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Abstract

A general a posteriori error analysis applies to five lowest-order finite element methods for two
fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal
smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear
term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von
Kármán equations. This enables the first efficient and reliable a posteriori error estimates for the 2D
Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous
Galerkin, 𝐶0 interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.
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1 Introduction
This paper discusses an abstract a posteriori error analysis for fourth-order semilinear problems and
its applications to the incompressible 2D Navier-Stokes equations and the von Kármán equations. The
continuous problem in this paper seeks a regular root 𝑢 in a Banach space 𝑋 to 𝑁 ∈ 𝐶1(𝑋;𝑌 ∗) for

𝑁 (𝑥) := 𝑎(𝑥, •) + Γ(𝑥, 𝑥, •) − 𝐹 for 𝑥 ∈ 𝑋. (1.1)

The bilinear form 𝑎(•, •) in (1.1) corresponds to a weak form of the biharmonic operator, the trilinear
form Γ(•, •, •) represents a quadratic nonlinearity, and 𝐹 is the general source term in𝑌 ∗; for instance,
for the 2D Navier-Stokes equations in the stream-function vorticity formulation and for the von Kármán
plates. The nonconforming discretization of (1.1) with a piecewise application of the differential
operators in the weak forms for Morley finite element functions [9] allows for a priori convergence
results. But their a posteriori error analysis so far was not satisfactory for the stream-function vorticity
formulation of the incompressible 2D Navier-Stokes equations [9, 22]: the efficiency analysis is
excluded in [9] and merely partial in [22, Remark 4.11]. For the (generalised) Morley interpolation
operator 𝐼M, the companion operator 𝐽 [7, 11, 13], the smoother 𝐽ℎ = 𝐽𝐼M = 𝑆 = 𝑄, the choice
𝑅 ∈ {id, 𝐼M, 𝐽 𝐼M}, the discrete problem [12] seeks an approximation 𝑢ℎ to a regular root 𝑢 to (1.1) in
a finite-dimensional space 𝑋ℎ as a root of

𝑁ℎ (𝑢ℎ) := 𝑎ℎ (𝑢ℎ, •) + Γpw(𝑅𝑢ℎ, 𝑅𝑢ℎ, 𝑆•) − 𝐹ℎ . (1.2)

∗Department of Mathematics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany. Distinguished Visiting Professor,
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. cc@math.hu-berlin.de

†Department of Mathematics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany. graesslb@math.hu-berlin.de
‡Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, In-

dia. neela@math.iitb.ac.in

1

ar
X

iv
:2

30
9.

08
42

7v
1 

 [
m

at
h.

N
A

] 
 1

5 
Se

p 
20

23
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The bilinear form 𝑎ℎ (•, •) discretizes 𝑎(•, •), for instance, with Morley [4, 5, 16], discontinuous
Galerkin (dG) [8, 17, 18], 𝐶0 interior penalty (IP) [2, 3], and WOPSIP [1] schemes; the trilinear form
Γpw(•, •, •) discretizes Γ(•, •, •) by the piecewise action of the differential operators, 𝐹ℎ = 𝐹 ◦ 𝑄
approximates 𝐹, and 𝑅, 𝑆 denote quasi-optimal smoothers in the spirit of [7, 11, 12, 27–29]. The
innovative point in (1.2) is the application of smoothers 𝑅 and 𝑆 in the nonlinearityΓpw(𝑅𝑢ℎ, 𝑅𝑢ℎ, 𝑆𝑦ℎ).
The prequel [12] establishes an a priori analysis of this class of lowest-order finite element methods
and a source term 𝐹 ∈ 𝑌 ∗ with the first best-approximation result for 𝑆 = 𝑄 = 𝐽ℎ, namely

∥𝑢 − 𝑢ℎ∥𝑋 ≤ 𝐶qo min
𝑥ℎ∈𝑋ℎ

∥𝑢 − 𝑥ℎ∥𝑋 . (QO)

Here and throughout this paper, the Banach spaces (𝑋ℎ, ∥ • ∥𝑋ℎ
) and (𝑋, ∥ • ∥𝑋) are contained in

a common superspace (𝑋, ∥ • ∥
𝑋
) with a norm ∥ • ∥

𝑋
that extends ∥ • ∥𝑋ℎ

= (∥ • ∥
𝑋
) |𝑋ℎ

and
∥ • ∥𝑋 = (∥ • ∥

𝑋
) |𝑋. This paper presents the first reliable and efficient a posteriori error analysis for

those schemes and includes the first reliable and efficient a posteriori estimates for the lowest-order
finite element schemes for the 2D Navier-Stokes equation in the stream-function vorticity formulation.

Section 2 introduces an abstract framework of an a posteriori error control in Banach spaces 𝑋 and 𝑌
as in (1.1)-(1.2) that applies below to five second-order schemes, namely the Morley, two dG, 𝐶0IP,
and WOPSIP. The outcome allows for rough source terms 𝐹 ∈ 𝑌 ∗ and provides reliable and efficient
error control by the sum of three contributions. Given an approximation 𝑣ℎ ∈ 𝑋ℎ to a local discrete
solution 𝑢ℎ ∈ 𝑋ℎ to 𝑁ℎ (𝑢ℎ) = 0 for (1.2) near an exact regular root 𝑢 ∈ 𝑋 to (1.1), there is an algebraic
error ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

and an inconsistency error ∥𝑣ℎ − 𝐽𝑣ℎ∥𝑋 plus some intermediate residual 𝜌(𝑀).
Theorem 2.1 provides the equivalence of the error ∥𝑢 − 𝑣ℎ∥𝑋 to

𝜌(𝑀) + (1 + 𝑀)∥𝑣ℎ − 𝐽𝑣ℎ∥𝑋 + 𝑀 ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

for any parameter 𝑀 ≥ 0. The underlying assumptions are phrased in a fairly general non-symmetric
setting for rather general trilinear forms Γ resp. Γpw, and involve smallness assumptions on ∥𝑢−𝑢ℎ∥𝑋 ≤
𝜀 and ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤ 𝜚 that are guaranteed in the two applications to the stream-function vorticity
formulation of the incompressible 2D Navier-Stokes and the von Kármán equations [12]. The provided
a posteriori error analysis is generic and allows generalisations to other semilinear equations in future
work.

Section 3 concerns the particular situation with 𝑉 = 𝑋 = 𝑌 = 𝐻2
0 (Ω) and 𝑉ℎ = 𝑋ℎ = 𝑌ℎ ⊆ 𝑃2(T ) for

some triangulation T and a discrete norm ∥ • ∥ℎ in 𝐻2(T ). The arbitrary parameter 𝑀 in Theorem 2.1
becomes an upper bound of an interpolation operator 𝐼ℎ : 𝑉 → 𝑉ℎ for the equivalence of 𝜌(𝑀) to
an explicit residual-based a posteriori error estimator 𝜂(T ) + 𝜇(T ) up to oscillations osc𝑘 (𝐹,T).
The abstract parts of this paper in Section 2 concludes with some remarks on the algebraic error
∥𝑢ℎ − 𝑣ℎ∥𝑉ℎ

in the context of the Newton-Kantorovich theorem and Section 3 illustrates the generality
of the abstract results in Subsection 2.5.3. In fact, given any approximation 𝑣 to the regular root 𝑢
of (1.1), that is a piecewise smooth function with respect to a triangulation T with 𝑉ℎ ⊂ 𝑃2(T ),
the general Morley interpolation 𝐼M and an adoption to 𝑉ℎ (in case of 𝐶0IP) leads to a postprocessed
𝑣ℎ ∈ 𝑉ℎ that is close to 𝑢. If ∥𝑢 − 𝑣ℎ∥𝑉 is sufficiently small, then (1.2) with 𝑄 = 𝑆 = 𝐽𝐼M provides
a reference scheme such that Theorem 2.1 and 3.1 provide a reliable and efficient estimate for 𝑢 − 𝑣ℎ
(cf. Subsection 2.5.2 for details). Thus the a posteriori error analysis in this paper covers many more
examples beyond the mandatory inexact solve in (1.2) or the computation of the discrete solution by a
related scheme (e.g., without smoother for 𝑅 = 𝑆 = 𝑄 = id in (1.2)).
The application to the stream-function vorticity formulation of the incompressible 2D Navier-Stokes
in Section 4 enables the first explicit reliable and efficient residual-based a posteriori error estimates
in this context and overcomes the gaps in [9, 22]. The application to the von Kármán equations in
Section 5 also considers single forces in the source terms. Section 6 presents the first numerical
comparisons of the quadratic schemes and confirms the a priori equivalence results in [12]. The
associated adaptive mesh-refining recovers the optimal convergence rates.
Standard notation on Lebesgue and Sobolev spaces, their norms, and 𝐿2 scalar products applies
throughout this paper; ∥ • ∥ abbreviates the operator norm of a linear operator. The Hilbert space
𝑉 := 𝐻2

0 (Ω) is endowed with the energy scalar product 𝑎(•, •) that induces the 𝐻2 seminorm ||| • ||| :=
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| • |𝐻2 (Ω) ; the induced dual linear operator norm in 𝐻−2(Ω) is denoted by ||| • |||∗ in the later sections.
In the sequel, the notation 𝐴 ≲ 𝐵 abbreviates 𝐴 ≤ 𝐶𝐵 for some positive generic constant 𝐶, which
exclusively depends on the shape-regularity of the underlying triangulation T (i.e., on 0 < 𝜔0 ≤ <) 𝑇),
𝐴 ≈ 𝐵 abbreviates 𝐴 ≲ 𝐵 ≲ 𝐴.

2 Abstract a posteriori error analysis
The a posteriori error analysis concerns some approximation 𝑣ℎ ∈ 𝑋ℎ in some discrete nonconforming
space 𝑋ℎ ⊄ 𝑋 to a regular root 𝑢 of the continuous problem (1.1). The known approximation could
result from an inexact solve of the discrete problem (1.2) with local solution 𝑢ℎ ∈ 𝑋ℎ; hence 𝑢ℎ and
𝑣ℎ are different in general and the main interest is on the distance of 𝑢 and 𝑣ℎ. The abstract results of
this section also apply to semilinear second-order problems in future work.

2.1 Discretisation
Let 𝑋 (resp. 𝑌 ) be a real Banach space with norm ∥ • ∥

𝑋
(resp. ∥ • ∥

𝑌
) and suppose 𝑋 and 𝑋ℎ (resp.

𝑌 and 𝑌ℎ) are two complete linear subspaces of 𝑋 (resp. 𝑌 ) with inherited norms ∥ • ∥𝑋 :=
(∥ • ∥

𝑋

) |𝑋
and ∥ • ∥𝑋ℎ

:=
(∥ • ∥

𝑋

) |𝑋ℎ
(resp. ∥ • ∥𝑌 :=

(∥ • ∥
𝑌

) |𝑌 and ∥ • ∥𝑌ℎ :=
(∥ • ∥

𝑌

) |𝑌ℎ ); 𝑋 + 𝑋ℎ ⊆ 𝑋 and
𝑌 + 𝑌ℎ ⊆ 𝑌 . Let the bounded linear operator 𝐴 ∈ 𝐿 (𝑋;𝑌 ∗) be associated to the bilinear form 𝑎 and
suppose 𝐴 is invertible and, in particular, satisfies

0 < 𝛼 := inf
𝑥∈𝑋

∥𝑥 ∥𝑋=1

sup
𝑦∈𝑌

∥𝑦 ∥𝑌=1

𝑎(𝑥, 𝑦). (2.1)

Let Γpw : 𝑋 × 𝑋 × 𝑌 → R denote a bounded trilinear form that extends Γ = Γpw |𝑋×𝑋×𝑌 such that

∥Γpw∥ := ∥Γpw∥𝑋×𝑋×𝑌 := sup
�̂�∈𝑋

∥ �̂� ∥
𝑋
=1

sup
𝜉 ∈𝑋

∥ 𝜉 ∥
𝑋
=1

sup
�̂�∈𝑌

∥ �̂� ∥
𝑌
=1

Γpw(�̂�, 𝜉, �̂�) < ∞ and set ∥Γ∥ := ∥Γ∥𝑋×𝑋×𝑌 .

Define the quadratic function 𝑁 : 𝑋 → 𝑌 ∗ by (1.1). A vector 𝑢 ∈ 𝑋 is called a regular root of (1.1),
if 𝑢 solves 𝑁 (𝑢) = 0 and the Frechét derivative 𝐷𝑁 (𝑢) is a bijection and, in particular, fulfils

0 < 𝛽 := inf
𝑥∈𝑋

∥𝑥 ∥𝑋=1

sup
𝑦∈𝑌

∥𝑦 ∥𝑌=1

(
𝑎(𝑥, 𝑦) + Γ(𝑢, 𝑥, 𝑦) + Γ(𝑥, 𝑢, 𝑦)

)
. (2.2)

Suppose that the bounded bilinear form 𝑎ℎ : 𝑋ℎ × 𝑌ℎ → R suffices the discrete inf-sup condition

0 < 𝛼ℎ := inf
𝑥ℎ∈𝑋ℎ

∥𝑥ℎ ∥𝑋ℎ
=1

sup
𝑦∈𝑌ℎ

∥𝑦ℎ ∥𝑌ℎ=1

𝑎ℎ (𝑥ℎ, 𝑦ℎ) (2.3)

for some constant 𝛼ℎ. The quasi-optimal smoothers are linear and bounded operators 𝑃 ∈ 𝐿 (𝑋ℎ; 𝑋),
𝑄 ∈ 𝐿 (𝑌ℎ;𝑌 ), 𝑅 ∈ 𝐿 (𝑋ℎ; 𝑋), 𝑆 ∈ 𝐿 (𝑌ℎ;𝑌 ) with respective operator norms ∥𝑃∥, ∥𝑄∥, ∥𝑅∥, and ∥𝑆∥
such that, for all 𝑥ℎ ∈ 𝑋ℎ, 𝑥 ∈ 𝑋, 𝑦ℎ ∈ 𝑌ℎ, and 𝑦 ∈ 𝑌 ,

∥(1 − 𝑃)𝑥ℎ∥𝑋 ≤ ΛP∥𝑥 − 𝑥ℎ∥𝑋, (2.4)
∥(1 −𝑄)𝑦ℎ∥𝑌 ≤ ΛQ∥𝑦 − 𝑦ℎ∥𝑌 , (2.5)
∥(1 − 𝑅)𝑥ℎ∥𝑋 ≤ ΛR∥𝑥 − 𝑥ℎ∥𝑋, (2.6)
∥(1 − 𝑆)𝑦ℎ∥𝑌 ≤ ΛS∥𝑦 − 𝑦ℎ∥𝑌 (2.7)

hold with constants ΛP,ΛQ,ΛR,ΛS ≥ 0. Suppose there exists ΛC > 0 such that

𝑎(𝑃𝑥ℎ, 𝑄𝑦ℎ) − 𝑎ℎ (𝑥ℎ, 𝑦ℎ) ≤ ΛC∥𝑥ℎ − 𝑃𝑥ℎ∥𝑋∥𝑦ℎ∥𝑌ℎ (2.8)

holds for all (𝑥ℎ, 𝑦ℎ) ∈ 𝑋ℎ × 𝑌ℎ. While (2.3) is stability, (2.8) is consistency introduced in [11] for
linear problems. Let the quadratic function 𝑁ℎ : 𝑋ℎ → 𝑌 ∗

ℎ
be defined by (1.2). The local conditions

on the roots 𝑢, 𝑢ℎ, and their approximation 𝑣ℎ are summarised as follows.



2 ABSTRACT A POSTERIORI ERROR ANALYSIS 4

(L) Let 𝑢 ∈ 𝑋 denote a regular root of (1.1) for a given source term 𝐹 ∈ 𝑌 ∗ and let there exist
𝜀, 𝜚 > 0 and 0 < 𝜅 < 1 such that

(L1) 𝑁ℎ (𝑢ℎ) = 0 holds for exactly one solution 𝑢ℎ ∈ 𝑋ℎ with ∥𝑢 − 𝑢ℎ∥𝑋 ≤ 𝜀,
(L2) 𝑣ℎ ∈ 𝑋ℎ satisfies ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤ 𝜚,
(L3) 𝜀 + 𝜚 ≤ 𝜅𝛽/((1 + ΛP)∥Γ∥).

The point is that the recent paper [12] provides affirmative examples for all those conditions (2.1)-(2.8),
(L1)-(L3), and (QO) with constants that are independent of some discretisation parameter ℎ, provided
the discretization is sufficiently fine.

