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Abstract. In this paper we derive bounds on the torsional rigidity for coated fiber reinforced
shafts. The bounds are used to assess the optimality or suboptimality of fiber reinforcement config-
urations. This investigation focuses on coated fiber reinforcements with circular cross section. It is
shown how the effective antiplane shear modulus and torsional rigidity of each coated fiber are used
to determine whether the configuration provides reinforcement above or below that of a homogeneous
shaft containing no coated fibers. Simply connected shaft cross sections of arbitrary shape reinforced
with any configuration of coated fibers are considered. Precise conditions on the effective antiplane
shear modulus and torsional rigidity of each coated fiber are given under which the circular shaft
reinforced with a single centered circular coated fiber is either optimal or suboptimal.
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1. Introduction. The problem of extremizing the torsional rigidity of prismatic
shafts has been the focus of many investigations. For homogeneous shafts made from
elastically isotropic material Saint-Venant (1856) proposed that among all prismatic
shafts with given cross-sectional area that the greatest torsional rigidity is obtained
by a shaft with circular cross section. This proposition was proven by Polya (1948).
For multiply connected cross sections of given cross-sectional area Polya and Wein-
stein (1950) showed that the optimal cross section is given by the annulus. Alvino
and Trombetti (1985) considered composite shaft cross sections made up of perfectly
bonded elastic materials. Here each phase is a cylindrical fiber of arbitrary cross sec-
tion with generators parallel to the shaft. In this context they showed that circular
cross sections with a radially nonincreasing arrangement of compliance delivers the
maximum torsional rigidity among all cross sections with given cross-sectional area
and fixed area fraction of the constituent phases.

When the materials are imperfectly bonded the elastic displacement may suffer
jumps across the interface between different elastic phases. To first order one models
the imperfect bonding in terms of a linear constitutive law relating tangential stress
to the jump in the warping displacement. This model for imperfect bonding is well
known and is referred to as the spring layer model, see Jones and Whitter (1967). In
this context one considers shafts reinforced with fibers of greater shear stiffness than
the matrix. One is interested in extremizing the torsional rigidity over fiber config-
urations and understanding how the imperfect interface compromises the benefits of
the stiffer reinforcement. It is found that the degree of imperfect bonding relative to
the contrast in compliance between matrix and fiber explicitly determines the type of
fiber configuration that maximizes the torsional rigidity, see Lipton (1998, Theorems
1.1 through 1.7). The relative degree of imperfect bonding is given by the parameter

Rcr =
α−1

G−1
m − G−1

f

,(1.1)
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where Gf is the shear modulus of the fiber reinforcement, Gm is the shear modulus of
the matrix and α is the interfacial shear stiffness having dimensions of shear stiffness
per unit length. For a shaft with circular cross section of radius R containing N
reinforcement fibers of circular cross section with common radii given by Rcr the im-
perfect interface balances the reinforcing effect of the fibers and the warping function
out side the fibers is precisely zero. For this case the torsional rigidity is independent
of the location of the fibers and is given by

πGm

2
(R4 −NR4

cr) +
πGf

2
NR4

cr(1.2)

and is precisely the torsional rigidity of a circular shaft of radius R reinforced with a
single centered fiber of radius N1/4Rcr, see Lipton (1998).

In many composites a third phase or inter-phase separating fiber and matrix is
present. The inter-phase or coating phase often has elastic properties that are distinct
from the fiber or matrix. In this context the recent work of Chen, Benveniste and
Chuang (2002) treats a system of N fibers with circular cross section and radii ai,
i = 1, . . . , N . The fibers are coated by a shell of uniform thickness and the outer
radius of the coated fiber is bi, i = 1, . . . , N . The shear modulus if the ith fiber is
denoted by Gi

f and the shear modulus of the associated coating is denoted by Gi
c.

