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Abstract

In this paper we study resonances in two degrees of freedom, autonomous, hamil-

tonian systems. Due to the presence of a symmetry condition on one of the degrees of

freedom, we show that some of the resonances vanish as lower order resonances. Af-

ter determining the size of the resonance domain, we investigate this order change of

resonance in a rather general potential problem with discrete symmetry and consider

as an example the H�enon-Heiles family of hamiltonians. We also study a classical

example of a mechanical system with symmetry, the elastic pendulum, which leads

to a natural hierarchy of resonances with the 4 : 1-resonance as the most prominent

after the 2 : 1-resonance and which explains why the 3 : 1-resonance is neglected.
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1 Introduction

Symmetries play an essential part in studying the theory and applications of dynamical
systems. For a general dynamical systems reference see [3], for symmetry in the context
of hamiltonian systems see [4] and also [1], or [12]. In the older literature, attention
was usually payed to the relation between symmetry and the existence of �rst integrals
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but recently the relation between symmetry and resonance, in particular its inuence on
normal forms has been explored, see [13] for references.

In our analysis we shall be using a small parameter " which is introduced by re-scaling
the variables. The implication is that, as " is small we analyze the dynamics of the
hamiltonian ow in the neighborhood of equilibriumcorresponding with the origin of phase-
space. Note that "2 is a measure for the energy with respect to equilibrium. Putting " = 0,
the equations of motion reduce to linear decoupled oscillators.

An important tool to analyze hamiltonian systems are normal forms. Based on the
lowest degree of the expanded hamiltonian function where resonant terms are found, one
can classify the resonances into three classes, i.e. �rst order, second order and higher order
resonance. First order and second order resonances of two degrees of freedom have been
considered intensively in the literature while higher order resonance has been considered in
[6] and [7]. One can also classify resonance in the sense of energy interchange between the
degrees of freedom. Terms like strong (or genuine) resonance and weak resonance are used
to express the order of energy interchange on a certain time-scale which is characteristic
for the dynamics of the system.

In this paper we are focusing on resonance in the presence of symmetry, see [13] for an
introduction. In section 2 we will indicate how symmetry assumptions a�ect resonance and
the normal forms. We use Birkho�-Gustavson normalization which is equivalent with aver-
aging techniques. In section 3 we give a sharp estimate of the size of the resonance domain
at higher order resonance. Section 4 focuses on a special resonance, the 1 : 2-resonance for
symmetric potential problems; we discuss an example from an important family of poten-
tial problems. Section 5 discusses one of the classical mechanical examples with symmetry,
the elastic pendulum. In this problem, we show that the symmetry assumption produces
a new hierarchy of resonances.

2 Higher order resonance triggered by symmetry

Consider the two degrees of freedom hamiltonian

H(p1; q1; p2; q2) =
1

2
!1
�
p21 + q21

�
+

1

2
!2
�
p22 + q22

�
+H3 +H4 + � � � : (1)

with Hk, k � 3 a homogeneous polynomial of degree k. Using action-angle transformation
and Birkho�-Gustavson normalization, we can transform the hamiltonian into normal form
while preserving the hamiltonian structure. A hamiltonian H is said to be in Birkho�
normal form of degree 2k if it can be written as

H = !1�1 + !2�2 + P2(�1; �2) + P3(�1; �2) + � � �+ Pk(�1; �2);

where Pi(�1; �2) is homogeneous polynomial of degree i in �j =
1
2(pj

2 + qj
2); j = 1; 2. The

variables �1; �2 are called actions; note that if Birkho� normalization is possible, the angles
have been eliminated. If a hamiltonian can be transformed into Birkho� normal form, the
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dynamics is fairly regular. The system is integrable with integral manifolds which are tori
described by taking �1; �2 constant. The ow on the tori is quasi-periodic.

In normalizing, it is convenient if we transform to complex coordinates by

xj = pj + iqj

yj = pj � iqj; j = 1; 2;

with corresponding hamiltonian ~H = 2iH.
The idea of Birkho�-Gustavson normalization is to transform H (we have dropped the

tilde) so that the transformed hamiltonian becomes

H(x1; y1; x2; y2) = Bk(�1; �2) +R(x1; y1; x2; y2) (2)

where Bk is in Birkho� normal form with k as high as possible. R is a polynomial which
has degree of either 2k or 2k + 1 in (x1; y1; x2; y2); it contains terms which can not be
expressed in �1; �2 alone. The terms R are also known as resonant interaction terms and
H in this form is called the Birkho�-Gustavson normal form. In this paper we will refer
to the terms in R as resonant terms. For normalization one can use a generating function
or suitable averaging techniques. See for example [1] appendix 8 or [12] chapter 11.

The presence of resonant terms of the lowest degree in the hamiltonian determines
until what order the normalization should be carried out. For example, consider a general
hamiltonian (1) and assume there is a pair of natural numbers (m;n) such that m

n
= !1

!2
where m and n are relatively prime. The resonant terms of the lowest degree are generally
found in Hm+n; !1 : !2 is said to be a lower order resonance if the corresponding resonant
terms of the lowest degree are found in Hk with k < 5.

