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THE COUPLING OF MOTION AND CONDUCTIVE HEATING OF A
GAS BY LOCALIZED ENERGY SOURCES*

ANTONIO L. SANCHEZ', JOSE L. JIMENEZ-ALVAREZ!, AND AMABLE LINAN*

Abstract. This paper investigates the time evolution of the near-isobaric flow field produced
in a gas after the sudden application of a constant heat flux from a localized energy source. The
problems of plane, line, and point heat sources are all investigated, with a power law for the temper-
ature dependence of the thermal conductivity, after reduction to a quasi-linear heat equation for the
temperature. In the planar and spherical cases, the constant heat flux defines scales for the length
and time, which are used to nondimensionalize the problem. Numerical integration is used to provide
the evolution of the temperature and velocity, and limiting solutions corresponding to small and large
rescaled times are obtained. In the axisymmetric case, due to the absence of characteristic length
and time scales, the solution is seen to admit a self-similar description in terms of the nondimen-
sional heat flux. Profiles of temperature and radial velocity are provided for different values of this
parameter, and the asymptotic limits of both small and large heating rates are addressed separately.
The analysis reveals, in particular, the existence of front solutions when the resulting temperatures
become much larger than the initial temperature, as occurs for sufficiently large times for the planar
source, for sufficiently small times for the point source, and for sufficiently large heating rates for the
line source.
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1. Introduction. The expansion accompanying the heating of a gas after the
application of an energy source sets the fluid in motion away from the source. The
purpose of this paper is to give a description of the associated nonlinear heating
process when the induced velocities are much smaller than the velocity of sound, so
that one can neglect pressure variations in the first approximation. Furthermore, the
analysis treats the energy source as being of negligible size and neglects the effect of
gravity, two simplifications that are simultaneously valid when the size of the heated
region is much larger than that of the energy source and still sufficiently small so that
the buoyancy-induced velocity remains smaller than the thermal-expansion velocity.

We shall consider the one-dimensional transient solutions appearing with plane,
line, and point energy sources when a constant heat flux is applied. Numerical and
asymptotic techniques will be employed to describe the evolution with time of the
temperature and velocity fields. The solution will be seen to depend on the combined
effect of outward convection, due to the gas expansion, and of nonlinear heat conduc-
tion, associated with the temperature dependence of the thermal conductivity. The
results of the analysis should be useful for understanding the ignition process of a
reactive gas mixture by a localized energy source, as can be realized in practice by a
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laser beam or by passing an electric current through a thin wire.

A simple order-of-magnitude analysis serves to anticipate the characteristic scales
of the problem. Consider an energy source located in an infinite gas medium at rest
with initial temperature and density T, and p,, respectively. If a constant energy
flux is applied after time t = 0, the characteristic time t. required to heat a region of
characteristic size r., so that the temperature is increased by an amount of order T,,
is determined by the energy balance

(1.1) qjte ~ pocy Tori ™,

where ¢, is the specific heat at constant pressure, assumed to be constant, and the
index j takes the values j = (0,1, 2) for planar, cylindrical, and spherical geometries.
Correspondingly, qo, q1, and qo represent, respectively, the heating rate per unit
surface for the planar source, the heating rate per unit length for the line source, and
the heating rate of the point source. The above equation must be supplemented by
the condition

(1.2) qQj ~ 1l ke T,

which states that the energy flux is conducted across the heated region, with k,
representing the value of the thermal conductivity at the initial temperature T,.

For the planar and point sources, the above two balances give the characteristic
scales of length and time

q 1/(-1) ) qj 2/(j-1)
1. c d te ~ o, )
(1.3) T <k0T0> an a; (koTo>

where o, = ko/(pocp) is the unperturbed thermal diffusivity. On the other hand, the
characteristic velocity due to thermal expansion associated with relative changes in
density of order unity, which can be anticipated from the continuity equation to be
of order v. = r./t., becomes in this case

4 -1/(-1)
(1.4) Ve ™~ Q <kogfo> .

As shown below, use of these scales enables the problems j = 0 and j = 2 to be
written in a convenient parameter-free form. On the other hand, no characteristic
scales can be constructed for the line source, for which the radial extent of the heated
region increases with time according to

(1.5) re ~ [(kq;)} - (aot)/?,

while the characteristic velocity is given by

(1.6) Ve ~ [(kj%o)} v (o /)2,

Because of the absence of characteristic scales, the problem will be seen to admit a sim-
ilarity solution in terms of the self-similar coordinate r/(a,t)'/2, with ¢ = q1 /(27koT,)
entering as a governing parameter.
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The ranges of validity for the different assumptions employed in the paper can be
delineated by using the above scaling laws (1.3)—(1.6). For instance, the assumption
that the source is localized is valid only when r. is much larger than the size of
the energy source, while gravity-induced velocities, of order (grc)l/ 2. can be neglected
only when v, > (gr.)'/? for r, < (a2/g)'/3. The assumption of isobaric heating holds
only when the induced velocities v, are much smaller than the velocity of sound, given
in order of magnitude by (c,T,)"/2, thereby producing pressure variations, of order
pov?, that are much smaller than the ambient value. It should also be noted that the
above considerations provide, for a given gas mixture, the range of heating rates for
which the analyses of the planar and point sources remain accurate. On the other
hand, since the characteristic scales given in (1.5)—(1.6) change with time, the above
considerations give the time range for which the analysis of the line source holds.

Neither finite-size sources nor buoyancy and compressibility effects are addressed
in the present work. When gravity enters, the symmetric solution determined here
is expected to evolve to give a steady plume for large times, giving a flow pattern
that has been extensively studied in the past (see, e.g., [8, 9] for entries into the
literature of thermal plumes from line and point sources). When compressibility
effects are significant, a strong shock wave can be expected to form, a phenomenon also
observed following the instantaneous localized deposition of a finite amount of energy
[18, 19, 20]. This shock wave weakens as it moves away from the source, eventually
leading to an acoustic wave as the pressure settles everywhere to the ambient value
for sufficiently large times.

