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Abstract

In suitable parameter regimes the Integral Boundary Layer equation (IBLe) can be formally derived as
a long wave approximation for the flow of a viscous incompressible fluid down an inclined plane. For
very long waves with small amplitude, the IBLe can be further reduced to the Kuramoto–Sivashinsky
equation (KSe). Here we justify this reduction of the IBL to the KSe. Using energy estimates we show
that solutions of the KSe approximate solutions of the IBLe over sufficiently long time scales. This
is a step towards understanding the approximation properties of the KSe for the full Navier–Stokes
system describing the inclined film flow.

1 Introduction

For typical flow conditions the so called Nusselt flow of a viscous incompressible fluid down
an inclined plane is subject to long wave surface instabilities and trains of solitary waves
develop on the free surface. Starting from the Navier–Stokes equations, a number of reduced
equations have been formally derived to describe the evolution of the free surface and in
particular to understand the formation of these wavetrains.

Here we study analytically the relation between two of the approximate equations. The
first one is the so called Integral Boundary Layer equation (IBLe) which is derived from
the Navier–Stokes equation using a long wave expansion followed by an averaging over the
film height. In Appendix B we briefly review this derivation of the IBLe; see also [3] for an
extensive review and [10] for experiments on inclined film flows.

By a small amplitude and second long wave expansion in the IBLe, corresponding to
a small amplitude and very long wave expansion of the Navier–Stokes equation, the IBLe
can be further reduced to the Kuramoto–Sivashinsky equation (KSe). This second reduction
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is justified in this paper; we show that the KS-dynamics can be observed in the IBLe, see
Theorem 1.1.

Using the time and space scales of the Navier–Stokes equations, the IBLe we consider
reads
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(1.1)

where x ∈ R, t > 0, h is the film height, q describes the flow, 0 < θ ≤ π/2 is the inclination
angle, R is the Reynolds number, W is a normalized Weber number and 0 < ε� 1 is a small
parameter. In the derivation of (1.1) it is assumed that the Weber number We = Wε−2 =
O(ε−2), while R = O(1) and cot θ = O(1). The latter means, that the plane may not be
close to horizontal. However, a vertical plane, i.e. cot θ = 0, is allowed. As already said, see
Appendix B for the underlying scalings. The parameter W could be adsorbed into ε, but we
think the analysis becomes more transparent by keeping W.

In the IBLe the Nusselt solution of the inclined film problem corresponds to (h, q) =
(1, 2/3). Since we are interested in the instability of this solution we will assume throughout
that R is larger than the critical Reynolds number, i.e.,

R > Rc =
5

4
cot θ. (1.2)

With an abuse of notation we set h = 1 + η, q = 2/3 + q, and expand (1.1) up to quadratic
terms, since from previous work, e.g. [8], it is well known, and it can also readily be seen in
the analysis below, that cubic and higher order terms play no role in the justification of the
long wave/small amplitude approximation for (1.1). See however Remarks 1.3, 3.2 and A.5
for changes in the function spaces in this case. We write this quadratic expansion as

ηt = − qx (1.3)

qt = a0(η)η+a1(η, q)ηx+a2(η, q)ηxx+ε−2a3(η)ηxxx − b0(η)q−b1(η, q)qx+b2qxx, (1.4)

where
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(1.5)

Splitting (1.3) and (1.4) into linear and nonlinear terms we write

Ut = A0U + F (U), (1.6)

U =

(
η
q

)

, A0=A0(∂x)=

(
0 −∂x

a00+a10∂x+a20∂
2
x+ε−2a30∂

3
x −b00−b10∂x+b20∂

2
x

)

,



Approximation of the IBLe by the KSe 3

where a00 = a0(0), a10 = a1(0, 0), . . ., and where F contains the quadratic terms.
Inserting U = eµt+ikxU(k) into (1.6) we obtain the dispersion relation
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(1.7)

This spectrum of the operator A0(ik) is sketched in figure 1. From µ1 we obtain a long wave
instability with maximum growth rate Reµ1(kc) = O(ε2), kc = O(ε).
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Figure 1: The dispersion relation µj = µjr + iµji, j = 1, 2, for the IBLe, ε = 0.2, W = 1, R = 10,
θ = π/2; a) the two curves of eigenvalues µ1,2; b) blowup of µ1r(k) near k = 0.

It follows that A0 generates an analytic semigroup etA0 with

‖etA0U‖Y ≤ CeCε2t‖U‖Y , (1.8)

where as phase–space Y we choose, for instance, the Hilbert space Y=H 2(R)×H1(R) equipped
with the norm

‖U‖2
Y =

1

2

∫

R

{
q2+c1η

2−2c2qη−2c3ηxq+c4q
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x+ε−2W(η2

x+c4η
2
xx)
}

dx. (1.9)

Here we must choose c2 = 2, and c1, c3, c4 can be chosen as

c1 = 9, c3 = −11R/5 + 2 cot θ/3, c4 = R2, (1.10)

see Section 2.1, where we also motivate the choice of ‖·‖Y . The strong weighting of derivatives
of η in (1.9) represents the fact that in (1.6) the small parameter ε appears in a rather unusual
way, namely as an inverse power in front of the damping by the surface tension. This is
inherited from the fact that in the underlying Navier–Stokes equations we consider the limit
of large surface tension, see Appendix B.2.

Assuming very long waves with a small amplitude the Kuramoto–Sivashinsky equation
for the film height η can be formally derived from the Navier–Stokes equation. Accordingly,
the KSe can also be derived from the IBLe, namely by the ansatz

η(t, x) = εη1(T,X) + O(ε3), q(t, x) = εq1(T,X) + ε2q2(T,X) + O(ε3), (1.11)
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where

T = ε2t and X = x− ct (1.12)

are the very slow time scale and the very long space scale in a frame moving with the speed
c. These time and space scalings follow directly from the dispersion relation (1.7) for A0.
Plugging (1.11) into (1.6) we obtain the following hierarchy of equations
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(1.13)

that is, q1, q2 are given as functions of η1. At O(ε3(1.3)) we find ∂T η1 = −∂Xq2 which gives
the Kuramoto-Sivashinsky equation

∂T η1 = −

(
8R

15
−

2

3
cot θ

)

∂2
Xη1 −

1

3
RW∂4

Xη1 − 4η1∂Xη1 (1.14)

for η1. Note that the coefficient of ∂2
Xη1 is less than zero iff R > Rc.

Obviously (1.14) is a much simpler equation than (1.6) since it is a semilinear scalar
parabolic equation while the IBLe is a quasilinear system. Moreover, the KSe is a generic
long wave equation; see, e.g., [11] for a basic review, and, e.g., [12] for the existence and
smoothness of solutions η1 ∈ C([0, T0],H

m(R)) to initial conditions η1(0) ∈ Hm(R).
We define the approximation

εψ(t, x) =

(
εq1(T,X) + ε2q2(T,X)

εη1(T,X)

)

(1.15)

with q1, q2 given by (1.13) and the spaces

Hr,s((0, t0) × R) = L2((0, t0),H
r(R)) ∩Hs((0, t0), L

2(R)),

and show the following result.