The area fraction of the fiber phase in the ith coated fiber system is denoted by νi

and νi = a2
i /b

2
i . One recalls the formula for the effective anti-plane shear modulus for

the concentric coated cylinders assemblage of Hashin and Rosen (1964) given by

Gi
CCA = Gi

c

(

Gi
c(1 − νi) + Gi

f (1 + νi)

Gi
c(1 + νi) + Gi

f (1 − νi)

)

.(1.3)

Here Gi
CCA gives the effective shear stiffness of each coated fiber. Chen, Benveniste

and Chuang (2002) show that when the effective shear stiffness of each coated fiber
equals the matrix shear stiffness Gm, i.e.,

Gi
CCA = Gm, i = 1, . . . , N,(1.4)

then the warping function outside the coated fibers is zero and the torsional rigidity
is given by

AN =
π

2
GmR

4 +

N
∑

i=1

(π

2
(Gi

c(b
4
i − a4

i ) + Gi
fa

4
i ) −

π

2
Gm b4i

)

.(1.5)

When all fibers have the same radius and coating thickness ` one passes to the dis-
tinguished limit given by

lim
`→0

lim
Gi

c→0

`

Gi
c

= α−1(1.6)

in (1.4) and (1.5) to see that AN is given by (1.2).
The relations given by (1.4) express the balance between the shear moduli of the

matrix, fiber, coating and coating thickness that renders the warping function zero
outside the inclusions. Furthermore under the hypotheses leading to (1.5) it is evident
that if the torsional rigidity of each coated fiber given by

T i
f =

π

2
(Gi

c(b
4
i − a4

i ) + Gi
fa

4
i )(1.7)
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equals the torsional rigidity π
2 Gm b4i , obtained by replacing coating and fiber shear

moduli with the matrix shear moduli, then there is complete neutrality, i.e., the tor-
sional rigidity equals the torsional rigidity of the unreinforced shaft given by π

2 GmR
4

see Chen, Benveniste and Chuang (2002). A recent summary of results involving neu-
tral inclusions in the context of the theory of effective properties is given in Milton
(2002).

In this article we examine the effect of the coating phase on the torsional rigidity
of coated fiber reinforced shafts. We build on the previous results and develop a
variational methodology to assess the optimality or suboptimality of coated fiber
configurations. Here the cross section of each coated fiber is taken to be circular and
the radius of the ith fiber cross section is denoted by ai and the outer radius of the
coating is given by bi. The union of the coated fibers is denoted by A. The remaining
part of the cross section containing matrix material is denoted by Am. The shaft cross
section is denoted by Ω and Ω = A∪Am. The results given in this paper follow easily
from a set of bounds on the torsional rigidity derived using the variational principles
given by (2.1) and (2.2).

We provide a brief outline of the bounds derived in this paper. Upper and lower
bounds on the torsional rigidity for shafts with circular cross section reinforced with
coated fibers are given in Proposition 2.1. These bounds are given in terms of the
effective shear moduli and torsional rigidity of each coated fiber. Next we consider
shafts with arbitrary simply connected cross section. Here upper bounds are given in
terms of the polar moment of inertia of the shaft cross section I0(Ω) and the effective
shear moduli and torsional rigidity of each coated fiber, see Proposition 3.1. If in
addition one knows that Gi

c ≤ Gi
f , for i = 1, . . . , N , then it is shown that one can

derive a tighter upper bound given in terms of the torsional rigidity T0(Ω) of the shaft
cross section and the effective shear moduli and torsional rigidity of each coated fiber,
see Proposition 5.2. When Gi

c ≥ Gi
f , for i = 1, . . . , N , a lower bound is derived and is

given in terms of T0(Ω) and the effective shear moduli and torsional rigidity of each
coated fiber, see Proposition 6.2.

The bounds are used to establish the three reinforcement inequalities and three
geometric inequalities presented in Section 2. The reinforcement inequalities provide
explicit criteria that determine when the torsional rigidity of a single coated fiber
centered inside a shaft with circular cross section is either optimal or suboptimal
among all coated fiber configurations for shafts with cross sections satisfying pre-
scribed isoperimetric constraints, see Propositions 2.2, 2.3 and 2.4. The geometric
inequalities provide explicit criteria that determine when the torsional rigidity of the
coated fiber reinforced shaft is either greater than or less than the torsional rigidity
of the same shaft in the absence of the coated fiber reinforcement, see Propositions
2.5, 2.6 and 2.7. In all cases the optimality conditions are expressed in terms of the
effective shear modulus and torsional rigidity of each coated fiber.