2.2 Abstract a posteriori analysis
This section presents an abstract reliability and efficiency result. The abstract a posteriori error control
has three contributions. The first one is an intermediate residual

𝜌(𝑀) := sup
𝑦∈𝑌

∥𝑦 ∥𝑌 ≤1

inf
𝑦ℎ ∈𝑌ℎ∥𝑦ℎ ∥𝑌ℎ ≤𝑀

(
𝐹 (𝑦 −𝑄𝑦ℎ) − 𝑎(𝑃𝑣ℎ, 𝑦 −𝑄𝑦ℎ) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦 − 𝑆𝑦ℎ)

)
(2.9)

for some parameter 𝑀 ≥ 0. The role of 𝑀 will be clarified in Section 3 below. At this point it suffices
to observe that 𝑦ℎ may be some discrete object such that 𝑄𝑦ℎ and 𝑆𝑦ℎ approximate 𝑦 and we expect
∥𝑦ℎ∥𝑌ℎ ≤ 𝑀 ∥𝑦∥𝑌 ≤ 𝑀 is bounded. Notice that 𝜌 is monotone decreasing and 𝜌(0) ≥ 𝜌(𝑀). The
second contribution is a consistency term ∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 (computable from 𝑣ℎ ∈ 𝑋ℎ and the quasi-
optimal smoother 𝑃) with (2.4) and throughout serves as an efficient a posteriori term [7]. The third
term ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤ 𝜚 is the algebraic error (e.g., from an inexact solve) and is briefly discussed in
Subsection 2.5.3.

Theorem 2.1 (abstract reliability and efficiency). (a) Suppose (L1)–(L3), (2.4)-(2.6), (2.8), and
𝑀 ≥ 0. Then

∥𝑢 − 𝑣ℎ∥𝑋 ≤ 𝐶rel

(
𝜌(𝑀) + (1 + 𝑀)∥(1 − 𝑃)𝑣ℎ∥𝑋 + 𝑀 ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

)
. (2.10)

The constant 𝐶rel exclusively depends on 𝛽, (1 − 𝜅)−1,ΛC,ΛP, ΛR, ∥𝑎ℎ∥, ∥Γ∥, ∥Γpw∥, ∥𝑆∥, and ∥𝑢∥𝑋.

(b) Suppose (L1)–(L2) and (QO). Then 𝜌(𝑀) ≤ 𝜌(0) and

𝜌(0) + ∥(1 − 𝑃)𝑣ℎ∥𝑋 + ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
≤ 𝐶eff ∥𝑢 − 𝑣ℎ∥𝑋 . (2.11)

The constant 𝐶eff exclusively depends on 𝛽, (1 − 𝜅)−1,ΛC,ΛP,ΛR, ∥𝑎ℎ∥, ∥Γ∥, ∥Γpw∥, ∥𝑆∥, ∥𝑢∥𝑋, and
𝐶qo.

2.3 Proof of Theorem 2.1.a
The proof is split into several subsections below with 𝑢, 𝑢ℎ, 𝑣ℎ as in the statement of Theorem 2.1.

2.3.1 Reduction to ∥𝑢 − 𝑃𝑣ℎ∥𝑋
Consequences of (2.4), (2.6), and a triangle inequality read, for any 𝑥 ∈ 𝑋 and 𝑥ℎ ∈ 𝑋ℎ, as

∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 ≤ ΛP∥𝑢 − 𝑣ℎ∥𝑋, (2.12)
∥𝑥 − 𝑃𝑥ℎ∥𝑋 ≤ (1 + ΛP)∥𝑥 − 𝑥ℎ∥𝑋, (2.13)
∥𝑥 − 𝑅𝑥ℎ∥𝑋 ≤ (1 + ΛR)∥𝑥 − 𝑥ℎ∥𝑋, (2.14)

∥(𝑃 − 𝑅)𝑥ℎ∥𝑋 ≤ (1 + ΛR)∥𝑥ℎ − 𝑃𝑥ℎ∥𝑋 . (2.15)

The efficiency (2.12) of the a posteriori estimator ∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 and a triangle inequality

∥𝑢 − 𝑣ℎ∥𝑋 ≤ ∥𝑢 − 𝑃𝑣ℎ∥𝑋 + ∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 (2.16)

motivate the focus on ∥𝑢 − 𝑃𝑣ℎ∥𝑋 in the error analysis below.
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2.3.2 Reduction to ∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗

The inf-sup condition (2.2) with 𝛽 > 0 for the regular root 𝑢 leads, for any 𝜏 > 0, to some 𝑦 ∈ 𝑌 with
∥𝑦∥𝑌 ≤ 1 + 𝜏 and

𝛽∥𝑢 − 𝑃𝑣ℎ∥𝑋 = 𝐷𝑁 (𝑢; 𝑃𝑣ℎ − 𝑢, 𝑦). (2.17)
(For reflexive Banach spaces, 𝜏 = 0 is possible, but for the time being we require 𝜏 > 0). Since 𝑁 is
quadratic, the finite Taylor series is exact, namely

𝑁 (𝑃𝑣ℎ; 𝑦) = 𝑁 (𝑢; 𝑦) + 𝐷𝑁 (𝑢; 𝑃𝑣ℎ − 𝑢, 𝑦) + 1
2
𝐷2𝑁 (𝑢; 𝑢 − 𝑃𝑣ℎ, 𝑢 − 𝑃𝑣ℎ, 𝑦).

Since 𝑁 (𝑢) = 0 and 𝐷2𝑁 (𝑢; 𝑢 − 𝑃𝑣ℎ, 𝑢 − 𝑃𝑣ℎ, 𝑦) = 2 Γ(𝑢 − 𝑃𝑣ℎ, 𝑢 − 𝑃𝑣ℎ, 𝑦), this reads

𝑁 (𝑃𝑣ℎ; 𝑦) + 𝐷𝑁 (𝑢; 𝑢 − 𝑃𝑣ℎ, 𝑦) = Γ(𝑢 − 𝑃𝑣ℎ, 𝑢 − 𝑃𝑣ℎ, 𝑦). (2.18)

The combination of (2.17)-(2.18) and the bound ∥Γ∥ of the trilinear form result in

𝛽∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ (∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ + ∥Γ∥∥𝑢 − 𝑃𝑣ℎ∥2
𝑋

) (1 + 𝜏) (2.19)

with ∥𝑦∥𝑌 ≤ 1 + 𝜏 in the last step. Recall that (2.19) holds for any 𝜏 > 0 and so 𝜏 ↘ 0 provides

𝛽∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ ∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ + ∥Γ∥∥𝑢 − 𝑃𝑣ℎ∥2
𝑋 . (2.20)

Since ∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ (1 +ΛP)∥𝑢 − 𝑣ℎ∥𝑋 by (2.13) and ∥𝑢 − 𝑣ℎ∥𝑋 ≤ ∥𝑢 − 𝑢ℎ∥𝑋 + ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
≤ 𝜀 + 𝜚

by (L1)-(L2), we infer
∥Γ∥∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ ∥Γ∥(1 + ΛP) (𝜀 + 𝜚) ≤ 𝜅𝛽

with (L3) in the last step. This and (2.20) imply

𝛽(1 − 𝜅)∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ ∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ . (2.21)

The combination of (2.16) and (2.21) reveals

∥𝑢 − 𝑣ℎ∥𝑋 ≤ ∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 + 𝛽−1(1 − 𝜅)−1∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ (2.22)

and we are left with the a posteriori analysis of ∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ .

2.3.3 Appearance of 𝜌(𝑀)
To control ∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ , consider any 𝑦 ∈ 𝑌 with ∥𝑦∥𝑌 = 1 and any 𝑦ℎ ∈ 𝑌ℎ with ∥𝑦ℎ∥𝑌ℎ ≤ 𝑀 .
Elementary algebra with the definition of 𝑁 (𝑃𝑣ℎ; 𝑦) leads to

𝑁 (𝑃𝑣ℎ; 𝑦) = 𝑎(𝑃𝑣ℎ, 𝑦 −𝑄𝑦ℎ) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦 − 𝑆𝑦ℎ) − 𝐹 (𝑦 −𝑄𝑦ℎ)
+ Γpw(𝑃𝑣ℎ, 𝑃𝑣ℎ, 𝑦) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦)
+ 𝑎(𝑃𝑣ℎ, 𝑄𝑦ℎ) − 𝐹 (𝑄𝑦ℎ) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑆𝑦ℎ) =: 𝑆1 + 𝑆2 + 𝑆3. (2.23)

The first term 𝑆1 gives rise to the intermediate residual

𝑆1 := 𝑎(𝑃𝑣ℎ, 𝑦 −𝑄𝑦ℎ) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦 − 𝑆𝑦ℎ) − 𝐹 (𝑦 −𝑄𝑦ℎ) ≤ 𝜌(𝑀)
provided 𝑦ℎ ∈ 𝑌ℎ is selected to obtain an infimum in (2.9).

(
The analysis of the remaining terms

𝑆2 + 𝑆3 exclusively utilizes 𝑦ℎ ∈ 𝑌ℎ and ∥𝑦ℎ∥𝑌ℎ ≤ 𝑀 below.
)

Thus

𝑁 (𝑃𝑣ℎ; 𝑦) ≤ 𝜌(𝑀) + 𝑆2 + 𝑆3. (2.24)

2.3.4 Difference of the trilinear form 𝑆2

Elementary algebra and the boundedness of the piecewise trilinear form result in

𝑆2 := Γpw(𝑃𝑣ℎ, 𝑃𝑣ℎ, 𝑦) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦)
= Γpw((𝑃 − 𝑅)𝑣ℎ, 𝑃𝑣ℎ, 𝑦) + Γpw(𝑅𝑣ℎ, (𝑃 − 𝑅)𝑣ℎ, 𝑦)
≤ ∥Γpw∥(1 + ΛR) (∥𝑃∥ + ∥𝑅∥)∥𝑣ℎ∥𝑋ℎ

∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 (2.25)

with (2.15) and ∥𝑦∥𝑌= 1 in the last step.
All the operator norms ∥𝑃∥, ∥𝑄∥, ∥𝑅∥, ∥𝑆∥ of the quasi-optimal smoothers are controlled in terms of
ΛP, ΛQ, ΛR, and ΛS. For instance, (2.6) shows ∥𝑅𝑣ℎ∥𝑋 ≤ (1 + ΛR)∥𝑣ℎ∥𝑋ℎ

.
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2.3.5 Remaining bound 𝑆3

The last term 𝑆3 on the right-hand side of (2.23) reads

𝑆3 := 𝑎(𝑃𝑣ℎ, 𝑄𝑦ℎ) − 𝐹 (𝑄𝑦ℎ) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑆𝑦ℎ).

A comparison with 𝑁ℎ (𝑢ℎ; 𝑦ℎ) = 0 from (1.2) and elementary algebra result in

𝑆3 = 𝑎(𝑃𝑣ℎ, 𝑄𝑦ℎ) − 𝑎ℎ (𝑣ℎ, 𝑦ℎ) + 𝑎ℎ (𝑣ℎ − 𝑢ℎ, 𝑦ℎ)
+ Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑆𝑦ℎ) − Γpw(𝑅𝑢ℎ, 𝑅𝑢ℎ, 𝑆𝑦ℎ). (2.26)

The consistency (2.8) controls the first two terms in the right-hand side of (2.26),

𝑎(𝑃𝑣ℎ, 𝑄𝑦ℎ) − 𝑎ℎ (𝑣ℎ, 𝑦ℎ) ≤ ΛC∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋∥𝑦ℎ∥𝑌ℎ . (2.27)

The boundedness of 𝑎ℎ establishes 𝑎ℎ (𝑣ℎ − 𝑢ℎ, 𝑦ℎ) ≤ ∥𝑎ℎ∥∥𝑣ℎ − 𝑢ℎ∥𝑋ℎ
∥𝑦ℎ∥𝑌ℎ . Elementary algebra

for the last two terms in (2.26) provides

Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑆𝑦ℎ) − Γpw(𝑅𝑢ℎ, 𝑅𝑢ℎ, 𝑆𝑦ℎ)
= Γpw(𝑅(𝑣ℎ − 𝑢ℎ), 𝑅𝑣ℎ, 𝑆𝑦ℎ) + Γpw(𝑅𝑢ℎ, 𝑅(𝑣ℎ − 𝑢ℎ), 𝑆𝑦ℎ)
≤ ∥Γpw∥∥𝑅∥2∥𝑆∥

(
∥𝑣ℎ∥𝑋ℎ

+ ∥𝑢ℎ∥𝑋ℎ

)
∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

∥𝑦ℎ∥𝑌ℎ (2.28)

with boundedness of the piecewise trilinear form in the last step. A combination of the aforementioned
estimates with (2.26) and ∥𝑦ℎ∥𝑌ℎ ≤ 𝑀 shows

𝑆3 ≤ 𝑀ΛC∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 + 𝑀
(
∥𝑎ℎ∥ + ∥Γpw∥∥𝑅∥2∥𝑆∥ (∥𝑣ℎ∥𝑋ℎ

+ ∥𝑢ℎ∥𝑋ℎ

) ) ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
. (2.29)

2.3.6 Final a posteriori error estimate

Since 𝑦 ∈ 𝑌 with ∥𝑦∥𝑌 = 1 is arbitrary, the combination of (2.25) and (2.29) in (2.24) leads to

∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ ≤ 𝜌(𝑀) +
(
𝑀ΛC + ∥Γpw∥ (1 + ΛR) (∥𝑃∥ + ∥𝑅∥) ∥𝑣ℎ∥𝑋ℎ

)
∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋

+ 𝑀
(
∥𝑎ℎ∥ + ∥Γpw∥∥𝑅∥2∥𝑆∥ (∥𝑣ℎ∥𝑋ℎ

+ ∥𝑢ℎ∥𝑋ℎ

) ) ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
. (2.30)

Triangle inequalities and (L1)-(L3) reveal

∥𝑣ℎ∥𝑋ℎ
≤ ∥𝑢∥𝑋 + ∥𝑢 − 𝑢ℎ∥𝑋 + ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤ ∥𝑢∥𝑋 + 𝜀 + 𝜚 ≤ ∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥). (2.31)

The same arguments apply to show ∥𝑢ℎ∥𝑋ℎ
≤ ∥𝑢∥𝑋 + ∥𝑢 − 𝑢ℎ∥𝑋 ≤ ∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥). A

substitution of (2.31) and the analog estimate for ∥𝑢ℎ∥𝑋ℎ
in (2.30) reveal

∥𝑁 (𝑃𝑣ℎ)∥𝑌 ∗ ≤ 𝜌(𝑀) + (𝑀ΛC + 𝐶1)∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 + 𝐶2𝑀 ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
(2.32)

with universal constants 𝐶1 := ∥Γpw∥ (1 + ΛR) (∥𝑃∥ + ∥𝑅∥) (∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥
) )

and 𝐶2 :=
∥𝑎ℎ∥ + 2∥Γpw∥∥𝑅∥2∥𝑆∥ (∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥

) )
. A combination (2.32) with (2.22) provides

𝛽(1 − 𝜅)∥𝑢 − 𝑣ℎ∥𝑋 ≤ 𝜌(𝑀) + 𝐶3(1 + 𝑀)∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 + 𝐶2𝑀 ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
(2.33)

with 𝐶3 := max
{
ΛC, 𝐶1 + 𝛽(1− 𝜅)

}
. This concludes the proof of reliability with a reliability constant

𝐶rel := 𝛽−1(1 − 𝜅)−1 max
{
1, 𝐶2𝑀,𝐶3(1 + 𝑀)}. □

2.4 Proof of Theorem 2.1.b
The efficiency of ∥𝑣ℎ − 𝑃𝑣ℎ∥𝑋 follows from (2.12) and hence the focus is on the other two terms
𝜌(𝑀) ≤ 𝜌(0) and ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

.
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2.4.1 Linear intermediate problem

The link between 𝜌(𝑀) from (2.9) to the known a posteriori results for linear problems reviewed in
[7] is the linear intermediate problem

𝑎(�̃�, 𝑦) = 𝐹 (𝑦) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦) for all 𝑦 ∈ 𝑌 . (2.34)

Since the associated operator 𝐴 : 𝑋 → 𝑌 ∗ is invertible, the problem (2.34) admits a unique solution
�̃� ∈ 𝑋 . It follows that

𝜌(𝑀) ≤ 𝜌(0) = sup
𝑦∈𝑌

∥𝑦 ∥𝑌 ≤1

𝑎(�̃� − 𝑃𝑣ℎ, 𝑦) ≤ ∥𝑎∥ ∥�̃� − 𝑃𝑣ℎ∥𝑋 . (2.35)

2.4.2 Efficiency of ∥𝑢 − �̃�∥𝑋
Recall that 𝑢 is a fixed regular root of 𝑁 , while �̃� solves (2.34). The inf-sup condition in (2.1) leads,
for any 𝜏 > 0, to some 𝑦 ∈ 𝑌 with ∥𝑦∥𝑌 ≤ 1 + 𝜏 and

𝛼∥𝑢 − �̃�∥𝑋 = 𝑎(�̃� − 𝑢, 𝑦) = Γ(𝑢, 𝑢, 𝑦) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑦)

with (1.1) and (2.34) in the last step. This, the boundedness of the trilinear form, ∥𝑢 − 𝑅𝑣ℎ∥𝑋 ≤
(1 + ΛR)∥𝑢 − 𝑣ℎ∥𝑋 from (2.14), and ∥𝑦∥𝑌 ≤ 1 + 𝜏 provide

𝛼∥𝑢 − �̃�∥𝑋 = Γpw(𝑢 − 𝑅𝑣ℎ, 𝑢, 𝑦) + Γpw(𝑅𝑣ℎ, 𝑢 − 𝑅𝑣ℎ, 𝑦)
≤ ∥Γpw∥(1 + 𝜏) (1 + ΛR)∥𝑢 − 𝑣ℎ∥𝑋 (∥𝑢∥𝑋 + ∥𝑅𝑣ℎ∥𝑋).