It turns out that some of the lower order resonances are eliminated by symmetry in
which case m and n need not be relative prime. We write the normal form (2) as,

H(x1; y1; x2; y2) = Bk(�1; �2) + 2i(Dx1
ny2

m +Dy1
nx2

m) + � � � : (3)

where �j =
1
2xjyj; j = 1; 2. In table 1 we present a list of lower order resonances and its

corresponding resonant terms of the lowest degree. The second column shows resonant
terms in a general hamiltonian system while the third column is for a hamiltonian system
with symmetry in the second degree of freedom, i.e. H(p1; q1;�p2;�q2) = H(p1; q1; p2; q2).
Except for the 1 : 1 and 2 : 1 -resonances, the other resonances are a�ected by the
symmetry assumption. For example, the 1 : 2-resonance in the general hamiltonian has
resonant terms of the form x21y2 or x2y21. These terms vanish because of the symmetry
assumption. Thus, instead of these terms which arise from H3, the resonant terms in the
normal form derive from H6 in the form of x41y

2
2 or x

2
2y

4
1. We introduce the small parameter

" by rescaling xi = "�xi; yi = "�yi and divide the hamiltonian by "2. The normal form of the
hamiltonian in the 1 : 2-resonance with discrete symmetry in the second degree of freedom
is

H(x1; y1; x2; y2) = i
�
[�1 + 2�2] + "2

�
A1�

2
1 +A2�1�2 +A3�

2
2

�
+

"4
�
B1�

3
1 +B2�

2
1 �2 +B3�1�

2
2 +B4�

3
2

�
+ "4[Dx41y

2
2 +Dy41x

2
2]
	
+ � � � :

(4)
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Resonant term
!1 : !2

General Hamiltonian Symmetric in x2; y2
1 : 2 x1

2y2; x2y1
2 x1

4y2
2; x2

2y1
4

2 : 1 x2
2y1; x1y2

2 x2
2y1; x1y2

2

1 : 3 x1
3y2; x2y1

3 x1
6y2

2; x2
2y1

6

3 : 1 x1y2
3; x2

3y1 x1
2y2

6; x2
6y1

2

1 : 1 x1
2y2

2; x2
2y1

2 x1
2y2

2; x22y1
2

x1
2y1y2; x1x2y2

2

x1y1
2x2; y1x2

2y2

Table 1: The table presents lower order resonant terms which cannot be removed by
Birkho� normalization. The second column shows resonant terms in the general case
while in the third column we have added the symmetry condition H(x1; y1;�x2;�y2) =
H(x1; y1; x2; y2).

The constants D and D are complex conjugate.
It is also clear that symmetry in the second degree of freedom does not a�ect the 2 : 1-

resonance. If we assume the symmetry is in the �rst degree of freedom, then this resonance
will be a�ected while the 1 : 2-resonance will not. On the other hand, both the 3 : 1- and
1 : 3-resonances are eliminated as a lower order resonance by the symmetry assumption, no
matter on which degree of freedom the symmetric condition is assumed. As in mechanics
one often has symmetries, this may also explain why these resonances received not much
attention in the literature. This is demonstrated clearly for the elastic pendulum in section
5. For the 1 : 1-resonance, symmetry conditions on any degree of freedom (or even in both)
do not push it into higher order resonance.

3 The Resonance Domain

Consider the normal form of a hamiltonian at higher order resonance

H = !1�1 + !2�2 + "2P2 (�1; �2) + � � �+ "m+n�2 (�1
n�2

m)
1

2 cos(�); (5)

where � = n'1 �m'2 + �, (�1; '1) and (�2; '2) are the action-angle variables of the �rst
and the second degree of freedom, respectively, m and n are natural numbers satisfying
m+n � 5 and m

n
= !1

!2
; and � 2 [0; 2�). Note that Pk is a homogeneous polynomial of degree

k and it corresponds to the H2k term in the hamiltonian (1). Independent integrals of the
system are I1(�1; �2) � !1�1+!2�2 = E�; and I2(�1; �2; '1; '2; ") � (H�I1(�1; �2))="2 = C.

In a seminal paper [6], Sanders described the ow on the energy manifold as follows. In
the case of higher order resonance interesting dynamics takes place in the resonance domain
which is imbedded in the energy manifold. The resonance domain contains a stable and
an unstable periodic solution; the domain is foliated into tori on which the interaction
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between the two degrees of freedom takes place. In [6] the time-scale of the interaction is
"�(m+n)=2 and the size d" of the resonance domain is estimated to be O("(m+n�4)=6).

The estimate of d" given in [6] is an upper limit, it depends on the approximation
technique used there. Van den Broek [9](pp. 65-67) gave numerical evidence that the
size of the resonance domain is actually smaller. In this section we shall present a sharp
estimate of the size d" which we derive from a Poincar�e section of the ow.