2. Inequalities on the torsional rigidity. We begin by introducing the vari-
ational formulations for the torsional rigidity used in the subsequent analysis. The
torsional rigidity for a system of N coated fibers inside a shaft with cross section Ω is
denoted by T N (Ω). Points inside Ω are denoted by x = (x1, x2) and the coordinate
system is chosen such that the origin lies inside Ω. The first variational principle is
given in terms of virtual stress potentials ϕ that vanish on the boundary of the shaft
cross section that are square integrable and have square integrable gradients. It is
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given by

T N (Ω) = −2 min
ϕ

{

1

2

∫

Ω

G−1(x)|∇ϕ|2 dx − 2

∫

Ω

ϕdx

}

,(2.1)

where the piecewise constant shear modulus G(x) is Gm in the matrix and takes the
values Gi

f and Gi
c in the ith fiber and coating respectively. Next we define the vector

x⊥ to be given by (−x2, x1). The second variational principle is given in terms of
virtual warping functions w̃ that are square integrable and have square integrable
gradients. It is given by

T N (Ω) = min
w̃

{
∫

Ω

G(x)|∇w̃ + x⊥|2 dx
}

.(2.2)

Motivated by (1.4) and (1.5) we start by considering shafts with circular cross
section of radius R. For this case we denote the shaft cross section by DR. The
torsional rigidity of DR reinforced with N coated fibers is written as T N (DR). Here
the coordinates are chosen such that the center of the shaft is the origin. The method
presented here is simple. The trial fields are designed so that they become the actual
stress potential or warping field in the composite when Gi

CCA = Gm, for i = 1, . . . , N .
Otherwise these fields are admissible trials and when substituted into the variational
principles give upper and lower bounds on the torsional rigidity. In this way the upper
and lower bounds match when Gi

CCA = Gm, for i = 1, . . . , N . For a system of N
coated fibers with centers located at the points xi, i = 1, . . . , N the bounds are given
by the following Proposition.

Proposition 2.1.

AN +π

N
∑

i=1

|xi|2b2i
Gm

Gi
CCA

(Gi
CCA−Gm) ≤ T N (DR) ≤ AN +π

N
∑

i=1

|xi|2b2i (Gi
CCA−Gm),

(2.3)
where AN is given by (1.5). The upper and lower bound agree when Gi

CCA = Gm,
for i = 1, . . . , N . These upper and lower bounds are derived in Sections 3 and 4
respectively.

In what follows we apply Proposition 2.1 to obtain the basic reinforcement in-
equality for shafts of circular cross section reinforced with a finite number N of coated
fibers. Here we suppose that the shear moduli of each fiber and coating are the same,
i.e., Gi

f = Gf and Gi
c = Gc. In addition it is supposed that the ratio of outer and

inner coating radius is the same for each coated fiber, i.e., νi = ν, i = 1, . . . , N . For
this case Gi

CCA = GCCA where

GCCA = Gc

(

Gc(1 − ν) + Gf (1 + ν)

Gc(1 + ν) + Gf (1 − ν)

)

(2.4)

and for GCCA = Gm the torsional rigidity given by (1.5) becomes

AN = A =
π

2

(

GmR
4 − Gmb

4
+ Gcb

4
(1 − ν2) + Gfν

2b
4
)

,(2.5)

where b
4

=
∑N

i=1 b
4
i . Here A is precisely the torsional rigidity of a single coated fiber

with outer coating radius b and fiber radius a = ν1/2b when the centers of the coated
fiber cross section and shaft cross section are the same. The torsional rigidity of the
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concentric coated fiber shaft configuration is given by the right hand side of (2.5) for
all values of Gm, Gf , Gc and a ≤ b ≤ R. We note here that the area of the fiber cross

section is given by πa2 = π

√

∑N
i=1 a

4
i .

The following reinforcement inequalities follow from Proposition 2.1 and gives
conditions for which the concentric coated fiber and circular shaft cross section is
either optimal or suboptimal.