The structure of the paper is as follows. After formulating the problem, we
will address the similarity solution emerging in the case of a line source. The self-
similar temperature and velocity profiles will be given for different values of the heat
release rate, and the asymptotic limit of large heat release rates will be described in
detail. Next, we will present the solution corresponding to planar and point sources,
which involve integration of a parameter-free nonlinear parabolic equation for the
temperature. The analysis is extended to include the asymptotic limits of small and
large rescaled times. Finally, some concluding remarks will be given.

It should be noted that the problem of near-isobaric heat propagation in a gas
from a plane source was addressed previously by Clarke, Kassoy, and Riley in their
study of heating of a gas slot confined between infinite parallel walls [5]. In particular,
the nonlinear heat equation that governs the problem was derived. They showed that,
when the heating rate is applied for a sufficiently long time, the characteristic tem-
perature of the heated region becomes much larger than T,, so that the thermal wave
becomes a front solution with an edge that clearly defines the hot region surrounding
the source. We shall see that a front solution also appears with the line source in
the limit of large heat release rates and with the point source for sufficiently small
times. As seen below, the structure of the solution includes a locally planar thin layer
of warm gas, identical for all three configurations, that separates the region of hot
gas from the outer cold gas, at temperature T = T,. It is worth mentioning that
similar front solutions have been previously identified in asymptotic analyses of heat
conduction problems when the thermal conductivity depends strongly on the temper-
ature [22], e.g., in electronic conduction in plasmas [16, 23], or in the presence of large
temperature variations in gases, as occurs in supercritical droplet evaporation [15].
Front solutions are also encountered in problems of mass diffusion [7] and in flows in
porous media [2].
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2. Formulation. In the near-isobaric limit considered here, the momentum
equation becomes secondary for the computation of the one-dimensional problems
addressed, in the sense that the resulting velocity and temperature fields can be de-
termined by integrating the continuity equation

op 10,
and the energy equation
0 10 ( . 0T
i Y _ g =
(2.2) 5t (pe, T) + 5 Br (r pvep, T —17k 8r> 0,

supplemented with the equation of state for the ideal gas
(23) PT = PoToa

which is written with pressure differences neglected. These pressure differences, which
are much smaller than the ambient pressure in this near-isobaric limit, can be com-
puted a posteriori by integrating the momentum balance equation. In the formulation,
p, T, and v denote, respectively, the density, temperature, and velocity of the gas,
while ¢, represents the specific heat at constant volume. For generality, the ther-
mal conductivity k is allowed to vary in our analysis from its initial value k,, with a
temperature dependence given by

k T\’
24 2=
(2.4 (1) -
where the exponent ¢ is typically in the range 0 < o < 1 in gases and takes the value
o = 5/2 for electronic conduction in plasmas. The initial and boundary conditions for

(2.1) and (2.2) corresponding to an infinitesimally small heat source located at r = 0
are

(2.5) t=0, r>0: T=T,, p=p,
and

r=0: v=0, —2/7%17kdT/0r = qj,
(2.6) t>0{r:oo: T=T,

where 6; = 0 if j = 0 and 6; = 1 otherwise.

The approximation (2.3) eliminates the time derivative in (2.2), because in this
limit of near-isobaric heating, the internal energy does not accumulate locally in the
flow field. Integrating the resulting equation, using the boundary condition at r = 0,
yields

, , oT
(2.7) 93 763 1 (vpocpTo — k@r) = q;-

As can be seen, the heat released at r = 0 is transported partly by convection and
partly by heat conduction. Introducing the dimensionless temperature T'= T /T, =
po/p and substituting (2.7) into (2.1) finally gives

10T 10 [ap q; . oT
2. — = =2 —H2 4T )| =
(28) T2 9t 1 or {T <2-77r5jk0T0 T 8r)] 0
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to be integrated with initial and boundary conditions

t=0:T=1,
(2.9) top.f T=0: VT0T/0r = —q; /(277 k,T,),
"l r=0c0: T=1.

This nonlinear heat problem describes the buoyancy-free isobaric evolution of the gas
temperature, subject to a localized energy source of rate q;, which can vary with time.

3. The line source of heat. As previously mentioned, for the line source the
solution to (2.8) when the heating rate q; is constant is of the self-similar form T =
T(n), involving the similarity variable n = r/(a,t)/?, so that T(n) is given by the
solution of

n=0: q+nT°T, =0,

n=o0: T =1.

(3.1) 77_1((] + UTUTW) - g} T, = Tn_l(nTng)n {

To simplify the notation throughout the text, subscripts will be utilized to denote
differentiation with respect to a given variable, so that, for instance, T,, = dT'/dn
in the above equation. Apart from the thermal-conductivity exponent o, only the
dimensionless heating rate

q1
2 _
(3.2) 1= 90k T,

enters as a parameter in (3.1). As can be seen, besides the thermal-expansion velocity

\ 1 -
(3.3) U= W = E((H_ nT°Ty),

the convective term incorporates an apparent negative velocity —1/2 due to the grow-
ing length scale used in the definition of 7.

Sample distributions of T'() are shown in Figure 1 for different values of ¢, with
a value o0 = 0.5 adopted in the calculations for the temperature dependence of the
conductivity. Integration by a shooting method was initiated near n = 0, where the
temperature profile is of the form

(3.4) Tt ~ —(o +1)qlnn + B,

with B(g, o) representing an unknown constant that was varied in the shooting pro-
cedure to satisfy the boundary condition T'= 1 at n = co. The resulting value of B is
shown as an inset in Figure 1 for 0 = (0,0.5,1.0). Note that the local high-temperature
description (3.4) can be of interest for the analysis of some related problems, such as
the ignition of a reactive gas mixture by hot wires or by laser beams [10].