The derivation runs as follows. First eliminate one of the actions, say �1 using I1. Then
we choose the section by setting '1 = 0. Thus we have a section in the second degree of
freedom direction which is transversal to the ow of the system. For simplicity, we put
� = 0 (otherwise we can rotate the coordinate with respect to the origin). The second
integral I2 then becomes I2(�2; '2; ") = I2 ((E� � !2�2)=!1; �2; 0; '2; "). Write

P(q; p; ") = I2
 
p2 + q2

2
; arccos

 
qp

p2 + q2

!
; "

!
: (6)

Fixing a value for E�, we draw the contour plot of (6) which gives us the Poincar�e map.
The contour plot of P in the q-p plane (for a �xed ") mainly consists of circles sur-

rounding the origin. This is due to the fact that in the equations of motion, the equation
for the actions are of order "m+n�2 and the equation for � of order "2. This implies that
for most of the initial conditions, the actions are constant up to order "m+n�2 and only the
angles are varying. This condition fails to hold in a region where the righthand side of the
equation for � is zero or becomes small. Up to order "2, the location of this region can be
found by solving

n
@P2
@�1

�m
@P2
@�2

= 0:

Note that in phase space, the equation above de�nes the so-called resonance manifold. On
this resonance manifold there exist at least 2 short periodic solutions of the system (more
if m and n are not relatively prime).

In the contour plot, these short periodic orbits appear as 2m �xed points (excluding
the origin) which are saddles and centers corresponding to the unstable and stable periodic
orbit. Each two neighbouring saddles are connected by a heteroclinic cycle. Inside each
domain bounded by these heteroclinic cycles, also known as the resonance domain, there
is a center point. For example, see �gure 3 in section 5. We approximate the size of this
domain by calculating the distance between the two intersection points of the heteroclinic
cycle and a straight line p = �q for a � such that a center point is on the line.

Suppose we found one of the saddles (qs; ps) and one of the centers (qc; pc). We calculate
Cs
" = P(qs; ps; ") and Cc

" = P(qc; pc; "). Note that since the integral I2 depends only on
the actions up to order "m+n�4 we have Cs

" �Cc
" = O("m+n�4). The heteroclinic cycles are

given by the equation P(q; p; ") = Cs
" and the intersection with the line p = �q is given by

solving P(q; �q; ") = Cs
" . Write q = qc + "��; � 2 IR. We want to determine � which leads

us to the size of the domain.
Note that P(q; �q; ") = P4(q; �q) + "2P6(q; �q)+ � � �+ "m+n�4R(q; �q; "); where Pk is a

non-homogenous (in general) polynomial of degree k and R is determined by the resonant
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term. Since

(P 0(qc; pc; 0) �) d

dq
P(q; �q; ")

����
(qc;pc;0)

= 0;

we expand P :

P4(qc; �qc) + "2� 1
2
P4

00(qc; �qc)�2 + � � �+
"2P6(qc; �qc) + "2�+2 12P6

00(qc; �qc)�2 + � � � = Cc
" +O("m+n�4):

Since P4(qc; �qc) + "2P6(qc; �qc) + � � � +O("m+n�4) = Cc
" , we have � = (m+ n � 4)=2 and

for the size of the resonance domain

d" = O("
m+n�4

2 ): (7)

Of course degeneracies in the normal form may change this estimate. It is interesting to
compare this with a formal method to derive the size of a resonance domain, described in
[12], section 11.7. If we repeat the balancing method (method of signi�cant degenerations)
described there for our higher order resonance problem, we recover estimate (7).

4 A potential problem with symmetry

We will now study the 1 : 2 resonance in potential problems with a symmetry assumption.
The normal form calculation is done using averaging techniques in a canonical way.

We rescale time to set one of the frequencies to be 1; we put !1 = 1 and !2 = !. The
hamiltonian with a potential, discrete symmetric in the second degree of freedom becomes

H =
1

2
( _q21 + _q22) +

1

2
(q21 + !2q22)

�"(1
3
a1q

3
1 + a2q1q

2
2)� "2(

1

4
b1q

4
1 +

1

2
b2q

2
1q

2
2 +

1

4
b3q

4
2):

(8)

Assume !2 = 4(1 + �(")). The reason for the assumption of the perturbation �(") is that
in applications we never encounter exact resonances; � is an order function which is called
the detuning to be speci�ed later. In any case �(") = o(1) as "! 0.

The induced equations of motion of hamiltonian (8) are

�q1 + q1 = "(a1q1
2 + a2q2

2) +"2(b1q13 + b2q1q2
2)

�q2 + 4q2 = "(2a2q1q2) +"2(b2q12q2 + b3q2
3)� 4�(")q2:

(9)

The unperturbed form of system (9) (for " = 0) is linear and all solutions are periodic.
The periodic solutions in one degree of freedom only, are called normal modes. The normal
mode of the p1; q1 direction will be called the �rst normal mode and the other one will be
called the second normal mode. Using averaging techniques, we will approximate other
(short) periodic solutions up to order of " on some time-scale. Details of the averaging
techniques and the asymptotic validity of the method can be found in [10] or [8].
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4.1 Lagrange standard form and averaging

To apply the averaging techniques, we transform the equations of motion into amplitude-
phase form. Let

q1 = r1 cos(t+ �1) q2 = r2 cos(2t+ �2)
_q1 = �r1 sin(t+ �1) _q2 = �2r2 sin(2t+ �2):

(10)

Using (10) we can transform (9) into the Lagrange standard form which has average zero
to O("). This means that on the time-scale 1=", both the amplitude and the phase are
constant, up to order ". If � is of O(") then there will be no �xed point in the averaged
system and there is no interesting dynamics on this time-scale. Putting �(") = �1"

2, we
perform second-order averaging which produces O(") approximations on the time-scale
1="2, see [8].