Proposition 2.2. Reinforcement Inequalities I.
If GCCA ≤ Gm, then the torsional rigidity associated with N coated fibers is less than
or equal to the rigidity associated with a single centered circular coated fiber with fiber
radius a = ν1/2b, i.e.,

T N (DR) ≤ A.(2.6)

Otherwise if GCCA ≥ Gm, then the torsional rigidity associated with N coated fibers is
greater than or equal to that of a single centered circular coated fiber with fiber radius
a = ν1/2b, i.e.,

T N (DR) ≥ A.(2.7)

These inequalities are independent of the number and location of the coated fibers.
When all fibers have the same radius a and coating thickness ` one easily passes

to the distinguished limit given by (1.6) in Proposition 2.2 to recover Theorem 1.3 of
Lipton (1998) for imperfectly bonded fiber reinforced shafts.

Next we consider the more general case where the shaft can have arbitrary simply
connected cross section Ω. Here we consider all configurations of N coated fibers with
prescribed fiber radii ai, i = 1, . . . , N and consider all cross sections Ω with prescribed
polar moment of inertia. We apply the upper bound on the torsional rigidity given
by Proposition 3.1 to obtain

Proposition 2.3. Reinforcement Inequality II.
Consider any shaft with polar moment of inertia with respect to the origin equal to
πR4/2 reinforced with N circular coated fibers. If GCCA ≤ Gm, then the torsional
rigidity T N (Ω) is less than or equal to the torsional rigidity associated with a shaft
with circular cross section of radius R reinforced with a single centered circular coated
fiber with fiber radius a given by

πa2 = π

√

√

√

√

N
∑

i=1

a4
i(2.8)

and b = ν−1/2a.
When Gc ≤ Gf we can appeal to the tighter upper bound on the torsional rigidity

given by Proposition 5.2 to obtain a reinforcement inequality that holds for all shaft
cross sections Ω with prescribed cross-sectional area.

Proposition 2.4. Reinforcement Inequality III.
Consider any shaft with cross-sectional area equal to πR2 reinforced with N circular
coated fibers. If GCCA ≤ Gm, and Gc ≤ Gf then the torsional rigidity T N (Ω) is
less than or equal to the torsional rigidity associated with a shaft with circular cross
section of radius R reinforced with a single centered circular coated fiber with fiber
radius a given by

πa2 = π

√

√

√

√

N
∑

i=1

a4
i(2.9)
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and b = ν−1/2a.

It is evident from the inequality

√

∑N
i=1 a

4
i ≤

∑N
i=1 a

2
i that the cross-sectional

area of the single centered circular fiber appearing in Propositions 2.2, 2.3 and 2.4 is
less than or equal to the joint cross-sectional area of the N fibers.

Now we consider the more general case where the shear moduli of the fiber and
coating and the ratio of the inner radius and outer radius of the coating are allowed
to differ between coated fibers. In this context we present explicit conditions on the
effective shear modulus and torsional rigidity of each coated fiber that shows when
the torsional rigidity of the coated fiber reinforced shaft is either greater or less than
the torsional rigidity of the shaft without reinforcement.

For shafts with circular cross sections of radius R, i.e., Ω = DR, we have the
following

Proposition 2.5. Geometric Inequalities I.
If
∑N

i=1 T
i
f ≤∑N

i=1
π
2 Gm b4i and Gi

CCA ≤ Gm, then

T N (DR) ≤ π

2
GmR

4.(2.10)

If
∑N

i=1 T
i
f ≥

∑N
i=1

π
2 Gm b4i and Gi

CCA ≥ Gm, then

T N (DR) ≥ π

2
GmR

4.(2.11)

The inequalities (2.10) and (2.11) are independent of the number and location of the
coated fibers. These inequalities follow immediately from Proposition 2.1.

Now we extend these results to simply connected cross sections Ω and denote the
torsional rigidity for simply connected shaft cross sections with shear modulus unity
by T0(Ω). The following geometric inequality shows when a system of coated fibers
always decreases the torsional rigidity below that of the unreinforced shaft.