Theorem 1.1 Assume that η1 ∈ C([0, T0],H
9(R)) is a solution of the KSe. Then for all

C1 > 0 there exists ε0, C2 > 0 such that for all ε ∈ (0, ε0) the following holds. If

‖U(0, ·) − εψ(0, ·)‖Y ≤ C1ε
3/2, (1.16)

then there exist a unique solution U = (η, q) of the IBLe,

η ∈ H3,3/2((0, t0) × R), q ∈ H2,1((0, t0) × R), t0 = T0/ε
2. (1.17)

For t > 0 the solution is smooth, and it fulfills

sup
0≤t≤t0

‖U(t, ·) − εψ(t, ·)‖Y ≤ C2ε
3/2. (1.18)
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Remark 1.2 The properties of the spaces H r,s((0, t0)×R) are reviewed in App.A. Here we
remark that H3,3/2

(
(0, t0)×R

)
×H2,1

(
(0, t0)×R

)
⊂ C([0, t0], Y ) such that (1.18) makes sense.

The constants ε0, C1, C2 in Theorem 1.1 depend on R and W in such a way that for instance
R2 ≥ R1 gives ε0(R1) ≤ ε0(R2) and similar for C1, C2, but we do not work this out in detail.

From (1.18) we obtain sup0≤t≤t0 ‖U(t, ·) − εψ(t, ·)‖L∞ ≤ C2ε
3/2. Thus, the error is

small compared to the size of the solution. Moreover, the error for ηx is much smaller,
i.e., sup0≤t≤t0 ‖∂xη(t, ·) − ε∂xψ1(t, ·)‖C0 ≤ C2ε

7/2. On the other hand, we must impose the
same condition on the initial condition. This means that η0 must be a long wave in a much
stricter sense than q0. For q0 we may allow small perturbations of εψ1 on the original scale.
Such ’fast’ oscillations in η0 would violate (1.16). This situation is sketched in figure 2.

− O(ε)

O(ε3/2)
{

x
︸ ︷︷ ︸

O(1) O(1/ε)

Figure 2: Sketch of initial data. For q0 we may allow small oscillations on the original scale.

Remark 1.3 Theorem 1.1 also holds in higher order Sobolev spaces, see Remark 3.2. In
fact, if cubic terms were included in (1.6), then in order to control the nonlinearity we would
have to work in H3×H2, due to the term η2

xxηx, cf. Remark A.5.

Remark 1.4 Our IBLe differs from previously derived hyperbolic Integral Boundary Layer
equations IBLh (see, e.g. [3] and Appendix B.3) in that the linearization of (1.1) around the
Nusselt solution is sectorial. Since this is also the case in the free boundary problem for
Navier–Stokes equations [1, 21], we can use similar methods as will be required to prove an
approximation result similar to Theorem 1.1 for the reduction of the Navier–Stokes equation
to the KSe.

Remark 1.5 Numerical simulations of the Navier–Stokes equations, of IBLh and of the KSe
suggest that for high but of course finite Weber numbers, corresponding to finite ε > 0, IBLh

is valid as an approximation for the Navier–Stokes equations up to intermediate Reynolds
numbers. We conclude that this also holds true for our IBLe (1.6), since (1.6) is derived as
a higher order approximation of the Navier–Stokes equations than IBLh. On the other hand
the KSe only gives good results for smaller Reynolds numbers; for details see [3] and the
references therein. See also [14] for comparison of solutions of the IBLe with experimental
results and extensive numerical studies of the inclined film problem.

Remark 1.6 One major reason for the reduction of the inclined film problem to the IBLe
or to the KSe is to gain understanding of the formation of solitary and periodic waves on
the free surface of the film. For the existence and properties of solitary waves for IBLh
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and the KS see, again, [3, Section 4] and the references therein. In a somewhat different
scaling, a generalized KSe or KdV-KS equation for the free surface can be derived from the
Navier–Stokes equations, see [22]. For this KdV-KSe there are analytical results and extensive
numerical studies concerning the stability and dynamics of solitary waves, see [13, 6, 4].

Finally we remark that a result like Theorem 1.1 is not obvious. There are counterexam-
ples where formally derived amplitude equations make wrong predictions about the dynamics
in the original system, see [17, 7]. Moreover, the question which simplified equation, depen-
dent on the parameter regime, still describes the inclined film problem is not settled. Here
we contribute to the answer in the sense that for O(1) Reynolds numbers and in the limit of
(very) large Weber number the KSe accurately captures the IBLe dynamics for long waves
over the right time scale. We expect the same to be true for the reduction of the NSe to the
KSe.

Similarly to our result, the validity of multiple scale approximations to the Navier–Stokes
equations in a fixed domain where the instability is located at a finite non–zero wavenumber,
has been shown in [15, 18]. See also, e.g., [19] for the water wave problem, and [16] for such
approximation results in simpler settings, i.e., for scalar semilinear parabolic problems.

To explain the difficulty for the proof of Theorem 1.1 we write the IBLe (1.6) as

Ut = A0U +B(U,U) (1.19)

where B(U, V ) is a symmetric bilinear form representing the quadratic terms in (1.6). For a
β > 1 we set

U = εψ + εβR, (1.20)

and obtain the equation

∂tR = A0R+ 2εB(ψ,R) + εβB(R,R) + ε−βRes(εψ) (1.21)

for the error R, where the so called residual

Res(εψ) = ε(−∂tψ +A0ψ + εB(ψ,ψ)) (1.22)

contains the terms that do not vanish after inserting (1.11) into (1.6). We essentially have to
show a) that solutions to (1.21) for initial conditions R0 = R|t=0 of order O(1) exist locally,
and b) that the solutions exist and stay O(1)–bounded up to times t = T0/ε

2. In order to
show a) for the quasilinear parabolic system (1.21) we use the maximal regularity techniques
from [9]. To achieve b) we first define an improved approximation εψ̃ such that the residual
is sufficiently small and then derive an energy estimate similar to (1.8). Note that a priori
we would expect a growth rate like CeCεt for solutions of (1.21) due to the term 2εB(ψ̃, R)
in (1.21). Moreover, because of the term ε−βRes(εψ̃) we would like to choose β small while
in order to handle the term εβB(R,R) we would like to have β large. The approach turns
out to work with β = 3/2.
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In Section 2 we give the calculation leading to the energy estimate (1.8) for the linearized
problem and define the improved approximation. The proof of Theorem 1.1 follows in Section
3. The local existence of solutions to (1.6) is shown in Appendix A, which also yields the
local existence of solutions to the error equation. In Appendix B we give a brief overview of
the physical problem and show how the governing Navier–Stokes equations can be formally
reduced to the IBL.