We �nd for the approximate amplitudes �1; �2 and phases '1; '2

_�1 = 0 +O("3)

_'1 = �"2
��

5

12
a21 +

3

8
b1

�
�21 +

�
1

2
a1a2 +

1

15
a22 +

1

4
b2

�
�22

�
+O("3)

_�2 = 0 +O("3)

_'2 = �"2
��

1

4
a1a2 +

1

30
a22 +

1

8
b2

�
�21 +

�
29

120
a22 +

3

16
b3

�
�22 � �1

�
+O("3):

(11)

From system (11), we conclude that, up to order " the amplitude of the periodic solution
is constant. This result is consistent with the result in [11].

4.2 The resonance manifold

We shall de�ne a combination angle � which reduces the dimension of the averaged system
by one. Moreover, a lemma by Verhulst [7] (stated there without proof) , can simplify the
equation for the combination angle. We present this theorem in a slightly di�erent form:

Lemma 4.1 Consider the real Hamiltonian

H =
1

2
( _q21 + _q22) + V (q1; q2)

where V (q1; q2) is analytic near (0; 0) and has a Taylor-expansion which starts with 1
2(!1

2q1
2+

!2
2q2

2). Then the coe�cient of the resonant term D in the Birkho�-Gustavson normal form
(3) of the hamiltonian can be chosen as a real number.

Proof:

Assume
!1
!2

=
m

n
where m;n 2 IN and the hamiltonian in potential form as

assumed in the lemma. Writing _qj = pj the hamiltonian can be expressed as

H =
1

2
m
�
p1

2 + q1
2
�
+

1

2
n
�
p2

2 + q2
2
�
+

1X
k=3

~Vk(q1; q2)
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where ~Vk is the k-th term of the Taylor expansion of V . De�ne a transformation
to complex coordinates by xj = pj + iqj and yj = xj. In these variables the
hamiltonian becomes

~H = 2i

(
1

2
(!1x1y1 + !2x2y2) +

1X
k=3

ik ~Vk

�
x1 � y1
�2 ;

x2 � y2
�2

�)
:

This means that the coe�cient of each term in ~Vk is either real or purely
imaginary. The normalized hamiltonian is

~H = 2i
�
P (�1; �2) +

�
D�x1

ny2
m +D�y1

nx2
m
�
+ � � �	 (12)

where �j =
1
2xjyj and P is a real polynomial of even degree. In the case where

D� is purely imaginary, write D� = Di and write the normal form (12) as

~H = 2i fP (�1; �2) +D (x1
ny2

m � y1
nx2

m) + � � �g :
If D� 2 IR the proof is complete by settingD = D�. 2

� Generalization of this lemma is possible by considering a wider class of hamiltoni-
ans by allowing terms like p2sq2kq1l (s a �xed natural number, k and l are natural
numbers) to exist in the hamiltonian.

A consequence of lemma 4.1 is, that in the equations of motion derived from the normal
form of the hamiltonian we have the combination angle � = n'1 �m'2 + � with � = 0.
The phase-shift � will not a�ect the location of the resonance manifold, it will only rotate
it with respect to the origin but it will a�ect the location of the periodic solutions in the
resonance manifold.

Because of this lemma, de�ne � = 4'1 � 2'2. Then, the averaged equations become

_�1 = 0
_�2 = 0
_� = "2 (1�12 + 2�2

2 � 2�1)
(13)

where 1 = �5
3
a1

2 + 1
2
a1a2 +

1
15
a2

2 � 3
2
b1 +

1
4
b2 and 2 = �2a1a2 + 13

60
a2

2 � b2 +
3
8
b3. By

putting the right hand side of the last equation zero, the resonance manifold is given by

1�
2
1 + 2�

2
2 = 2�1: (14)

The resonance manifold is imbedded in the energy manifold and contains periodic solutions;
because of lemma 3.1 we know the location, one is stable and one is unstable. By �xing the
energy, we �x also �1 and �2 and approximate them with their initial value while �('1; '2)
varies (except on the resonance manifold).

Using the approximate energy integral, i.e. E0 =
1
2�1

2 + 2�22, assuming 2 6= 41 we
can solve (14) for �12 and �22, i.e.:

�21 =
22E0 � 8�1
2 � 41

and �22 =
2�1 � 21E0

2 � 41
: (15)
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We shall now discuss what happens at exact resonance (�1 = 0). It is clear that

0 � �21 � 2E0, so that we have,0 � 22E0

2 � 41
� 2E0: The last inequality is equivalent

with 12 � 0. If 1 tends to zero, then the resonance manifold will be approaching the
�rst normal mode. For 2 tending to zero, the resonance manifold approaches the second
normal mode. We exclude now the equality and will consider only the resonance manifold
in general position.

