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ARE ADAPTIVE GALERKIN SCHEMES DISSIPATIVE?∗†

RODRIGO M. PEREIRA ‡ , NATACHA NGUYEN VAN YEN §¶, KAI SCHNEIDER ‖,

AND MARIE FARGE §

Abstract. Adaptive Galerkin numerical schemes integrate time-dependent partial differ-
ential equations with a finite number of basis functions, and a subset of them is selected at each
time step. This subset changes over time discontinuously according to the evolution of the solu-
tion; therefore the corresponding projection operator is time-dependent and nondifferentiable,
and we propose using an integral formulation in time. We analyze the existence and uniqueness
of this weak form of adaptive Galerkin schemes and prove that nonsmooth projection operators
can introduce energy dissipation, which is a crucial result for adaptive Galerkin schemes. To il-
lustrate this, we study an adaptive Galerkin wavelet scheme which computes the time evolution
of the inviscid Burgers equation in one dimension and of the incompressible Euler equations
in two and three dimensions with a pseudospectral scheme, together with coherent vorticity
simulation which uses wavelet denoising. With the help of the continuous wavelet represen-
tation we analyze the time evolution of the solution of the 1D inviscid Burgers equation: We
first observe that numerical resonances appear when energy reaches the smallest resolved scale,
then they spread in both space and scale until they reach energy equipartition between all basis
functions, as thermal noise does. Finally we show how adaptive wavelet schemes denoise and
regularize the solution of the Galerkin truncated inviscid equations, and for the inviscid Burgers
case wavelet denoising even yields convergence towards the exact dissipative solution, also called
entropy solution. These results motivate in particular adaptive wavelet Galerkin schemes for
nonlinear hyperbolic conservation laws. This SIGEST article is a revised and extended version
of the article [R. M. Pereira, N. Nguyen van yen, K. Schneider and M. Farge, Multiscale Model.
Simul., 20 (2022), pp. 1147–1166].
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1. Introduction. Since most nonlinear partial differential equations (PDEs)
cannot be solved analytically, it is often necessary to use numerical experimenta-
tion to explore their approximate solutions with numerical techniques and com-
puters. This can be illustrated in a remark by Bertrand Russel, from 1931:
“Although this may seem a paradox, all exact science is dominated by the idea of
approximation” [21]. The intrinsic limitations of computers impose that numer-
ical methods for PDEs only solve the truncated system with a finite number of
modes, which is designed to closely approach the exact solution. In some cases,
however, the truncation has drastic effects that completely destroy the desired
approximation. A first historical example for which this happened was probably
the symmetric finite-difference scheme designed by von Neumann in the 1940s for
nonlinear conservation laws. As recalled in [39], it was indeed shown in the 1980s
that when applying von Neumann’s scheme, even to the simplest case of the one-
dimensional (1D) inviscid Burgers equation, convergence to the correct solution
is lost as soon as the first shock appears. Other schemes were then specifically
designed to dissipate energy at the location of shocks (see, e.g., [71]), which do
not suffer from this limitation and yield the desired solution.

Motivated by achieving high accuracy at reduced computational cost com-
pared to uniform grid methods, numerous adaptive discretization schemes to solve
evolutionary PDEs have been developed for decades; see, e.g., [6]. Applied prob-
lems, for instance, studying fluid and plasma turbulence, typically involve a mul-
titude of active spatial and temporal scales. To solve them, numerically adaptive
schemes concentrate the computational effort at locations and time instants where
it is necessary to ensure a given numerical accuracy, whereas elsewhere efforts can
be significantly reduced. Among them, multiresolution and wavelet-based meth-
ods offer an attractive possibility to introduce locally refined grids, which dynam-
ically track the evolution of the solution in space and scale. Examples for the
1D Burgers equation can be found in [47], reaction-diffusion equations in [32, 34],
Stokes equations in [12, 13], and Navier–Stokes equations in [33, 35]. Automatic
error control of the adaptive discretization with respect to a uniform grid solution
is hereby an advantageous feature [10]. For a review of adaptive wavelet methods
in the context of computational fluid dynamics, we refer the reader to [67].
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In many applications, in particular in computational fluid dynamics, Galerkin
truncated discretizations of PDEs with a finite number of modes are the methods
of choice. Spectral methods [60, 7, 63] are a prominent example, and Fourier–
Galerkin schemes are widely used for direct numerical simulation of turbulence
[40] due to their high accuracy. Today state-of-the-art direct numerical sim-
ulations of the incompressible three-dimensional (3D) Navier–Stokes equations
currently use up to 6 trillion grid points [74]. For efficiency reasons the convo-
lution product in spectral space, due to the nonlinear quadratic term which is
typically encountered in hydrodynamic equations, is evaluated in physical space
and aliasing errors are completely removed. This implementation, called pseu-
dospectral formulation with full dealiasing using the 2/3 rule, is equivalent to a
Fourier–Galerkin scheme up to round-off errors of the computer [60, 7, 63]. Thus
the discretization conserves the L2-norm of the solution. A classical test to check
the stability of pseudospectral codes, e.g., for viscous Burgers or Navier–Stokes
equations, is to perform simulations with zero viscosity. This allows one to verify
if the L2-norm of the solution, i.e., typically energy, is conserved and given that
time steps are sufficiently small, the truncated Galerkin schemes are stable. How-
ever, after some time the solution of the Galerkin truncated inviscid equations,
e.g., inviscid Burgers or incompressible Euler, develops a peculiar behavior when
localized oscillations appear due to numerical resonances and spread in space and
wavenumber as a white noise, a behavior leading to energy equipartition between
all Fourier coefficients known as thermalization. This energy equipartition had
already been predicted in 1952 by T.D. Lee [45] for spectral approximations of 3D
incompressible Euler by applying Liouville’s theorem from statistical mechanics.

The effect of truncating Fourier–Galerkin schemes was studied in [48] for the
1D Burgers equation and in [8] for the 3D incompressible Euler equation. De-
tailed numerical studies were carried out for the 1D Burgers equation [65], where
high-wavenumber oscillations were observed and interpreted as first manifesta-
tions of thermalization [45]. We also refer the reader to the discussion on the
statistical equilibrium in two-dimensional (2D) turbulence using the truncated
Euler equations by Kraichnan [44]. In [50] it was then proposed that those os-
cillations may be eliminated by canceling a few Fourier modes in a narrow band
next to the cut-off (Nyquist) wavenumber. In [64] early time numerical reso-
nances and singularities in the inviscid Burgers equation were analyzed. In [18]
it was shown for 1D Burgers that the process of thermalization first takes place
in well-defined subdomains, before filling the whole space.In [51] further studies
for the 3D incompressible Euler equation were performed and the seeds of ther-
malization were modeled as an effective 1D problem. In [43] a study of the 3D
axisymmetric Galerkin truncated incompressible Euler equations was performed
and potentially singular solution were examined showing likewise the presence of
oscillatory structures.