The temperature distribution can be used to determine from (3.3) the gas velocity
induced by thermal expansion. This velocity is zero at the heat source and also at
1n = oo and reaches a maximum at an intermediate location, a result clearly seen in
the velocity profiles exhibited in Figure 2. The effect of the heat source on the far field
is that of a volumetric source of fluid, inducing radial velocities that decay according
to u ~ q/n for n > 1.

The solution corresponding to small heating rates can be determined by intro-
ducing an expansion for 7'— 1 in increasing powers of ¢. Since in this case both p and
k change by only a small amount from their unperturbed values p, and k,, the result-
ing solution is, in the first approximation, that corresponding to a solid with constant
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Fi1G. 1. The temperature profiles obtained by integration of (3.1) with o = 0.5 (solid lines) and
from the large-q composite expansion (dot-dashed lines); the inset shows the variation with q of the
constant B, along with the large-q prediction B = q[b+ (o + 1)1n(q)/2].

thermal conductivity (7' — 1)/q = 1Ey(n?/4) (see [4]), where E; is the exponential
integral function [1]. The effect of the thermal expansion emerges in the solution,
giving a small modification of order ¢ to the temperature increment 7' — 1 and in-
ducing small radial velocities, of order ¢, that can be determined from (3.3) to give
u = (q/n)[1 —exp(—n?/4)]. This description can be expected to fail as T — 1 increases
to values of order unity for n — 0, in an exponentially small region around the axis
corresponding to n ~ exp(—1/q). This region can be studied by employing In(n)/q as
an appropriately stretched coordinate, an analysis that gives Tt = 1— (o +1)glnn
as the leading-order representation for the temperature. This is in agreement with
the results shown in the inset of Figure 1, where the constant B approaches unity as
qg— 0.

The analysis of the limit of large heat release rates, ¢ > 1, is more complicated
and requires consideration of separate spatial regions. As seen in Figure 1, both the
extent of the heated domain and the characteristic value of the temperature grow
with increasing values of . A simple order-of-magnitude analysis of (3.1) reveals that
the rescaled variables &€ = ¢~ /25 and 0§ = ¢~ */(“tUT are appropriate replacements
for n and T in this limit of large ¢q. Use of these alternative variables enables (3.1) to
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FiGc. 2. The velocity distribution (3.3) for o = 0.5 evaluated with the temperature profiles
determined numerically (solid lines) and with the large-q composite expansion (dot-dashed lines).

be written in the form

=0:£00; = —
(3.5) EH1+€070;) — g O = 06 (£070¢ )¢ { g _ 20 :59 zgqq/(clrzu).

3.1. The high-temperature region. Introducing an expansion of the form
(3.6) 0="00+q "0, +---

into (3.5) produces a series of problems that can be solved sequentially, with the order
w1 for the first-order correction to the leading-order result being determined in the
course of the analysis.

The problem emerging at leading order for the function 6y,

=0:£050pc = —1,
B [e 0+ e9g0ne) - § | e = o etgtae { ¢ 70550

has a front solution that neatly defines the hot region. The location ¢ = v/2 of the
front is determined a priori from inspection of (3.7) by noting that heat conduction
vanishes as the temperature approaches its zero boundary value, so that convection
remains as the only transport mechanism there. Therefore, the leading edge of the
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temperature distribution must lie at € = v/2, where the positive thermal-expansion
velocity U = ¢~ 12u = €71(1 4+ £€076¢) ~ ¢! equals the negative apparent velocity
—£/2 associated with the growing length scale. The front nature of the solution is
clearly a result of the vanishing boundary temperature seen with the scales of this high-
temperature region, as occurs in other problems of high-temperature hydrodynamics
[13, 15, 22, 23].

The resulting function 6y is shown in Figure 3 for four different values of the
thermal-conductivity exponent o = (0,0.5,1.0,2.5). The numerical integration was
started at € < 1, where 5 ~ —(o+1) In é+b, with b = (0.0477,0.1557,0.2914, 0.7637)
for o = (0,0.5,1.0,2.5). Note that, in terms of this shooting parameter, the constant
B appearing in (3.4) can be expressed in the form B = ¢[b + (¢ + 1)In(q)/2], an
asymptotic prediction tested in the inset of Figure 1. The temperature profiles are
seen to approach the cold boundary ¢ = v/2 according to

1—0

1/(140)
(3.9 bw=(152)  E-ep)

if 0 < 1, according to

(3.9) 0o = V2(vV2 - ¢) {m (ﬂl_ g)] "

if 0 = 1, and according to
(3.10) o = E(V2 — &)Y/

if o > 1, where F is a constant to be determined as part of the numerical integration
(e.g., B =2.7449 for 0 = 5/2).

As previously mentioned, the order p of the first-order correction to the leading-
order results must be determined as part of the solution. Although the boundary
condition at £ = oo given in (3.5) suggests pu1 = 1/(c + 1), corresponding to a
correction in temperature T of order unity, it is shown below that the necessary
correction is in fact larger when o < 1. The cases ¢ = 1 and ¢ > 1, which give
u1 = 1/(o0 + 1), are treated separately in the appendixes.

The function #; satisfies the equation

(3.11)

2
(1= 5) tre = 20685 nc)etr + 3(685 0r0)c + 816~ 165 6uct)e

obtained from linearizing (3.5) about 6. The corresponding boundary conditions are

(3.12) E=0: €570 — 00, =0
and
(3.13) £E=v2: 6,=0.

In addition to the trivial solution #; = 0, for each value of y; the above problem
admits a single nontrivial solution that can be determined aside from an arbitrary
multiplicative factor. To discriminate the value of 1, one needs to investigate the
corner layer that appears at distances of order ¢~ /2 about £ = /2, where the tem-
perature becomes of order unity.



GAS MOTION BY LOCALIZED CONSTANT HEAT FLUX 945

15

3

Fic. 3. The temperature profiles obtained by integration of (3.7) for o = (0,0.5,1.0,2.5).