We summarize in a lemma:

Lemma 4.2 Existence of the resonance manifold in general position for exact

resonance

Consider hamiltonian (8) with �(") = 0. A resonance manifold containing periodic solu-
tions of the equations of motion induced by this Hamiltonian exists if and only if 12 < 0:
Those periodic solution are approximated by x = �1(0) cos(t+'1(t)) and y = �2(0) cos(2t+
'2(t)) where �1(0) and �2(0) satisfy (15), '1 and '2 are calculated by direct integration of
the second and the fourth equation of (11).

� Using a speci�c transformation, we can derive the mathematical pendulum equation
�� + 
� = 0 related to the system (11), see [7]. The �xed points _� = 0; �; _� = 0 of
the mathematical pendulum equation determine the locked-in phases of the periodic
solutions by setting 4'1� 2'2 = 0 or 4'1 � 2'2 = �. The �rst one corresponds with
the stable periodic solutions and the second one with the unstable periodic solutions.

� From section 3 we know that the size of the resonance domain is d" = O("), the
time-scale of interaction is O("�3). Note that the size d" is in agreement with the
work of van den Broek in [9].

4.3 Examples from the H�enon-Heiles family of hamiltonians

An important example of hamiltonian (8), with b1 = b2 = b3 = 0, is known as the H�enon-
Heiles family of Hamiltonians, see [11]. The condition for existence of the resonance man-
ifold in exact resonance in lemma 4.2 reduces to�

�5

3
a21 +

1

2
a1a2 +

1

15
a22

��
�2a1a2 + 13

60
a22

�
< 0:

Assuming a2 6= 0 to avoid decoupling, we introduce the parameter � = a1=3a2. Using this
parameter, the existence condition can be written as (450�2 � 45� � 2) (360� � 13) � 0:
Thus, the resonance manifold for the H�enon-Heiles family exists for � < � 1

30 or
13
360 < � <

2
15
. Note that for the Contopoulos problem (a1 = 0) the resonance manifold does not exist

at exact resonance while in the original H�enon-Heiles problem (a1 = 1 and a2 = �1) the
resonance manifold exists.

From this analysis, we know that for � = 2
15 the resonance manifold will coincide with

the �rst normal mode. Since for � > 2
15 the resonance manifold does not exist, let �

decrease on the interval
��1; 2

15

�
. The resonance manifold moves to the second normal
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mode which it reaches at � = 13
360

. After that the resonance manifold vanishes and then
emerges again from the �rst normal mode when � = � 1

30. The resonance manifold then
always exist and tends to the second normal mode as � decreases.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

y

-0.2 -0.1 0 0.1 0.2
xI

II

III
Delta

lambda

Figure 1: Existence of the resonance manifold in the presence of (scaled) detuning parame-
ter � = �1

E0a22
. The vertical axis represents � and the horizontal axis � = a1

3a2
. The domain

II and the unbounded domain I and III (both bounded by the parabola and the straight
line) correspond with existence of the resonance manifold.

How is the e�ect of detuning in the case of existence of the resonance manifold? In the
same way as before, in terms of parameters � and � = �1=(E0a2

2), we can write for the
existence of the resonant manifold

0 � �360� + 13 � 240�

3600�2 � 720� � 3
� 1: (16)

In �gure 1, the area marked by I, II and III represent the domains of existence of
the resonance manifold in the parameter space. The parabolic boundary of the domain
represents the �rst normal mode (q1; p1 direction) and the straight line boundary the second
normal mode. By �xing the detuning coe�cient, we have a horizontal line on which we
can move the resonance manifold from one normal mode to the other as we vary �. The
analysis can be repeated for �xed �. The bold parts of the horizontal axes are the cases of
exact resonance. Note that the intersection points are excluded as they correspond with
the zero of the denominator in (15).

4.4 The degeneration 2 = 41

Consider again the equations in (13). With the condition 2 = 41, equations (13) become

10



_�1 = 0 +O("3)
_�2 = 0 +O("3)
_� = "2 (21E0 � 2�1) +O("3):

(17)

System (17) immediately yields that at exact resonance there will be no resonance manifold.
Another consequence is that there exist a critical energy Ec =

�1
1
such that the last equation

of (17) is zero, up to order "3. It means we have to include even higher order terms of the
hamiltonian in the analysis.

From the normal form (4), we know that this corresponds with the case that the
normalized H4 is zero. For the 1 : 2-resonance H5 does not contain resonant terms. Thus
the next nonzero term would be derived from H6. As a consequence, the equations for
amplitudes and phases are all of the same order, i.e. O("4). It is also clear from normal
form (4) that in H6 besides terms which represent interaction between two degrees of
freedom (resonant terms), there are also interactions between each degree of freedom with
itself (terms of the form �1

��j
�).