Motivated by [65, 61], a detailed numerical analysis of Fourier–Galerkin meth-
ods for nonlinear evolutionary PDEs was performed in [4], proving spectral con-
vergence for smooth solutions of the inviscid Burgers equation and the incom-
pressible Euler equations. However, when the solution lacks sufficient smoothness,
then both the spectral and pseudospectral Fourier methods with 2/3 dealiasing
exhibit nonlinear instabilities which generate high-wavenumber oscillations. In
particular it was shown that after the shock formation in the inviscid Burgers
equation, the total variation of bounded (pseudo)spectral Fourier solutions must
increase with the number of modes. The L2-energy conservation of the spectral
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solution is reflected through high-wavenumber oscillations, which is in contrast
with energy dissipating Onsager solutions [56]. Onsager conjectured the existence
of dissipative solutions with any Hölder exponent smaller than 1/3 [11, 15].

These issues are closely related to what is known in the turbulence literature
as the dissipative anomaly. This refers to the fact that time reversal symmetry
is not restored in the limit where the symmetry breaking parameter, i.e., viscos-
ity, goes to zero. To reproduce the expected dissipative behavior in truncated
Galerkin approximations, these numerical resonances must be removed. For this
purpose different numerical regularization techniques have been proposed, which
are commonly used in numerical methods for solving hyperbolic conservation laws.
If the solution is not unique, the regularized numerical scheme selects one weak
solution, which should correspond to the physically relevant one, e.g., the entropy
solution of the inviscid Burgers equation, which can be computed exactly using
the Legendre transform [73]. These approaches include upwind techniques [58],
total variation diminishing schemes [38], shock limiters [71], spectral vanishing
viscosity [72, 36], inviscid regularization schemes [3, 41], and classical viscosity
and hyperviscosity [5]. In the case of hyperviscosity, it has been shown [30, 2] that
for sufficiently high powers of the Laplacian in the dissipative term, the unregular-
ized conservative dynamics is recovered, while for moderate powers a bottleneck
effect occurs in the energy spectrum [31], i.e., a bump in the spectrum between
the inertial and dissipation ranges. As mentioned above, a method based on the
suppression of a narrow band of Fourier modes at discrete time intervals was re-
cently proposed in [50], and the resulting solution exhibits numerical convergence
to the entropy solution as the spatial resolution increases. This method, which
has almost no additional computational cost, can be viewed as a periodic filtering
in Fourier space, where the Galerkin projection space changes discontinuously at
regular time intervals. These discontinuous changes in the projection operators
are precisely the type of situation we intended to formalize in [62] and in the
present paper, but on more general grounds, taking into account other possible
projection bases.

In the context of adaptive wavelet schemes, numerical experiments with the
1D inviscid Burgers equation showed that wavelet filtering of the Fourier–Galerkin
truncated solution in each time step, which corresponds to denoising and which
removes the numerical resonances, yields the solution to the viscous Burgers equa-
tion [52, 61]. For the 2D incompressible Euler equations [53, 61] different wavelet
techniques for regularizing truncated Fourier–Galerkin solutions were studied us-
ing either real-valued or complex-valued wavelets, and the results were compared
with viscous and hyperviscous regularization methods. The results show that non-
linear wavelet filtering with complex-valued wavelets preserves the flow dynamics
and suggests L2 convergence to the reference solution. The wavelet representa-
tion offers at the same time a nonnegligible compression rate of about 3 for fully
developed 2D turbulence [27, 68].

Simulations of the 3D wavelet-filtered Navier-Stokes equations [55] showed
that statistical predictability of isotropic turbulence can be preserved with a re-
duced number of degrees of freedom. This approach, called coherent vorticity
simulation (CVS) [27, 25], is a multiscale method to compute incompressible
turbulent flows using wavelet-based denoising of the vorticity field at each time
step. The coherent vorticity, corresponding to the few wavelet coefficients whose
modulus is larger than a threshold, represents the organized and energetic flow
part, while the remaining incoherent vorticity induces a velocity field which is
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similar to a Gaussian white noise and corresponds to thermalization [24]. Ap-
plications to different canonical turbulent flows can be found in [24, 28, 66, 54],
including MHD and plasma turbulence [26]. Applying wavelet-based denoising
to the 3D Galerkin truncated incompressible Euler equations confirmed that this
adaptive regularization models turbulent dissipation and thus allows one to com-
pute turbulent flows which exhibit intermittent nonlinear dynamics and a k−5/3

Kolmogorov energy spectrum [23]. A significant compression rate of the wavelet
coefficients of vorticity is likewise observed which reduces the number of active
degrees of freedom to be computed.

The aim of the current work is to provide a mathematical framework to
analyze the properties of evolutionary PDEs discretized with adaptive Galerkin
schemes. Galerkin schemes are particularly appealing due to their optimality
properties, regarding best approximation in the energy norm, conservation of
energy, and the ease of numerical analysis using Hilbert space techniques. Intro-
ducing space adaptivity, such as a wavelet filtering in each time step, implies that
the projection operator changes over time as only a subset of basis functions is
used. Hence, the projection operator is nondifferentiable in time and we propose
the use of an integral formulation. The projected equations are then analyzed
with respect to existence and uniqueness of the solution. It is proven that non-
smooth projection operators introduce dissipation, a result which is crucial for
adaptive discretizations of nonlinear PDEs. Existence and uniqueness of the solu-
tion of the projected equations is likewise shown. Tools from countable systems of
ordinary differential equations (ODEs) and functional analysis in Banach spaces
are used. For related background we refer the reader to the textbooks [16, 69]
and [29].

The outline of the article is as follows. First the mathematical framework of
adaptive Galerkin schemes is defined in section 2, and the existence and unique-
ness of the projected equations is analyzed, providing an explanation to the energy
dissipation. Space and time discretizations of the Burgers and incompressible
Euler equations are described in section 3, presenting likewise wavelet denoising
and the coherent vorticity simulation method. Numerical examples in section 4
in which a single coefficient is discarded illustrate the dissipation mechanism.
Section 5 analyzes in both space and scale how numerical resonances appear and
develop in the solution of the Fourier-truncated 1D inviscid Burgers equation by
using complex-valued wavelets, which are continuously dilated and translated. It
is then shown how wavelet denoising removes those numerical resonances in the
1D inviscid Burgers equation and the 2D and 3D incompressible Euler equations.
A conclusion is drawn in section 6.