2 Preparations

2.1 The linearized energy estimate

Here we show the straightforward calculations leading to the energy estimate (1.8). In section
3 we extend these to the quasilinear problem (1.21). We fix c1=9, c2=2, c4=R2 in (1.9) and
show how c3= − 11R/5 + 2 cot θ/3 yields (1.8). Using

|ab| ≤ δa2 +
1

4δ
b2, δ > 0, (2.1)

it is clear that, for ε sufficiently small, ‖ · ‖Y is equivalent to ‖ · ‖Y0
with

‖(η, q)‖2
Y0

=
1

2

∫

R

q2 + q2x + η2 + ε−2(η2
x + η2

xx) dx,

and hence a norm on H2(R) ×H1(R). By Fourier transform it is obvious that the solution
U of the linearized equation Ut = A0U with A0 from (1.6) exists and is smooth. We then
obtain

d

dt
‖U‖2

Y =

∫

R

{

(q−2η−c3ηx−R2qxx)

[

6
Rη+(4

5−
2
R cot θ)ηx − 3

Rηxx

+ε−2Wηxxx−
3
Rq−

8
5qx+

7
2Rqxx

]

−9ηqx+ε−2W
(
ηxxqx + R2ηxxxqxx)−c3q

2
x

}

dx

=

∫

R

{

− 3
Rq

2+12
R qη−

12
R η

2+

(

4
5−

2
R cot θ−16

5 +9+ 3
Rc3

)

ηxq

+
(
−c3−3R− 7

2R)q2x+(6R+8
5c3 + 10

R )qxηx+(−c3(
4
5−

2
3 cot θ)− 6

R)η2
x

+(R2(4
5−

2
3 cot θ) + 7c3

2R )qxηxx−
7R
2 q

2
xx+3Rqxxηxx + ε−2Wc3η

2
xx

}

dx.

The quadratic form in η, q without derivatives is nonpositive. For c3 = −11R/5 + 2 cot θ/3
the coefficient of ηxq vanishes. Moreover, the coefficients of q2

x, q
2
xx are negative definite and

the coefficient of η2
xx is negative definite with strong weight ε−2. Note that c3 < 0 due to

(1.2). The terms with ηx, qx yield d
dt‖U‖2

Y ≤ C1‖ηx‖
2
L2 , but since η2

x appears in ‖U‖Y with
weight ε−2, we nevertheless obtain

d

dt
‖U‖2

Y ≤ C1ε
2‖U‖2

Y − C‖qx‖
2
H1 . (2.2)



Approximation of the IBLe by the KSe 8

On the other hand the coefficient of qηx has to vanish identically since we have no negative
definite term in q2, and can not have one as is clear from the dispersion relation. Therefore
we have to introduce c3 in (1.9). From (2.2) we get (1.8) using Gronwall’s lemma. The
dissipation in q in (2.2) will be important for the quasilinear problem (1.21).

2.2 The residual

For notational convenience and without loss of generality for our purposes we assume in the
following that we have a vertically falling film such that cot θ = 0. Then the critical Reynolds
number is Rc = 0, and we may further assume w.l.o.g. that

R = W = 1. (2.3)

In order to get a small residual in (1.21) we define an improved approximation by

εψ̃(t, x) =

(
εη1(T,X)

∑3
j=1 ε

jqj(T,X)

)

, T = ε2, X = ε(x− 2t). (2.4)

Plugging (2.4) into (1.3),(1.4) we first obtain (1.13) and (1.14) as before, and then

O(ε3(1.4)) : q1T − 2q2X =
8

5
η1Xη1 +

7

2
q1XX + η1η1XXX − 3η1XX − 3q3

+ 6η1q2 −
8

5
q2X −

12

5
q1q1X +

8

5
η1η1X

⇒q3 =
1

3

(
4

5
∂4

Xη1+3η1Xη1 +
52

25
η1XXη1+

112

5
η1Xη1+12η3

1

)

. (2.5)

With q3 given by (2.5) all terms up to order O(ε3) vanish in the residual

Res(εψ̃) = ε4f = ε4
(
f1

f2

)

. (2.6)

To leading order in derivatives we have

f1 = −q3X = − 4
15∂

5
Xη1 + f̃1,

f2 = −εq3T + f̃2 = − 4ε
15∂

4
X∂T η1 + f̃2 = 4ε

45∂
8
Xη1 + f̃2.

(2.7)

Later we need

(f1, f2) ∈ C([0, T0/ε
2],H2(R) ×H1(R)) (2.8)

and therefore

η1 ∈ C([0, T0],H
9(R)) (2.9)

in Theorem 1.1. The (nonlinear) functions f̃1,2 in (2.7) contain lower order derivatives of η1

and it can be easily checked that (2.8) holds if (2.9) does. In order to estimate the residual in Y
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we finally need to take care of how scaling affects the L2 norm, i.e., ‖u(ε·)‖L2 = ε−1/2‖u(·)‖L2 .
This loss of ε−1/2 is the reason why we can not choose β = 2 in (1.20), which would be more
convenient in order to control the nonlinear terms in (1.21). We summarize our results as
follows.

Lemma 2.1 Assume that η1 ∈ C([0, T0],H
9(R)). Then

sup
0≤t<T0/ε2

‖εψ̃ − εψ‖Y ≤ Cε5/2 and sup
0≤t≤T0/ε2

‖Res(εψ̃)‖Y ≤ Cε7/2.

Due to the first estimate in Lemma 2.1 we can use εψ̃ instead of εψ in the proof of Theorem
1.1, and in order not to proliferate symbols we drop the ˜ in the following. Also we write
ψ = (ψ1, ψ2) and ψ′

j = ∂Xψj .

3 Proof of Theorem 1.1

From the local existence of solutions to the IBLe in Theorem A.1 we directly obtain the
following local existence of solutions to (1.21).

Corollary 3.1 Let R0 ∈ H2(R) ×H1(R) and 0 < t1 ≤ T0/ε
2. Then there exists an ε1 > 0

such that for all ε ∈ (0, ε1) there exists a unique solution R ∈ H3,3/2((0, t1)×R)×H2,1((0, t1)×
R) of the error equation (1.21) with R(0) = R0.