3.2. The corner layer. Around ¢ = /2 the temperature must evolve from the
cold boundary distribution given in (3.8) to the final asymptotic value 7' = 1. The
description of the resulting corner layer must make use of the translated coordinate
X = v/2q — 1. At leading order the problem becomes

X — —o0:T =1,

X —o00:T — (1_;'_70)1/(1+0')X2/(1+g-)'

1-0o

(3.14)  T*T7'Ty)y +xTy =0 {

The solution to this problem, which is given in Figure 4, determines in particular
the asymptotic behavior for y — oo, where the temperature is seen to approach only
slowly its boundary value according to

1—0

1/(1+0)
(3.15) T — (1 + U) X2/(1+a) — AX(2—0—\/2—02)/(1+0),

with A being a constant determined as part of the integration. Sample values are
A = (3.816,4.5080, 5.664,9.353) for o = (0,0.25,0.5,0.75).

3.3. Uniformly valid description. Matching the solution given in (3.15) with
the outer expansion 6 = 6y +t7#10; + - - - gives

oc+V2—o?

(3.16) M= 00
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Fi1G. 4. The temperature profile across the transition layer for different values of o.

for the order of the correction. Furthermore, the matching procedure provides
(3.17) 5_) ﬁ: 0, = A(\@— 5)(2757\/2762’)/(1+a)

as a replacement for (3.13), thereby removing all previously noted arbitrariness; i.e.,
(3.11) subject to (3.12) and (3.17) has a unique solution that must be determined by
numerical integration.

A uniformly valid description for the temperature field can be obtained by combin-
ing the outer expansion for 6 with the corner-layer profile according to the composite
expansion

T(n) = ¢+ [06(€) + ¢ 61(9)]
(3.18)

+T(x) - H(V2-¢)

1—0

1/(1+0)
1
( +U> XQ/(1+0')_AX(Q—J—\/Q—Jz)/(1+0') ,

where H(v/2 — €) is the Heaviside function with origin ¢ = /2 and T(x) is the
temperature profile across the corner layer, with the rescaled variables & = ¢~'/2n
and Y = /2q — 1 being those utilized above for the outer region and for the corner
layer, respectively. The resulting temperature profile and the accompanying velocity
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profile, determined by straightforward substitution of (3.18) into (3.3), are plotted in
Figures 1 and 2, showing reasonable agreement for the relatively large value of ¢ = 25
considered.

4. Constant heat flux from a plane wall. Use of the characteristic scales
identified above in (1.3) and (1.4) provides t = a,[qo/(koTb)]%t, 7 = [qo/(koT,)]r,
and v = v/[qoa,/(koT,)] as dimensionless variables to describe the planar source. As
first shown by Clarke, Kassoy, and Riley [5], the problem then reduces to that of
integrating

oT 01 oT
4.1 — T2 = (1+7T°= )| =0
(4.1) ot " or [T ( * arﬂ
with initial condition
(4.2) t=0, 0<r<oo: T=1

and boundary conditions

t>0{r=0: T°0T/or = —1,

(4.3) r=oco0: T=1,

while the velocity can be computed from (2.7) to give

or

4.1. Temperature and velocity distributions. As can be seen, o is the only
parameter left in the problem. An exact solution is known only for o = 1 (see [5]),
a case for which the density-weighted coordinate dz = T~'dr, often introduced for
the analysis of variable-density boundary layers [17, 21], reduces (4.1)—(4.3) to the
constant-density problem (see [4]), thereby yielding
21:/2> and r=z+t {1 — 4i%erfc (2;/2”
as an implicit representation for the temperature profile T(r), where i*erfc and i2erfc
denote repeated integrals of the complementary error function erfc (see [1]). Corre-
spondingly, the velocity profile (4.4) reduces to v = 1 —erfc [ [ 7~ dr/(2tY/2)].

For o # 1, the problem needs numerical integration. To handle the unbounded
value of 0T'/0t at ¢t = 0, the initial condition (4.2) must be replaced in the numerical
integrations with the leading-order representation of the temperature profile for ¢t < 1,
when the temperature increase from the initial value 7' = 1 is small, of order /2,
and is seen to be confined to a thin layer of characteristic thickness t'/2 located in
the vicinity of the wall. To describe this initial period it is convenient to introduce
the self-similar variables /t'/2 and (T — 1)/t'/? into (4.1)-(4.3), yielding in the first
approximation the constant-density result (see [4]),

(4.5) T =1+ 2tY2ilerfe (

(r-1) . T
(4.6) rYC 2i erfc @177 |
while the initial velocity distribution becomes
r
(47) v=1—erfc (W) .

Characteristic temperature profiles obtained for ¢ = 0.5 by numerical integration of
(4.1) with boundary conditions (4.3) and with the initial profile (4.6) evaluated at ¢ <
1 are shown in Figure 5, along with the accompanying velocity profiles determined by
evaluating (4.4). The profiles at t = 0.4 are compared with the asymptotic predictions
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Fi1G. 5. The temperature and velocity profiles obtained by integration of (4.1)—(4.3) for o = 0.5
(solid lines); the profiles at t = 0.4 are compared with the asymptotic predictions given in (4.6) and
(4.7) for t € 1, and the profiles at t = 22 are compared with the asymptotic predictions for t > 1.

for small times given in (4.6) and (4.7), while the profile ¢t = 22 is compared with the
asymptotic prediction for ¢t > 1, to be developed below.

In this planar case, the temperature remains bounded everywhere, growing with
time. The evolution of the maximum temperature T, attained at the wall is shown
in Figure 6 for 0 = 0 and ¢ = 0.5. The numerical solution is compared with the
asymptotic description for small ¢,

2
(4.8) Tw=1+ m1&1/2,
obtained by evaluating (4.6) at r = 0, and also with the results given below for ¢ > 1.
Note that (4.8) gives exactly the wall temperature at all times when o = 1, as can be
seen by evaluating (4.5) at z = 0.

