P

⊺
FK

.

The coefficients αi,ℓ,a,K serve as a “Rosetta stone” (or DOF handler) to translate the individual

reference basis functions ϕ̂i,j elementwise to global basis functions. On the element K the global
basis functions corresponding to the vertex a ∈ K are concretely given by φa(x)PFK

α1,a,K and
φa(x)PFK

α2,a,K , with φa the standard scalar affine hat function corresponding to a. Recall that in
the Euclidean case natural global basis functions corresponding to a are φa(x)(1, 0)

⊺ and φa(x)(0, 1)
⊺.

Thus in both the Euclidean and surface cases, the global MINI basis functions may be expressed as
the product of a scalar hat function and a vector specifying direction. However, in the surface case
the vectors PFK

αi,a,K in question are piecewise constant rather than globally constant in order to
reflect variation of the tangent plane from element to element. Once these expressions for global basis
functions are in hand, the other aspects of the finite element code are essentially standard. Note that
sparsity patterns for the resulting system matrices are also similar to the Euclidean case, and the
system solve generally has similar expense.

5.2. Numerical results. We take γ to be the ellipsoid given by Ψ(x, y, z) := x2

1.12 + y2

1.22 + z2

1.32 = 1.

The test solution is u = Π(−z2, x, y)⊺; cf. Figure 4. Note that Π = I − ν ⊗ ν with ν = ∇Ψ
|∇Ψ| on

γ, so u is componentwise a rational function and not a polynomial. The pressure is p = xy3 + z.
The incompressibility condition divγu = 0 does not hold, so the Stokes system must be solved with
nonzero divergence constraint. We employed a MATLAB code built on top of the iFEM library [8].

The left plot in Figure 5 depicts the convergence history for the MINI element on a sequence of
uniformly refined meshes. Optimal convergence is clearly observed in both the energy and L2 norms,
in particular O(h) for the energy norm ∥ŭ − uh∥H1

h(Γh) + ∥pe − ph∥L2(Γh) along with O(h2) for the

error ∥ŭ− uh∥L2(Γh). Recall also that the pressure is approximated by affine functions, which can in

theory approximate to order h2 in L2. Convergence is generally restricted instead to order h because
the pressure is coupled to the velocity H1 norm in the error analysis, but superconvergence of order
h3/2 may occur on sufficiently structured meshes [15]. We observe an initial superconvergent decrease
of order h3/2 or higher, but the expected asymptotic rate of order h is eventually seen; cf. [27] for
discussion of similar phenomena in the Euclidean context.

We also approximated (u, p) using a P2 − P1 Taylor-Hood method. The discrete surface Γh was
taken to be a quadratic rather than affine approximation to γ in order to obtain a geometric error
commensurate with the expected order of convergence for this element. Vertex degrees of freedom
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Figure 4. Test solution u
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Figure 5. Convergence for the MINI element (left) and P2 − P1 Taylor-Hood element (right)

were defined as above, additionally taking into account the fact that the surface normal on a piecewise
quadratic surface is, in contrast to the case of an affine surface, not elementwise constant. Quadratic
Taylor-Hood vector fields have degrees of freedom at edge midpoints in addition to at vertices, and
these were defined in a manner completely analogous to the vertex degrees of freedom. Because the
Piola transform preserves normal continuity, this construction guarantees normal continuity at three
points on each (closed) edge, thus ensuring H(divΓh

; Γh)-conformity (cf. Proposition 3.1). The right
plot in Figure 5 exhibits the expected O(h2) convergence in the energy norm and O(h3) convergence
for the L2 error in the velocity. This confirms that our methodology has applicability beyond the MINI
element; error analysis and extension to other stable Stokes element pairs employing nodal degrees of
freedom will be the subject of future work.

Appendix A. Proof of Lemma 2.2

Proof. We divide the proof of Lemma 2.2 into three steps.
Step 1: For a scalar function q defined on Γh, we have the identity [12, (2.2.19)]

∇γ(q ◦ p−1) =
(
[I− dH]−1[I− νh ⊗ ν

νh · ν
]∇Γh

q
)
◦ p−1 on γ.
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Consequently, for v = (v1, v2, v3)
⊺ ∈ H1

T (K),

(∇(v ◦ p−1)Π)i,: =
(
∇γ(vi ◦ p−1)

)⊺
=

((
[I− dH]−1[I− νh ⊗ ν

νh · ν
]∇Γh

vi
)
◦ p−1

)⊺

=
(
(∇Γh

vi)
⊺[I− νh ⊗ ν

νh · ν
]⊺[I− dH]−⊺

)
◦ p−1

=
(
(∇Γh

vi)
⊺[I− ν ⊗ νh

ν · νh
][I− dH]−1

)
◦ p−1

=
(
(∇vΠh)i,:[I−

ν ⊗ νh

ν · νh
][I− dH]−1

)
◦ p−1.