Proof. For ε1 sufficiently small we have

‖U0‖H2×H1 = ‖(εψ + ε3/2R)|t=0‖H2×H1 ≤ ρ

for all ε ∈ (0, ε1), with ρ > 0 from Theorem A.1. Therefore there exists a unique solution
U∈H3,3/2((0, t1)×R)×H2,1((0, t1)×R) of (1.6). Using the smoothness of η1 we find that the
solution R = ε−3/2(U − εψ) of (1.21) has the same regularity. 2

The proof of Theorem 1.1 now works as follows: due to Corollary 3.1 we have a lo-
cal solution R ∈ C([0, t1),H

2 × H1) of (1.21). Thus we may choose t1 so small that
sup0≤t≤t1 ‖R‖Y ≤ 2‖R0‖Y ≤ 2C1. This implies

sup
0≤t≤t1

(‖r‖∞ + ‖ξ‖∞ + ε−1‖∂xξ‖∞) ≤ 2CC1. (3.1)

Using this, we derive an energy estimate that implies ‖R(t1)‖Y ≤CeCε2t1‖R0‖Y . Thus, using
Corollary 3.1 again, the solution can be continued and stays O(1) bounded in Y until t1 =
t0 = T0/ε

2.
It will be convenient to write (1.21) as

Rt = A(t, R)R + ε2f, (3.2)
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where, with a0, . . . , b1 from (1.5),

R =

(
ξ
r

)

, A(t, R) =

(
0 −∂x

ã0+ã1∂x+ã2∂
2
x+ε−2ã3∂

3
x −b̃0−b̃1∂x+b̃2∂

2
x

)

,

ã0 = ã0(t, ξ) = a0(εψ1+ε
3/2ξ) − 8

5ε
2ψ′

1+
9
2ε

3ψ′′
1+ε4ψ′′′

1 +6εψ2+
8
5ε

2ψ′
2+3ε3ψ′′′

2

ã1 = ã1(t, R ) = a1(εψ + ε3/2R) − 2ε2ψ′
1, ã2 = ã2(t, ξ) = a2(εψ1 + ε3/2ξ),

ã3 = ã3(t, ξ) = a3(εψ1 + ε3/2ξ),

b̃0 = b̃0(t, ξ) = b0(εψ1 + ε3/2ξ) − 8
5ε

2ψ′
1 + 12

5 ε
2ψ′

2 + 9
2ε

3ψ′′
1 ,

b̃1 = b̃1(t, R ) = b1(εψ + ε3/2R) − ε2ψ′
1, b̃2 = b2 = 7/2.

The main idea to obtain the energy estimate is to define an equivalent norm NY (R, t) on
Y that depends on time and the solution itself in such a way, that the high order and strongly
weighted mixed product as ε−2∂2

xq∂
3
xη still cancel after integration by parts in d

dt‖R‖
2
NY (R,t).

This can be achieved by dividing all terms in (1.9) involving r by ã3. Moreover, we need
correction terms that eliminate terms of order O(ε) and O(ε3/2) in d

dt‖R‖N(t,R) without

derivatives that come from 2εB(ψ̃, R) + ε3/2B(R,R) in (1.21).
Thus, with coefficients γ1, . . . , γ4 ∈ R to be determined, we define

‖R‖2
NY (t,R) = E + F1 + F2, (3.3)

E =
1

2

∫

R

{
1

ã3

[
r2−4rξ−2c3rξx+r

2
x

]
+9ξ2+ε−2

[
ξ2x+ξ2xx

]
}

dx,

F1 =

∫
1

ã3
εη1

[
γ1r

2 + γ2ξr
]
dx, F2 =

∫
1

ã3
ε3/2r

[
γ3rξ + γ4ξ

2
]
dx,

where for notational convenience we keep writing c3 for −11/5. Due to (3.1) we have

1 − Cε ≤ sup
0≤t≤t0 ,x∈R

|a3| = sup
0≤t≤t0 ,x∈R

|1 + εψ1 + ε3/2ξ| ≤ 1 + Cε. (3.4)

Therefore NY (t, R) is still an equivalent norm on Y if ε is sufficiently small. Moreover, space
and time derivatives of ã0, ã1, . . . , b̃2 produce terms of order O(ε3/2), and in particular we
have

d

dx
ã0 = 6ε3/2ξx + ε2h1,

d

dx
b̃0 = 3ε3/2ξx + ε2h2, (3.5)

d

dx
ã3 = ε3/2ξx + ε2h3,

d

dt
ã3 = ε3/2ξt + ε

d

dt
ψ1 = −ε3/2rx + h4, (3.6)

with ‖hj‖L∞ = O(ε2), j = 1, 2, 3, 4. Hence we can estimate terms like for instance
(

d
dx

b̃0
ã3

)

rξ

that show up during integration by parts in d
dt‖R‖

2
N(t,R) as

∫
d

dx

(

b̃0
ã3

)

rξ dx =

∫
1

3ã3
(ε3/2ξxrξ)−6

b̃0
ã2

3

(ε3/2rxrξ)+O(ε2)|rξ|dx

≤ C‖ξ‖∞

∫

εξ2x+εr2
x+ε2(ξ2+r2) dx+Cε2

∫

r2+ξ2 dx, (3.7)
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and similar for ( d
dt

1
ã3

)(r2 − 4rξ), see (3.10). The first term on the right hand side of (3.7)

is estimated by ε3ε−2ξ2x and the second term is well behaved since we will have an O(1)
negative definite term −Cr2

x in d
dt‖R‖

2
NY (t,R). This is essentially the first reason why the

estimate (2.2) can be carried over to the quasilinear problem (3.2). The second reason is,
that the coefficients γ1, . . . , γ4 can be chosen in such a way that the terms r2, ξ2 without
derivatives in d

dt‖R‖
2
NY (t,R) have O(ε2) coefficients. This is possible again due to the fact

that the small parameter ε does not as usual enter (1.6) as a coefficient of the low order
terms but in inverse power as coefficient of the high order damping term.

We start with d
dtE. Using 2

∫
gfxf dx = −

∫
gxf

2 dx we obtain

d

dt
E = d1 + d2 + d3 + d4, (3.8)

d1 =

∫ {
[
r−2ξ −c3ξxx−rxx−ã3

d
dx(1/ã3)rx

]

[

ã0

ã3
ξ+ ã1

ã3
ξx+ ã2

ã3
ξxx+ε

−2ξxxx−
b̃0
ã3
r− b̃1

ã3
rx+ b̃2

ã3
rxx+ε2 f2

ã3

]}

dx,

d2 =

∫

−9ξrx+ε−2(ξxxrx+ξxxxrxx) + 9ξε2f1 + ε−2ε2
(
ξxf1x + ξxxf1xx) dx,

d3 =

∫
1

ã3

[
2rrx+c3rrxx

]
dx, d4 =

∫

(
d

dt

1

ã3
)
[
r2−4rξ−2c3rξx+r

2
x

]
dx.