The aforementioned estimate holds for any 𝜏 > 0, hence 𝜏 ↘ 0 and (2.31) establish

∥𝑢 − �̃�∥𝑋 ≤ 𝛼−1∥Γpw∥(1 + ΛR)
(
∥𝑢∥𝑋 + ∥𝑅∥ (∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥)

) ) ∥𝑢 − 𝑣ℎ∥𝑋 . (2.36)

2.4.3 Efficiency of 𝜌(𝑀)
The intermediate problem (2.34) leads to (2.35), namely

𝜌(𝑀) ≤ 𝜌(0) ≤ ∥𝑎∥∥�̃� − 𝑃𝑣ℎ∥𝑋 ≤ ∥𝑎∥ (∥𝑢 − �̃�∥𝑋 + ∥𝑢 − 𝑃𝑣ℎ∥𝑋) . (2.37)

Recall ∥𝑢 − 𝑃𝑣ℎ∥𝑋 ≤ (1 + ΛP)∥𝑢 − 𝑣ℎ∥𝑋 from (2.13) and combine it with (2.36)-(2.37) to deduce

𝜌(0) ≤ ∥𝑎∥
(
1 + ΛP + 𝛼−1∥Γpw∥(1 + ΛR)

(
∥𝑢∥𝑋 + ∥𝑅∥ (∥𝑢∥𝑋 + 𝛽/((1 + ΛP)∥Γ∥)

) )) ∥𝑢 − 𝑣ℎ∥𝑋 . □
2.4.4 Efficiency of ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ under (QO)

The quasi-best approximation (QO) implies ∥𝑢−𝑢ℎ∥𝑋 ≤ 𝐶qo∥𝑢−𝑣ℎ∥𝑋. This and a triangle inequality
provide ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤ ∥𝑢 − 𝑢ℎ∥𝑋 + ∥𝑢 − 𝑣ℎ∥𝑋 ≤ (1 + 𝐶qo)∥𝑢 − 𝑣ℎ∥𝑋 . □

2.5 Comments
2.5.1 Inexact solve

The ad hoc application of Theorem 2.1 is on (1.2) with 𝑆 = 𝑄 and a flexible choice of 𝑅 with (2.6).
The local convergence of the Newton scheme is guaranteed in [12] and a termination leads to 𝑣ℎ ∈ 𝑋ℎ
with an algebraic error discussed in Subsection 2.5.3 below. A few iterations more provide the discrete
solution up to machine precision and ∥𝑢ℎ − 𝑣ℎ∥ℎ is negligible and this point of view is adapted in
Section 6.
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2.5.2 Approximation 𝑣ℎ from other discretisations

The discrete scheme in (1.2) with smoother 𝑆 = 𝑄 for the definition of 𝑁ℎ in (1.2) and its root 𝑢ℎ ∈ 𝑋ℎ
with ∥𝑢 − 𝑢ℎ∥𝑋 ≤ 𝜀 from (L1) can serve as a reference scheme. Given an accurate approximation
𝑣ℎ ∈ 𝑋ℎ from another numerical scheme that is sufficiently good in the sense that

∥𝑢 − 𝑣ℎ∥𝑋 ≤ min
{
𝜀, 𝜚/(1 + 𝐶qo)

}
. (2.38)

Since (QO) provides ∥𝑢 − 𝑢ℎ∥𝑋 ≤ 𝐶qo∥𝑢 − 𝑣ℎ∥𝑋, a triangle inequality and (2.38) reveal

∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
≤ (1 + 𝐶qo)∥𝑢 − 𝑣ℎ∥𝑋 ≤ 𝜚.

Hence Theorem 2.1 applies to 𝑣ℎ ∈ 𝑋ℎ and the explicit residual-based a posteriori estimators 𝜂 + 𝜇
of Subsection 3 lead to reliable and efficient error control of ∥𝑢 − 𝑣ℎ∥𝑋. Although 𝑣ℎ may originate
from a very different setting, its a posteriori error control, namely the evaluation of ∥𝑢 − 𝑣ℎ∥𝑋 in
Theorem 2.1, concerns the reference scheme 𝑁ℎ from (1.2) with 𝑆 = 𝑄.

2.5.3 Control of algebraic errors

The numerical analysis of the discrete problem as a high-dimensional algebraic system of equations
is a routine task, e.g., with the known Newton scheme and the Newton-Kantorovich theorem. For
instance, suppose that 𝐷𝑁 (𝑢ℎ) satisfies the discrete inf-sup condition

0 < 𝛽ℎ := inf
𝑥ℎ∈𝑋ℎ

∥𝑥ℎ ∥𝑋ℎ
=1

sup
𝑦ℎ∈𝑌ℎ

∥𝑦ℎ ∥𝑌=1

(
𝑎ℎ (𝑥ℎ, 𝑦ℎ) + Γpw(𝑢ℎ, 𝑥ℎ, 𝑦ℎ) + Γpw(𝑥ℎ, 𝑢ℎ, 𝑦ℎ)

)
(2.39)

proved in [12] and recall that 𝑢ℎ ∈ 𝑋ℎ is a discrete root of (1.2).

Lemma 2.2 (control of ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
). Any 𝑣ℎ ∈ 𝑋ℎ and 0 < 𝜅 < 1 with ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤
𝜅𝛽ℎ/

(∥Γpw∥∥𝑅∥2∥𝑆∥) satisfy

(1 − 𝜅)𝛽ℎ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
≤ ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗

ℎ
≤ (

𝜅𝛽ℎ + ∥𝐷𝑁ℎ (𝑢ℎ)∥𝑋∗
ℎ
×𝑌 ∗

ℎ

) ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
.

The lemma is proved in Supplement A and an associated termination criterion is outlined in Supple-
ment C.

Example 2.1 (Computation of ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗
ℎ
). If dim(𝑋ℎ) = dim(𝑌ℎ) < ∞ and (2.3) holds, the linear

operator 𝐴ℎ : 𝑋ℎ → 𝑌 ∗
ℎ

associated with the bilinear form 𝑎ℎ : 𝑋ℎ × 𝑌ℎ → R is invertible with
∥𝐴ℎ∥𝐿 (𝑋ℎ;𝑌 ∗

ℎ
) ∥𝐴−1

ℎ
∥𝐿 (𝑌 ∗

ℎ
;𝑋ℎ ) ≤ ∥𝑎ℎ∥/𝛼ℎ . Hence one linear solve of 𝑎ℎ (𝜉ℎ, 𝑦ℎ) = 𝑁ℎ (𝑣ℎ; 𝑦ℎ) for a

unique discrete solution 𝜉ℎ ∈ 𝑋ℎ suffices for 𝛼ℎ∥𝜉ℎ∥𝑋ℎ
≤ ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗

ℎ
≤ ∥𝑎ℎ∥∥𝜉ℎ∥𝑋ℎ

and makes
Lemma 2.2 applicable.

3 Explicit residual-based a posteriori estimator
This section discusses computable and explicit bounds for the intermediate residual 𝜌(𝑀) (and the
consistency term ∥𝑣ℎ−𝑃𝑣ℎ∥𝑋ℎ

) in the reliablity control of Theorem 2.1 in an application to fourth-order
semilinear problems.

3.1 Triangulation, interpolation, and smoother
Throughout this paper, T denotes a shape-regular triangulation of a polygonal and bounded (possibly
multiply-connected) Lipschitz domain Ω ⊂ R2 into triangles. The set of all vertices V (resp. edges
E) in the triangulation T decomposes into interior vertices V(Ω) (resp. interior edges E(Ω)) and
boundary vertices V(𝜕Ω) (resp. boundary edges E(𝜕Ω)). Let ℎ𝐸 B |𝐸 | B diam(𝐸) = |𝐴 − 𝐵|
denote the length of any edge 𝐸 = conv(𝐴, 𝐵) ∈ E with vertices V(𝐸) = {𝐴, 𝐵}. Define the
piecewise constant mesh size ℎT (𝑥) = ℎ𝑇 = diam(𝑇) for all 𝑥 ∈ 𝑇 ∈ T (resp. ℎE (𝑥) = ℎ𝐸 = diam(𝐸)
for all 𝑥 ∈ 𝐸 ∈ E), and set ℎmax := max𝑇∈T ℎ𝑇 . The notation T(𝛿) denotes a family of those
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triangulations T with maximal-mesh size ℎmax ≤ 𝛿 smaller than or equal to 𝛿 > 0 and interior angles
≥ 𝜔0 > 0 for some universal constant 𝜔0.

The space 𝑃𝑘 (𝑇) of polynomials of total degree at most 𝑘 ∈ N0 on 𝑇 ∈ T defines the space of
piecewise polynomials

𝑃𝑘 (T ) B {𝑝 ∈ 𝐿∞(Ω) : 𝑝 |𝑇 ∈ 𝑃𝑘 (𝑇) for all 𝑇 ∈ T }

and let Π𝑘 denote the 𝐿2 projection onto 𝑃𝑘 (T ); Π𝑘 acts componentwise on vectors or matrices. Here
and throughout this paper, 𝐻𝑚(T ) B ∏

𝑇∈T 𝐻𝑚(𝑇) is the space of piecewise Sobolev functions for
𝑚 = 1, 2 with the abbreviation 𝐻𝑚(𝐾) B 𝐻𝑚(int 𝐾) for a triangle or edge 𝐾 ∈ T ∪ E with relative
interior int(𝐾). Let 𝐻𝑚(Ω; 𝑋), 𝐻𝑚(T ; 𝑋), resp. 𝑃𝑘 (T ; 𝑋) denote the space of (piecewise) Sobolev
functions resp. polynomials with values in 𝑋 = R2,R2×2, S ⊂ R2×2 (symmetric 2 × 2 matrices).

Let ∇pw B 𝐷pw, 𝐷2
pw, and divpw denote the piecewise gradient, Hessian, and divergence operators

without explicit reference to the underlying triangulation T . Notice that (𝐻2(T ), 𝑎pw + 𝑗ℎ) becomes
a Hilbert space [7, Sec. 4] with the scalar product 𝑎pw + 𝑗ℎ : 𝐻2(T ) × 𝐻2(T ) → R defined by

𝑎pw(𝑣pw, 𝑤pw) B (𝐷2
pw𝑣pw, 𝐷

2
pw𝑤pw)𝐿2 (Ω) for any 𝑣pw, 𝑤pw ∈ 𝐻2(T ), (3.1)

𝑗ℎ (𝑣pw, 𝑤pw) B
∑︁
𝐸∈E

©«
∑︁

𝑧∈V(𝐸 )

[𝑣pw]𝐸 (𝑧)
ℎ𝐸

[𝑤pw]𝐸 (𝑧)
ℎ𝐸

+
⨏
𝐸

[
𝜕𝑣pw

𝜕𝜈𝐸

]
𝐸

d𝑠
⨏
𝐸

[
𝜕𝑤pw

𝜕𝜈𝐸

]
𝐸

d𝑠ª®¬ (3.2)

with the jumps
[
𝑣pw

]
𝐸
(𝑧) for 𝑧 ∈ V(𝐸) and 𝐸 ∈ E defined as follows. The edge-patch 𝜔(𝐸) :=

int(𝑇+ ∪ 𝑇−) of an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ E(Ω) is the interior of the union 𝑇+ ∪ 𝑇− of two
neighboring triangles 𝑇+ and 𝑇−. Fix the orientation of the unit normal 𝜈𝐸 along 𝐸 and label 𝑇±
such that 𝜈𝑇+ |𝐸 = 𝜈𝐸 = −𝜈𝑇− |𝐸 is the outer normal of 𝑇+ along 𝐸 . Let 𝜕𝑠 denote the tangential
derivative along an edge 𝐸 . Then the jump resp. average read [𝑣pw]𝐸 := (𝑣pw |𝑇+ − 𝑣pw |𝑇− ) resp.
⟨𝑣pw⟩𝐸 B 1

2
(
𝑣pw |𝑇+ + 𝑣pw |𝑇−

)
on𝐸 ∈ E(Ω). For a boundary edge𝐸 ⊂ 𝜕𝑇∩𝜕Ω contained in the unique

triangle 𝑇 ∈ T , 𝑣𝐸 = 𝑣𝑇 |𝐸 , set 𝜔(𝐸) = int(𝑇) and
[
𝑣pw

]
𝐸
= 𝑣pw |𝐸 resp. ⟨𝑣pw⟩𝐸 := 𝑣pw |𝐸 . Let 𝜏𝐸

denote the unit tangent of fixed orientation along an edge 𝐸 ∈ E and abbreviate ℎE , 𝜈E , 𝜏E , resp.
[
𝑣pw

]
E

as functions on the skeleton
⋃E with ℎE |𝐸 B ℎ𝐸 , 𝜈E |𝐸 B 𝜈𝐸 , 𝜏E |𝐸 B 𝜏𝐸 , resp.

[
𝑣pw

]
E |𝐸 :=

[
𝑣pw

]
𝐸

for any 𝐸 ∈ E. The piecewise integral mean operator ΠE,0 reads ΠE,0(𝑣) |𝐸 B Π𝐸,0(𝑣) B
⨏
𝐸
𝑣 ds

for any 𝑣 ∈ 𝐿2(𝐸) and 𝐸 ∈ E.

The remaining parts of this paper apply the abstract results from Section 2 to fourth-order problems with
the Sobolev spaces𝑉 = 𝑋 = 𝑌 := 𝐻2

0 (Ω) endowed with the energy norm |||•||| ≡ (|||•|||pw) |𝑉 ≡ (∥•∥ℎ) |𝑉
for the seminorm ||| • |||pw B (𝑎pw(•, •))1/2 in 𝐻2(T ) and the discrete spaces 𝑉ℎ = 𝑋ℎ = 𝑌ℎ ⊆ 𝑃2(T )
equipped with the induced norm ∥ • ∥ℎ of the common superspace 𝑉 = 𝑋 = 𝑌 := 𝐻2(T ) given as

∥𝑣pw∥2
ℎ := |||𝑣pw |||2pw + 𝑗ℎ (𝑣pw, 𝑣pw) for all 𝑣pw ∈ 𝐻2(T ). (3.3)

The subsequent analysis also requires the Morley finite element space

M(T ) :=
{
𝑣M ∈ 𝑃2(T ) [𝑣M]𝐸 (𝑧) = 0 and

∫
𝐸

[
𝜕𝑣M
𝜕𝜈𝐸

]
𝐸

ds = 0 for all 𝐸 ∈ E and 𝑧 ∈ V(𝐸)
}

that lies in the kernel of 𝑗ℎ, i.e., 𝑗ℎ (𝑣M, •) = 0 such that ∥𝑣M∥ℎ = |||𝑣M |||pw for all 𝑣M ∈ M(T ), and
comes with the Morley interpolation operator 𝐼M that generalizes from 𝑉 to 𝐻2(T ) by averaging [11].

Definition 1 (Morley interpolation [11, Definition 3.5]). Given any 𝑣pw ∈ 𝐻2(T ), define 𝐼M𝑣pw :=
𝑣M ∈ M(T ) by its degrees of freedom as follows. For any interior vertex 𝑧 ∈ V(Ω) with the set of
attached triangles T (𝑧) of cardinality |T (𝑧) | ∈ N and for any interior edge 𝐸 ∈ E(Ω),

𝑣M(𝑧) := |T (𝑧) |−1
∑︁

𝐾∈T (𝑧)
(𝑣pw |𝐾 ) (𝑧) and

⨏
𝐸

𝜕𝑣M
𝜕𝜈E

d𝑠 :=
⨏
𝐸

〈
𝜕𝑣pw

𝜕𝜈𝐸

〉
𝐸

d𝑠. (3.4)

The remaining degrees of freedom at the vertices and edges on the boundary are set zero owing to the
homogeneous boundary conditions.
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An important property [11, Eqn. (3.5)] of the generalized Morley interpolation is the 𝑎pw-orthogonality

𝑎pw(𝑣2, 𝑣 − 𝐼M𝑣) = 0 for all 𝑣 ∈ 𝑉 and all 𝑣2 ∈ 𝑃2(T ). (3.5)

The point is that there exists a right-inverse 𝐽 : M(T ) → 𝑉 of 𝐼M, that is, 𝐼M𝐽𝑣M = 𝑣M for all
𝑣M ∈ M(T ), as in [10, 16], [11, Lemma 3.7, Theorem 4.5] with ∥𝑣ℎ−𝐽𝐼M𝑣ℎ∥ℎ ≲ min𝑣∈𝑉 ∥𝑣−𝑣ℎ∥ℎ for
all 𝑣ℎ ∈ 𝑃2(T ) such that 𝑃 = 𝑄 = 𝑆 B 𝐽𝐼M : 𝑉ℎ → 𝑉 and 𝑅 ∈ {id, 𝐼M, 𝐽 𝐼M} satisfy the assumptions
(2.4)–(2.7) of Section 2. The last ingredient is a bounded transfer operator 𝐼ℎ : M(T ) → 𝑉ℎ that is
either the identity 𝐼ℎ B id for the Morley, dG, and WOPSIP schemes with M(T ) ⊂ 𝑉ℎ or 𝐼ℎ B 𝐼C for
C0IP with 𝑉ℎ := 𝑆2

0 (T ) B 𝑃2(T ) ∩ 𝐻1
0 (Ω) defined, for all 𝑣M ∈ M(T ), by

(𝐼C𝑣M) (𝑧) =

𝑣M(𝑧) for all 𝑧 ∈ V,

⟨𝑣M⟩𝐸 (𝑧) for 𝑧 = mid(𝐸), 𝐸 ∈ E(Ω),
0 for 𝑧 = mid(𝐸), 𝐸 ∈ E(𝜕Ω).