2. Adaptive Galerkin schemes. Evolutionary PDEs can be discretized
with a Galerkin method in space by projecting the equation onto a sequence of
finite-dimensional linear spaces, which approximate the solution in space when
the discretization parameter, h, goes to zero. Using truncation to a finite number
of modes, the infinite-dimensional countable system of ODEs in time can be
reduced. An important restriction of such methods is that the projection space
typically does not evolve in time and the number of modes is fixed. Here, we
propose a formulation of adaptive Galerkin discretizations where the projection
operator and the number of modes can change over time, and we show that, under
suitable conditions, adaptation can introduce dissipation.
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2.1. Galerkin projection. Let H be a Banach space, and consider the
evolution equation

(2.1) u′ = f(u),

where u′ denotes the weak time derivative of u and f is defined and continuous
from some sub-Banach space D(f) ⊂ H into H. Equation (2.1) is completed by
a suitable initial condition u(0) = u(t = 0). To be more specific, we shall focus
below on the case of the 1D Burgers equation on the torus R/Z,

(2.2) ∂tu+ u∂xu = ν∂xxu,

which corresponds to (2.1) with

(2.3) f(u) = ν∂xxu− u∂xu

and u = u(x, t).
The classical Galerkin discretization of (2.1) is defined as follows: for h > 0,

let Hh be a fixed finite-dimensional subspace of D(f), such that⋃
h>0

Hh = H,

where the adherence is taken in H, and let Ph be the orthogonal projector on
Hh. Find uh : [0, T ] ∈ Hh such that

(2.4) u′h = Phf(uh) = Ph(ν∂xxuh − uh∂xuh).

Now for t ∈ [0, T ], assume that Ph(t) is an orthogonal projector on some finite-
dimensional subspace Hh(t) of H. The dimension of Hh(t) is allowed to change in
time, but we assume thatHh(t) remains within a fixed finite-dimensional subspace
H0
h. Ph therefore takes its values in the set of orthogonal projectors H0

h → H0
h,

which we denote by Π0
h, with its natural smooth manifold structure as a closed

subset of all linear mappings H0
h → H0

h. We want to find uh : [0, T ] ∈ Hh(t),
which is an approximation of u.

2.2. Time-dependent Galerkin schemes. Let us first assume that Ph is
a smooth function of time. As in the case where Ph is time independent, we apply
Ph(t) to the differential equation to get

(2.5) Ph(t)u′h(t) = Ph(t)f(uh(t)),

but now, since Ph does not commute with the time derivative, this equation is
not sufficient to determine u′h(t) entirely. We need another equation to fix the
component of u′h(t) which is in the orthogonal of Hh(t), i.e., in H⊥h (t).

To derive this equation, we start from the condition that uh(t) ∈ Hh(t) for
every t, which is equivalent to

(2.6) Ph(t)uh(t) = uh(t).

Differentiating this identity in time leads to

(2.7) Ph(t)u′h(t) + P ′h(t)uh = u′h(t),
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or equivalently

(2.8) (1− Ph(t))u′h(t) = P ′h(t)uh(t),

which is precisely the equation we were looking for. By adding (2.5) and (2.8)
together, we obtain the definition of the adaptive Galerkin scheme:

(2.9) u′h(t) = Ph(t)f (uh(t)) + P ′h(t)uh(t).

By comparing this differential equation with (2.4), we observe the appearance
of a new term proportional to the time derivative of Ph. This is the essential
ingredient which characterizes the adaptive Galerkin scheme. We now show the
following.

Lemma 2.1. Any solution of (2.9) such that uh(0) ∈ Hh(0) also satisfies
uh(t) ∈ Hh(t) for all t, and moreover

(2.10)
1

2

d

dt
‖uh(t)‖2 = (uh(t), f(uh(t))).

Proof. By differentiating Ph(t)2 = Ph(t) and Ph(t)3 = Ph(t), respectively, we
obtain the identities

Ph(t)Ph(t)′ + Ph(t)′Ph(t) = Ph(t)′ and Ph(t)Ph(t)′Ph(t) = 0,

which imply that

(2.11)
d

dt
[(1− Ph(t))uh(t)] = 0,

and the first part follows. To prove the second part, take the inner product of
the equation with uh:

(2.12)
1

2

d

dt
‖uh(t)‖2 = (uh(t), f(uh(t))) + (uh(t), P ′h(t)uh(t)),

where the last term can be rewritten as

(Ph(t)uh(t), P ′h(t)Ph(t)uh(t)) = (uh(t), Ph(t)P ′h(t)Ph(t)uh(t)) = 0,

which proves (2.10).

2.3. Nonsmooth time-dependent Galerkin schemes. The above com-
putations are valid when Ph is differentiable. This is a severe restriction prevent-
ing us in particular from switching on and off dynamically some functions in the
basis of integration, which is the goal that we had set ourselves in the beginning,
i.e., adaptive Galerkin schemes where basis functions are selected with respect
to an adaption criterion at discrete time steps. To proceed we therefore need to
extend the definition of the scheme to nondifferentiable Ph. For this we consider
the integral formulation of (2.9), namely,

(2.13) uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

P ′h(τ)uh(τ)dτ.
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This equation can be rewritten using a Stieltjes integral with respect to Ph:

(2.14) uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ),

which we call the integral formulation of the adaptive Galerkin scheme.
This equation makes sense as soon as Ph has bounded variation (BV), which

gives it a much wider range of applicability than (2.9), allowing in particular
discontinuities in Ph. To solve such an equation we need to resort to the theory
of generalized ODEs, which we now recall.

The rigorous setting for integral equations such as (2.14) involving Stieltjes
integrals is explained in detail in the book [69]. An alternative introduction can
be found in [59]. We summarize the main consequences of the theory for our
problem in the following.

Theorem 2.2. Assume that Ph(t) : [0, T ]→ is of bounded variation and left-
continuous, that Ph(0)uh(0) = uh(0) (i.e., uh(0) ∈ Hh(0)), and that f : H0

h → H
is locally Lipschitz. Then

(i) there exists T ∗, 0 < T ∗ ≤ T , such that the integral equation

(2.15) uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ)

has a unique BV, left-continuous solution uh : [0, T ∗]→ H0
h;

(ii) this solution satisfies

(2.16) ∀t ∈ [0, T ], Ph(t)uh(t) = uh(t);

(iii) uh is continuous at any point of continuity of Ph, and more generally for
any t:

(2.17) uh(t+)− uh(t) =
[
Ph(t+)− Ph(t)

]
uh(t),

or equivalently

(2.18) uh(t+) = Ph(t+)uh(t);

(iv) the energy equation (2.10) for smooth Ph is replaced in general by

(2.19)
1

2
(‖uh(t)‖2 − ‖uh(0)‖2)

=

∫ t

0

(uh(τ), f(uh(τ)))dτ − 1

2

∑
{i|ti<t}

‖
[
(1− Ph(t+i )

]
uh(ti)‖2,

where (ti)i∈N are the points of discontinuity of Ph.