4.2. Solution for ¢ > 1. The solution in this limit parallels that obtained above
for the planar case in the limit ¢ > 1. As previously mentioned, the temperature and
the extent of the heated region continues to increase as time progresses. An order-
of-magnitude analysis of (4.1) and (4.3) suggests the use of the modified variables
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=05

F1G. 6. The evolution with time of the wall temperature for different values of o obtained from
numerical integration of (4.1) (solid lines), from the short-time prediction (4.8) (dotted lines), from
the leading-order long-time prediction Ty = 00 (0)t*/(7+1) (dashed lines), and from the two-term
expansion Ty = t1/(@F1)[05(0) + 61 (0)t—+0] (dot-dashed lines).

0 = T/tY/(e+1) and x = r/t, of order unity, for the analysis of the limit # > 1, so that
(4.1) and (4.3) take the form

0
4.9 to 14+6°0, —x)0, + —— = 0(0°0,),
(4.9) i+ (14670, 17)‘,+U+1 (0°6,)
and
r=0: 079, = —1,
(4.10) { r=o0: =1/t

while the velocity is given by v = 1 + 696,. As can be seen, because of the rescaled
variables employed in this limit, an additional convective term —z6, appears in (4.9),
together with a damping term 6/(c + 1) associated with the growing temperature
scale.

Introducing the expansion 0(z,t) = 6p(x) + t 700, (z) + - - - permits us to solve
the problem in a sequential manner, with the unknown value of py being determined
as part of the asymptotic development as shown below. The function 6, is obtained
from
r=0: 6§60, =—1,
r=1: 9() =0.

- bo _ , po
(411) (1 + 90 Oow — 13)903; + o1 = 90(90 903;)3; {
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1.4

12 ¢
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X

Fi1G. 7. The temperature profile 6y obtained from (4.9) for different values of o.

The problem (4.11) has a front solution, similar to that seen in the axisymmetric case
for ¢ > 1. Since both the heat-conduction term, 6y(6300,)., and the damping term,
0o/(c + 1), vanish as the temperature approaches its zero boundary value, the front
of the temperature distribution must lie at = 1, where the positive velocity due to
thermal expansion, v >~ 1, equals the apparent negative velocity —z.

When o = 0, the problem given in (4.11) has the exact solution (see [5])

(4.12)

Op=(1-2)%/2, v=x, for 0<z<1,
0y =0, v=1, for 1<

Another exact solution appears when o = 1, as can be seen by rewriting (4.5) in terms
of the intermediate coordinate z = z/(2t'/2) to give the implicit representation [5]

(4.13) 0o = 2i'erfc(2) and =1 — 4i%erfc(2).

Numerical integration is necessary to compute profiles of 6y when o # (0,1). The
temperature profiles (4.12) and (4.13) are shown in Figure 7 along with the numerical
results corresponding to o = (0.25,0.5,0.75,2.5). A shooting technique started at z =
0 was used for the integration of (4.11), with 6(0) utilized as the shooting parameter
to be varied in the iteration procedure. This initial value, which equals 65(0) = 0.5 for
o =0, 0p(0) = 2/7'/2 for o = 1, and 6y(0) = (0.7298,0.9063, 1.0356, 1.3212) for o =
(0.25,0.5,0.75,2.5), determines the leading-order prediction for the wall temperature
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T = 0p(0)t*/(@*+D The comparisons with the results of the numerical integrations
for large times, shown in Figure 6, clearly indicate that the asymptotic description
must be carried on to the following order for increased accuracy.

This first-order correction 6;(z) must satisfy the conservation equation (4.9) lin-
earized about 6,

( ! —uo) 01 + (1 — 2)0r,

oc+1
(4.14)
92
=63 { [(a +1)00ze — o(1 — ")e%x 01— 2(1 — 0)0o,01, + aoam} ,
subject to the boundary conditions
(4.15) r=0: 037901, —0b; =0
and
(4.16) x=1: 6, =0.

As occurred before with the perturbation problem (3.11)—(3.13), for each value of g
the problem (4.14)—(4.16) admits a single nontrivial solution that can be determined
aside from an arbitrary multiplicative factor. The value of pg is determined from
matching the first two terms of the high-temperature distribution 6 = 6y +¢=1/(e+1g,;
with the leading-order temperature representation across the corner layer, located
around x = 1. It is remarkable that the first-order correction can be determined
without taking into account the initial non—self-similar growth period, thereby in-
dicating that memory effects emerge in the asymptotic development for large times
only at higher orders. The associated corrections should be computed from matching
the asymptotic results with the numerical computations for ¢ ~ 1, a development not
pursued further here.

As seen before for the line source, the structure of the solution forc = 1 and o > 1
is different from that encountered with ¢ < 1. The analyses of the former solutions,
which are given in the appendixes, reveal that py = 1/(c + 1), corresponding to a
correction in temperature T of order unity. The corrections are larger when o < 1,
when the leading-order temperature profile approaches the boundary x = 1 according
to the local description

1/(o+1)
(4.17) 0y = <2((11+_UU))) (1 — )2/ (+D),

as can be obtained from (4.11). The corner layer, where the temperature 7" is of
order unity, corresponds to distances (1 —x) of order ¢t~!. Introducing the coordinate
x = (t/2)*2(1—1r/t) reduces the leading-order problem to that given in (3.14), whose
solution matches asymptotically with the boundary distribution (4.17). Furthermore,
inspection of (3.15) indicates that the order of the first-order correction must be

oc+V2—o?

(4.18) Fo= 0+ 0)

to complete the matching, and that
(4.19) r=1: 6, =A[(1- x)/\/§](2faﬂ/2fa2/(1+o)
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must replace (4.16) to provide uniqueness for the solution to (4.14). In general,
numerical integration is required to compute 6;, the only exception being the case
o = 0, for which the exact solution

(4.20) 61 = (21?/\@> [(1 — x)%ﬁ _ %(1 - x)1+\/§

is available.