Here, with an abuse of notation, we have suppressed the superscript for the extension ve. Thus, we
have the identity

∇(v ◦ p−1)Π =
(
∇vΠh[I−

ν ⊗ νh

ν · νh
][I− dH]−1

)
◦ p−1.(A.1)

Since v is tangential, there holds ∇v = ∇(Πhv) = Πh∇v, because Πh is constant on K. Thus,

∇(v ◦ p−1)Π =
(
∇Γh

v[I− ν ⊗ νh

ν · νh
][I− dH]−1

)
◦ p−1.(A.2)

Step 2: Write Ûv = Ppv = (Lv) ◦ p−1 with L = µ−1
h [Π− dH]. We then have by (A.2),

∇γÛv = Π∇ÛvΠ = Π∇(Lv ◦ p−1)Π

= ΠL∇(v ◦ p−1)Π+Π∇Lv ◦ p−1Π

= ΠL

Å
∇Γh

v

ï
I− ν ⊗ νh

ν · νh

ò
[I− dH]−1

ã
◦ p−1 +Π∇Lv ◦ p−1Π

= L

Å
∇Γh

v

ï
I− ν ⊗ νh

ν · νh

ò
[I− dH]−1

ã
◦ p−1 +Π∇(L ◦ p−1)v ◦ p−1Π,

where

(A.3) (∇Lv)i,j =

3∑
k=1

∂Li,k

∂xj
vk i, j = 1, 2, 3.

We conclude, by adding and subtracting terms, that

∇γÛv = (∇Γh
v) ◦ p−1 + [L−Πh](∇Γh

v) ◦ p−1

ï
I− ν ⊗ νh

ν · νh

ò
[I− dH]−1

+ (∇Γh
v) ◦ p−1

Åï
I− ν ⊗ νh

ν · νh

ò
[I− dH]−1 −Πh

ã
+Π∇(L ◦ p−1)v ◦ p−1Π.

Using |ν−νh| ≲ h, |d| ≲ h2, and (2.2), we have |L−Πh| ≲ h and |[I− νh⊗ν
ν·νh

][I−dH]−1−Πh| ≲ h.
Therefore there holds

|DefγÛv − (DefΓh
v) ◦ p−1| ≲ h|(∇Γh

v) ◦ p−1|+ |Π∇(L ◦ p−1)v ◦ p−1Π|.(A.4)

Step 3: In the final step of the proof, we bound the last term in (A.4).
Let ℓ(r) = L:,r denote the rth column of L. Then (A.3) and a short calculation yields

Π∇(L ◦ p−1)v ◦ p−1Π =

3∑
r=1

(Π∇(ℓ(r) ◦ p−1)Π)vr ◦ p−1,
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and so, by (A.1),

Π∇(L ◦ p−1)v ◦ p−1Π =

3∑
r=1

Π

Å
∇ℓ(r)Πh

ï
I− ν ⊗ νh

ν · νh

ò [
I− dH

]−1
vr

ã
◦ p−1

= Π

Å
∇LvΠh

ï
I− ν ⊗ νh

ν · νh

ò [
I− dH

]−1
ã
◦ p−1.

(A.5)

Taking the derivative of Li,k = µ−1
h [Πi,k − dHi,k] yields

∂Li,k

∂xj
= µ−1

h

Å
−Li,k

∂µh

∂xj
+

∂Πi,k

∂xj
− ∂d

∂xj
Hi,k − d

∂Hi,k

∂xj

ã
= −µ−1

h

Å
Li,k

∂µh

∂xj
+ νiHk,j + νkHi,j + νjHi,k + d

∂Hi,k

∂xj

ã
.

Thus by (2.2) and (A.3), there holds

∇Lv = −µ−1
h [(Lv)⊗∇µh + ν ⊗ (Hv) + (Hv)⊗ ν + (ν · v)H+ d∇Hv]

= − [(Lv)⊗∇µh + ν ⊗ (Hv) + (Hv)⊗ ν] +O(h|v|).
(A.6)

Write µh = ν ·νh(1−dκ1)(1−dκ2) = ν ·νh det(I−dH). Because νh is constant on K and Hν = 0,

there holds ∂(ν·νh)
∂xk

= νh · ∂ν
∂xk

= (Hνh)k = (H(νh − ν))k = O(h). Also by Jacobi’s formula and

|d| ≲ h2,

∂

∂xk
det(I− dH) = det(I− dH)tr

Å
(I− dH)−1 ∂

∂xk

(
I− dH

)ã
= −νktr(H) +O(h2).

We then conclude using |1− ν · νh| ≲ h2 that

(A.7) ∇µh = −(ν · νh)νtr(H) +O(h) = −νtr(H) +O(h).

Combining (A.6)–(A.7) yields

∇Lv = [tr(H)(Lv)⊗ ν − ν ⊗ (Hv)− (Hv)⊗ ν] +O(h|v|).(A.8)

We apply (A.8) to (A.5) along with the identity Πν = Π⊺ν = 0 and |Π−Πh| ≲ h to obtain

|Π∇(L ◦ p−1)v ◦ p−1Π| ≲ h|v ◦ p−1|.

Combining this with (A.4) yields the desired estimate

|DefγÛv − (DefΓh
v) ◦ p−1| ≲ h

(
|(∇Γh

v) ◦ p−1|+ |v ◦ p−1|
)
.

□
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