To avoid a lengthy calculation and as an example, we consider a problem where a1 =
a2 = 0. From the condition 2 = 41 we derive b2 = 3b1 +

3
16b3. Then the last equation of

(17) becomes

_� = "2
��

�3

4
b1 +

3

64
b3

�
�1

2 + 4

�
�3

4
b1 +

3

64
b3

�
�2

2 � 2�1

�
+O("3):

Introducing the critical energy Ec, we have a degeneration of the last equation which gives
an additional relation, i.e.

�1 =
1

2

��
�3

4
b1 +

3

64
b3

�
�1

2 + 4

�
�3

4
b1 +

3

64
b3

�
�2

2

�
:

We note also that for �1 > 0 the critical energy exists providing b1 <
1
16b3.

We apply second order averaging to have an O("2) approximation on the time-scale
1="4. We �nd for the approximations

_�1 = �"4 3
32

(b1
2 +

5

32
b1b3 +

3

512
b3

2)�2
2�1

3 sin(�)

_�2 = "4
3

128
(b1

2 +
5

32
b1b3 +

3

512
b3

2)�2�1
4 sin(�)

_� = "4
�

3

64

�
b1

2 +
5

32
b1b3 +

3

512
b3

2

��
�41 �

1

8
�1

2�2
2

�
cos(�)

+
3

64
(�4b12 + 1

2
b1b3 +

1

256
b3

2)�41 +
3

64
(�46b12 + 1

4
b1b3 +

1

128
b3

2)�1
2�2

2

+
3

64
(�44b12 + 1

2
b1b3 +

9

64
b3

2)�2
4

�
:

(18)

It is clear that the analysis of periodic solutions obtained by setting � = 0 or � = �
runs along the same lines as in lower order resonance cases. Consider � = 0. The �xed
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point of the averaged equations is determined by the last equation of (18). Since we are
looking for periodic solutions which are di�erent from normal modes, we assume both �1

and �2 to be nonzero. Writing � =
�
�2
�1

�2
we obtain a periodic solution by solving the

quadratic equation
a�2 + b� + c = 0; (19)

where a = �33
16
b1

2 + 3
128
b1b3 +

27
4096

b3
2, b = �81

32
b1

2 � 3
64
b1b3 � 15

8192
b3

2 and c = � 9
64
b1

2 +
63
2048

b1b3 +
15

32768
b3

2. Assuming that b3 6= 0, we have

a = �33

16
�2 +

3

128
�+

27

4096

b = �81

32
�2 � 3

64
�� 15

8192

c = � 9

64
�2 +

63

2048
�+

15

32768
;

where � = b1
b3
. It is easy to see that b < 0. Note that both the magnitude and the sign of b3

is not important. We can also consider b3
b1
instead if b3 = 0. We calculate the discriminant

D = b2 � 4ac and - a; b, and c being quadratic in �- plot the function D(�) in �gure 2.

-1e-05

-5e-06

0

5e-06

1e-05

1.5e-05

-0.01 0 0.01 0.02 0.03κ

Figure 2: Plot of D (�). Positivity of D(�) is a necessary condition for periodic solutions
to exist of system (9) with � = 0, which are not normal modes.

There is an interval around � = 0 where the value of D is negative. The value of �
so that D is zero can be calculated using numerics. Thus we know that except for small
values of �, we always have two roots for the quadratic equation (19). Knowing that we are
looking for the root of equation (19) which is positive, we have to add another requirement.
If we require c=a to be positive and b=a to be negative we will have two di�erent periodic

solutions. These requirements are satis�ed by � 2
�

7
64 �

p
561
192 ;

1
16

�
. When � is at the lower

12



bound of the interval, the periodic solution coincides with the normal mode, in this case
with the second normal mode. Note also that this interval contains the interval where
the discriminant becomes zero or negative. The upper bound of the interval has to be
excluded as a vanishes there. Thus if � increases towards zero, the periodic solutions
become closer, then coincide with each other and afterwards disappear. If we let � increase
from zero, at some point a periodic solution will emerge and split up by increasing �.

For � 2
�
� 9

176
; 7
64
�

p
561
192

�
or
�

1
16
; 7
64
+

p
561
192

�
there is only one periodic solution. This is

reasonable since one of the periodic solution coincides with one of the normal modes at
the upper end points of each interval. It is easy to see that the case where a vanishes
corresponds to the existence of one periodic solution. For other values of � the periodic
solution does not exist. Note that we are only considering the case � = 0.

We have to apply the same reasoning to the other case and we expect conditions where
there is no periodic solution (apart from the normal modes), one, two, three or four periodic
solutions. Note that the analysis above also has to satisfy the existence condition for the
critical energy, i.e. if � > 0 the critical energy only exist for � < 1

16 and if � < 0 for � > 1
16:

5 The elastic pendulum

In this section we will study one of the classical mechanical examples with discrete sym-
metry. Consider a spring with spring constant s and length l�, a mass m is attached to
the spring; g is the gravitational constant and l is the length of the spring under load in
the vertical position. The spring can both oscillate in the vertical direction and swing like
a pendulum. This is called the elastic pendulum.