The results of the asymptotic analysis can be combined to give a uniformly valid
description for the temperature. The corresponding composite expansion is that given
in (3.18), with ¢, £, and p1 being replaced with ¢, x, and pg, and with the origin
for the Heaviside function being x = 1. The resulting temperature profile and its
accompanying velocity profile are plotted in Figure 5, showing good agreement for
the value t = 22 considered. The relatively small errors observed, of order unity,
correspond to a correction at the following order in the asymptotic analysis, which is
not computed here. As seen in Figure 6, an error of order unity is also present in the
second-order asymptotic prediction for the wall temperature T, = /(71 (,(0) +
61(0)t—#0), where 6;(0) = (2.359,2.223,1.927,1.486) for o = (0,0.25,0.5,0.75).

5. The point source of heat. The characteristic scales for this problem, de-
fined in order of magnitude in (1.3) and (1.4), were used to define the dimensionless
variables t = a,[qa/(47k,T,)| =2, r = 1/[qz/(47k,T,)], and v = v[qs/(47k,T,)]/ -
The temperature 7' is determined by integrating

or T 0 [1 L 0T

with initial condition
(5.2) t=0, 0<r<oo: T=1

and boundary conditions

_ . 2o _
(5.3) t>0{r0. reT°0T/0r = —1,

r=occ: T =1,

while the velocity can be computed from

1 9o OT

As in the planar case, o remains as the only parameter left in the problem. Because of
the boundary condition at r = 0, the temperature profile presents an infinite value at
the point source for ¢ > 0. Hence, the numerical integration of the problem (5.1)—(5.3)
must account for the singular character of the solution near the origin, where

(5.5) Tt = (071;1) + C(1).

In particular, the initial profile T'= 1 must be replaced with the leading-order repre-
sentation emerging for ¢t < 1.
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5.1. Initial temperature growth. As previously anticipated, the structure of
the solution in this limit ¢ < 1 is that found for ¢ > 1 in the axisymmetric case and for
t > 1 in the planar case, that is, a neatly defined central region of high temperature
separated from the outer cold gas at temperature T' = T, by a thin corner layer
of warm fluid. The appropriate scales for length and temperature to describe the
hot region, t'/3 and ¢t~/[B@+D] can be anticipated from the balance of the three
terms in (5.1). Correspondingly, the associated rescaled variables § = ¢!/[Be+DIT
and y = r/t'/% reduce (5.1) and (5.3) to

—2 2900\ _ Y _ ¢ 0. —2(,2p0
(5.6) 0, + {y (1+y7070,) 3} 0y CET Oy~ (y"670y)y
and
y=0: %2079, =—1,
(5.7) { y=o0: 0= t1y/[3(0+1)].

Because of the growing length scale that has been introduced, besides the rescaled
thermal-expansion velocity of order unity, t>/3v = y~2(14+y2670,), there exists in (5.6)
a negative apparent velocity —y/3. Similarly, the decreasing scale used for the tem-
perature leads to the negative damping term —6/[3(c + 1)].

Introducing the expansion 0(y,t) = 0o(y) + t#201(y) + - - - yields at leading order

— lod 4 — o
(5.8) [v7201+ y0300,) — 2| o, - So 1) = v W00

3 o+1)
to be integrated with boundary conditions

y=0: y?0500, = —1,
(5.9) { y:31/3: 6y = 0.

As before, the balance between the thermal-expansion velocity and the apparent ve-
locity determines the location of the front y = 3/3. A shooting method was used to
integrate (5.8). Integration was initiated near y = 0, where the temperature profile is
of the form 83! = (o+1)/y+c. The unknown shooting parameter ¢ was varied in the
numerical integration to satisfy the boundary condition at y = 3'/2, yielding the pro-
files shown in Figure 8. The negative constant ¢ = —(0.8390,1.2173,1.5806, 2.6397)
for o = (0,0.5.1.0,2.5) provides C' = ct~'/3 for the initial evolution of the constant C

in (5.5).
If 0 < 1, the function 6 is seen to approach the boundary according to
7(1+ o) 1/(1+0) )
5.10 0= —— 2 31/3 _ )2/(1+0)
(5.10) o= (Fa22) g,

to be matched with the temperature profile across the transition layer, which is de-
termined at leading order by (3.14), with the similarity coordinate being defined as
x = t=/6(6/7)'/2(31/3 — 1 /t'/3). Matching the first two terms in the expansion for @
with (3.15) yields in this case

oc+V2—o2

(5.11) 2= TGl 1 )
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y

Fic. 8. The temperature profiles obtained by integration of (5.8) for o = (0,0.5,1.0,2.5).

along with the asymptotic value

(2—0—v2—02)/(140)
(5.12) 01— A [(7/6)1/2(31° — )]

to be used as a boundary condition at y = 3'/3 when computing the first-order
correction 1. The singular case 0 = 1, when

. 1 1/2
(5.13) 6 = (3% —y) [3 In (31/334)}

for 0 < 3'/3 —y <« 1, is described separately in Appendix A, while the the case o > 1,
when 6y (31/3 — y)l/" near the boundary, is described in Appendix B.

5.2. Temperature and velocity distributions. As previously mentioned, the
results of the asymptotic analysis for ¢ <« 1 were employed to enable integrations
of (5.1). The two-term expansion 8 = 6y + t#26; was combined with the solution
in the corner layer to provide the corresponding composite expansion, which is that
given in (3.18) with the exponents —1/[3(0 + 1)] and p2 and the variables y and ¢
replacing 1/(oc + 1), —pu1, &, and g, respectively, and with the origin for the Heaviside
function being y = 3'/3. This composite expansion evaluated at ¢t = 0.01 was used
as an initial condition in the integrations shown in Figure 9, where the temperature
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F1G. 9. The temperature profile corresponding to the final steady solution (5.14) with o =
0.5 (dashed line), along with those obtained by integration of (5.1) (solid lines), from the short-
time composite expansion (dot-dashed line), and from the long-time quasi-steady expression (5.16)
(dotted line); the inset shows the variation of the constant C together with the short-time prediction
C = ct=1/3 (dot-dashed lines).

profiles corresponding to ¢t = (0.1,1.0,8.0) are shown. As can be observed, the com-
parison with the short-time composite expansion for ¢ = 0.1 still gives reasonably good
agreement. For completeness, the plot exhibits in an inset the variation with time of
the constant C' corresponding to the near-origin temperature distribution (5.5), along
with the short-time prediction C' = ¢t=2/3.