Integrations by parts yields

d1+d2+d3 =

∫ {
1

ã3

[
−b̃0r

2+(ã0+2b̃0)rξ−2ã0ξ
2
]
+O(ε2)(r2+ξ2)

+
1

ã3

[
ã1−2b̃1+9+c3b̃0+O(ε)

]
rξx+

1

ã3

[
−c3−b̃0−b̃2+O(ε)

]
r2x

+
1

ã3

[
ã0+c3b̃1−ã2+2b̃2+O(ε)

]
rxξx+

1

ã3

[
−c3ã1+2ã2+O(ε)

]
ξ2x

+
[
c3ε

−2+O(ε)
]
ξ2xx+

1

ã3

[
ã1+c3b̃2+O(ε)

]
rxξxx−

b̃2
ã3
r2xx−

2ã2

ã3
rxxξxx

+ ε2f2[r−2ξ−c3ξxx−rxx+O(ε)rx
]
+ 9ε2f1ξ + f1xξx + f1xxξxx

}

dx

(3.9)

where the order symbol O(ε) always refers to terms estimated in L∞. The coefficient of rξx
in (3.9) is O(ε) due to the choice of c3 and (3.1). Similar to (3.7), d4 can be estimated as

d4 ≤C‖r‖∞

∫

ε3/2(|rxr|+|rxξ|) dx+Cε2
∫

r2+ξ2 dx

+ Cε3/2‖rx‖∞

∫
[
−2c3rξx+r

2
x

]
dx. (3.10)

and therefore (3.9) and (3.10), except of the first term on the right hand side of (3.9), can be
estimated by Cε2E + Cresε

2.
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Thus, we now have

d

dt
‖R‖2

NY (t,R) =
d

dt
E +

d

dt
F1 +

d

dt
F2

≤

∫
1

ã3

[
−b̃0r

2+(ã0+2b̃0)rξ−2ã0ξ
2
]
dx+

d

dt
F1+

d

dt
F2+Cε

2E + ε2Cres. (3.11)

To control the first three terms on the right hand side of (3.11) we calculate

d

dt
F1 =

∫
εη1

ã3

[
2γ1r(6ξ − 3r) + γ2ξ(6ξ − 3r)] dx+ h1,

d

dt
F2 =

∫
ε3/2ξ

ã3

[
2γ2r(6ξ − 3r) + γ4ξ(6ξ − 3r)

]
dx+ h2,

where h1 and h2 contain terms like for instance h1 = −εη1rxr
2/ã3 + . . . that can be controlled

by the negative definite terms in d
dtE as in (3.7) and (3.10). Since

b̃0 = 3 − 6εη1 − 6ε3/2ξ + O(ε2), ã0 = 6 − 18εη1 − 6ε3/2ξ + O(ε2), (3.12)

we thus obtain

d

dt
‖R‖2

NY (t,R) ≤

∫
1

ã3

{
(
−3+6ε(1−γ1)η1+6ε3/2ξ(1−γ3)ε

3/2ξ
)
r2

+
(
12−3(10−4γ1+γ2)εη1−3(6−4γ3+γ4)ε

3/2ξ
)
rξ

−
(
12−6(6+γ2)εη1−6(2+γ4)ε

3/2ξ)ξ2

}

dx

+ Cε2E + Cresε
2. (3.13)

Chosing γ1 = 1, γ2 = −6, γ3 = 1, γ4 = −2 the O(ε) and O(ε3/2) coefficients in the integral
vanish, and since

∫
1
ã3

[
−3r2 + 12rξ − 12ξ2

]
dx ≤ 0 we finally obtain

d

dt
‖R‖2

NY (t,R) ≤ Cε2E + Cresε
2 ≤ Cε2‖R‖2

NY (t,R) +Cresε
2. (3.14)

This gives ‖R‖2
NY (t,R) ≤ CeCε2t‖R|t=0‖

2
NY (t,R) + Crese

Cε2t using Gronwall’s lemma. Setting

C2 = CeCT0/2C1 + Crese
CT0/2, the proof of Theorem 1.1 is complete. 2

Remark 3.2 Theorem 1.1 also holds in higher order Sobolev spaces. For m ≥ 3 we can
define Ym = Hm(R) × Hm−1(R) with ‖ · ‖Ym defined in a similar way as ‖ · ‖Y , i.e., for
cot θ = 0, R = W = 1,

‖U‖2
Y3

=
1

2

∫

R

{
q2 + 9η2 − 4qη − 22

5 ηxq + 2qxηxx + q2x

+q2xx + 2qxηxx + ε−2(η2
x + η2

xx + η2
xxx)

}

dx.

Then for ‖U(0, ·) − εψ(0, ·)‖Ym ≤ C1ε
3/2 and η1 ∈ Hm+6(R) we obtain a solution U ∈

Hm+1,(m+1)/2 ×Hm,m/2 with sup0≤t≤t0 ‖U(t, ·)− εψ(t, ·)‖Ym ≤ C2ε
3/2. The local existence of

solutions in these higher order spaces is already shown in Theorem A.1, and from the above
proof it can be seen that the high order terms are uncritical in the energy estimates.
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A Local existence of solutions for the IBLe

To treat the initial value problem for the IBLe (1.6) we use the spaces

Hr,s = Hr,s((0, t0) × R) = L2((0, t0),H
r(R)) ∩Hs((0, t0), L

2(R)),

defined for r, s ≥ 0. Because we have a parabolic system we will always have s = r/2 and
therefore we introduce the notation K r = Kr((0, t0) × R) = Hr,r/2((0, t0) × R). We recall a
few facts on the spaces Hr,r/2((0, t0) × R), mainly from [9].

If u ∈ Hr,s and j, k ∈ N with 1 − (j/r+k/s) ≥ 0, then ∂k
t ∂

j
xu ∈ Hµ,ν with

µ/r=ν/s = 1−(j/r+k/s), [9, Prop.4.2.3]. Especially, if u∈K r and 1−(j/r+2k/r) ≥ 0,
then ∂k

t ∂
j
xu∈Kr−j−2k. For k<r/2−1/2 we have traces ∂k

t u(0, ·)∈H
r−2k−1(R), [9, Prop.4.2.1].

Conversely, if these traces are given at t=0, then there exists a bounded extension operator
such that u∈Kr, [9, Thm.4.2.3]. Similarly, there exists a bounded extension operator from
Kr=Kr((0, t0) × R) into Kr(R × R), [21, Lemma 3.1].

For u∈Kr(R×R
n) let ˆ̂u(τ, k)=

∫∫
e−i(τt+k·x)u(t, x) dk dt be the Fourier transform in time

and space of u. Then we have the equivalence of norms

‖u‖2
Kr(R×Rn) ∼

∫∫

|ˆ̂u(τ, ξ)|2(1+|k|2+|τ |)r dk dτ. (A.1)

From this follows easily that if u∈K r(R × R
n) with r > (n+2)/2, then u is bounded and

continuous. Finally we need the special subspace

Kr
0=Kr

0((0, t0) × R)={u∈Kr((0, t0) × R) : ∂k
t u(0, ·)=0 for k∈N, k<r/2−1/2}.

For u∈Kr
0((0,∞) ×R) the continuation by u(t)=0 for t<0 is in K r(R×R), [9, Thm. 1.11.5].