Proof. To prove part (i) of the theorem we first need to familiarize ourselves
with a few key concepts used by [69].

Definition 2.3. Let G = {x ∈ Rn | ‖x‖ ≤ c} × [0, T ], let h : [0, T ] → R be
a nondecreasing, continuous from the left function, and let ω : [0,+∞) → R a
continuous, increasing function with ω(0) = 0.



Are adaptive Galerkin schemes dissipative? 9

We will say that a function F : G → Rn belongs to the class F(G, h, ω) if
and only if

(2.20) ‖F (x, t2)− F (x, t1)‖ ≤ |h(t2)− h(t1)|

and

(2.21) ‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ ≤ ω(‖x− y‖)|h(t2)− h(t1)|

for all (x, t2), (x, t1), (y, t2), (y, t1) ∈ G.

The proof of the existence is based on the Schauder–Tichonov fixed point
theorem, using [69, p. 114, Theorem 4.2]. The uniqueness can be shown using
[69, page 122, Theorem 4.8] proving the local uniqueness property in the future,
i.e., for increasing t.

Now let us turn to (ii). The idea is to approximate Ph by a family of smooth
functions Ph,ε, ε > 0, and then to apply Lemma 2.1 to the corresponding solution
uh,ε, giving

(2.22) [1− Ph,ε(t)] uh,ε(t) = 0

and then passing to the limit. For this we need uh,ε(t)→ uh(t), which means that
the solution depends continuously on Ph (see chapter 8,“ Continuous Dependence
on Parameters” [69, p. 262]).

The continuity of uh in part (iii) follows directly from the fact that Ph is
left-continuous and BV.

The energy equation in part (iv) can be shown by integrating (2.12) in time
and replacing P ′h(t)uh(t) by [1− Ph(t)]u′h(t); cf. (2.8).

In the case when the projector Ph(t) depends on u(t), e.g., when using adap-
tive wavelet thresholding, we have

uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ),(2.23a)

Ph(t) = Φ(uh(t)),(2.23b)

where Φ is a given function depending on the projected solution uh.

Conjecture 1. Under certain conditions the system (2.23) has a unique
solution.

Proof. A possible proof of this conjecture may proceed by iteration. Let P 0
h

be the projector on the time-independent approximation space H0
h, and let u0h be

the corresponding solution of (2.23a). We then define recursively

(2.24) Pn+1
h (t) = Φ(unh(t))

and un+1
h as the solution of (2.23a) with Ph = Pn+1

h .

3. Numerical discretization applied to the inviscid Burgers and the
incompressible Euler equations. Supposing space and time separation, we
first apply a Galerkin discretization in space and obtain a finite number of ODEs.
Then explicit time discretization is applied for time integration. In addition we
present wavelet-based denoising and CVS which is founded on wavelet filtering.
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3.1. Space discretization. For space discretization in the numerical re-
sults below we use a classical Fourier pseudospectral scheme [60, 7, 63], where
the spatial derivatives are computed in spectral space, while the nonlinear term
is evaluated in physical space. For quadratic nonlinearities this avoids the com-
putation of costly convolution products in spectral space. The drawback of this
method are aliasing errors, which can be removed at the price of increasing the
number of computed modes. The spectral Fourier projection of u ∈ L1(Td) where
T = R/(2πZ) is given by

(3.1) PNu(x) = uN (x) =
∑

|k|.N/2

ûk e
ik·x , ûk =

1

(2π)d

∫
Td
u(x) e−ik·x dx.

Note that |k| . N/2 is understood in the sense −N/2 ≤ k < N/2 and corre-
spondingly in higher dimensions for each component of k.

Applying the spectral discretization to the 1D inviscid Burgers equation (d =
1),

(3.2) ∂tu+
1

2
∂xu

2 = 0 for x ∈ T and t > 0

with periodic boundary conditions and suitable initial condition u(x, t = 0) =
u0(x), yields the Galerkin scheme

(3.3) ∂tuN +
1

2
∂x
(
PN (uN )2

)
= 0 for x ∈ T and t > 0,

which corresponds to a nonlinear system of N coupled ODEs for ûk(t) with |k| .
N/2. A pseudospectral evaluation of the nonlinear term is utilized, and the
product in physical space is fully dealiased. In other words, the Fourier modes
retained in the expansion of the solution are such that |k| ≤ kC , where kC is the
desired cut-off wavenumber, but the grid has N = 3kC points in each direction,
versus N = 2kC for a nondealiased, critically sampled product. This dealiasing
makes the pseudospectral scheme equivalent to a Fourier–Galerkin scheme up to
round-off errors [60, 7, 63], and is thus conservative.

For the 2D and 3D incompressible Euler equations (d = 2, 3) with periodic
boundary conditions,

∂tu + (u · ∇)u = −∇p for x ∈ Td and t > 0,(3.4)

∇ · u = 0,

a similar spectral discretization can be applied. The pressure p is eliminated using
the Leray projection onto divergence-free vector fields. Eventually a nonlinear
system of coupled ODEs is obtained for the Fourier coefficients of the velocity
ûk(t). Similarly to the Burgers equation, the nonlinear term is evaluated with a
pseudospectral method and aliasing errors are completely removed.

3.2. Time discretization. For time discretization of the resulting ODE
systems we use classical explicit Runge–Kutta schemes, of order 4 for the 1D
Burgers equation and the 3D Euler equations. For 2D Euler, third order Runge–
Kutta with a low storage formulation is used; see [57]. For details on the con-
vergence and stability of the above spectral schemes we refer the reader to [4].
Implementation features for the 1D Burgers equation and the 2D Euler equation
can be found in [53] and [61]. For details on the scheme for 3D Euler we refer the
reader to [23].
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Fig. 1. Shannon wavelet (top) and Meyer wavelet (bottom) in physical space ψ(x) (left)

and the corresponding modulus of the Fourier transform |ψ̂(k)| (right).

3.3. Wavelet denoising and Coherent Vorticity Simulation. The Fourier
space discretization described above could be replaced by any other Galerkin dis-
cretization, using, for instance, finite elements, or wavelets as basis functions.
The interest of using wavelets is to introduce adaptive discretizations; see, e.g.,
[67, 20]. In this case the projector P is changing over time and is nonsmooth,
which means that dissipation is introduced by removing/adding basis functions
during the time stepping. This technique has been previously used for regularizing
the Burgers equation and the incompressible Euler equations without a rigorous
mathematical justification [61].