The temperature profiles can be used in (5.4) to provide the associated velocity
profiles, which are shown in Figure 10. The solution is seen to evolve rapidly from the
initial large velocities of order t—2/3 to the final quasi-stagnant solution corresponding
to t > 1, which is described below.

5.3. Quasi-steady long-time solution. For asymptotically large values of t,
the solution evolves to approach the profile

o+ 1)1/(a+1)

(5.14) T, = (1 +

This steady solution (5.14) and its associated velocity field v = 0 are correct to all
algebraic orders at distances r of order unity; i.e., the investigation in the limit ¢ > 1
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0.6

Fic. 10. The wvelocity profiles obtained by evaluating (5.4) with the numerical temperature
profile (solid lines) and with the short-time composite expansion (dot-dashed lines). The dotted line
represents the long-time quasi-steady solution (5.17).

of perturbations of the form T = Ty(r) 4+ t~*T,(r) yields T, = 0 irrespective of the
value of a.

Unsteady effects are seen to enter farther from the heat source, in a far-field region
corresponding to distances of order t!/2 where only small temperature increments
T — 1 of order t~'/2 exist. To study this far-field region, it is convenient to employ
the similarity coordinate n = r/t'/2, along with the rescaled temperature increment
T — 1 =t~/20, where an expansion of the form ©(n,t) = Oy(n) +t~/20:(n) + - - -
is assumed. Introducing these new variables into (5.1) yields at leading order

(5.15) (11%/2)(©0 + nO0y) + (11°Ouy)y { n—0: G =1/n,

n—oo: BOy=0,

where the boundary condition as n — 0 comes from matching with the steady solu-
tion (5.14). Straightforward integration gives ©g = n~terfc(n/2). Now combining the
inner steady-state profile with the far-field transient solution provides the compos-
ite expansion T' = T, + t~'/2(0y — 1/n), which gives the solution for the large-time
temperature evolution with errors of order t~!. At the same level of approximation,
one may write

1/(o+1)

1
(5.16) T= {1 + 2 e (T)}
T
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for the temperature profile, a compact expression that can be used in (5.4) to obtain
the velocity profile

(5.17) v = %2 {erf (#) - (ﬂrw exp (Zjﬂ .

Note that, when o = 0, (5.16) corresponds to the exact self-similar solution achieved
with constant density and constant conductivity [4]. These large-time predictions are
compared in Figures 9 and 10 with results of numerical integrations for ¢ = 8, yielding
reasonably good agreement.

6. Conclusions. The transient, one-dimensional, near-isobaric, buoyancy-free
flow field induced by a localized energy source of constant rate has been analyzed
for planar, cylindrical, and spherical geometries. The convection induced by thermal
expansion is seen to aid the transport of heat away from the source, in a nonlin-
ear process of evolution that has been computed with account taken of the variable
thermal conductivity typical of gases. Our study shows a self-similar solution for the
line source, with the dimensionless heat release g entering as a parameter, while both
the planar source and the point source require consideration of a nonlinear parabolic
equation for the time evolution of the temperature.

The analysis reveals that front solutions emerge when the resulting temperatures
become much larger than the initial temperature, with the front location being de-
termined a priori from a convective balance. It is shown that the inner structure
of the planar thin front, which is identical for all three geometrical configurations,
determines the first-order correction in the hot region. Note that front solutions can
also be expected to emerge as limiting solutions when a variable heating rate q;(t)
is applied, a problem to be addressed in future work. In that case, unsteady effects
are likely to emerge in the hot region at leading order, while the inner structure of
the thin front is expected to evolve in a quasi-steady manner. Also of interest is the
investigation of the effect of compressibility on the heat propagation process from
point and line sources, as done for planar sources by Clarke, Kassoy, and Riley [6].
Future research should also consider the solution emerging after the heat source is
switched off. A related study is that of Meerson [12], who considered the conductive
cooling of a gas heated by a localized deposition of heat.

The quantitative information provided here can be of interest, for instance, in
analyses of ignition processes of a reactive gas mixture by localized energy sources
[10]. The corresponding energy conservation equation should incorporate a heat-
release term, and should be supplemented by conservation equations for the chemical
species. The ignition process typically involves an initial quasi-frozen period with
negligible chemical heat release, in which the description given here holds, followed
by a period of significant exothermicity. For instance, for ignition of hydrogen-oxygen
mixtures [10, 11], the initial branched-chain explosion [3, 14] produced after the heat
source is turned on could be computed with the temperature and velocity fields given
above. It can be anticipated that, since ignition often requires temperatures that are
much larger than the normal ambient value, the front solutions described above will
be particularly useful for these ignition studies.

Appendix A. The front solution for o = 1. The structure of the front when
o =1 is different from that described in the text for ¢ in the range 0 < o < 1. We
give first the solution corresponding to the line source of heat, and describe later the
small modifications required for the planar and spherical geometries.