Additional to the full space–time transform of u∈K r we also use the Fourier transform in
time only, denoted by û(τ, x) =

∫
e−iτtu(t, x) dt. For u∈Kr

0((0,∞) × R) we then obtain the
equivalence

‖u‖2
Kr((0,∞)×R) ∼

∫

‖û(τ, ·)‖2
Hr +|τ |r‖û(τ, ·)‖2

L2 dτ. (A.2)

We introduce the shorthand Kr=Kr × Kr−1. Also, in this section we write |u|r for
the Sobolev norm in the spacial variable x (or its dual k), i.e., |u|r=‖u‖Hr(R), and, e.g.,
|û(1+k2)|0 for the L2–norm of the function k 7→ û(1+k2). In the proof of Theorem 1.1 we use
the following local existence theorem for the solutions of the IBLe (1.6) with r=2; however
here we state a more general case.

Theorem A.1 Let 2 ≤ r < 4, ε > 0 and t0 > 0 be fixed. Then there exists a ρ > 0 such that
for all U0 = (η0, q0) ∈ Hr(R)×Hr−1(R) with |U0|Hr×Hr−1 ≤ ρ there exists a unique solution

U = (η, q) ∈ Kr+1 (A.3)

of the IBLe (1.6) with U |t=0 = U0 and ‖U‖Kr+1 ≤ C|U0|Hr×Hr−1, where the constant C > 0
depends only on ε and t0. Moreover, for all 0 < t1 < t0 and all k > 0 we have U ∈
Kr+k+1((t1, t0) × R), i.e., U is smooth for t > 0.
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Remark A.2 Examining the proof of Theorem A.1 we obtain that ρ may be chosen indepen-
dent of ε ∈ (0, ε0). Theorem A.1 is used in Corollary 3.1 in this sense, but for simplicity we do
not keep track of this here. Also, the upper bound r < 4 is only for notational convenience,
i.e., to avoid the formulation of higher order trace conditions at t = 0, see (A.12).

The proof of Theorem A.1 consists of two steps. First we consider the linear inhomogeneous
version of (1.6) with zero initial data, i.e., the equation

LU = F (t), U(0) = 0, LU = Ut −A0U, F ∈ Kr−1
0 , (A.4)

and estimate its solutions in Kr+1
0 . Then we write the solution U of (1.6) as U=Ũ+U (1)

where Ũ ∈ Kr+1 fulfills Ũ(0) = U0 and some (further) trace conditions at t = 0, see (A.12).
Then U (1) has to solve the equation

LU (1) = G(U (1)), U (1)(0) = 0, G(U (1)) = F (Ũ + U (1)) − LŨ. (A.5)

We show that for U (1)∈Kr+1
0 we have G(U (1))∈Kr−1

0 , and use the estimates for (A.4), esti-
mates for the nonlinearity, and the contraction mapping theorem to solve (A.5).

Lemma A.3 Let r ≥ 2, ε > 0 and t0 > 0. For every F ∈ Kr−1
0 there exists a unique solution

U ∈ Kr+1
0 of (A.4) with ‖U‖Kr+1 ≤ C‖F‖Kr−1 , where C > 0 depends only on ε, t0.

Proof. We identify F with its extension to Kr−1(R × R) with F (t) = 0 for t ≤ 0. Then
e−σtF ∈ L1(Hr−1) ∩ L2(Hr−1) for Reσ > 0 and therefore F̂ (τ) has an analytic extension
into Imτ < 0. We write λ = σ + iτ and consider the Fourier transform in t (i.e., the Laplace
transform) of (A.4),

λη̂ = −q̂x + f̂1 ⇔ η̂ = (−q̂x + f̂1)/λ

λq̂ = 1
λ

(
a00+a10∂x+a20∂

2
x+ε−2a30∂

3
x

)
(−q̂x+f̂1)−b00q̂−b10q̂x+b20q̂xx+f̂2.

(A.6)

Now choose σ0 > 0 such that Reµ1,2(k) < σ0 for all k ∈ R. For Reλ = σ > σ0 we obtain

|η̂|r+1 + |λ|(r+1)/2|η̂|0 ≤ C
(
|f̂1|r−1 + |λ|(r−1)/2|f̂1|0 + |f̂2|r−2 + |λ|(r−2)/2|f̂2|0

)
, (A.7)

|q̂|r + |λ|r/2|q̂|0 ≤ C
(
|f̂1|r−1 + |λ|(r−1)/2|f̂1|0 + |f̂2|r−2 + |λ|(r−2)/2|f̂2|0

)
, (A.8)

see below. Moreover, since F̂ is analytic in λ, so is Û = (η̂, q̂) for Reλ > σ0. Let

U(t) =
1

2π

∫

eσ0teiτtÛ(σ0 + iτ) dτ.

Then e−σ0tU is the inverse Fourier transform of the function λ̃ 7→ Û(σ0 + λ̃) which is analytic
for Reλ̃ > 0. Thus, by the Paley–Wiener Theorem [23, Thm. 6.4.2] we have U(t) = 0 for
t < 0, and from (A.2), (A.7) and (A.8) we obtain e−σ0tU ∈ Kr+1

0 (R+ × R). Since t0 is finite
we thus have U ∈ Kr+1

0 = Kr+1
0 ((0, t0) × R) with ‖U‖Kr+1 ≤ C‖F‖Kr−1 , where C obviously

depends only on t0 and σ0, and hence on t0 and ε.
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It remains to show (A.7),(A.8). This is essentially a direct consequence of the parabolic
shape of the spectrum. After Fourier transform in x and sorting terms, (A.6) becomes

ˆ̂η = (−ik ˆ̂q +
ˆ̂
f1)/λ, g(λ, k)ˆ̂q = g0(k)

ˆ̂
f1 + λ

ˆ̂
f2, (A.9)

where
g(λ, k) = λ2+λg1(k)+ikg0(k), g1(k) = b20k

2+b10ik+b00,

g0(k) = a00+a10ik−a20k
2−a30ik

3.

Since g(λ, k)= det(λId−A0(ik))=(λ−µ1(k))(λ−µ2(k)), with µ1,2 from (1.7), we have

|g(λ, k)| ≥ C(|λ|2 + (1 + k2)2).

Thus we can estimate

|q̂|r ≤ C| ˆ̂q(1+k2)r/2|0 ≤ C(|
ˆ̂
f1g0(k)(1+k

2)r/2/g(λ, k)|0+|
ˆ̂
f2λ(1+k2)r/2/g(λ, k)|0

≤ C(|
ˆ̂
f1(1+k

2)(r−1)/2|0+|
ˆ̂
f2(1+k

2)(r−2)/2|0 ≤ C(|f̂1|r−1+|f̂2|r−2),

|λ|r/2|q̂|0 ≤ C|λ|r/2|
ˆ̂
f1g0(k)/g(λ, k)|0+|

ˆ̂
f2λ/g(λ, k)|0 ≤ C(|λ|(r−2)/2(|

ˆ̂
f1|0+|

ˆ̂
f2|0),

|η|r+1 ≤ C|(−ik ˆ̂q+
ˆ̂
f1)(1+k

2)(r+1)/2/λ|0 = C

∣
∣
∣
∣

(−ikg0(k)+g(λ,k))
ˆ̂
f1−ikλ

ˆ̂
f2

λg(λ,k) (1+k2)(r+1)/2

∣
∣
∣
∣
0

= C

∣
∣
∣
∣

(λ+g1(k))
ˆ̂
f1−ik

ˆ̂
f2

g(λ,k) (1+k2)(r+1)/2

∣
∣
∣
∣
0

≤ C(|f̂1|r−1+|f̂2|r−2),

|λ|(r+1)/2|η|r+1 ≤ C|(−ik ˆ̂q+
ˆ̂
f1)/λ|0 ≤ C(|λ|(r−1)/2|

ˆ̂
f1|0+|λ|(r−2)/2|

ˆ̂
f2|0).