(3.6)

The boundedness of 𝐼ℎ implies ∥𝐼ℎ∥ B sup𝑣M∈M(T) ∥𝐼ℎ𝑣M∥ℎ/|||𝑣M |||pw < ∞.

3.2 Explicit residual-based a posteriori estimator
Any general source 𝐹 ∈ 𝐻−2(Ω) can be written with 𝐿2 functions 𝑓0 ∈ 𝐿2(Ω), 𝑓1 ∈ 𝐿2(Ω;R2), 𝑓2 ∈
𝐿2(Ω;S) [7, Thm. 7.1] as

𝐹 (𝜑) :=
∫
Ω

( 𝑓0 𝜑 + 𝑓1 · ∇𝜑 + 𝑓2 : 𝐷2𝜑) dx for all 𝜑 ∈ 𝐻2
0 (Ω). (3.7)

This definition extends to arguments 𝜑pw ∈ 𝐻2(T ) by replacing 𝜑,∇𝜑, 𝐷2𝜑 by their piecewise versions
𝜑pw,∇pw𝜑pw, 𝐷

2
pw𝜑pw. In the applications below, the approximation 𝑣ℎ ∈ 𝑉ℎ ⊂ 𝑃2(T ) is fixed and

Γpw(𝑣ℎ, 𝑣ℎ, •) ∈ 𝐻−2(Ω) has a structure as in (3.7), namely

Γpw(𝑣ℎ, 𝑣ℎ, 𝜑) =
∫
Ω

(Γ0 𝜑 + Γ1 · ∇𝜑 + Γ2 : 𝐷2𝜑) dx for all 𝜑 ∈ 𝐻2
0 (Ω) (3.8)

for piecewise polynomials Γ0 ∈ 𝑃𝑘 (T ), Γ1 ∈ 𝑃𝑘 (T ;R2), Γ2 ∈ 𝑃𝑘 (T ;S) of degree at most 𝑘 ∈ N0.
The Lebesgue functions in (3.7) and the polynomial degree 𝑘 ∈ N0 give rise to oscillations

osc𝑘 (𝐹,T) := ∥ℎ2
T ( 𝑓0 − Π𝑘 𝑓0)∥𝐿2 (Ω) + ∥ℎT ( 𝑓1 − Π𝑘 𝑓1)∥𝐿2 (Ω) + ∥ 𝑓2 − Π𝑘 𝑓2∥𝐿2 (Ω) . (3.9)

Example 3.1 (Navier-Stokes). The trilinear form Γpw for the Navier-Stokes equations in Section 4
below is given by (3.8) for 𝑘 = 1 with Γ1 = Δpw𝑣ℎ Curlpw𝑣ℎ and Γ0 = 0, Γ2 = 0.

Example 3.2 (von Kármán). For the von Kármán equiations in Section 5 and vector-valued approxi-
mation vh ≡ (

𝑣ℎ,1, 𝑣ℎ,2
) ∈ 𝑉ℎ × 𝑉ℎ, choose Γ0 = [𝑣ℎ,1, 𝑣ℎ,2] resp. Γ0 = −1/2[𝑣ℎ,1, 𝑣ℎ,1] and Γ1 = 0,

Γ2 = 0 with the von Kármán bracket [•, •] defined in Subsection 5.1 and 𝑘 = 0.

Recall 𝜏E , 𝜈E , [•]E , and the piecewise integral mean operator ΠE,0 from Subsection 3.1. The error
estimators 𝜇1(T ) + 𝜇2(T ) + 𝜇3(T ) =: 𝜇(T ) and 𝜂(T ) are defined in terms of

Λ0 := Π𝑘 𝑓0 − Γ0 ∈ 𝑃𝑘 (T ),
Λ1 := Π𝑘 𝑓1 − Γ1 ∈ 𝑃𝑘 (T ;R2),
Λ2 := Π𝑘 𝑓2 − 𝐷2

pw𝑣ℎ − Γ2 ∈ 𝑃𝑘 (T ;S)
(3.10)

with 𝜗 = 1 for 𝐼ℎ = id resp. 𝜗 = 0 for 𝐼ℎ = 𝐼C by

𝜇1(T ) :=
ℎ2

T (Λ0 − divpwΛ1 + div2
pwΛ2)


𝐿2 (Ω) ,

𝜇2(T ) :=
ℎ3/2

E
[
Λ1 − divpw Λ2 − 𝜕𝑠 (Λ2𝜏E)

]
E · 𝜈E


𝐿2 (E (Ω) ) ,

𝜇3(T ) :=
ℎ1/2

E (1 − 𝜗 ΠE,0) [Λ2𝜈E]E · 𝜈E

𝐿2 (E (Ω) ) ,

𝜂(T ) := ∥𝑣ℎ − 𝐽𝐼M𝑣ℎ∥ℎ .
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The following theorem controls the intermediate residual 𝜌(𝑀) from (2.9) with 𝑀 = ∥𝐼ℎ∥ from the
abstract reliability estimate (2.10) by the explicit a posteriori error estimators 𝜇(T ) and 𝜂(T ). Define

𝜌 B sup
𝑦∈𝑌,∥𝑦∥𝑌 =1

𝑧:=𝑦−𝐽𝐼M𝐼ℎ 𝐼M𝑦

(
𝐹 (𝑧) − 𝑎(𝐽𝐼M𝑣ℎ, 𝑧) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑧)

)
. (3.11)

Theorem 3.1 (reliability and efficiency up to data oscillations). Under the present notation 𝑉 = 𝑋 =

𝑌 ≡ 𝐻2
0 (Ω), the choices 𝑃 = 𝑄 = 𝑆 = 𝐽𝐼M, and 𝑅 = {id, 𝐼M, 𝐽 𝐼M}, it holds

(𝑎) 𝜌(∥𝐼ℎ∥) ≤ 𝜌 ≲ 𝜂(T ) + 𝜇(T ) + osc𝑘 (𝐹,T),
(𝑏) 𝜂(T ) + 𝜇(T ) ≲ 𝜌(0) + osc𝑘 (𝐹,T),
(𝑐) 𝜂(T ) ≈

ℎ1/2
E

[
𝐷2

pw𝑣ℎ
]
E 𝜏E


𝐿2 (E) + 𝑗ℎ (𝑣ℎ, 𝑣ℎ)1/2.

The estimate Theorem 3.1.c is well-known from [7, Theorem 5.6], [16]. The remaining parts of this
section therefore focus on the proofs of Theorem 3.1.a and b.

Remark 3.1 (role of (QO)). The a priori results in [12] establish (QO) for 𝑆 = 𝑄 = 𝐽𝐼M in (1.2) and
this leads to efficiency. Theorem 2.1 is fairly general and the reliability estimate allows for 𝑆 ≠ 𝑄;
but then (QO) involves an additional additive term Γ(𝑅𝑢ℎ, 𝑅𝑢ℎ, (𝑆 −𝑄)𝑦ℎ) = 𝑂 (ℎ𝛼max) [12, Theorem
5.1]. This extra term behaves like a given 𝐿2 function (in terms of piecewise derivatives of 𝑅𝑢ℎ) times
the mesh-sizes up to some power 𝛼 ≥ 0. The application to Navier-Stokes leads to 𝛼 = 1 and this is
of the correct asymptotic rate (or even better), while the application to von Kármán equations even
allows for 𝛼 = 2 [12]. However, this extra term is not a residual term (in general) and efficiency is left
open as in [9, 22]. The new schemes from [12] with 𝑃 = 𝑄 = 𝑆 = 𝐽𝐼M in (1.2) enable an efficient and
reliable a posteriori error control in this paper for general sources.

3.3 Proof of Theorem 3.1.a.
The definition of 𝜌(𝑀) for 𝑀 B ∥𝐼ℎ∥ in (2.9) implies 𝜌(𝑀) ≤ 𝜌. Indeed, for any 𝑣 ∈ 𝑉 with |||𝑣 ||| = 1
and 𝑣ℎ := 𝐼ℎ 𝐼M𝑣 ∈ 𝑉ℎ, it follows that ∥𝑣ℎ∥ℎ ≤ ∥𝐼ℎ∥|||𝐼M𝑣 |||pw ≤ 𝑀 from |||𝐼M𝑣 |||pw ≤ |||𝑣 ||| = 1 and
so 𝑣ℎ ≡ 𝐼ℎ 𝐼M𝑣 is admissible (the last inequality is a consequence of the Pythogoras theorem and the
orthogonality (3.5)). The reflexivity of 𝑉 ≡ 𝐻2

0 (Ω) leads to 𝑤 ∈ 𝑉 with |||𝑤 ||| = 1 and

𝜌(∥𝐼ℎ∥) ≤ 𝜌 ≤ 𝐹 (𝑧) − 𝑎(𝑃𝑣ℎ, 𝑧) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑧) (3.12)

for 𝑧 := 𝑤 − 𝐽𝐼M𝑤ℎ. Recall Λ0,Λ1,Λ2 from (3.10) and define Λ ∈ 𝐻−2(Ω) by

Λ(𝜑) =
∫
Ω

(Λ0𝜑 + Λ1 · ∇𝜑 + Λ2 : 𝐷2𝜑) dx for all 𝜑 ∈ 𝐻2
0 (Ω). (3.13)

Observe carefully that the definition of 𝐹 in (3.7) and Λ in (3.13) lead to

𝐹 − 𝑎(𝑃𝑣ℎ, •) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, •) = 𝐹 − Π𝑘𝐹 + Λ + 𝑎pw(𝑣ℎ − 𝑃𝑣ℎ, •)
+ Γpw(𝑣ℎ, 𝑣ℎ, •) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, •). (3.14)

Here and throughout, Π𝑘𝐹 ∈ 𝐻2(T )∗ is defined by

Π𝑘𝐹 (𝑣pw) :=
∫
Ω

(
𝑣pwΠ𝑘 𝑓0 + ∇pw𝑣pw · Π𝑘 𝑓1 + 𝐷2

pw𝑣pw : Π𝑘 𝑓2
)

dx for 𝑣pw ∈ 𝐻2(T ). (3.15)

The six terms on the right-hand side in (3.14) are controlled as follows. Since 𝑧 = (1 − 𝐽𝐼M𝐼ℎ 𝐼M)𝑤
vanishes at the vertices for all 𝑤 ∈ 𝑉 , the stability result [7, Lemma 5.1]

2∑︁
𝑚=0

|ℎ𝑚−2
T (1 − 𝐽𝐼M𝐼ℎ 𝐼M)𝑤 |𝐻𝑚 (T) ≤ 𝐶stab |||𝑤 ||| for all 𝑤 ∈ 𝐻2

0 (Ω) (3.16)

controls the data oscillation term [7, Lemma 7.2] by

(𝐹 − Π𝑘𝐹) (𝑧) =
∫
Ω

(
( 𝑓0 − Π𝑘 𝑓0)𝑧 + ( 𝑓1 − Π𝑘 𝑓1) · ∇𝑧 + ( 𝑓2 − Π𝑘 𝑓2) : 𝐷2𝑧

)
dx
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≤ 𝐶stabosc𝑘 (𝐹,T)|||𝑧 |||. (3.17)

A Cauchy inequality, the boundedness of Γpw, |||𝑣ℎ − 𝑃𝑣ℎ |||pw ≤ ∥𝑣ℎ − 𝑃𝑣ℎ∥ℎ from (3.3), and the
definition of 𝜂(T ) reveal

𝑎pw(𝑣ℎ − 𝑃𝑣ℎ, 𝑧) ≤ |||𝑣ℎ − 𝑃𝑣ℎ |||pw |||𝑧 ||| ≤ 𝜂(T )|||𝑧 |||, (3.18)
Γpw(𝑣ℎ, 𝑣ℎ, 𝑧) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑧) ≤ ∥Γpw∥(1 + ∥𝑅∥)∥𝑣ℎ∥ℎ∥𝑣ℎ − 𝑅𝑣ℎ∥ℎ |||𝑧 |||

≤ ∥Γpw∥(1 + ∥𝑅∥)ΛR
( |||𝑢 ||| + 𝛽/((1 + ΛP)∥Γ∥)

)
𝜂(T )|||𝑧 ||| (3.19)

with the arguments from the analysis of 𝑆2 in Subsection 2.3.4, |||𝑣ℎ − 𝑅𝑣ℎ |||pw ≤ ∥𝑣ℎ − 𝑅𝑣ℎ∥ℎ from
(3.3), (2.4), (2.6), and (2.31) in the last step. It remains to control Λ, where we employ results from the
linear situation. The appendix of the preliminary work on linear problems [7] provides the estimate

|||Λ ◦ (1 − 𝐽𝐼M𝐼ℎ 𝐼M) |||∗ ≤ 𝐶 lin
rel 𝜇(T ). (3.20)

Since 𝑧 ≡ 𝑤 − 𝐽𝐼M𝐼ℎ 𝐼M𝑤 acts as a test function in (3.20) and |||𝑤 ||| = 1, we infer

Λ(𝑧) ≤ |||Λ ◦ (1 − 𝐽𝐼M𝐼ℎ 𝐼M) |||∗ |||𝑤 ||| ≤ 𝐶 lin
rel 𝜇(T ). (3.21)

Since |||𝑧 ||| ≤ 𝐶stab from (3.16), the reliability 𝜌(∥𝐼ℎ∥) ≤ 𝜌 ≲ 𝜂(T ) + 𝜇(T ) + osc𝑘 (𝐹,T) follows from
(3.14),(3.17)–(3.19), and (3.21) in (3.12). The above constants 𝐶stab and 𝐶 lin

rel exclusively depend on
the shape regularity of the triangulation T and the polynomial degree 𝑘 of the Λ0,Λ1,Λ2 in (3.8). □

3.4 Proof of Theorem 3.1.b
The efficiency 𝜂(T ) ≡ ∥𝑣ℎ−𝑃𝑣ℎ∥ℎ ≤ ΛP∥𝑢−𝑣ℎ∥ℎ follows from (2.4) for 𝑃 ≡ 𝐽𝐼M as in [7, Thm 5.6].

The efficiency of 𝜇(T ) ≤ 𝐶 lin
eff |||Λ|||∗ is established in [7, Theorem A.1] with 𝐶 lin

eff that exclusively
depends on the shape-regularity of T . The definitions of Λ = Π𝑘𝐹 − 𝑎(𝑣ℎ, •) − Γpw(𝑣ℎ, 𝑣ℎ, •) and
𝜌(0) therefore lead to

𝜇(T ) ≤ 𝐶 lin
eff |||Λ|||∗ ≤ |||Π𝑘𝐹 − 𝑎(𝑣ℎ, •) − Γpw(𝑣ℎ, 𝑣ℎ, •)|||∗

≤ 𝜌(0) + |||𝐹 − Π𝑘𝐹 |||∗ + |||𝑎pw(𝑣ℎ − 𝑃𝑣ℎ, •)|||∗ + |||Γpw(𝑣ℎ, 𝑣ℎ, •) − Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, •)|||∗. (3.22)

A Cauchy inequality and the boundedness and Γpw provide, for any 𝑧 ∈ 𝑉 , that

𝑎pw(𝑣ℎ − 𝑃𝑣ℎ, 𝑧) ≤ |||𝑣ℎ − 𝑃𝑣ℎ |||pw |||𝑧 ||| ≤ ΛP∥𝑢 − 𝑣ℎ∥ℎ |||𝑧 |||, (3.23)
Γpw(𝑣ℎ, 𝑣ℎ, 𝑧)−Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑧) ≤ ∥Γpw∥(1+∥𝑅∥)∥𝑣ℎ∥ℎ∥𝑣ℎ − 𝑅𝑣ℎ∥ℎ |||𝑧 |||

≤ ∥Γpw∥(1+∥𝑅∥)ΛR
( |||𝑢 |||+𝛽/((1+ΛP)∥Γ∥)

) ∥𝑢−𝑣ℎ∥ℎ |||𝑧 ||| (3.24)

with |||𝑣ℎ − 𝑃𝑣ℎ |||pw ≤ ∥𝑣ℎ − 𝑃𝑣ℎ∥ℎ from (3.3), (2.4) for (3.23) and |||𝑣ℎ − 𝑅𝑣ℎ |||pw ≤ ∥𝑣ℎ − 𝑅𝑣ℎ∥ℎ
from (3.3), (2.6), and (2.31) in the last step. The combination of (3.22)–(3.24) and (3.17) lead to
𝜇(T ) ≲ 𝜌(0) + osc𝑘 (𝐹,T) + ∥𝑢 − 𝑣ℎ∥ℎ and conclude the proof. □