958 A. L. SANCHEZ, J. L. JIMENEZ-ALVAREZ, AND A. LINAN

To construct the solution one needs to match the leading-order solution across
the corner layer with the the two-term expansion 6 = 6y 4+ ¢~ '/26;, where we already
anticipate that the order of the correction is uy = 1/2. The first-order correction 6
is determined by integrating

2
(A1) (1 - 52) D16 = 200(€00c)c01 + B2 (01 e,

with boundary conditions

£=0:  (Bob1)e =0,
(A.2) {5:\/5; 9102 ;Dln[l/(\f—f)],

where D is an unknown constant to be determined as part of the matching procedure.
Near the front, the two-term expansion 6 = 6y + ¢~ /26, can be written as

1 1/2 1
A3 0=vV2(v2—-¢) |In|{ —— 129D 1n ()
. -0 ()] Vic
where use has been made of (3.9).

Observation of (A.3) reveals that the corner layer, where the temperature becomes
of order unity, is a factor (In q)’l/ 2 thinner than that found with ¢ < 1, and is
displaced towards the cold outer gas. More precisely, the front extends over distances
of order q_1/2(111c1)_1/2 around & = /2 + Dq_l/g(lnq)l/g, where D is the unknown
constant appearing in (A.2). The appropriate inner coordinate must incorporate both
a translation and a dilatation according to ¢ = ¢'/?(In q)"/?[v/2+Dq~/?(Inq)*/? —¢].
The problem reduces to that of integrating

(——o00: T—-1—-0,

2 _ _
(A.4) Ty DTCO{C_H)O: T 10,

where the boundary condition as { — oo comes from matching with (A.3). Integrating
once with use made of the boundary condition T'(—oc0) = 1 yields Ty = D(1 — 1/T),
whereas imposing the linear profile on the hot boundary finally determines D = 1.
This value can be used in (A.2) to complete the boundary conditions necessary to
uniquely determine the first-order perturbation 6;. Note that the second quadrature
for the corner-layer equation, T+ In(T — 1) = { +(,, contains an arbitrary translation
Co, which could be computed from higher-order terms in the asymptotic expansion.

The solutions encountered for 7 = 0 and j = 2 also respond to the same structure.
Thus, for the planar heat source, the first-order perturbation 6; in the expansion
0 = 0y + t~1/26, is determined from

r=0: (9091);19 = 07

_ 2
(A5) (1= )01z = 200002001 + 050122 { r=1: 6, =2Dn[1/(1—z)],

while for the point source the expansion in the hot region becomes 6 = 6y + t'/%6,,
where 6, satisfies

3
(AG) (1 — y3) 91y = 290(y290y)y91 + GS(yQGIy)ya

with boundary conditions

y=0: (6061), =0,
(A7) { y = 31/3 . 910: 6D 1n[1/(3/2 —y)].
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On the other hand, the inner coordinates ¢ = (¢/2)Y/?(Int)*/2[1+D(t/2)~/?(Int)*/?—
z] for j = 0, and ¢ = [(7/2) In(1/)]*/2=/6 {31/3 - [(7/2) In(1/¢)]/2t/5(D/3) — y}
for j = 2, reduce the corner-layer problem to (A.4), indicating that D = 1 should be
used in (A.5) and (A.7).

Appendix B. The front solution for & > 1. The structure of the thermal
wave near the edge for o > 1 is similar to that described above for o = 1. As explained
in the text, the asymptotic behavior of the leading-order profile 6y near the edge is

(B.1) 0o = B[(j + 1)/UTH — gt/e,

where F is a constant to be determined from the numerical integration, and where
¢ should be replaced with z and y for j = 0 and 5 = 2, respectively, following the
notation used in the text.

As before, we shall first give the solution corresponding to j = 1, for which we
assume the expansion 0 = 60y + ¢~ */(“tVg,. The first-order correction 6; can be
calculated by integrating

2
(B.2) (1 - 2) O1¢ = 200 (€05 Oog) b1 + 05 (605 Ore)e + (0 — 1)05 (605 00¢b1 )¢,
with boundary conditions

(3 £=VZ: 0= D(V2— &)=/,

where D is a constant to be determined below. Near the edge, the two-term expansion
for 6 gives

{ 52 0: 90015 +O’01905 = 07

(B4) 0=E(V2-¢"7 +D(V2 -7/,

As seen before for ¢ = 1, the corner layer that appears is thinner than that correspond-
ing to ¢ < 1 and is displaced towards the outer cold gas. Its inner structure can be
described by introducing the variable ¢ = (0/E)q?/(“tV[\/2 4 (¢ /E)Dg~ /(o1 — ¢
to yield the problem

o — —o0: T —1,

(B.5) (T 1TC)C - DT = 0{ g —o00: Ty — 1/o¢t=)/7,
The boundary condition as ( — —oo can be used in a first quadrature to give us
D[(T —1)/T°] = T¢, which can be evaluated as { — oo to provide D = 1/o for the
value of the unknown constant D.

The same structure appears near the edge of the thermal wave when j =0 and j =
2. For the planar case, the first-order correction in the expansion 6 = 6 +¢=/(e+1)g,
is determined from

(B.6) (1 — )01 = 200(05 "00x)201 + 03(05*012) + (00 — 1)02(05 *00401).,
with boundary conditions

(B7) { z=0: 00011 + 0'010()@ = 0,

r=1:60, =D —z)1-9/7,
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Similarly, the expansion for j = 2 is 6 = 6y + t*/[B@+D1g, where 6; is computed by
integrating

(B.8)

3
(1 Y ) 1y = 2005205 00, )01 + 2205 01,), + (0 — DBR0]200,01)y.

3

with boundary conditions

(B.9)

y= 0: eoely + Ueleoy = 0’
y =330, =3D(31/3 — y)(1-9)/o,

Use of the inner coordinates ¢ = (¢/E)(t/2)°/“tV[1 + (o/E)D(t/2)~"/(@+1) — ] for
j=0,and ¢ = (¢/E)t=o/BlTVI31/3 1 (¢/E)(D/3)tY/13e+D] —y) for j = 2, reduces
the description of the corner layer to the problem given in (B.5), so that the value
D = 1/0 is obtained for the constant D appearing in (B.7) and (B.9).
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