Here we used the typical parabolic splitting of the domain, for instance

∣
∣
∣
∣
∣

ˆ̂
f2k

g(λ, k)

∣
∣
∣
∣
∣

2

0

=

∣
∣
∣
∣
∣

ˆ̂
f2k

g(λ, k)

∣
∣
∣
∣
∣

2

L2({k2≤|λ|})

+

∣
∣
∣
∣
∣

ˆ̂
f2k

g(λ, k)

∣
∣
∣
∣
∣

2

L2({k2≥|λ|})

≤

∣
∣
∣
∣
∣

k
ˆ̂
f2

|λ|2

∣
∣
∣
∣
∣

2

L2({k2≤|λ|})

+

∣
∣
∣
∣
∣
|λ|−3/2

ˆ̂
f2k|λ|

3/2

(|λ|2+(1+k2)2)

∣
∣
∣
∣
∣

2

L2({k2≥|λ|})

≤ C|λ|−3|
ˆ̂
f2|

2
0.

The proof of Lemma A.3 is complete. 2

The nonlinear terms in (A.5) can be controlled using the following result, the proof of
which follows via extension from ‖uv‖Ks(R×Rn) ≤ C‖u‖Kr(R×Rn) ‖v‖Ks(R×Rn) if r > (n+2)/2.

Lemma A.4 Let r > 3/2, 0 ≤ s ≤ r. Then there exists a C > 0 such that for all u ∈
Kr, v ∈ Ks we have uv ∈ Ks and

‖uv‖Ks ≤ C‖u‖Kr‖v‖Ks . (A.10)
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Proof of Theorem A.1. Lemma A.4 applied to F gives

‖F (U)‖Kr−1 ≤ C‖U‖2
Kr+1 ,

‖F (U)−F (V )‖Kr−1 ≤ C‖U−V ‖Kr+1(‖U‖Kr−1 + ‖V ‖Kr−1).
(A.11)

Due to [9, Thm. 4.2.3] there exists an extension Ũ∈Kr+1 of U0∈H
r×Hr−1. We have to choose

Ũ = (η̃, q̃) in such a way, that for U (1)∈Kr+1
0 the right hand side G = F (Ũ + U (1)) − LŨ of

(A.5) is in Kr−1
0 , i.e.,

∂k
t G1|t=0 = 0 for 0 ≤ k < r/2 − 1,
∂k

t G2|t=0 = 0 for 0 ≤ k < r/2 − 3/2.
(A.12)

For r=2 these conditions are trivially true. For 2<r≤3, again due to [9, Thm. 4.2.3], we
may choose η̃ in such way that ∂tη̃|t=0 = −∂xq0∈H

r−2(R). Similarly, for 3 < r ≤ 4 we
additionally choose q̃ such that ∂tŨ |t=0 = A(U0)U0∈H

r−2 × Hr−3. Thus, in each case,
LŨ = F (Ũ ) = F (Ũ + U (1)) at t = 0, and so G∈Kr−1

0 .
Thus, we finally consider the mapping

Φ(U (1)) = L−1
0 (F (Ũ + U (1)) − LŨ), (A.13)

where L−1
0 : Kr−1

0 → Kr+1
0 is the solution operator of (A.4). If ρ is sufficiently small, it is

easy to see via Lemma A.3, (A.11) and the contraction mapping theorem, that Φ has a fixed
point U (1) with ‖U (1)‖Kr+1 ≤ C|U0|Hr×Hr−1 , which gives us the solution U = Ũ +U (1) of the
IBLe.

The proof of the regularity result is standard: U ∈ L2((0, t0),H
r+1×Hr) implies U ∈

Hr+1×Hr for almost every t > 0, and starting again at some such t1 we obtain U ∈
Kr+2((t1, t0) × R). The necessary trace conditions at t = t1 are automatically fulfilled.
2

Remark A.5 (A.11) holds for r ≥ 2 due to special form of F , namely due to the absence
of terms of the form ηxx(ηxx + ηxxx) and qx(qx + qxx). If, for instance, (1.1) is expanded to
cubic terms, then we obtain a term −3ε−2η2

xxηx in (1.6), and then we would need r > 5/2 in
Theorem A.1 and therefore m = 3 in Theorem 1.1.

B Formal derivation of the IBLe

In order to make the paper sufficiently self–contained, here we give a brief overviev of the
physical problem underlying (1.1) and describe how (1.1) is formally derived.

B.1 The inclined film problem

We consider a two dimensional viscous liquid film flowing down an inclined ’plane’ with
inclination angle θ; see figure 3. Using h0, the thickness of the flat film as the characteristic



Approximation of the IBLe by the KSe 17

y, v g

h(t, x)

θ

x, u

Figure 3: The inclined film problem

length and the surface velocity uN = uN (h0) = gh2
0 sin θ/2ν of the basic Nusselt solution

(u, v, p) = (uN , 0, pN ), uN (y) =
g sin θ

2ν
(2h0y − y2), pN = ρg cos θ(h0 − y),

as characteristic velocity, the governing dimensionless Navier–Stokes equations and the con-
tinuity equation read

ut + (u · ∇)u = −∇p+
1

R
∆u +

2

R
g, (B.1a)

divu = 0. (B.1b)

Here u = (u, v) is the velocity field, R = uNh0/ν is the Reynolds number, ν, ρ, g are the
viscosity, density, and gravitational constant, and g = (1,− cot θ). At the free surface y =
h(t, x) we have the kinematic condition

ht + hxu = v, (B.1c)

and the tangential and normal stress conditions

4hxux + (h2
x − 1)(uy + vx) = 0, (B.1d)

p−
2

R

hxux − hx(uy + vx) + vy

1 + h2
x

= −WeK(h), (B.1e)

where We = σ/(ρu2
Nh0) is the Weber number, σ is the coefficient of surface tension, and

K(h) = hxx(1 + h2
x)−3/2 is the interfacial curvature. A constant athmospheric pressure pa

has been adsorbed into p. Finally, at the rigid wall we prescribe the no slip condition

u = 0 at y = 0. (B.1f)

In dimensionless variables the Nusselt solution is

(u, v, p, h)(t, x, y) = (uN , 0, pN , 1), uN = 2y − y2, pN(y) = 2 cot θ(1 − y)/R,
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and from previous work [2] it is well known that it is unstable to long wave perturbations for
Reynolds numbers

R > Rc =
5

4
cot θ. (B.2)

In order to analyze this long wave instability, a number of reduced equations for (B.1) as
for instance the so called Boundary Layer equation, the Integral Boundary Layer equation,
and the Kuramoto-Sivashinsky equation have been derived. We now briefly describe the
derivation of the IBLe for (B.1). For notational convenience we consider directly (B.1),
rather than shifting the origin to (uN , 0, pN , 1). The Nusselt solution will thus appear in the
perturbation analysis as a zeroth order approximation.