In the following we describe the orthogonal wavelet representation and test
the influence of wavelet thresholding for denoising. Therewith we introduce the
concept of pseudoadaptive simulations. The Fourier–Galerkin discretization is
still used to solve the PDE, but in each time step the numerical solution uN is
decomposed into a periodic orthogonal wavelet series of L2(Td). For d = 1 we
thus have the 1D truncated wavelet series

(3.5) PJuN (x) = uJN (x) = u00 +

J−1∑
j=0

2j−1∑
i=0

ũjiψji(x) , ũji =

∫
T
uN (x)ψji(x)dx,

where u00 is the mean value of the solution and the ũji are its wavelet coefficients.
The wavelet ψji(x) = 2j/2ψ(2jx − i) quantifies fluctuations at scale 2−j around
position i/2j and N = 2J denotes the total number of grid points, corresponding
to the finest resolution. Figure 1 illustrates Shannon and Meyer wavelets which
are not compactly supported, together with the corresponding Fourier transforms
which have compact support. This implies that both are trigonometric polyno-
mials and can be spanned by a Fourier basis. For extension to higher dimensions
using tensor product construction of wavelets, we refer the reader to [14]. From
a computational point of view the additional cost of wavelet thresholding is neg-
ligible, as the fast wavelet transform has only O(N) complexity, compared to
O(N logN) for the fast Fourier transform used in the pseudospectral schemes.
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Wavelet denoising is the basis of the coherent vorticity simulation (CVS)
method designed in 1999 to solve the Navier–Stokes equations [27, 25]. It in-
troduces a sparse representation of the solution by removing the weak wavelet
coefficients corresponding to Gaussian white noise. It is based on the idea that
Donoho and Johnstone proposed in 1994 for denoising signals corrupted with
Gaussian white noise via wavelet shrinkage [19]. Thresholding on the wavelet
coefficients with a threshold depending on the variance of the noise is performed
at each time step. This yields a projection of the numerical solution uN ,

(3.6) P εJuN (x) = uJε (x) = u00 +

J−1∑
j=0

2j−1∑
i=0

ρε (ũji)ψji(x),

where ε is the threshold and ρε is the (hard) thresholding operator defined as

(3.7) ρε(x) =

{
x for |x| > ε,
0 for |x| ≤ ε.

The thresholding error can be estimated (see, e.g., [10]), and we have

||PJuN (x)− P εJuN (x)||2 ≤ Cε .

Using pseudoadaptive simulations the CVS algorithm can be summarized as
follows [61]:

i) The Fourier coefficients of the solution ûk for |k| . N/2 are advanced in
time to t = tn+1 and an inverse Fourier transform is applied on a grid of
size N to obtain uN .

ii) A forward wavelet transform is performed to obtain PJuN (x), according
to equation (3.5).

iii) CVS filtering removes wavelet coefficients having magnitude below the
threshold ε. The threshold value is determined iteratively [1] and initial-
ized with ε0 = q

√
||u||2/2/N , where q is a compression parameter. The

iteration steps are then obtained by εs+1 = qσ[ũsji] until εs+1 = εs, where
ũsji are the wavelet coefficients below εs and σ[·] is the standard deviation
of the set of these coefficients.

iv) A safety zone is added in wavelet space to track the solution in space
and scale. The index set of retained wavelet coefficients in step (iii)
is denoted by Λ, and for each retained wavelet coefficient indexed by
(j, i) ∈ Λ, neighboring coefficients in position and scale (5 in the present
case) are added, as illustrated in Figure 2.

v) An inverse wavelet transform is applied to the wavelet coefficients above
the final threshold and a Fourier transform is then performed to obtain
the Fourier coefficients of the filtered solution at time step tn+1.

The value of the compression parameter q in the CVS algorithm (iii) controls
the number of discarded coefficients, and in previous studies [61] we found exper-
imentally the value q = 5 for Kingslets (complex-valued wavelets) and q = 8 for
orthogonal real wavelets.

Various choices of wavelet basis for regularizing the solution of the Galerkin-
truncated inviscid equations have been tested, e.g., in [61], including several or-
thogonal wavelet bases as well as the dual-tree complex wavelet basis introduced
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(j − 1, ⌊i/2⌋)
(j, i− 1) (j, i) (j, i+ 1)

(j+1, 2i) (j + 1,
2i+ 1)

Fig. 2. Safety zone in wavelet coefficient space around an active coefficient (j, i) in position
i and finer (j + 1) and coarser scale (j − 1), where bi/2c is the floor function, which yields the
integer part of its argument

.

Fig. 3. Complex wavelet basis functions (Q-shift dual-tree complex-valued wavelet trans-
form) for levels 1 to 3. Basis functions for adjacent sampling points are shown dotted. Courtesy
of N. Kingsbury.

by Kingsbury in 2001 [42], whose wavelets are called Kingslets (the code is avail-
able on GitHub; see https://github.com/rjw57/dtcwt). This discrete wavelet
transform generates complex-valued coefficients, and a dual tree of wavelet filters
is used to obtain their real and imaginary parts. Thus a redundant representation
is produced with a redundancy of 2d, where d once again denotes the dimension of
the signal. However, the transform provides approximate shift invariance and di-
rectionally selective filters. The classical properties of perfect reconstruction and

https://github.com/rjw57/dtcwt
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computational efficiency are preserved and with good well-balanced frequency re-
sponses. Analysis of the shift invariance of the transform can be found in [42],
together with an estimation of its accuracy and the design of suitable filters. An
example for quarter-sample shift (Q-shift) filters, along with the resulting wavelet
basis functions, is presented in Figure 3.

Adding a safety zone as mentioned in step (iv) above, an idea originally
introduced in [47], is necessary due to the lack of translational invariance of
orthogonal wavelets, but also for local dealiasing. The idea is to keep neighboring
coefficients in space and scale and to account for translation of shocks or steep
gradients and the generation of finer scale structures. For the complex-valued
wavelets, which are translation invariant, no safety zone is required, as shown in
[61]. For details and further discussion on possible and more efficient choices of
the safety zone we refer the reader to [55].

Finally, let us also mention an interesting link with large eddy simulations
(LES) where only the large scales of the flow are computed, while the influence
of small scales is modeled [70, 17, 46, 9]. In [68] we pointed out that there is an
equivalence between nonlinear wavelet thresholding (using Haar wavelets) and a
single step of explicitly discretized nonlinear diffusion used in LES, shown in [49]
in the context of nonlinear diffusion filtering for image processing.

4. Numerical experiments discarding one coefficient.

4.1. Numerical setup. In the following we show results to illustrate the
properties of the adaptive Galerkin scheme and in particular their ability to in-
troduce energy dissipation into the numerical method, which can be useful for
stabilization. For examples we consider first the inviscid 1D Burgers equation
using periodic boundary conditions. The initial condition is a simple sine wave
given by u(x, t = 0) = sin(2πx) for x ∈ T. Unless explicitly noted, computations
are done with N = 2048 collocation points, and the time step ∆t is chosen so
that ∆x/∆t = 16, where ∆x = 1/N is the grid discretization size. This choice
ensures the CFL condition is met [7].