Proposition 2.6. Geometric Inequality II.
Suppose that Gi

c ≤ Gi
f , i = 1, . . . , N . If

∑N
i=1 T

i
f ≤∑N

i=1
π
2 Gm b4i and Gi

CCA ≤ Gm,
then

T N (Ω) ≤ GmT0(Ω).(2.12)

Equality holds in (2.12) when the shaft cross section is circular,
∑N

i=1 T
i
f =

∑N
i=1

π
2 Gm b4i and Gi

CCA = Gm for i = 1, . . . , N . This result follows
from the upper bound on the torsional rigidity given by Proposition 5.2.

The following geometric inequality shows when a system of coated fibers always
increases the torsional rigidity above that of the unreinforced shaft.

Proposition 2.7. Geometric Inequality III.
Suppose that Gi

c ≥ Gi
f , i = 1, . . . , N . If

∑N
i=1 T

i
f ≥∑N

i=1
π
2 Gm b4i and Gi

CCA ≥ Gm,
then

T N (Ω) ≥ GmT0(Ω).(2.13)

Equality holds in (2.13) when the shaft cross section is circular,
∑N

i=1 T
i
f =

∑N
i=1

π
2 Gm b4i and Gi

CCA = Gm for i = 1, . . . , N . This result follows
from the lower bound on the torsional rigidity given by Proposition 6.2.
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3. Upper bounds on the torsional rigidity for shafts reinforced with

circular coated fibers. In this Section we develop trial warping functions for config-
urations of circular coated fibers. These are substituted into the variational principle
(2.2) and deliver the upper bound presented in Proposition 2.1. The trial warping
functions constructed here will be admissible for shaft cross sections of any shape.
For circular shaft cross sections it is shown that the trial warping functions become
the actual warping displacement in the shaft when Gi

CCA = Gm for i = 1, . . . , N .
Consider a shaft of arbitrary cross section Ω reinforced with N circular coated

fibers with centers at the points xi, i = 1, . . . , N . The radius of the ith fiber is ai

and the outer radius of the coated fiber is bi. The coating occupies the annular shell
with inner and outer radii ai and bi. The trial warping function w̃ is chosen such that
w̃ = 0 outside the coated fibers. In each coated fiber the function w̃ is required to be
harmonic inside the fiber and harmonic inside the coating. It is required that w̃ be
continuous across the interface separating the fiber and coating and

Gi
f (∇w̃|f + x⊥) · n = Gi

c(∇w̃|c + x⊥) · n(3.1)

across the fiber–coating interface. Here the subscripts indicate the side of the interface
over which the quantities are evaluated and n is the outward directed unit normal in
the fiber coating interface. The final requirement is that w̃ vanish on the boundary of
the coated fiber. It is clear that the continuity conditions for w̃ at material interfaces
ensure that it is an admissible trial field for (2.2).

We solve the transmission boundary value problem inside each coated fiber to
obtain the explicit formula for w̃. The polar coordinates (θ, r) are chosen such that
the axis θ = 0 coincides with the direction given by x⊥

i and origin with xi. In
these coordinates, the transmission condition (3.1) on the ith fiber–coating interface
becomes

Gi
c∂rw̃|c − Gi

f∂rw̃|f = (Gi
f − Gi

c)|xi| cos θ, on r = ai.(3.2)

Since w̃ is required to be harmonic inside each fiber and coating it follows that

w̃ = C1r cos θ, for r ≤ ai,(3.3)

and

w̃ = (C2r + C3r
−1) cos θ, for ai ≤ r ≤ bi.(3.4)

The transmission conditions at r = ai and boundary condition at r = bi require that

C2b
2
i + C3 = 0,

C1a
2
i − C2a

2
i − C3 = 0,

Gi
ca

2
iC2 − Gi

cC3 − Gi
fa

2
iC1 = (Gi

f − Gi
c)a

2
i |xi|.(3.5)

Solution of (3.5) shows that inside each coated fiber the trial warping function is given
by

w̃ = Ci
1r cos θ, for r = |x − xi| ≤ ai,(3.6)

and

w̃ = (Ci
2r + Ci

3r
−1) cos θ, for ai ≤ r = |x − xi| ≤ bi.(3.7)
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Where ∆i = Gi
c(a