Let r(t) be the length of the spring at time t and ' the angular deection of the spring
from its vertical position. In [10] van der Burgh uses a Lagrangian formulation to analyze
the elastic pendulum, while in this paper we will use a hamiltonian formulation. The
hamiltonian is given by

H =
1

2m

�
p2r +

p2'
r2

�
+
s

2
(r � l�)

2 �mgr cos'; (20)

where pr = m _r and p' = mr2 _'.

Introducing the elongation of the spring by z =
r � l

l
, we translate the origin of the

coordinate system to the �xed point of the system where the elastic pendulum is hanging
vertically at rest. By dividing by l we normalize the length of the spring; we adjust also
the momenta pz = lpr to keep the hamiltonian structure. The hamiltonian in the new
variables is

H =
1

2ml2

�
p2z +

p2'
(z + 1)2

�
+
sl2

2

�
z +

l� l�
l

�2

�mgl(z + 1) cos' (21)

Put �1 = !z� and �2 = !'� where � = ml2. We transform z =
p
�1z and ' =

p
�1'.

To preserve the hamiltonian structure we also transform pz =
p
�1 pz and p' =

p
�2 p'.

13



Expanding this hamiltonian the two leading terms of the hamiltonian are,

H0 =
1

2
s(l � l�)

2 �mgl

H1 =
1p
!z�

(sl (l � l�)�mgl) z:

We de�ne the coordinate such that the pendulum is at rest in (pz ; z; p'; ') = (0; 0; 0; 0).
As a consequence the linear term of the hamiltonian is zero. Thus we have s(l� l�) = mg.

This condition restricts the ratio of the frequencies of the two oscillators, i.e.
!z
!'

> 1. The

restriction is natural since at the equilibrium position the resultant force of gravitational

force (mg) and spring force (s(l�l�)) is zero. With

r
s

m
= !z and

r
g

l
= !', the remaining

terms in the expansion of the hamiltonian are

H2 =
1

2
!z
�
z2 + p2z

�
+

1

2
!'
�
'2 + p2'

�
H3 =

!'p
�!z

�
1

2
z'2 � zp2'

�

H4 =
1

�

�
3

2

!'
!z
z2p2' �

1

24
'4

�

H5 = � 1

�
p
�!z

�
1

24
z'4 + 2

!'
!z
z3p2'

�

H6 =
1

�2!'

 
1

720
'6 +

5

2

�
!'
!z

�2

z4p2'

!

H7 =
1

�2!'
p
�!z

 
1

720
z'6 � 3

�
!'
!z

�2

z5p2'

!
...

(22)

As expected, the - relatively few - terms in the hamiltonian are symmetric in the second
degree of freedom and also in pz . Due to the restriction of the frequency ratio above, we
will not have the 1 : �-resonances with � > 1. On the other hand, the symmetry condition
on the second degree of freedom eliminates the 3 : 1-resonance as a lower order resonance.
The next resonant term of this resonance arises fromH8. Thus, for lower order resonances,
the remaining cases are the 2 : 1- and, if we allow small detuning, the 1 : 1-resonance. The
2 : 1-resonance has been intensively studied, see [10] or [5] for references. This resonance
is the one with resonant terms of the lowest degree.

As noted in [10], for the 1 : 1-resonance, second order averaging still gives only zero for
both the amplitudes and the phases (this is not rendered correctly in [13]). It follows that
the 1 : 1-resonance is also eliminated as a lower order resonance.

Introduce the transformation z = r1 cos(!zt+�1); pz = �r1 sin(!zt+�1); ' = r2 cos(!'t+
�2); and p' = �r2 sin(!'t+�2). Assuming !z 6= 2!' and rescaling with " as usual we �nd
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the second-order averaged equations for amplitudes and phases

_�1 = 0 +O(�3)
_�2 = 0 +O(�3)

!' _ 1 � !z _ 2 = ��23
4

(!' � !z)(!z2 + !z!' � 3!'2)

(!z + 2!')(2!' � !z)�
�1

2+

1

16

(!' � !z)(!z3 + 13!z2!' + 20!z!'2 � 28!'3)

!z(!z + 2!')(2!z � !')
�2

2 +O(�3);

(23)

where �1 and �2 are the approximations of r1 and r2,  1 and  2 are the approximations of
�1 and �2, respectively.

The resonance manifold is determined by the requirement that the right hand side of
equation (23) vanishes. Except for the 1 : 1-resonance (we exclude the 2 : 1-resonance),
there is no degeneration in the last equation of (23). This implies the resonance manifold
exists for all resonances with !z=!' > (

p
13 � 1)=2 � 1:30277: : : and perhaps for the

1 : 1-resonance.
We will now consider the most prominent higher order resonances which are possible for

the elastic pendulum problem. We start with the 3 : 2- and the 4 : 1-resonance. For both
resonances we know that in general the resonant terms arises from H5 which implies that
the amplitude variation will be zero up till second order averaging. This is in agreement
with (23). To determine which resonance in the elastic pendulum arises from H5, we have
to normalize.