4.2. Application in Fourier basis. The simplest illustration which we
develop as a proof of concept is a punctual selection in the Fourier basis. Starting
at some time instant tb and during an entire interval [tb, te], we set to zero the
Fourier coefficients corresponding to a given wavenumber kf after each time step
(both positive and negative modes are erased, such that the solution remains
real). The projection operator thus becomes time dependent and discontinuous,
and we have

(4.1) PN (t)
kf
[tb,te]

u(x) =

{ ∑
|k|.N/2,|k|6=kf ûk e

ik x for t ∈ [tb, te],∑
|k|.N/2 ûk e

ik x elsewhere.

The removal of these modes will instantly dissipate energy of the numerical so-
lution, but from there on energy is conserved. And this is still the case after the
reintroduction of the coefficients in the projection basis, despite the discontinuity
of the projection operator. Indeed, according to (2.19) dissipation is observed as
long as ‖ [1− Ph(t+)]uh(t)‖2 is nonzero, but at t = te this quantity is null and
therefore energy is conserved. We note that since a multistage time marching
scheme is employed, it is necessary to reset to zero the removed coefficients after
each substage, to ensure they have no effect on the solution.
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Fig. 4. Filtering of one mode in (a) Fourier space and (b) in wavelet space for the inviscid
1D Burgers equation. Time evolution of energy. As expected, energy loss is observed.
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Fig. 5. Difference between dissipated energy and filtered energy (equation 4.2) as a function
of the time step ∆t, when a single Fourier mode or wavelet coefficient is filtered. A residual
difference remains when Daubechies wavelets are employed.

We show in Figure 4(a) the time evolution of the energy when the filtering
wavenumber is kf = 2. The projection operator changes at tb = 0.16 and is then
restored at te = 0.2. Dissipation is introduced by this change of projection basis
and, up to numerical errors, the lost energy amounts to the energy content of the
discarded coefficients. This can be seen in Figure 5, where we plot, as a function
of the time step ∆t, the quantity

(4.2) δ = (‖uN (0)‖2 − ‖uN (tb)‖2)−
∥∥∥(1− PN (t+b )

kf
[tb,te]

)
uN (tb)

∥∥∥2 ,
which should be zero according to (2.19), since the PDE is energy conserving up
to time tb. One observes that δ indeed converges to zero up to machine precision
(of order 10−15) as ∆t is decreased. Here, it is interesting to mention that the
method developed in [50] employs a punctual periodic filtering in Fourier space
to regularize solutions of the inviscid Burgers equation, so the above discussion
formalizes the dissipation step used there.

4.3. Application in wavelet basis. To illustrate dissipation through re-
projection on a wavelet basis, we extend the previous idea of a punctual selection
now to wavelet space. The solution of the Fourier–Galerkin method is decom-
posed in each time step into a real-valued orthogonal wavelet basis, as in (3.5).
One single energy containing coefficient, of scale index jf and position index if ,
is then set to zero after every time step during some given time interval [tb, te].
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The projection operator is once again time dependent and discontinuous and may
be written as
(4.3)

PJ(t)
jf ,if
[tb,te]

u(x) =

{
u00 +

∑J−1
j=0

∑2j−1
i=0 ũjiψji(x)(1− δjjf δiif ) for t ∈ [tb, te],

u00 +
∑J−1
j=0

∑2j−1
i=0 ũjiψji(x) elsewhere

for a chosen orthogonal wavelet ψji(x).
We show in Figure 4(b) the energy time evolution for the case of projections

in the Meyer wavelet basis. The filtered coefficient corresponds to jf = 1 and
if = 1. As before, the filtering happens from time tb = 0.16 to te = 0.2. Energy
is punctually dissipated as of the first change in the projector, but is otherwise
conserved. Figure 5 also shows the convergence of the quantity δ from (4.2),
now with the projector replaced by (4.3). Similar results are also obtained with
projections onto a Shannon wavelet basis.

Interestingly, the same convergence is not observed in Figure 5 when Daubechies
wavelets are used. As illustrated in Figure 1, working with Shannon wavelets is
actually equivalent to working with the Fourier basis, since it is compactly sup-
ported in spectral space, with a sharp cut-off. Combining multiscale Shannon
wavelets amounts to covering the spectral space up to some Galerkin cut-off fre-
quency. When projecting with this basis, one is simply damping some existing
Fourier coefficients without introducing new wavenumbers. Hence, when going
back to the fully dealiased Fourier space, no further energy is lost. The Meyer
wavelet is likewise compactly supported in spectral space; however the projection
onto Meyer wavelets is only equivalent to a Fourier projection when the number of
Fourier modes is increased from N to 3/2N , which is the case when dealiasing is
applied. Therefore, in both cases the dissipated energy indeed corresponds to the
energy lost due to the discontinuity of the projection operator. The Daubechies
wavelet, on the other hand, is not compactly supported in spectral space. When
a projection is made in wavelet space and some coefficient is discarded, this will
affect wavenumbers beyond the dealiased ones, which then cease to vanish. After
returning to Fourier space, the dealiasing operation will set all these to zero and
further energy dissipation occurs. For this reason, the quantity δ shows a residual
value as the time step decreases and does not attain machine precision, as seen
in Figure 5. In this simulation, Daubechies 12 wavelets were employed and the
projector corresponds to (4.3) with jf = 0 and if = 0. Note that the indices are
chosen so that the amount of dissipated energy is comparable in all cases.

This additional energy dissipation can once again be understood as being due
to a change in the projector, i.e., going from the wavelet projector removing one
coefficient, given in (4.3), to the Fourier projector given in (3.1). In other words,
it is the fact that these two projectors do not commute when Daubechies wavelets
are used (or any other basis not compactly supported in Fourier space, i.e., within
the fully dealiased spectral space) which leads to more dissipation than that
introduced by the filtering. This shows that pseudoadaptive simulations, such as
those discussed in section 3, must be taken with care, since they may not exactly
reproduce what one would get with a fully adaptive scheme in wavelet space.
Still, they are valuable tools to predict the solutions behavior in a simpler and
faster setup, and we shall apply them to illustrate the introduction of dissipation
in conservation laws through an adaptive Galerkin scheme.
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5. Application of wavelets to the inviscid Burgers and incompress-
ible Euler equations. In the following section we present in a concise way
some results from the literature to illustrate the dissipation properties of adap-
tive Galerkin methods using CVS denoising. We show some numerical examples
for the 1D inviscid Burgers equation, including continuous wavelet analysis and
some space-time convergence, and for the incompressible Euler equations in two
and three dimensions. For details on the numerical simulations we refer the reader
to [61] and [23].