4 Application to Navier-Stokes equations

4.1 Stream-function vorticity formulation of Navier-Stokes equations
The stream-function vorticity formulation of the incompressible 2D Navier–Stokes problem for a given
load 𝐹 ∈ 𝐻−2(Ω) in a polygonal domain Ω ⊂ R2 seeks 𝑢 ∈ 𝑉 := 𝐻2

0 (Ω) (≡ 𝑋 ≡ 𝑌 ) such that

Δ2𝑢 + 𝜕

𝜕𝑥

(
(−Δ𝑢) 𝜕𝑢

𝜕𝑦

)
− 𝜕

𝜕𝑦

(
(−Δ𝑢) 𝜕𝑢

𝜕𝑥

)
= 𝐹 in Ω. (4.1)

(The bi-Laplacian Δ2 reads Δ2𝜙 := 𝜙𝑥𝑥𝑥𝑥 + 𝜙𝑦𝑦𝑦𝑦 + 2𝜙𝑥𝑥𝑦𝑦 .) The analysis of extreme viscosities lies
beyond the scope of this article, and so the viscosity of the bi-Laplacian in (4.1) is set one. Recall
the semi-scalar product 𝑎pw : 𝐻2(T ) × 𝐻2(T ) → R and the induced piecewise 𝐻2 seminorm ||| • |||pw
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that is a norm [10] on 𝑉 + M(T ) ⊂ 𝐻2(T ) from Subsection 3.1. Define the bounded trilinear form
Γpw(•, •, •) by

Γpw(𝜂, �̂�, 𝜙) :=
∑︁
𝑇∈T

∫
𝑇

Δ𝜂

(𝜕 �̂�
𝜕𝑦

𝜕𝜙

𝜕𝑥
− 𝜕 �̂�

𝜕𝑥

𝜕𝜙

𝜕𝑦

)
dx for all 𝜂, �̂�, 𝜙 ∈ 𝐻2(T ). (4.2)

Given 𝑎 := 𝑎pw |𝑉×𝑉 and Γ := Γpw |𝑉×𝑉×𝑉 , the weak formulation of (4.1) seeks 𝑢 ∈ 𝑉 such that

𝑎(𝑢, 𝑤) + Γ(𝑢, 𝑢, 𝑤) = 𝐹 (𝑤) for all 𝑤 ∈ 𝑉. (4.3)

Given any 𝐹 ∈ 𝑉∗ ≡ 𝐻−2(Ω), there exist solutions to (4.3), which are possibly singular but carry
elliptic regularity. In the case of small loads (|||𝐹 |||∗∥Γ∥ < 1), the weak solution is unique and a regular
root, cf. [20, Chap. IV.§2–3] and [19, 26] for proofs. The a posteriori error analysis below concerns
some approximation 𝑣ℎ ∈ 𝑉ℎ to a regular root 𝑢 ∈ 𝑉 of the continuous problem (4.3).

4.2 Five quadratic discretizations
This subsection presents the Morley, two variants of dG, 𝐶0IP, and WOPSIP discretizations for (4.3).
The discrete space𝑉ℎ ≡ 𝑋ℎ ≡ 𝑌ℎ becomes𝑉ℎ B M(T ) for Morley,𝑉ℎ B 𝑃2(T ) for dG and WOPSIP
schemes, and 𝑉ℎ B 𝑆2

0 (T ) B 𝑃2(T ) ∩ 𝐻1
0 (Ω) for the 𝐶0IP scheme. For all 𝑣pw, 𝑤pw ∈ 𝐻2(T ) and

parameters 𝜎1, 𝜎2, 𝜎IP > 0 sufficiently large (but fixed in applications) to guarantee the stability of 𝑎ℎ
below, the method-dependent penalty forms 𝑐dG, 𝑐P, and 𝑐IP read

𝑐dG(𝑣pw, 𝑤pw) B
∑︁
𝐸∈E

(
𝜎1

ℎ3
𝐸

∫
𝐸

[
𝑣pw

]
𝐸

[
𝑤pw

]
𝐸

ds + 𝜎2
ℎ𝐸

∫
𝐸

[
𝜕𝑣pw

𝜕𝜈𝐸

]
𝐸

[
𝜕𝑤pw

𝜕𝜈𝐸

]
𝐸

ds
)
, (4.4)

𝑐P(𝑣pw, 𝑤pw) B
∑︁
𝐸∈E

ℎ−4
𝐸

( ∑︁
𝑧∈V(𝐸 )

( [
𝑣pw

]
𝐸

[
𝑤pw

]
𝐸

)
(𝑧) +

∫
𝐸

[
𝜕𝑣pw

𝜕𝜈𝐸

]
𝐸

ds
∫
𝐸

[
𝜕𝑤pw

𝜕𝜈𝐸

]
𝐸

ds
)
, (4.5)

and 𝑐IP B 𝑐dG | (𝑉+𝑆2
0 (T) )×(𝑉+𝑆2

0 (T) ) with 𝜎IP B 𝜎2. Define the discrete bilinear forms

𝑎ℎ := 𝑎pw + bℎ + cℎ : (𝑉 +𝑉ℎ) × (𝑉 +𝑉ℎ) → R,
with 𝑎pw from (4.2) for the Morley, dG I, 𝐶0IP, and WOPSIP discretizations and 𝑎pw replaced by
(Δpw•,Δpw•)𝐿2 (Ω) for the dG II scheme, and bℎ and cℎ from Table 1 for some−1 ≤ 𝜃 ≤ 1. The method-
dependent norms induced by 𝑎pw + 𝑐ℎ for dG I, WOPSIP, and 𝐶0IP (resp. (Δpw•,Δpw•)𝐿2 (Ω) + 𝑐ℎ for
dG II as in [25]) are, except for WOPSIP, equivalent to the universal norm ∥ • ∥ℎ from (3.3). Notice
that ∥ • ∥ℎ = ||| • |||pw in 𝑉 + M(T ) follows from (3.3).

Lemma 4.1 (Equivalence of norms [6, Thm. 4.1]). It holds ∥ • ∥ℎ ≈ ∥ • ∥dG ≡ ( ||| • |||2pw + 𝑐dG(•, •)
)1/2

on 𝑉 + 𝑃2(T ) and ∥ • ∥ℎ ≈ ∥ • ∥IP ≡ ( ||| • |||2pw + 𝑐IP(•, •)
)1/2 on 𝑉 + 𝑆2

0 (T ). □

In contrast to this, the WOPSIP norm ∥ • ∥P ≡ ( ||| • |||2pw + 𝑐P(•, •)
)1/2 involves smaller powers of

the mesh-size and is (strictly) stronger than ∥ • ∥ℎ, i.e., ℎ𝑇 ≤ ℎmax implies

𝑗ℎ ≤ ℎ2
max𝑐P and ∥ • ∥ℎ ≤ (1 + ℎ2

max)1/2∥ • ∥P. (4.6)

The applications in this paper consider the choice 𝑃 ≡ 𝑄 ≡ 𝑆 ≡ 𝐽𝐼M that allows the first reliable and
efficient a posteriori error estimate for the stream-function vorticity formulation of the Navier-Stokes
equations. Recall 𝜏E , 𝜈E , [•]E , and the piecewise integral mean operator ΠE,0 from Subsection 3.1
and abbreviate Curl B (𝜕/𝜕𝑦;−𝜕/𝜕𝑥). Given 𝜗 = 1 for 𝐼ℎ = id resp. 𝜗 = 0 for 𝐼ℎ = 𝐼C, the local
error estimators on 𝑇 ∈ T ,

𝜎2(𝑇) := |𝑇 |2∥Π𝑘 𝑓0 − divpw(Π𝑘 𝑓1) + div2
pw(Π𝑘 𝑓2)∥2

𝐿2 (𝑇 )
+ |𝑇 |3/2∥ [Π𝑘 𝑓1 − Δ𝑣ℎ Curl𝑣ℎ − div(Π𝑘 𝑓2) − 𝜕𝑠 (Π𝑘 𝑓2)𝜏E]E · 𝜈E ∥2

𝐿2 (𝜕𝑇\𝜕Ω)
+ |𝑇 |1/2∥(1 − 𝜗ΠE,0)

[(Π𝑘 𝑓2 − 𝐷2𝑣ℎ)𝜈E
]
E · 𝜈E ∥2

𝐿2 (𝜕𝑇\𝜕Ω)

+ |𝑇 |1/2[𝐷2𝑣ℎ]E𝜏E
2
𝐿2 (𝜕𝑇 ) +

∑︁
𝐸∈E (𝑇 )

(��Π𝐸,0 [𝜕𝜈𝑣ℎ]𝐸 ��2 + |𝑇 |−1
∑︁

𝑧∈V(𝐸 )

�� [𝑣ℎ]𝐸 (𝑧)
��2)

define the a posteriori error estimator 𝜎(T ) :=
√︁∑

𝑇∈T 𝜎2(𝑇) by the ℓ2 sum convention.
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Scheme Morley dG I 𝐶0IP WOPSIP dG II

J (•, •) –
∑︁
𝐸∈E

∫
𝐸

⟨𝐷2𝑣2 𝜈𝐸⟩𝐸 · [∇𝑤2]𝐸ds –
∑︁
𝐸∈E

∫
𝐸

[
𝜕𝑣2
𝜕𝜈𝐸

]
𝐸

⟨Δpw𝑤2⟩𝐸ds

bℎ (•, •) 0 −𝜃J (𝑣2, 𝑤2)−J (𝑤2, 𝑣2) 0 −𝜃J (𝑣2, 𝑤2)−J (𝑤2, 𝑣2)
cℎ (•, •) 0 𝑐dG (•, •) 𝑐IP (•, •) 𝑐P (•, •) 𝑐dG (•, •)
𝐼ℎ id id 𝐼C from (3.6) id id

Table 1: Bilinear forms with 𝜃 ∈ [−1, 1] and operator 𝐼ℎ in Section 4.

Remark 4.1 (Classical case). The a posteriori error analysis in [9, 22] for the classical situation
𝑅 = 𝑆 = 𝑄 = id and 𝐹 ≡ 𝑓 ∈ 𝐿2(Ω) suffers from unclear efficiency.

Theorem 4.2 (A posteriori error control). Given a regular root 𝑢 ∈ 𝑉 to (4.3) with 𝐹 ∈ 𝐻−2(Ω) and
𝑘 ∈ N, there exist 𝜀, 𝛿, 𝜚 > 0 such that the following holds for any T ∈ T(𝛿) and 𝑃 ≡ 𝑄 ≡ 𝑆 ≡ 𝐽𝐼M.
(𝑎) There exists a unique discrete solution 𝑢ℎ ∈ 𝑉ℎ to (1.2) for the Morley, dG I & II, and𝐶0IP scheme
in Table 1 with ∥𝑢 − 𝑢ℎ∥ℎ ≤ 𝜀 and any 𝑣ℎ ∈ 𝑉ℎ with ∥𝑢ℎ − 𝑣ℎ∥ℎ ≤ 𝜚 satisfies

∥𝑢 − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝜎(T ) + ∥𝑢ℎ − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T).

(𝑏) For the WOPSIP scheme in Table 1, there exists a unique discrete solution 𝑢ℎ ∈ 𝑉ℎ to (1.2) with
∥𝑢 − 𝑢ℎ∥ℎ ≤ 𝜀 and any 𝑣ℎ ∈ 𝑉ℎ with ∥𝑢ℎ − 𝑣ℎ∥ℎ ≤ 𝜚 satisfies

∥𝑢 − 𝑣ℎ∥ℎ + ∥𝑢ℎ − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝜎(T ) + ∥𝑢ℎ − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T), (4.7)
∥𝑢 − 𝑣ℎ∥P + ∥𝑢ℎ − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝜎(T ) + 𝑐P(𝑣ℎ, 𝑣ℎ)1/2 + ∥𝑢ℎ − 𝑣ℎ∥ℎ + osc𝑘 (𝐹,T). (4.8)

The Morley, dG I & II, and 𝐶0IP schemes satisfy the discrete consistency (2.8) and quasi-optimality
(QO) so that the proof of Theorem 4.2 is already prepared in Theorems 2.1 and 3.1. The proof for the
WOPSIP method (without (2.8) and (QO)) requires modifications in Subsection 4.3 below.

Proof of Theorem 4.2.a. The a priori analysis [12, Thm. 8.1] verifies the quasi-optimality (QO)
and provides universal constants 𝜀0, 𝛿0 > 0 that guarantee, for any T ∈ T (𝛿0), the unique ex-
istence of a discrete solution 𝑢ℎ ∈ 𝑉ℎ to (1.2) with ∥𝑢 − 𝑢ℎ∥ℎ ≤ 𝜀0. A density argument for
𝜀 B min{𝜀0, 𝛽/(3(1 + ΛP)∥Γ∥)} leads to 𝛿 ≤ 𝛿0 such that ∥𝑢 − 𝑢ℎ∥ℎ < 𝜀 for any T ∈ T (𝛿). This
reveals (QO) and (L1)–(L3) for 𝛿, 𝜀, 𝜅 B 2/3, and 𝜚 B 𝛽/(3(1 + ΛP)∥Γ∥). The abstract a posteriori
error control from Theorem 2.1 applies with the abstract a posteriori error control of ∥𝑢 − 𝑣ℎ∥ℎ in
terms of 𝜌(∥𝐼ℎ∥), ∥(1 − 𝐽𝐼M)𝑣ℎ∥ℎ, and the efficient algebraic error ∥𝑢ℎ − 𝑣ℎ∥ℎ. Section 3 applied to
Γpw from (4.2) leads to Λ0 := Π𝑘 𝑓0, Λ1 := Π𝑘 𝑓1 − Δpw𝑣ℎ Curlpw𝑣ℎ, Λ2 := Π𝑘 𝑓2 − 𝐷2

pw𝑣ℎ in (3.10).
Theorem 3.1.a controls 𝜌(∥𝐼ℎ∥) + ∥(1 − 𝐽𝐼M)𝑣ℎ∥ℎ with the a posteriori term 𝜇(T ) + 𝜂(T ), that is
efficient by Theorem 3.1.b and Theorem 2.1.b, plus data oscillations osc𝑘 (𝐹,T). The equivalence
𝜇(T ) + 𝜂(T ) ≈ 𝜎(T ) follows with ℎ𝐸 ≈ ℎ𝑇 ≈ |𝑇 |1/2 from shape-regularity and Theorem 3.1.c. This
concludes the proof. □

4.3 Modifications for WOPSIP
There are two reasons why the weakly over-penalized symmetric interior penalty (WOPSIP) scheme
from [1] requires little modifications in the above analysis. The first is the failure of (2.8) and (somehow
related) the failure of (QO) in the stated form. The second is that the natural WOPSIP norm ∥ • ∥P
from (4.6) is very strong and (4.7) states the error estimate in the (partly) weaker norm ∥ • ∥ℎ.

The starting point for the analysis in this subsection is a modified version of (2.8) already applied in
the analysis of linear problems [7, Thm. 6.9] that follows from 𝑗ℎ (𝑣pw, 𝑤M) = 0 = 𝑐P(𝑣pw, 𝑤M) for all
(𝑣pw, 𝑣M) ∈ 𝐻2(T ) × M(T ). Recall that ∥𝐽∥ abbreviates the operator norm of 𝐽 : M(T ) → 𝑉 when
M(T ) and 𝑉 are endowed with the norm ||| • |||pw ≡ ∥ • ∥ℎ |𝑉+M(T) and 𝑎ℎ = 𝑎pw + 𝑐P for WOPSIP.

Lemma 4.3 (modified (2.8)). Any (𝑣2, 𝑤M) ∈ 𝑃2(T ) × M(T ) satisfies

𝑎(𝐽𝐼M𝑣2, 𝐽𝑤M) − 𝑎ℎ (𝑣2, 𝑤M) ≤ ∥𝐽∥|||𝑣2 − 𝐽𝐼M𝑣2 |||pw |||𝑤M |||pw. (4.9)
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Proof. For the WOPSIP scheme, 𝑐P(𝑣2, 𝑤M) = 0 for (𝑣2, 𝑣M) ∈ 𝑃2(T ) × M(T ) shows

𝑎(𝐽𝐼M𝑣2, 𝐽𝑤M) − 𝑎ℎ (𝑣2, 𝑤M) = 𝑎(𝐽𝐼M𝑣2, 𝐽𝑤M) − 𝑎pw(𝑣2, 𝑤M)
= 𝑎pw(𝐽𝐼M𝑣2 − 𝑣2, 𝐽𝑤M) ≤ ∥𝐽∥|||𝑣2 − 𝐽𝐼M𝑣2 |||pw |||𝑤M |||pw

with 𝑎pw(𝑣2, 𝑤M − 𝐽𝑤M) = 0 from (3.5) and the boundedness of 𝑎pw(•, •) in the last line above. □

A careful revisit of the arguments in Section 2 with (4.9) instead of (2.8) reveals a modified reliabiltiy

∥𝑢 − 𝑣ℎ∥ℎ ≲ 𝜚 + ∥(1 − 𝐽𝐼M)𝑣ℎ∥ℎ + ∥𝑢ℎ − 𝑣ℎ∥ℎ (4.10)

with 𝜌 from (3.11) instead of 𝜌(𝑀) in Theorem 2.1. Theorem 4.2 can follow with Theorem 3.1.