!z : !' Resonant Part d" Interaction time-scale

4 : 1 H5 "1=2 "�5=2

4 : 3 H7 "3=2 "�7=2

6 : 1 H7 "3=2 "�7=2

3 : 1 H8 "2 "�4

8 : 1 H9 "5=2 "�9=2

3 : 2 H10 "3 "�5

Table 2: The table presents the most prominent higher order resonances of the elastic
pendulum with lowest order resonant terms Hk. The third column gives the size of the
resonance domain in which the resonance manifold is imbedded while in the fourth column
we �nd the time-scale of interaction in the resonance domain.

For the 3 : 2-resonance we �nd

_�1 = 0 +O(�4)
_�2 = 0 +O(�4)

_�1 = ��2 1

336

108�12 � 277�22

�
+O(�4);

(24)

where �1 = 2 1 � 3 2.
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Figure 3: The Poincar�e map for the 6 : 1-resonance in the second degree of freedom
(" = 0:75 and the energy E = 5; large values for illustration purposes). The saddles are
connected by heteroclinic cycles and inside the cycles (islands) are centers.

For the 4 : 1�resonance the normalization produces

_�1 = � �3F1(�1; �2) sin(�2) +O(�4)

_�2 = ��3F2(�1; �2) sin(�2) +O(�4)

_�2 = ��2 3
64

68�12 � 27�22

�
� �3F3(�1; �2) cos(�2)

(25)

where �2 =  1 � 4 2; F1; F2 and F3 depend non-trivially on �1 and �2.
The result in (24) shows that for the 3 : 2-resonance, there is no resonant term in the

normalized hamiltonian up to degree 5. In (25), which is for the 4 : 1-resonance, there are
resonant terms in the normalized hamiltonian of degree 5. The conclusion is that, after
the �rst-order 2 : 1-resonance, the 4 : 1-resonance is the most prominent resonance in the
elastic pendulum. Following the analysis in section 3, we can also determine the sizes of the
resonance manifolds which depend on the lowest degree of resonant terms in the normal
form. We repeat this for cases in which the resonant terms arise in H7; : : : ;H10. The
results are summarized in table 2. Note that a low order resonance as the 3 : 1-resonance
�gures here at relatively high order.

We checked our result numerically for some of the resonances by constructing the
Poincar�e map and by calculating the size of the resonance domain. In the numerical
integrations we vary " and study how this a�ects the size of the resonance manifold. We
found con�rmation for the 4 : 1-resonance and the 6 : 1-resonance. As table 2 shows, the
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Figure 4: The 6 : 1-resonance. Part of the map in the second degree of freedom direction
for several values of ", the energy E = 5. The top-left �gure is for " = 0:25, the top-right
�gure is for " = 0:5 and the �gure below is for " = 0:75.

numerical integration takes a long time. Figure 3 shows the map for the 6 : 1-resonance.
To avoid long computation times, we increased the value of ". In �gure 4 we demonstrate
the size and visibility of the resonance domain as " increases for the 6 : 1-resonance. In
�gure 5 the 4 : 1-resonance and the 6 : 1-resonance are compared.

6 Conclusion and comments

We have shown that symmetry assumptions strongly a�ect some of the lower order and
higher order resonances in two degrees of freedom hamiltonian systems. In those cases, the
symmetry assumption on one of the degrees of freedom implies a degeneration of the normal
form. This degeneration forces us to extend the normalization. Consequently, the resonant
terms appear at higher order compared with the case without symmetry assumptions. The
conclusion is then that some of the lower order resonances behave like higher order ones.
This makes sense since we know that for instance the 1 : 2 resonance can be viewed as 2 : 4
resonance or 3 : 6 resonance etc.

In the general, mathematically generic case, lower order resonance corresponds with
strong interaction between the modes while higher order resonance corresponds with weak
interaction. For symmetric potential problems in 1 : 2 resonance, we have shown that at a
certain critical value of the energy, localized in phase-space at some distance of equilibrium,
the system behaves like a strong resonance while for other values of the energy it produces
higher order resonance. We note that the presence of this critical energy involves the
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Figure 5: Part of the map in the second degree of freedom direction for the 4 : 1-resonance
(left) and the 6 : 1-resonance (right);" = 0:1 and the energy E = 5.

detuning parameter. More analysis is needed to see what part this critical energy may
play in other systems.

In applying the analysis to the elastic pendulum we have found a numerical con�rma-
tion of our analytic estimates of the size of the resonance domain. Also we have found a
new hierarchy in the resonances due to two reasons. First because of physical restrictions
the m : n resonances with m < n are eliminated. Secondly the symmetry assumption. As
is well-known the 2 : 1 resonance is the most prominent resonance, the next one is the 4 : 1
resonance. There are still some unsolved problems for the 1 : 1 resonance but we note that
from the point of view of mechanics this resonance is of lesser importance for the elastic
pendulum.
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