5.1. Continuous wavelet analysis of inviscid 1D Burgers equation.
To gain some insight into the formation of the resonance, we perform a continu-
ous wavelet analysis of the Galerkin truncated solutions to the inviscid Burgers
equation, as done in [61]. The wavelet representation unfolds the solution in
both space and scale in a continuous fashion. It thus allows us to visualize at
which wavenumbers and positions the resonances are generated and subsequently
propagated.

The continuous wavelet coefficients of the Galerkin-truncated inviscid Burg-
ers equation are calculated as the inner products of the velocity u(x, t) at a given
instant t with a set of wavelet functions ψ`,x(x) of scales ` centered around posi-
tions x, i.e.,

(5.1) ũ`,x(t) =

∫ 2π

0

u(x′, t)ψ?`,x(x′) dx′,

where

ψ`,x(x′) =
1√
`
ψ

(
x′ − x
`

)
and ψ(x) = Ce−x

2/α2

(eiπx − eπ2α2/4), with α = 4, C a normalization factor, and
·? denoting the complex conjugate. This mother wavelet, which is the complex-
valued Morlet wavelet [37], has excellent analysis properties [22, 26]. The results,
presented in Figure 6, show the logarithm of the modulus of wavelet coefficients
at different positions x and scales ` (represented by the equivalent wavenumbers

k =
kψ
` , kψ being the centroid wavenumber of the chosen wavelet [22]). The

horizontal black line indicates the Galerkin-truncation frequency, and the velocity
fields themselves are also shown at the top of each figure for convenience.

Figures 6(a) and 6(b) show, respectively, a harmonic initial condition, here
u0(x) = sin(2πx)+sin(4πx+0.9)+sin(6πx), and how the precursors of the shocks
develop. The solution is computed with a truncated Fourier–Galerkin method,
described in section 3 using N = 8192 modes. Figure 6(c) shows the solution
when the first preshock reaches the cut-off scale and becomes a shock, i.e., when
nonnegligible energy reaches the scale indicated by the horizontal black line. We
observe that the first numerical resonances appear immediately after that and
then spread all over space. Note the small time interval between Figures 6(c)
and 6(d). Figure 6(e) shows the formation of the bulges around the resonant
locations. They stretch until they reach the Galerkin scale and then generate more
truncation waves, as shown in Figure 6(f). After that, perturbations at all scales
start to spread throughout the solution and even more so when the second shock is
formed, as in Fig. 6(g). For much longer time the Burgers solution then becomes
very noisy, (Figure 6(h)), on its way towards energy equipartition. Corresponding
movies showing the time evolution of the solution and the corresponding wavelet
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Fig. 6. Plots of the log10 of the moduli of the continuous wavelet coefficients ũ`,x(t) of
the Galerkin-truncated solution at times (a) t = 0, (b) t = 0.02749, (c) t = 0.03505, (d)
t = 0.03538, (e) t = 0.03648, (f) t = 0.03998, (g) t = 0.05897, and (h) t = 0.19989. Each
plot shows the solution on the top and below the log10 of the modulus of the corresponding
continuous wavelet coefficients. The corresponding wavenumber spectrum is plotted vertically
on the left. Note that the initial condition here is u0(x) = sin(2πx) + sin(4πx+ 0.9) + sin(6πx).
Figure reprinted from [61] with permission from the American Physical Society.

coefficients can be found online∗.

∗Videos with the time evolution of the continuous wavelet coefficients can be found at
http://www.youtube.com/watch?v=WX2YIHGR7LA and http://www.youtube.com/watch?
v=j4VfBGgSy30

http://www.youtube.com/watch?v=WX2YIHGR7LA
http://www.youtube.com/watch?v=j4VfBGgSy30
http://www.youtube.com/watch?v=j4VfBGgSy30
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Fig. 7. CVS denoised Galerkin truncated inviscid Burgers equation using complex-valued
wavelets (Kingslets, in black) together with the non-dissipative Galerkin truncated solution
(blue) at times t = 0.1644, 0.1793 and 0.3. The solutions are periodically shifted to the right,
so that both the resonances and the shocks can be easily seen.

5.2. Discrete wavelet filtering of inviscid 1D Burgers equation. We
consider the inviscid Burgers equation (3.2), discretized with a Fourier pseu-
dospectral method and endowed with CVS filtering, described in section 3, using
N = 16384 Fourier modes. For the used sinusoidal initial condition u(x, t =
0) = sin(2πt) the time evolution of the reference solution, the so-called entropy
solution, can be easily computed with the method of characteristics, separately
in each half of the domain. Figure 7 shows the solution of the standard Fourier–
Galerkin method, which preserves energy, and the solution obtained with the
dynamic Galerkin scheme using CVS filtering with ‘Kingslets’. We observe that
the oscillations (also called resonances; see [65]), which appear as soon as the
shock is formed, are removed using CVS denoising. This is further confirmed in
Figure 9 (left), where the oscillations are shown to be completely filtered out and
a smooth solution close to the reference solution is obtained.

To assess the filtering performance, we develop a space-time convergence
analysis by computing the time integrated relative L2-distance from the denoised
solution uN to the analytical reference solution uref . We compute

(5.2) E =

∫ t1

t0

‖uN (t)− uref(t)‖2

‖uref(t)‖2
dt

for different space resolutions while keeping fixed the previous relation between
time and space discretization, that is, ∆x/∆t = 16. Since the filtering is only
relevant after the shock formation, we actually start the analysis from a time
right before the shock time ts = infx [−1/u′(x, 0)] ≈ 0.1592, i.e., t0 = ts − ∆t,
and carry on the integration up to t1 = 0.3. Results for complex-valued Kingslets
and real-valued Shannon wavelets with and without the safety zone discussed in
section 3 are shown in Figure 8. We can observe that CVS with Kingslets is in
excellent agreement with the reference solution, showing an O(∆x) convergence
rate. Although typically one order of magnitude poorer (an underperformance
that we now quantify but which has only been visually verified in [61]), CVS with
Shannon wavelets also shows first order convergence towards the reference solu-
tion if the safety zone is present. We note that this is the same convergence rate
observed with the periodic Fourier filtering of [50]. In comparison to this method,
CVS has the disadvantage of being less simply implemented, but offers the at-
tractive feature of compression, with only a very reduced number of degrees of
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Fig. 8. Time integrated relative L2-error (equation 5.2) as a function of space resolution
∆x. (a) Kingslets. (b) Shannon wavelet with the safety zone. (c) Shannon wavelet without the
safety zone. The straight lines have slope 1.

Fig. 9. (a) Detail of the solution of CVS-denoised Galerkin truncated inviscid Burgers
equation using complex-valued wavelets (Kingslets, in black) together with the nondissipative
Galerkin truncated solution (blue) at time t = 0.1644. Right: Time evolution of the energy
E(t) of CVS filtered solutions for different wavelets with and without safety zone together with
the analytical result.

freedom being necessary to reproduce the physical reference solution. Meanwhile,
as anticipated in section 3, Figure 8(c) shows that CVS is not able to properly
regularize the solution when employing real orthogonal wavelets if a safety zone
is not introduced.