Proof of Theorem 4.2.b. The a priori results for WOPSIP [12, Thm. 8.13] reveal the convergence
under uniform mesh refinement in the norm ∥ • ∥P and provide universal constants 𝜀0, 𝛿0 > 0 such
that, for any T ∈ T (𝛿0), a unique discrete solution 𝑢ℎ ∈ 𝑉ℎ to (1.2) exists with ∥𝑢 − 𝑢ℎ∥P ≤ 𝜀0.
Since ∥ • ∥P is stronger than ∥ • ∥ℎ by (4.6), the convergence also follows in the weaker norm
∥ • ∥ℎ and ℎmax ≤ 𝛿0 implies the unique existence of a discrete solution 𝑢ℎ ∈ 𝑉ℎ to (1.2) with
∥𝑢 − 𝑢ℎ∥ℎ ≤ (1 + 𝛿2

0)1/2𝜖0. A density argument for 𝜀 B min{(1 + 𝛿2
0)1/2𝜀0, 𝛽/(3(1 + ΛP)∥Γ∥)} leads

to 𝛿 ≤ 𝛿0 such that ∥𝑢 − 𝑢ℎ∥ℎ < 𝜀 for any T ∈ T (𝛿). This implies (L1)–(L3) in the weaker norm
∥ • ∥ℎ for 𝛿, 𝜀, 𝜅 B 2/3, and 𝜚 B 𝛽/(3(1 + ΛP)∥Γ∥). Hence, the setting of Section 2 applies and the
proofs in Subsection 2.3 follow verbatim for 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ, and 𝑢 ∈ 𝑉 until (2.22) that becomes

∥𝑢 − 𝑣ℎ∥ℎ ≤ ∥𝑣ℎ − 𝐽𝐼M𝑣ℎ∥ℎ + 𝛽−1(1 − 𝜅)−1∥𝑁 (𝐽𝐼M𝑣ℎ)∥𝑉∗ (4.11)

in the current setting. The subsequent estimation of ∥𝑁 (𝐽𝐼M𝑣ℎ)∥𝑉∗ involves the split 𝑁 (𝐽𝐼M𝑣ℎ; 𝑦) =
𝑆1 + 𝑆2 + 𝑆3 as in (2.23) for any 𝑦 ∈ 𝑌 ≡ 𝐻2

0 (Ω) with |||𝑦 ||| = 1 and the particular choice 𝑦ℎ B 𝐼M𝑦 ∈
M(T ) in the definition of 𝑆1, 𝑆3 (instead of any 𝑦ℎ ∈ 𝑃2(T ) in Subsection 2.3.3). The point of this
modification is twofold. First, the supremum over 𝑦 ∈ 𝑌 with 𝑤 := 𝑦 − 𝐽𝐼M𝑦ℎ = 𝑦 − 𝐽𝐼M𝑦 ∈ 𝑉 reveals

𝑆1 := 𝑎(𝐽𝐼M𝑣ℎ, 𝑤) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝑤) − 𝐹 (𝑤) ≤ 𝜌. (4.12)

Second, Lemma 4.3 with 𝑦ℎ ≡ 𝐼M𝑦 ∈ M(T ) and ||| • |||pw ≤ ∥ • ∥ℎ from (3.3) result in (2.27) for
ΛC B ∥𝐽∥ without the need of (2.8). With this alternate derivation of (2.27), the control of

𝑆2 B Γpw(𝐽𝐼M𝑣ℎ, 𝐽 𝐼M𝑣ℎ, 𝑦) − Γpw(𝐽𝐼M𝑣ℎ, 𝐽 𝐼M𝑣ℎ, 𝑦) ≲ ∥𝑣ℎ − 𝐽𝐼M𝑣ℎ∥ℎ, (4.13)
𝑆3 B 𝑎(𝐽𝐼M𝑣ℎ, 𝐽 𝐼M𝑦) − 𝐹 (𝐽𝐼M𝑦) + Γpw(𝑅𝑣ℎ, 𝑅𝑣ℎ, 𝐽 𝐼M𝑦) ≲ ∥𝑣ℎ − 𝐽𝐼M𝑣ℎ∥ℎ + ∥𝑢ℎ − 𝑣ℎ∥ℎ (4.14)

follows verbatim from Subsection 2.3.4–2.3.6 with ∥𝑦ℎ∥ℎ = |||𝐼M𝑦 |||pw ≤ |||𝑦 ||| = 1 ≡ 𝑀 . This and
(4.11)–(4.14) verify the alternate reliability estimate (4.10). Theorem 3.1 further controls 𝜌, ∥(1 −
𝐽𝐼M)𝑣ℎ∥ℎ in terms of the explicit a posteriori error terms 𝜇(T ) + 𝜂(T ) ≈ 𝜎(T ) plus data oscillations
osc𝑘 (𝐹,T). The efficiency of 𝜎(T ) with respect to ∥𝑢 − 𝑢ℎ∥ℎ plus data oscillations follows from
Theorems 3.1.b and 2.1.b. This verifies (4.7). The sum of (4.7) and 𝑐P(𝑣ℎ, 𝑣ℎ) = 𝑐P(𝑢 − 𝑣ℎ, 𝑢 − 𝑣ℎ)
with ∥ • ∥2

ℎ
+ 𝑐P = ||| • |||2 + 𝑗ℎ + 𝑐P ≈ ∥ • ∥2

P from (4.6) reveal (4.8) and conclude the proof. □

5 Application to von Kármán equations
The von Kármán equations model a nonlinear plate [14, 15] in two coupled PDE and require the product
spaces 𝑋 = 𝑌 = V := 𝑉 ×𝑉 of 𝑉 ≡ 𝐻2

0 (Ω) with norm ||| • ||| defined by |||𝝋||| := ( |||𝜑1 |||2 + |||𝜑2 |||2)1/2 for
all 𝝋 = (𝜑1, 𝜑2) ∈ V.

5.1 Von Kármán equations
Given any load 𝐹 ∈ 𝐻−2(Ω), the von Kármán equations seek a solution u ≡ (𝑢1, 𝑢2) ∈ V to

Δ2𝑢1 = [𝑢1, 𝑢2] + 𝐹 and Δ2𝑢2 = −1
2
[𝑢1, 𝑢1] (5.1)
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in a bounded polygonal Lipschitz domain Ω ⊂ R2. Here and throughout this section, the (symmetric)
von Kármán bracket [•, •] reads [𝜂, 𝜒] := 𝜂𝑥𝑥𝜒𝑦𝑦+𝜂𝑦𝑦𝜒𝑥𝑥−2𝜂𝑥𝑦𝜒𝑥𝑦 . Recall the bilinear form 𝑎pw and
𝑉 ≡ 𝐻2(T ) from Subsection 3.1. Let V̂ B 𝑉 ×𝑉 and define the trilinear forms Γpw,1, Γpw,2 : 𝑉 ×𝑉 ×𝑉
and 𝚪pw : V̂ × V̂ × V̂ by

Γpw,1(𝜉, �̂�, 𝜑) := −
∑︁
𝑇∈T

∫
𝑇

[𝜉, �̂�] 𝜑 dx, Γpw,2(𝜉, �̂�, 𝜑) :=
1
2

∑︁
𝑇∈T

∫
𝑇

[𝜉, �̂�] 𝜑 dx,

𝚪pw(�̂�, �̂� , �̂�) := Γpw,1(𝜉1, 𝜃2, 𝜑1) + Γpw,2(𝜉1, 𝜃1, 𝜑2)

for all 𝜉, �̂�, 𝜑 ∈ 𝑉 and �̂� = (𝜉1, 𝜉2), �̂� = (𝜃1, 𝜃2), �̂� = (𝜑1, 𝜑2) ∈ V̂. Given 𝑎 := 𝑎pw |𝑉×𝑉 , Γ1 :=
Γpw,1 |𝑉×𝑉×𝑉 , and Γ2 := Γpw,2 |𝑉×𝑉×𝑉 , the weak formulation of (5.1) seeks u ≡ (𝑢1, 𝑢2) ∈ V with

𝑎(𝑢1, 𝜑) + Γ1(𝑢1, 𝑢2, 𝜑) = 𝐹 (𝜑) and 𝑎(𝑢2, 𝜑) + Γ2(𝑢1, 𝑢1, 𝜑) = 0 for all 𝜑 ∈ 𝑉. (5.2)

For all 𝜽 = (𝜃1, 𝜃2) and 𝝋 = (𝜑1, 𝜑2) ∈ V, define

𝒂(𝜽 , 𝝋) := 𝑎(𝜃1, 𝜑1) + 𝑎(𝜃2, 𝜑2), and F(𝝋) B 𝐹 (𝜑1).
Given 𝚪 B 𝚪pw |𝑉×𝑉×𝑉 , the vectorised formulation of (5.2) seeks u = (𝑢1, 𝑢2) ∈ V such that

N(u; 𝝋) := 𝒂(u, 𝝋) + 𝚪(u, u, 𝝋) − F(𝝋) = 0 for all 𝝋 ∈ V. (5.3)

Given any𝐹 ∈ 𝑉∗ ≡ 𝐻−2(Ω), there exist solutions to (5.2), which are possibly singular but carry elliptic
regularity; the weak solution is unique and a regular root in the case of small loads, cf. [15, 23, 24] for
proofs. The a posteriori error analysis below concerns some approximation vℎ ∈ Vℎ B 𝑉ℎ × 𝑉ℎ to a
regular root u ∈ V of the continuous problem (5.2).

5.2 A posteriori error control for five quadratic discretizations
This subsection applies the abstract a posteriori error analysis from Section 3–4 to the Morley, dGI&II,
𝐶0IP, and WOPSIP schemes for (5.3). Recall the discrete space 𝑉ℎ from Subsection 4.2 together with
the bilinear forms bℎ and cℎ from Table 1 for the five methods. For any 𝜽ℎ ≡ (𝜃ℎ,1, 𝜃ℎ,2), 𝝋ℎ ≡
(𝜑ℎ,1, 𝜑ℎ,2) ∈ 𝑋ℎ ≡ 𝑌ℎ ≡ Vℎ ≡ 𝑉ℎ ×𝑉ℎ, the discrete bilinear form 𝒂ℎ : Vℎ × Vℎ → R reads

𝒂ℎ (𝜽ℎ, 𝝋ℎ) := 𝑎pw(𝜃ℎ,1, 𝜑ℎ,1) + bℎ (𝜃ℎ,1, 𝜑ℎ,1) + cℎ (𝜃ℎ,1, 𝜑ℎ,1)
+ 𝑎pw(𝜃ℎ,2, 𝜑ℎ,2) + bℎ (𝜃ℎ,2, 𝜑ℎ,2) + cℎ (𝜃ℎ,2, 𝜑ℎ,2).

(5.4)

The second dG scheme replaces 𝑎pw by (Δpw•,Δpw•)𝐿2 (Ω) . Let 𝑹 ∈ {id, 𝑰M, 𝑱𝑰M} and 𝑷 ≡ 𝑸 ≡
𝑺 ≡ 𝑱𝑰M denote the vectorized versions of the respective operators from Subsection 3.1 that apply
componentwise. The discrete scheme for (5.3) seeks a solution uℎ ∈ Vℎ to

𝑵ℎ (uℎ;Φℎ) := 𝒂ℎ (uℎ, 𝝋ℎ) + 𝚪pw(𝑹uℎ, 𝑹uℎ, 𝑺𝝋ℎ) − F(𝑸𝝋ℎ) = 0 for all 𝝋ℎ ∈ Vℎ . (5.5)

Recall 𝜏E , 𝜈E , [•]E , and the piecewise integral mean operator ΠE,0 from Subsection 3.1. Set 𝜗 = 1
for Morley, dG I& II, WOPSIP, and 𝜗 = 0 for C0IP. The a posteriori error estimator 𝝈(T ) :=√︁∑

𝑇∈T 𝝈2(𝑇) for some approximation vℎ = (𝑣ℎ,1, 𝑣ℎ,2) ∈ Vℎ to a regular root u ∈ V of the
continuous problem (5.1) has on 𝑇 ∈ T the contribution

𝝈2(𝑇) := |𝑇 |2
(
∥Π𝑘 𝑓0 + [𝑣ℎ,1, 𝑣ℎ,2] − divpw(Π𝑘 𝑓1) + div2

pw(Π𝑘 𝑓2)∥2
𝐿2 (𝑇 ) + ∥[𝑣ℎ,1, 𝑣ℎ,1] ∥2

𝐿2 (𝑇 )
)

+ |𝑇 |3/2∥ [Π𝑘 𝑓1 − div(Π𝑘 𝑓2) − 𝜕𝑠 (Π𝑘 𝑓2)𝜏E] · 𝜈E ∥2
𝐿2 (𝜕𝑇\𝜕Ω)

+ |𝑇 |1/2
([𝐷2𝑣ℎ,1]E𝜏E

2
𝐿2 (𝜕𝑇 ) +

(1 − 𝜗ΠE,0)
[ (
Π𝑘 𝑓2 − 𝐷2𝑣ℎ,1

)
𝜈E

]
E · 𝜈E

2
𝐿2 (𝜕𝑇\𝜕Ω)

+
[𝐷2𝑣ℎ,2]E𝜏E

2
𝐿2 (𝜕𝑇 ) +

(1 − 𝜗ΠE,0)
[ (
𝐷2𝑣ℎ,2

)
𝜈E

]
E · 𝜈E

2
𝐿2 (𝜕𝑇\𝜕Ω)

)
+

∑︁
ℓ=1,2

∑︁
𝐸∈E (𝑇 )

(��Π𝐸,0 [𝜕𝜈𝑣ℎ,ℓ ]𝐸 ��2 + |𝑇 |−1
∑︁

𝑧∈V(𝐸 )

�� [𝑣ℎ,ℓ]]𝐸 (𝑧)��2) .
Abbreviate cP(vℎ, vℎ) B 𝑐P(𝑣ℎ,1, 𝑣ℎ,1) + 𝑐P(𝑣ℎ,2, 𝑣ℎ,2) with the WOPSIP penalty form 𝑐P from (4.5).
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Theorem 5.1 (a posteriori error control). Given a regular root u ∈ V to (5.3) with 𝐹 ∈ 𝐻−2(Ω) and
𝑘 ∈ N0, there exist 𝜀, 𝛿, 𝜚 > 0 such that (5.5) has a unique discrete solution uℎ ∈ Vℎ to (5.5) with
∥u − uℎ∥ℎ ≤ 𝜀 for any T ∈ T(𝛿) and the following holds for 𝐹 given as in (3.7). (𝑎) For the Morley,
dG I & II, and 𝐶0IP scheme and 𝑷 ≡ 𝑸 ≡ 𝑺 ≡ 𝑱𝑰M, any vℎ ∈ Vℎ with ∥uℎ − vℎ∥ℎ ≤ 𝜚 satisfies

∥u − vℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝝈(T ) + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T).

(𝑏) For the WOPSIP scheme and 𝑷 ≡ 𝑸 ≡ 𝑺 ≡ 𝑱𝑰M, any vℎ ∈ Vℎ with ∥uℎ − vℎ∥ℎ ≤ 𝜚 satifsies

∥u − vℎ∥ℎ + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝝈(T ) + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T),
∥u − vℎ∥P + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝝈(T ) + cP(vℎ, vℎ)1/2 + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T).

Proof. The proof employs the a priori analysis in [12, Sec. 9] for the existence of a local unique
discrete solution and follows the lines of that of Theorem 4.2 for all the components behind the
vector notation of this section. Indeed, Theorem 2.1.a and Theorem 3.1.a provide ∥u − vℎ∥ℎ ≲
𝝔 + ∥vℎ − 𝑱𝑰Mvℎ∥ℎ + ∥uℎ − vℎ∥ℎ, where 𝝆 ≡ 𝜌1 + 𝜌2 from (3.11) splits into the components

𝜌1 B sup
𝑦∈𝑌,∥𝑦∥𝑌 =1

𝑧:=𝑦−𝐽𝐼M𝐼ℎ 𝐼M𝑦

(
𝐹 (𝑧) − 𝑎(𝐽𝐼M𝑣ℎ,1, 𝑧) − Γpw,1(𝑅𝑣ℎ,1, 𝑅𝑣ℎ,2, 𝑧)

)
, (5.6)

𝜌2 B sup
𝑦∈𝑌,∥𝑦∥𝑌 =1

𝑧:=𝑦−𝐽𝐼M𝐼ℎ 𝐼M𝑦

( − 𝑎(𝐽𝐼M𝑣ℎ,2, 𝑧) − Γpw,2(𝑅𝑣ℎ,1, 𝑅𝑣ℎ,1, 𝑧)
)
. (5.7)

The control of 𝜌1, 𝜌2 as in Theorem 3.1 amounts in a large number of terms gathered together in the
estimator 𝝈(T ). As there is no additional mathematical difficulty, the further details are omitted. □

5.3 Single force
Practical plate problems also concern line loads and single forces as discussed in [7] for the linear
biharmonic plate. There are two amazing observations regarding a single force 𝜆𝜁 𝛿𝜁 with strength
𝜆𝜁 ∈ R and the Dirac delta distribution 𝛿𝜁 ∈ 𝐻−2(Ω) at a finite set 𝐴 ⊂ Ω of points 𝜁 ∈ 𝐴. First, single
loads 𝜆𝜁 𝛿𝜁 decouple in the a posteriori error analysis from a general source 𝐹 ∈ 𝐻−2(Ω) given by

𝐹 (𝜑) :=
∫
Ω

( 𝑓0 𝜑 + 𝑓1 · ∇𝜑 + 𝑓2 : 𝐷2𝜑) dx +
∑︁
𝜁 ∈𝐴

𝜆𝜁 𝛿𝜁 (𝜑) for all 𝜑 ∈ 𝐻2
0 (Ω). (5.8)

in terms of Lebesgue functions 𝑓0 ∈ 𝐿2(Ω), 𝑓1 ∈ 𝐿2(Ω;R2), 𝑓2 ∈ 𝐿2(Ω;S) as in (3.7). Second, a
point load at an interior vertex 𝜁 ∈ V(Ω) leads to a load in the discrete problem (1.2) but has no
contribution to the a posteriori error estimate because the test functions for 𝐹 in 𝜌1 from (5.6) vanish
at all vertices V. This has already been observed in [7, 10] for linear problems. Hence we consider
a finite family (𝜆𝜁 𝛿𝜁 : 𝜁 ∈ 𝐴) of single forces at 𝐴 ⊂ Ω, |𝐴| < ∞ and distinguish 𝐴 ∩ V with no
contributions 𝜇(𝜁) = 0 and 𝐴 \V with a contribution 𝜇(𝜁) to the a posteriori error control as follows.