B.2 Derivation of the IBLe

We assume that the Weber number is large, We = Wε−2 where 0 < ε � 1 is a small
parameter, while the Reynolds number is O(1), and let

u(t, x, y) = ũ(τ, ξ, y), v(t, x, y) = ε2/3ṽ(τ, ξ, y), τ = ε2/3t, ξ = ε2/3x,

p(t, x, y) = ε−2/3p̃(τ, ξ, y), h(t, x) = h̃(τ, ξ).

Substituting this long wave ansatz into the free boundary value problem (B.1) and retaining
terms up to order O(ε4/3) we obtain

in Ω : ε2/3
(
ũτ+ũξũ+ũyṽ

)
= −p̃ξ+

(

ε4/3ũξξ+ũyy+2
)

/R, (B.3a)

0 = −p̃y − 2ε2/3 cot θ/R+ε4/3ṽyy/R, (B.3b)

ũξ = −ṽy (B.3c)

at y = h̃(t, ξ) : h̃τ+h̃ξũ = ṽ, (B.3d)

−ũy+ε
4/3
(
h̃ξũξ+h̃

2
ξ ũy−ṽξ

)
= 0, (B.3e)

p̃− 2ε4/3(−ũξ − h̃ξũy)/R = −Wh̃ξξ(1 − (3/2)ε4/3 h̃2
ξ), (B.3f)

at y = 0 : ũ = ṽ = 0. (B.3g)

In order to derive the Integral Boundary Layer equation we define the flow rate

q̃(τ, ξ) =

∫ h̃(τ,ξ)

0
ũ(ξ, y) dy.

Then (B.3a), (B.3d) are equivalent to

h̃τ = −qξ,

q̃τ = −∂ξ

∫ h̃
0 ũ

2 dy − ε−2/3
∫ h̃
0 p̃ξ dy

+ε−2/3
[

ε4/3
∫ h̃
0 ũξξ dy + (ũy(y = h̃) − ũy(y = 0)) + 2h̃

]

/R.

(B.4)
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Following [20], we assume that the velocity field is slaved to the elevation h̃ and the flow q̃ in
a Nusselt like fashion, i.e.,

ũ =
3q̃

2h̃3
(2h̃y − y2). (B.5)

From (B.3f), (B.3b) and (B.3c) we may integrate the so called hydrostatic head, i.e., we
calculate

p̃(y) =p̃(h̃)−

∫ h̃

y
p̃y dy = p̃(h̃) + ε2/3

∫ h̃

y
2 cot θ/R + ε2/3ũxy dy

=−Wh̃ξξ(1−(3/2)ε4/3 h̃2
ξ)+

1

R
(2ε2/3 cot θ(h̃−y)−ε4/3(ũξ(y=h̃)+ũξ(y))). (B.6)

Substituting this and (B.5) into (B.4) we obtain

q̃τ =−
6

5
∂ξ(q̃

2/h̃) + ε−2/3
[
h̃W

(
h̃ξξξ(1 − 3ε4/3h̃2

ξ/2) − 3ε4/3h̃2
ξξh̃ξ

)
+ (2h̃− 3q̃/h̃2)/R

]

− 2 cot θh̃ξh̃/R +
ε2/3

R

[
(7/2)q̃ξξ − 9q̃ξh̃ξ/h̃+ 6q̃h̃2

ξ/h̃
2 − 9q̃h̃ξξ/(2h̃)

]
.

Finally, (B.4) becomes (1.1) when scaling back to t, x, i.e., defining

h(t, x) = h̃(ε−2/3τ, ε−2/3ξ), q(t, x) = q̃(ε−2/3τ, ε−2/3ξ).

Remark B.1 Evaluating the assumption (B.6) mathematically seems rather difficult. Note
that with this assumption, and defining ṽ(τ, ξ, y) = −

∫ y
0 ũξ(τ, ξ, ỹ) dỹ the no slip boundary

condition (B.3g) is fulfilled, but the condition (B.3e) for the tangential stress only up to order
O(ε4/3). See also the following subsection.

B.3 Remarks on first order Boundary Layer Theory

If in (B.3) we keep terms only up to order O(ε2/3) we obtain the so called Boundary Layer
equation [5]: the hydrostatic head gives p̃(y) = −Wh̃ξξ + ε2/3 cot θ(h̃− y)/R, and thus

in Ω : ũτ+ũξũ+ũyũ =
ε−2/3

R

[
ũyy + 2 + RWh̃ξξξ

]
− 2 cot θh̃ξ/R, (B.7a)

ũξ = −ṽy, (B.7b)

at y = h̃(t, ξ) : h̃τ+h̃ξũ = ṽ, ũy = 0, (B.7c)

at y = 0 : ũ = ṽ = 0. (B.7d)

In this case, the ansatz (B.5) gives

h̃τ = −q̃ξ

q̃τ = −6
5∂ξ(q̃

2/h̃) + ε−2/3

R

[
2h̃− 3q̃/h̃2 + RWh̃∂3

ξ h̃
]
− 2 cot θh̃ξh̃/R,

(B.8)
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and the reduction of (B.7) to (B.8) is exact, i.e., every solution of (B.8) gives an exact solution
of (B.7) via (B.5). In other words, the solutions of (B.8) define an invariant manifold for (B.7).
Moreover, (B.8) reduces to the Kuramoto–Sivashinsky equation (1.14) in just the same way
as (1.1) does, since the dissipation terms first show up in the q–equation at order O(ε3).

However, (B.8) is a quasilinear hyperbolic equation, as can be seen from the dispersion
relation

µ1,2(k) = −1
2

(
3
R + 8

5 ik
)
±

√

1
4

(
3
R + 8

5 ik
)2
− 6

R ik−
(

4
5−

2
R cot θ

)
k2−Wε−2k4

for the linearization of (B.8) (after rescaling to t, x coordinates) around (q, h)=(2/3, 1). There-
fore, with our method we can not prove an approximation result like Theorem 1.1 for the
reduction of (B.8) to the Kuramoto–Sivashinsky equation. The reason is, that due to the
lack of dissipation the energy estimate for the quasilinear problem breaks down.
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