The evolution of the energy E = 1
2 ||u||

2 shown in Figure 9 (right) further
quantifies the dissipation of the adaptive schemes for different real orthogonal
wavelets. Once again, in the presence of the safety zone the wavelet adaptation
removes sufficient energy, matching thus the analytical energy evolution. How-
ever, it is now seen that without the safety zone not enough energy is dissipated
and the solution is not properly regularized. For a detailed description of similar
simulations and a physical interpretation we refer the reader to [61].

5.3. Discrete wavelet denoising of incompressible 2D Euler equa-
tion. To illustrate the effect of dissipation when adapting the basis functions
using projectors changing over time we consider the incompressible Euler equa-
tions given in (3.4) and discretize them with a classical Fourier–Galerkin scheme.
In these pseudoadaptive simulations we apply in each time step CVS denoising.
Detailed results can be found in [61] and [23] for the 2D and 2D cases, respectively.

In the 2D case a random initial condition is evolved in time with third order
Runge–Kutta time integration using a resolution of N = 10242 Fourier modes
[61]. Visualizations of the Laplacian of the vorticity field ω = ∇× u in the fully
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Fig. 10. Filtering of 2D incompressible Euler using complex-valued wavelets (Kingslets).
Left: Contours of the Laplacian of vorticity ∇2ω at t = 0.71. The Galerkin truncated solution
is shown in gray, and the CVS solution is given in black. Right: 1D cut of the Laplacian of
vorticity for the oscillatory Galerkin truncated solution and the wavelet-filtered smooth solution.
Figure reprinted from [61] with permission from the American Physical Society.

Fig. 11. Filtering of 2D incompressible Euler using complex-valued wavelets (Kingslets).
Evolution of enstrophy 1/2||ω||22 for the Galerkin truncated case and the adaptive wavelet de-
noised case using Kingslets. Figure reprinted from [61] with permission from the American
Physical Society.

developed nonlinear regime are shown in Figure 10 (left). For the Galerkin trun-
cated solution we find numerical resonances on the isolines of ∇2ω = (∂xx+∂yy)ω
(a small scale quantity, which is sensitive to oscillations), while the regularized so-
lution using complex-valued wavelets with CVS filtering yields a smooth solution.
A 1D cut in Figure 10 (right) illustrates that in the CVS solution the oscillations
have been indeed removed. Time evolution of enstrophy, defined as 1

2 ||ω||
2
2, shows

that in contrast to the Galerkin truncated simulation, the CVS computation is
dissipative, with enstrophy departing from the one of the conservative Galerkin
truncated case and decaying for times larger than 1.4. For more details including
a physical interpretation we refer the reader to [61].

5.4. Discrete wavelet denoising of incompressible 3D Euler equa-
tion. The three-dimensional Fourier–Galerkin computations of incompressible
Euler have been performed at resolution N = 5123 in a periodic cubic domain
with a fourth order Runge–Kutta scheme for time integration [23]. A statistically
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Fig. 12. Energy (left) and enstrophy (right) evolution for 3D incompressible Euler using
for Galerkin-truncated Euler (Euler), wavelet denoised Euler (CVS), and Navier-Stokes (NS).
HV and EV stand for hyperviscous regularization and Euler–Voigt, respectively, which are not
discussed here. Figure reprinted from [23] with permission from the American Physical Society.

Fig. 13. Vorticity isosurfaces, |ω| = M + 4σ (where M is the mean value and σ the
standard deviation of the modulus of vorticity of Navier–Stokes) for 3D incompressible Euler
using Galerkin-truncated Euler (Euler, left), wavelet filtered Euler (CVS, center) and Navier–
Stokes (NS, right) at time t/τ = 3.4, where τ is the initial eddy turn over time. Figure reprinted
from [23] with permission from the American Physical Society.

stationary flow of fully developed homogeneous isotropic turbulence obtained by
DNS is used as initial condition. For CVS filtering, Coiflet 12 wavelets [14] were
used. Note that the wavelet decomposition and subsequent filtering have been
applied to the vorticity ω = ∇ × u (and not to the velocity u) in each time
step, and subsequently the filtered velocity has been computed by applying the
Biot–Savart operator (∇×)−1 in Fourier space.

The time evolution of the energy, 1
2 ||u||

2
2, and enstrophy, 1

2 ||ω||
2
2, in Figure

12 first shows that the Galerkin-truncated Euler computation preserves energy
and that enstrophy grows rapidly in time due to the absence of regularization.
For CVS we can observe that energy is dissipated, similar to what is observed
for Navier–Stokes and that enstrophy also exhibits a similar evolution to that as
Navier–Stokes and does not grow rapidly.

Visualizations of intense vorticity structures in Figure 13 for CVS and Navier–
Stokes show their similar tube-like character, while the Galerkin truncated Euler
solution is similar to Gaussian white noise without the presence of coherent struc-
tures. For details including a physical interpretation of the results we refer the
reader to [23].
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6. Conclusion. We presented a mathematical framework for analyzing adap-
tive Galerkin discretizations of evolutionary PDEs. The concept of weak formu-
lations of countable ODEs with nonsmooth right-hand side in Banach spaces was
used. We showed that changing the set of active basis functions, which implies
that the projection operator is nondifferentiable in time, can introduce energy
dissipation. This feature is of crucial interest when using adaptive schemes for
time-dependent equations and yields a mathematical explanation for their reg-
ularizing properties due to dissipation. Existence and uniqueness of the weak
formulation of the adaptive Galerkin solution were likewise proven.

Numerical experiments illustrated the above results for the inviscid Burgers
equation in one dimension and the incompressible Euler equations in two and
three space dimensions. To this end we performed simulations with the classical
Fourier–Galerkin discretization and tested the influence of wavelet thresholding
for denoising, comparing different choices of wavelets. The results showed that
adaptive wavelet-based regularization (i.e., filtering out the weak wavelet coef-
ficients) of Galerkin schemes introduce dissipation. The latter can be used for
reducing the computational cost in fully adaptive computations. Moreover, for
the 1D Burgers equation we showed convergence towards the entropy solution.
For the 2D and 3D Euler equations we found that numerical resonances present in
the Galerkin-truncated case are removed and energy is dissipated. However, for
2D and 3D Euler in general no exact reference solutions are available and further
analyses are necessary, which are left for future work.

The main perspective of this work is the further study of adaptive Galerkin
discretization, in particular wavelet-based schemes, with possible applications to
the understanding of turbulent flows and nonlinear hyperbolic conservation laws.

Acknowledgment. The authors would like to thank Greg Hammett for a
discussion which strongly motivated this work.
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