Consider a single force 𝜆𝜁 𝛿𝜁 at a generic position 𝜁 ∈ Ω \ V that is different from a vertex of the
triangulation so that at most two triangles 𝑇 ∈ T (𝜁) := {𝐾 ∈ T : 𝜁 ∈ 𝐾} contain 𝜁 ∈ 𝑇 . Let
ℎ𝜁 B min {|𝑇 |1/2 : 𝑇 ∈ T (𝜁)}, 𝜔(𝜁) B int(∪T (𝜁)) and suppose the separation assumption

dist(𝜁,V) ≳ ℎ𝜁 and |𝐴 ∩ 𝜔(𝜁) | = 1 for all 𝜁 ∈ 𝐴 \ V . (5.9)

The following result extends Theorem 5.1 to right-hand sides with single forces at 𝐴. Define the novel
estimator 𝜇(𝜁) B |𝜆𝜁 |ℎ𝜁 for a single load at 𝜁 ∈ 𝐴 and set 𝜇(M) B ∑

𝜁 ∈M 𝜇(𝜁) for all M ⊂ 𝐴.

Theorem 5.2 (single forces). Under the assumptions of Theorem 5.1.a for 𝐹 ∈ 𝐻−2(Ω) given in (5.8)
for single forces at a finite set 𝐴 ⊂ Ω with (5.9), the Morley, dG I & II, and 𝐶0IP scheme satisfy

∥u − vℎ∥ℎ + osc𝑘 (𝐹,T) ≈ 𝝈(T ) + 𝜇(𝐴 \ V) + ∥uℎ − vℎ∥ℎ + osc𝑘 (𝐹,T).

An analog to Theorem 5.1.b holds for the WOPSIP scheme where 𝜇(𝐴 \V) is added on the respective
right-hand sides.
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Example 5.1. This separation condition (5.9) is met in the numerical benchmark in Subsection 6.3 for
the centroid 𝜁 = (−1/6;−1/6) of the L-shaped domain Ω that lies on an edge 𝐸 = conv{𝐴, 𝐵} ∈ E
parallel to the main diagonal for all triangulations (occuring from newest-vertex bisections) with
𝜁 = 1/3𝐴+2/3𝐵 and dist(𝜁,V) = ℎ𝐸/3 ≥

√
2ℎ𝜁 /3 for the right-isosceles triangles in Subsection 6.3.

Proof of Theorem 5.2. The modifications to the source 𝐹 only enter the estimation of the term 𝜌1 from
(5.6) in Theorem 5.1. The reliability follows from Section 3 plus the analysis, for 𝜁 ∈ 𝐴, of the extra
terms

|𝜆𝜁 𝛿𝜁 (𝑧) | ≡ |𝜆𝜁 𝑧(𝜁) | ≤
{
|𝜆𝜁 |𝐶BHℎ𝜁 |𝑧 |𝐻2 (𝑇 ) if ∈ 𝐴 \ V,

0 if ∈ 𝐴 ∩V
for any 𝑧 B 𝑤 − 𝐽𝐼M𝐼ℎ 𝐼M𝑤 with 𝑤 ∈ 𝑉 . Indeed, 𝑧 vanishes at V and a Bramble-Hilbert lemma scales
the Sobolev embedding 𝐻2(𝑇ref) ↩→ 𝐶 (𝑇ref) from a reference triangle 𝑇ref to 𝑇 with a constant 𝐶BH
that exclusively depends on the shape-regularity of 𝑇 . Recall (3.16) for |||𝑧 ||| ≤ 𝐶stab |||𝑤 ||| and |||𝑤 ||| = 1
to deduce 𝜆𝜁 𝛿𝜁 (𝑧) ≤ 𝐶BH𝐶stab 𝜇({𝜁 } \ V) and involve this estimate in Subsection 3.3. This outlines
the proof of 𝜌1 ≲ 𝝈(T ) + 𝜇(𝐴 \ V) + osc𝑘 (𝐹,T); the remaining details are straightforward from
Theorem 5.1 and hence omitted. The efficiency of the additional a posteriori error terms 𝜇(𝜁) for any
𝜁 ∈ 𝐴 \ V requires the design of a test function 𝜓 ∈ 𝑉 with a list of properties:

𝜓(𝜁) = 1, 𝜓 = 0 at V, supp 𝜓 ⊆ 𝜔(𝜁), 𝜓 |𝑇 ⊥ 𝑃𝑘 (𝑇) in 𝐿2(𝑇) for any triangle 𝑇 ∈ T ,
𝜓 |𝐸 ⊥ 𝑃𝑘 (𝐸) in 𝐿2(𝐸), and ∇𝜓 |𝐸 ⊥ (𝑃𝑘 (𝐸))2 in 𝐿2(𝐸)2 along any edge 𝐸 ∈ E .

(5.10)

This function can always be constructed and Supplement B provides an elementary design of 𝜓 in
terms of Jacobi polynomials if 𝜁 ∈ 𝐸 ∈ E. An important detail is the scaling |||𝜓 ||| ≈ ℎ−1

𝜁
that requires

the separation condition dist(𝜁,V) ≳ ℎ𝜁 , while the universal case with 𝜁 ∈ Ω arbitrary involves
a more refined analysis with a weight that is left for future research. Recall Π𝑘𝐹 from (3.15) and
consider Λ B Π𝑘𝐹 − 𝑎pw(𝑣ℎ,1, •) − Γpw,1(𝑣ℎ,1, 𝑣ℎ,2, •) as in (3.13) with

Λ0 := Π𝑘 𝑓0 + [𝑣ℎ,1, 𝑣ℎ,2] ∈ 𝑃𝑘 (T ), Λ1 := Π𝑘 𝑓1 ∈ 𝑃𝑘 (T ;R2), Λ2 := Π𝑘 𝑓2 − 𝐷2
pw𝑣ℎ,1 ∈ 𝑃𝑘 (T ;S)

The many orthogonalities (5.10) of 𝜓 enter the final stage in two piecewise integration by parts for

Λ(𝜓) ≡
∫
Ω

(
Λ0𝜓 + Λ1 ·∇𝜓 + Λ2 :𝐷2𝜓

)
dx =

∑︁
𝐸∈E

∫
𝐸

(
𝜓
[
Λ1 − divpwΛ2

]
𝐸
·𝜈𝐸 + ∇𝜓 · [Λ2]𝐸 𝜈𝐸

)
ds

+
∑︁
𝑇∈T

∫
𝑇

(
Λ0 − divpwΛ1 + div2

pwΛ2
)
𝜓 dx = 0. (5.11)

In fact, 𝜓 |𝑇 ⊥ Λ0−divpwΛ1+div2
pwΛ2 ∈ 𝑃𝑘 (𝑇) in 𝐿2(𝑇) for𝑇 ∈ T , 𝜓 |𝐸 ⊥ [

Λ1 − divpwΛ2
]
𝐸
∈ 𝑃𝑘 (𝐸)

in 𝐿2(𝐸) as well as (∇𝜓) |𝐸 ⊥ [Λ2]𝐸 𝜈𝐸 ∈ 𝑃𝑘 (𝐸)2 in 𝐿2(𝐸)2 for all 𝐸 ∈ E make each of the
integrals vanish individually. Since 𝜁 is the only element of 𝐴 ∩ 𝜔(𝜁) by (5.9), the properties of 𝜓
imply

∑
𝑎∈𝐴 𝜆𝑎𝛿𝑎 (𝜓) = 𝜆𝜁 . This, the algebraic identity (5.11), and the first component 𝑎(𝑢1, 𝜓) +

Γ1(𝑢1, 𝑢2, 𝜓) = 𝐹 (𝜓) of the problem (5.2) (and (5.3)) with exact solution u = (𝑢1, 𝑢2) ∈ V lead to

𝜆𝜁 = 𝑎pw(𝑢1−𝑣ℎ,1, 𝜓) +Γpw,1(𝑢1−𝑣ℎ,1, 𝑢2, 𝜓) +Γpw,1(𝑣ℎ,1, 𝑢2−𝑣ℎ,2, 𝜓) +
(
Π𝑘𝐹 +

∑︁
𝑎∈𝐴

𝜆𝑎𝛿𝑎−𝐹
)
(𝜓).

A Cauchy inequality for 𝑎pw, the boundedness of Γpw,1, and a routine estimation of the last term
as in (3.17) with the scaling ∥𝜓∥𝐻𝑠 (𝑇 ) ≤ ℎ2−𝑠

𝑇
𝐶BH∥𝜓∥𝐻2 (𝑇 ) for 𝑠 = 0, 1, 2 and 𝑇 ∈ T (𝜁) from a

Bramble-Hilbert lemma provide

ℎ−1
𝜁 𝜇(𝜁) = |𝜆𝜁 | ≤ |||𝜓 |||

( (
1 + ∥Γpw,1∥(|||𝑢2 ||| + ∥𝑣ℎ,1∥ℎ)

) ∥u − vℎ∥ℎ + 𝐶BHosc𝑘 (𝐹,T)
)
.

The scaling |||𝜓 ||| ≈ ℎ−1
𝜁

and the boundedness of |||𝑢2 ||| + ∥𝑣ℎ,1∥ℎ ≤ |||u||| + ∥vℎ∥ℎ by (2.31) imply
𝜇(𝜁) ≲ ∥u − vℎ∥ℎ + osc𝑘 (𝐹,T). Since the set |𝐴 \ V| ≲ 1 is finite, the sum over all 𝜁 ∈ 𝐴 \ V
concludes the efficiency of 𝜇(𝐴 \ V) ≲ ∥u − vℎ∥ℎ + osc𝑘 (𝐹,T). Theorem 3.1.c and the quasi-
optimality (2.4) of the smoother 𝑃 ≡ 𝐽𝐼M provide the efficiency of ∥ [𝐷2𝑣ℎ]E𝜏E ∥𝐿2 (E) + 𝑗ℎ (𝑣ℎ, 𝑣ℎ)1/2

for 𝑣ℎ = 𝑣ℎ,1, 𝑣ℎ,2. The efficiency of the other terms in 𝝈(T ) does not follow verbatim, but a correction
of standard (cubic volume and quadratic edge) bubble functions by a multiple of 𝜓 so that the resulting
sum vanishes at 𝐴 decouples the contributions and leads to local efficiency as in [7, Sec. 7.4]. □
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Figure 1: Initial (left) and adaptive triangulations with |T | = 1083 (middle) and |T | = 2044 (right)
triangles for the Morley FEM in Subsection 6.2

6 Numerical experiments
This section compares the uniform and adaptive Morley, 𝐶0IP, and dG FEM for the Navier-Stokes and
von Kármán equations in 2D on triangulations of the L-shaped domain of Figure 1 and 3 into triangles.

6.1 Numerical realization
The Newton scheme allows the approximation 𝑣ℎ up to machine precision of a root 𝑣ℎ = 𝑢ℎ to (1.2) and
so we disregard the algebraic error ∥𝑢ℎ − 𝑣ℎ∥ℎ = 0. Supplement C provides algorithmic details on the
implementation of the nested iterations and the termination criterion. This section presents numerical
evidence on the theoretical results for the a posteriori error estimators 𝜎(T ) from Sections 4–5 and
the related standard Dörfler marking adaptive algorithm with newest-vertex bisection.

6.2 Navier-Stokes equations on L-shaped domain
The singular solution from Grisvard [21] for the L-shaped domain Ω = (−1, 1)2 \ [0, 1)2 reads

𝑢(𝑟, 𝜑) = (
𝑟2 sin(𝜑)2 − 1

)2 (
𝑟2 cos(𝜑)2 − 1

)2
𝑟1+𝜇𝜇2 𝜉

(
𝜑)

in polar coordinates with interior angle 𝜔 = 3𝜋/2 at the origin, 𝜇 = 0.54448, and a smooth function
𝜉 given [21, Eqn. 3.2.9] (therein denoted as 𝜉 (𝜑) = 𝑢(𝜇, 𝜑 − 𝜋/2)). This function 𝑢 ∈ 𝐻2

0 (Ω) ∩
𝐻2+𝜎 (Ω) for 𝜎 < 𝜇 serves as an exact solution to (4.1) with computed source term 𝐹 ≡ 𝑓 ∈ 𝐿2(Ω).
Figure 2 displays the expected suboptimal experimental convergence rate 𝜎/2 on uniformly refined
triangulations. The a posteriori error analysis in Section 4 motivates the standard adaptive algorithm
driven by the refinement indicators 𝜎2(𝑇) for a triangle 𝑇 ∈ T equal to

|𝑇 |2∥ 𝑓 ∥2
𝐿2 (𝑇 ) + |𝑇 |3/2∥ [Δ𝑢ℎCurl𝑢ℎ]E · 𝜈E ∥2

𝐿2 (𝜕𝑇\𝜕Ω) + 𝜗 |𝑇 |1/2∥ [𝜕𝜈𝜈𝑢ℎ]E ∥2
𝐿2 (𝜕𝑇\𝜕Ω)

+|𝑇 |1/2[𝐷2𝑢ℎ]𝐸𝜏𝐸
2
𝐿2 (𝜕𝑇 ) +

∑︁
𝐸∈E (𝑇 )

(��Π𝐸,0 [𝜕𝜈𝑢ℎ]𝐸 ��2 + |𝑇 |−1
∑︁

𝑧∈V(𝐸 )

�� [𝑢ℎ]𝐸 (𝑧)
��2) (6.1)

with 𝜗 = 1 for 𝐶0IP and 𝜗 = 0 otherwise. For all choices of the operators 𝑅, 𝑆 ∈ {id, 𝐼M, 𝐽 𝐼M}
shown for Morley on the left in Figure 2, the adaptive algorithm recovers optimal convergence rates
of the error 𝑒ℎ B 𝑢 − 𝑢ℎ in the norm ∥ • ∥ℎ and, as implied by Theorem 4.2, the error estimator
𝜎(T ) B

√︁∑
𝑇∈T 𝜎2(𝑇). The first competition of the lowest-order Morley, dGI, and 𝐶0IP scheme

with parameters 𝜎IP B 𝜎1 B 𝜎2 B 20 in (4.4) and 𝜃 = 1 in Table 1 reveals an overall comparable
performance with the smallest error for given number of dofs from the𝐶0IP scheme shown in Figure 2.
The undisplayed efficiency indices 𝐸𝐹 B 𝜎(T )/∥𝑒ℎ∥ℎ range between 1.5 and 4 on meshes with at
least 1000 dof. Figure 1 displays the initial triangulation and a typical output of the adaptive algorithm
with the expected local refinement towards the singularity at the origin. The additional mild refinement
near the sides opposite to the origin appears for all schemes with different intensity and is interpreted
as a boundary layer already observed for the linear biharmonic problem, e.g., in [5].
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Figure 2: Convergence history plot of the error ∥𝑒ℎ∥ℎ and the estimator 𝜎(T ) for Morley FEM with
different choices of 𝑅, 𝑆 ∈ {id, 𝐽 𝐼M} (left) and Morley, C0IP, dG I FEM (right) for the singular solution 𝑢
in Subsection 6.2
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Figure 3: Initial mesh for the von Kármán problem with the centroid (left) and adaptive triangulations
with |T | = 416 (middle) and |T | = 1678 (right) triangles from the Morley FEM for 𝑅 = 𝑆 = id