2
i + b2i ) + Gi

f (b2i − a2
i ) and

Ci
1 = (Gi

c − Gi
f )|xi|(b2i − a2

i )/∆i,

Ci
2 = (Gi

f − Gi
c)|xi|a2

i /∆i,

Ci
3 = (Gi

c − Gi
f )|xi|b2i a2

i /∆i.(3.8)

Outside the coated fibers w̃ = 0.
The polar moment of inertia of the shaft cross section Ω with respect to the origin

is written I0(Ω). Here I0(Ω) =
∫

Ω
|x|2dx. Substitution of w̃ into (2.2) delivers the

upper bound given in the following
Proposition 3.1. Upper bound on rigidity for arbitrary shaft cross section.

T N (Ω) ≤ GmI0(Ω) +

N
∑

i=1

(π

2
T i

f − π

2
Gm b4i

)

+ π

N
∑

i=1

|xi|2b2i (Gi
CCA − Gm).(3.9)

Next we consider shafts with circular cross section of radius R. In order for the
trial warping field w̃ to be the actual warping displacement in the shaft it must also
satisfy the transmission condition on the coating–matrix interface |x− xi| = bi given
by

Gmx⊥ · n = Gi
c(∇w̃|c + x⊥) · n.(3.10)

This gives the extra condition

Gi
cC

i
2b

2
i − Gi

cC
i
3 = (Gm − Gi

c)|xi|b2i .(3.11)

This condition together with the conditions given by (3.5) provide an over determined
system of equations for the coefficients C i

1, C
i
2, C

i
3 in each coated fiber. It is easily seen

that the over determined system has a solution when Gi
CCA = Gm. For this case the

function w̃ becomes the warping displacement in the shaft and we recover the formula

T N (DR) = AN ,(3.12)

where AN is given by (1.5).

4. Lower bounds on the torsional rigidity for circular shafts reinforced

with circular coated fibers. In this Section we develop trial stress potentials for
configurations of circular coated fibers. These are substituted into the variational
principle (2.1) to obtain the lower bound given in Proposition 2.1.

We consider a circular shaft cross section of radius R reinforced with N coated
fibers. Outside the coated fibers the trial stress potential ϕ is taken to be ϕ =
1
2Gm(R2 − |x|2). The trial potential is taken to be continuous across the matrix–
coating interface specified by |x − xi| = bi. It is easily seen that

ϕ = h(x) = −Gm(x − xi) · xi +
1

2
Gm(R2 − b2i − |xi|2)(4.1)

on this interface in view of the condition |x − xi| = bi. The trial is taken to be
continuous inside the coated fiber and is given by ϕ = ψi + ri in the ith fiber. Here
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ψi is chosen to be the stress potential generated inside the coated fiber when it is
subject to torsion loading. It is the solution of the transmission problem inside the
coated fiber given by

Gi
f

−1
(x)∆ψi = −2 in the fiber , |x − xi| < ai,(4.2)

Gi
c

−1
(x)∆ψi = −2 in the coating , ai < |x − xi| < bi,(4.3)

ψi is continuous across the fiber–coating interface,

Gi
f
−1∇ψi

|f
· n = Gi

c
−1∇ψi

|c
· n on |x − xi| = ai(4.4)

and ψi = 0 on |x − xi| = bi. It is easily seen that ψi is given by

ψi = −1

2

(

Gi
f |x − xi|2 − Gi

c(b
2
i − a2

i ) − Gi
fa

2
i

)

, for , |x − xi| < ai,

ψi = −1

2

(

Gi
c|x − xi|2 − Gi

cb
2
i

)

, for , ai < |x − xi| < bi.(4.5)

The function ri = h on the coating–matrix interface and is continuous inside the
coated fiber. It is the solution to the transmission problem given by

Gi
f

−1
(x)∆ri = 0 in the fiber , |x − xi| < ai,(4.6)

Gi
c
−1

(x)∆ri = 0 in the coating , ai < |x− xi| < bi(4.7)

and

Gi
f
−1∇ri

|f
· n = Gi

c
−1∇ri

|c
· n on |x − xi| = ai.(4.8)