6.3 Von Kármán problem with a point load
The second benchmark considers a point force 𝐹 = 𝛿𝜁 ∈ 𝑉∗ located at the centroid 𝜁 = (−1/6,−1/6)
of the L-shaped domain. Example 5.1 shows that the separation condition (5.9) holds for all newest-
vertex refinements of the initial triangulation displayed in Figure 3. Given the localized estimator
𝜇(𝜁, 𝑇) B |𝑇 |1/2 if 𝑇 ∈ T (𝜁) and 𝜇(𝜁, 𝑇) B 0 otherwise for the single load at 𝜁 , the discussion on
single forces in Subsection 5.3 motivates the refinement indicator 𝝈2(𝑇) for a triangle 𝑇 ∈ T equal to

𝜇(𝜁, 𝑇) + |𝑇 |2
([𝑢 (1)

ℎ
, 𝑢

(2)
ℎ

]
2
𝐿2 (𝑇 ) +

[𝑢 (1)
ℎ
, 𝑢

(1)
ℎ

]
2
𝐿2 (𝑇 )

)
+ 𝜗 |𝑇 |1/2

∑︁
ℓ=1,2

[𝜕𝜈𝜈𝑢 (ℓ )ℎ ]
2
𝐿2 (𝜕𝑇\𝜕Ω) (6.2)

+
∑︁
ℓ=1,2

(
|𝑇 |1/2[𝐷2𝑢

(ℓ )
ℎ

]E𝜏E
2
𝐿2 (𝜕𝑇 ) +

∑︁
𝐸∈E (𝑇 )

(��Π𝐸,0 [𝜕𝜈𝑢 (ℓ )ℎ ]
𝐸

��2 + |𝑇 |−1
∑︁

𝑧∈V(𝐸 )

�� [𝑢 (ℓ )
ℎ

]
𝐸
(𝑧)

��2))
with 𝜗 = 1 for 𝐶0IP and 𝜗 = 0 else. Figure 4 displays optimal convergence rates of the adaptive
algorithm driven by the refinement indicators (6.2) that improve on the observed suboptimal rate
1/3 on uniformly refined meshes. Theorem 5.2 guarantees the observed equivalence of the unknown
(undisplayed) error ∥eℎ∥ℎ B ∥u−uℎ∥ℎ and the error estimator 𝝈(T ) =

√︁∑
𝑇∈T 𝝈2(𝑇) up to vanishing

oscillations. The convergence history plots for the different choices 𝑅, 𝑆 ∈ {id, 𝐼M, 𝐽 𝐼M} overlap and
are indistinguishable as highlighted for the Morley FEM on the left. Figure 3 displays the adaptive
refinement towards the atom of the point force 𝜁 and an even stronger local refinement towards the
reentrant corner.
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Figure 4: Convergence history plot of the estimator 𝝈(T ) for Morley FEM with different choices of
𝑅, 𝑆 ∈ {𝑖𝑑, 𝐽ℎ} (left) and Morley, C0IP, dG I FEM (right) with unknown solution 𝑢 in Subsection 6.3

6.4 Conclusive remarks
The nested iteration of Newton’s scheme for solving the nonlinear discrete problem is highly effective
and reaches machine precision with 3 to 6 iterations in average. All variants with 𝑅, 𝑆 ∈ {id, 𝐼M, 𝐽 𝐼M}
lead to very similar accuracies. This is the first empirical confirmation of the overall equivalence of
[12, Thm. 8.3 and Thm. 9.1]. While the theory requires a particular choice 𝑆 = 𝐽𝐼M for the efficiency
estimate in Theorem 3.1, undisplayed computer experiments provide strong empirical evidence for effi-
ciency of the presented a posteriori error estimator for any choice of the operators 𝑅, 𝑆 ∈ {id, 𝐼M, 𝐽 𝐼M}.
The classical schemes with 𝑅 = 𝑆 = id are the easiest to implement and their a posteriori analysis may
be combined with the reference scheme as suggested in Subsection 2.5.2 as a recommended overall
strategy. The mandatory adaptive algorithm recovers optimal convergence rates in all examples and
motivates future research on optimal convergence rates.
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Supplement materials to the paper ’A posteriori error
control for fourth-order semilinear problems with

quadratic nonlinearity’

Carsten Carstensen and Benedikt Gräßle and Neela Nataraj

This supplement contains three parts that provide further details on the practical application of the
abstract results from Section 2 in Supplement A, an explicit construction of the test function 𝜓 used
in the proof Theorem 5.2 for single forces in Supplement B, and a stopping criterion for solutions up
to machine precision with Newton’s method in Supplement C.

A Proof of Lemma 2.2
The (finite) Taylor series expansion of 𝑁ℎ at the root 𝑢ℎ to 𝑁ℎ (𝑢ℎ) = 0 for the approximation of
𝑁ℎ (𝑣ℎ) provides

𝐷𝑁ℎ (𝑢ℎ; 𝑢ℎ − 𝑣ℎ) = Γpw(𝑅(𝑢ℎ − 𝑣ℎ), 𝑅(𝑢ℎ − 𝑣ℎ), 𝑆 •) − 𝑁ℎ (𝑣ℎ) ∈ 𝑌 ∗
ℎ . (A.1)

By definition of the inf-sup constant (2.39), there exists 𝑤ℎ ∈ 𝑌ℎ with ∥𝑤ℎ∥𝑌ℎ ≤ 1 and

𝛽ℎ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
= 𝐷𝑁ℎ (𝑢ℎ; 𝑢ℎ − 𝑣ℎ, 𝑤ℎ)
= Γpw(𝑅(𝑢ℎ − 𝑣ℎ), 𝑅(𝑢ℎ − 𝑣ℎ), 𝑆𝑤ℎ) − 𝑁ℎ (𝑣ℎ;𝑤ℎ)
≤ ∥Γ∥∥𝑅∥2∥𝑆∥∥𝑢ℎ − 𝑣ℎ∥2

𝑋ℎ
+ ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗

ℎ
≤ 𝜅𝛽ℎ∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

+ ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗
ℎ

with ∥Γpw∥∥𝑅∥2∥𝑆∥∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ
≤ 𝜅𝛽ℎ in the last step. This is the first assertion (1 − 𝜅)𝛽ℎ∥𝑢ℎ −

𝑣ℎ∥𝑋ℎ
≤ ∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗

ℎ
. The second follows from the boundedness of 𝐷𝑁ℎ (𝑢ℎ) and (A.1); in fact

∥𝑁ℎ (𝑣ℎ)∥𝑌 ∗
ℎ
= ∥Γpw(𝑅(𝑢ℎ − 𝑣ℎ), 𝑅(𝑢ℎ − 𝑣ℎ), 𝑆 •) − 𝐷𝑁ℎ (𝑢ℎ; 𝑢ℎ − 𝑣ℎ)∥𝑌 ∗

ℎ

≤
(
∥Γ∥∥𝑅∥2∥𝑆∥∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

+ ∥𝐷𝑁ℎ (𝑢ℎ)∥𝑋∗
ℎ
×𝑌 ∗

ℎ

)
∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

≤
(
𝜅𝛽ℎ + ∥𝐷𝑁ℎ (𝑢ℎ)∥𝑋∗

ℎ
×𝑌 ∗

ℎ

)
∥𝑢ℎ − 𝑣ℎ∥𝑋ℎ

. □

B Design of the test function 𝜓
Given a point 𝜁 ∈ int(𝐸) on the interior of an edge 𝐸 of the triangulation T , the construction a test
function 𝜓 with 𝜓(𝜁) = 1 and a list of orthogonalities (5.10) used in the proof of Theorem 5.2 based
on one-dimensional Jacobi polynomials follows in three steps.

Step 1 discusses the orthogonal Jacobi polynomials 𝑃 (4,4)
𝑛 ∈ 𝑃𝑛 [−1, 1] of degree 𝑛 ∈ N0 that reflect

the weight 𝜌(𝑥) := (1 − 𝑥2)4 for −1 ≤ 𝑥 ≤ 1. The well-known three-term recurrence relation reveals

𝑐𝑛 B 𝑃
(4,4)
2𝑛 (0) = (−4)−𝑛

(
2𝑛 + 4
𝑛

)
for 𝑛 ∈ N0

24
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and guarantees 𝑃2𝑛 (0) ≠ 0. Given 𝑘 ∈ N0, select 𝑛 ∈ N with 2𝑛 ≥ 𝑘 and rescale to define
𝜓 B 𝑃

(4,4)
2𝑛 /𝑐𝑛 ∈ 𝑃2𝑛 [−1, 1] with 𝜓(0) = 1 and 𝜌𝜓 ⊥ 𝑃𝑘 [−1, 1] in 𝐿2(−1, 1). Observe that

𝑤(𝑥, 𝑦) = (1 − 𝑥2)2(1 − 𝑦2)2 implies 𝑤(𝑥, 𝑥) = 𝜌(𝑥). The polynomial 𝑓 ∈ 𝑃8+2𝑛 (𝑄) defined by

𝑓 (𝑥, 𝑦) := 𝑤(𝑥, 𝑦)𝜓((𝑥 + 𝑦)/2) for 𝑥, 𝑦 ∈ [−1, 1]
on the cube 𝑄 = [−1, 1]2 satisfies along the diagonal 𝐷 := {(𝑥, 𝑥) : −1 ≤ 𝑥 ≤ 1} that

𝑓 (0, 0) = 1 and 𝑓 𝑞 ⊥ 𝑃𝑛 (𝐷) in 𝐿2(𝐷)2 for all 𝑞𝑘 ∈ 𝑃𝑘 (𝐷)2.

By symmetry of 𝑤 along 𝐷, ∇𝑤 |𝐷 ⊥ 𝜈𝐷 = (1;−1)/
√

2 pointwise along 𝐷. Since the gradient
𝜓′((𝑥 + 𝑦)/2) (1/2; 1/2) of (𝑥, 𝑦) ↦→ 𝜓((𝑥 + 𝑦)/2) is also perpendicular to 𝜈𝐷 along 𝐷, we infer
𝜈𝐷 · ∇ 𝑓 |𝐷 = 0. The scaling by ℎ > 0 leads to 𝑔(𝑥, 𝑦) = 𝑓 (𝑥/ℎ, 𝑦/ℎ) with

𝑔 ∈ 𝑃8+2𝑛 (𝑄) ∩ 𝐻2
0 (𝑄), supp 𝑔 ⊆ 𝑄, 𝑔 ⊥ 𝑃𝑘 (ℎ𝐷) in 𝐿2(ℎ𝐷),

∇𝑔 · 𝜈𝐷 = 0 on ℎ𝐷, and |𝑔 |𝐻𝑠 (ℎ𝑄) = ℎ1−𝑠 | 𝑓 |𝐻𝑠 (𝑄) for 𝑠 = 0, 1, 2.

Those properties are inherited by transformations in another Cartesian coordinate system (by translation
and rotation).

Step 2 constructs an edge bubble-function over the edge-patch. Given an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇−
shared by the triangles 𝑇± ∈ T and patch 𝜔(𝐸) and 𝜁 ∈ 𝐸 with dist(𝜁, 𝑣) ≈ ℎ𝐸 ≈ ℎ𝑇+ ≈ ℎ𝑇− (from
shape-regularity of T ), let𝑄 be the maximal square with edge-size ℎ > 0 and midpoint 𝜁 that belongs
to 𝑇+ ∪ 𝑇− ⊃ 𝑄 such that one diagonal conv{𝐴,𝐶} ⊂ 𝐸 lies on the edge 𝐸 as displayed in Figure 5.
A translation by 𝜁 and a rotation to fit 𝜁, 𝐴, 𝐶 ∈ 𝐸 leads to a function 𝑔 ∈ 𝐻2

0 (𝑄) ∩ 𝑃8+2𝑛 as designed

𝐴 𝐶𝜁𝑄

𝐸

𝑇−

𝑇+

𝜔(𝐸)

𝜈𝐸

Figure 5: Triangles 𝑇+, 𝑇−, 𝜔(𝐸), and square 𝑄 ⊂ 𝑇+ ∪ 𝑇−

in Step 1 with scaling |𝑔 |𝐻𝑠 (𝑄) ≈ ℎ1−𝑠 for 𝑠 = 0, 1, 2 and with 𝑔(𝜁) = 1 and various orthogonalities.

Step 3 is the final design of 𝜓 ⊥ 𝑃𝑘 (T ). This is more standard than the previous design steps with
a cubic bubble-function 𝑏𝑇+ and 𝑏𝑇− and polynomials 𝑞± ∈ 𝑃𝑘 (𝑇±) such that 𝑔 − 𝑏2

𝑇±𝑞± ⊥ 𝑃𝑘 (𝑇±)
in 𝐿2(𝑇±). This leads to the function 𝜓 := 𝑔 − 𝑏2

𝑇+𝑞+ − 𝑏2
𝑇−𝑞− ∈ 𝐻2

0 (𝑄) ⊂ 𝑉 with all the desired
orthogonality conditions, supp 𝜓 ⊂ 𝑇+ ∪ 𝑇−, and 𝜓(𝜁) = 1. The scaling |||𝜓 ||| ≲ ℎ−1 ≈ ℎ−1

𝐸
follows

from that of 𝑔 and the following routine estimate for 𝑞±. Inverse estimates show

∥𝑞±∥2
𝐿2 (𝑇± ) ≈ ∥𝑏𝑇±𝑞±∥2

𝐿2 (𝑇± ) =
∫
𝑇±
𝑔𝑞 dx ≤ ∥𝑔∥𝐿2 (𝑇± ) ∥𝑞±∥𝐿2 (𝑇± ) .

This, two Friedrichs’s inequalities, and an inverse inequality conclude the proof with

∥𝑏𝑇±𝑞±∥𝐿2 (𝑇± ) ≈ ∥𝑞±∥𝐿2 (𝑇± ) ≤ ∥𝑔±∥𝐿2 (𝑇± ) ≤ 𝜋−2ℎ𝑇± |||𝑔 |||. □

C Accurate solution to semilinear problems
This supplement provides algorithmic details on the adaptive computations in Section 6 with particular
focus on the implementation of Newton’s method for the solution of the discrete equation (1.2) up to
machine precision controlled by the termination criterion of Lemma 2.2.
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Accurate approximations with Newton’s method
Starting from the initial guess 𝑢0

ℓ
B 𝐼ℎ𝐽𝐼M𝑢ℓ−1 for nested iteration with initialisation 𝑢0

0 B 0 on the
coarsest mesh, our implementation computes the Newton iterates 𝑢𝑘+1

ℓ
B 𝑢𝑘

ℓ
− 𝐷𝑁ℎ (𝑢𝑘ℓ )−1𝑁ℎ (𝑢𝑘ℓ )

with the LU decomposition in Julia for an exact Newton update. In the present situation of Section
6, 𝑎ℎ is a scalar product associated to the linear operator 𝐴ℎ ∈ 𝐿 (𝑉ℎ;𝑉ℎ) and induces the method-
dependent norm ∥ • ∥𝑎 B 𝑎ℎ (•, •)1/2 in 𝑉ℎ. Let 𝑢ℓ denote the exact discrete solution and recall the
equivalence of the algebraic error to the residual from Lemma 2.2. This and the Riesz isomorphism𝐴−1

ℎ 𝑁ℎ
(
𝑢𝑘+1
ℓ

)
𝑎
=
𝑁ℎ (𝑢𝑘+1

ℓ

)
𝑎,∗ B sup

𝑣ℎ∈𝑉ℎ

��𝑁ℎ (𝑢𝑘+1
ℓ

)
𝑣ℎ
��

∥𝑣ℎ∥𝑎 ≈
𝑢ℓ − 𝑢𝑘+1

ℓ


𝑎

motivates a stopping criterion on the computable quantity
𝐴−1

ℎ
𝑁ℎ

(
𝑢𝑘+1
ℓ

)
𝑎

in two stages. The first
step iterates until 𝐴−1

ℎ 𝑁ℎ
(
𝑢𝑘+1
ℓ

)
𝑎
≤ 𝑡𝑜𝑙

(𝑢𝑘+1
ℓ


𝑎
+
𝑢𝑘ℓ 𝑎) (C.1)

holds with 𝑡𝑜𝑙 B 10−4 in the benchmarks of Section 6. Once this coarse condition is satisfied the
algebraic error is considered sufficiently small such that quadratic convergence can be expected through
the Newton-Kantorovich theorem. The second stage computes further iterates until𝐴−1

ℎ 𝑁ℎ
(
𝑢𝑘ℓ

)
𝑎
≤
𝐴−1

ℎ 𝑁ℎ
(
𝑢𝑘+1
ℓ

)
𝑎
. (C.2)

This suggests the approximate solution 𝑢ℓ = 𝑢𝑘
ℓ

is accurate up to machine precision. In average, the
benchmarks in Section 6 (with nested iteration) perform 1 to 2 iterations until (C.1) and another 0 to
5 iterations until (C.2) holds.

Remark C.1 (General bilinear forms 𝑎ℎ). If 𝑎ℎ does not define a scalar product in 𝑉ℎ, Example 2.1
and Lemma 2.2 provide an alternative approach for the computation of the algebraic residual𝐴−1

ℎ 𝑁ℎ
(
𝑢𝑘+1
ℓ

)
ℎ
≈
𝑁ℎ (𝑢𝑘+1

ℓ

)
∗ ≈

𝑢ℓ − 𝑢𝑘+1
ℓ


ℎ

in the norm ∥ • ∥ℎ from (3.3).
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