In the polar coordinates (θ, r) chosen such that the axis θ = 0 coincides with the
vector xi and r = |xi − x|, the solution of the transmission problem for ri is given by

ri = Ci
1r cos θ + ki, for , |x − xi| < ai,

ri =
(

Ci
2r + Ci

3r
−1
)

cos θ + ki, for , ai < |x − xi| < bi,(4.9)

where

ki =
Gm

2

(

R2 − b2i − |xi|2
)

Ci
1 = −Gm|xi|b2i 2Gi

f/Di

Ci
2 = −Gm|xi|b2i (Gi

f + Gi
c)/Di

Ci
3 = −Gm|xi|a2

i b
2
i (G

i
f − Gi

c)/Di,(4.10)

andDi = (b2i +a2
i )G

i
f +(b2i −a2

i )G
i
c. The lower bound in (2.3) follows from substitution

of this trial potential into the variational principle (2.1).
In order for the trial potential field ϕ to be the actual stress potential in the shaft

it must also satisfy the transmission condition on the coating–matrix interface given
by

G−1
m ∇ϕ|m · n = Gi

c

−1
(∇ψi

|c
+ ∇ri

|c
) · n.(4.11)
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Substitution and working in polar coordinates shows that (4.11) gives the extra con-
dition

Gi
c

−1 (
Ci

2 − Ci
3b

−2
i

)

= −|xi|.(4.12)

This condition together with the system of equations (4.10) over determines the co-
efficients Ci

1, C
i
2, C

i
3 in each coated sphere. It is easily seen that the over determined

system has a solution when Gi
CCA = Gm. For this case the function ϕ becomes the

stress potential in the shaft and we recover the formula

T N (DR) = AN ,(4.13)

where AN is given by (1.5).

5. Upper bounds on the torsional rigidity for Gi
c ≤ Gi

f . In this section

we focus on the case where Gi
c ≤ Gi

f , i = 1, . . . , N . Here we are able to get tighter
upper bounds on the torsional rigidity for shaft cross sections of arbitrary shape.
Our approach follows the methodology developed in Lipton (1998). We fix the cross-
section of the shaft Ω and investigate the effects of adding a circular coated fiber to
an already existing configuration of N − 1 coated fibers. At present no assumptions
on the geometry or shear moduli of the N − 1 coated fibers are made. We denote
the part of the shaft cross-section already occupied by the coated fibers by A and the
cross-section of the circular coated fiber to be added by Σ. Here Σ is composed of a
circular fiber of radius aN with shear modulus GN

f surrounded by a coating of outer

radius bN with shear modulus GN
c . The torsional rigidity of the original configuration

is denoted by T (A,Ω). The rigidity associated with the added fiber is written as
T (A ∪ Σ,Ω). We recall that the torsional rigidity obtained by replacing coating and
fiber shear moduli with the matrix shear moduli in Σ is given by π

2 Gm b4N . Here
bN is the outer radius of the coating. The torsional rigidity of the coated fiber is
TN

f = π
2 (GN

c (b4N − a4
N ) + GN

f a
4
N ). We state the following:

Proposition 5.1. Upper rigidity inequality

If GN
c ≤ GN

f and if

GN
CCA ≤ Gm,(5.1)

then

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N .(5.2)

Proposition 5.1 is established with the aid of the variational principle given by
(2.1). We remark that the methods used to establish this inequality apply to the case
when the fiber cross-section is multiply connected. One writes (2.1) as T (A,Ω) =
−2E(A,Ω) where

E(A,Ω) = min
ϕ

{

1

2

∫

Ω

G−1(x)|∇ϕ|2 dx − 2

∫

Ω

ϕdx

}

.(5.3)

Here the piecewise constant shear modulus G(x) takes the value Gm in the matrix
and takes the values Gi

f and Gi
c in the ith fiber and coating respectively. The idea

of the proof is to estimate the quantity E(A,Ω) in terms of E(A ∪ Σ,Ω) associated
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with the additional fiber. We let G(x) denote the piece wise constant shear modulus
for the configuration A ∪ Σ. Here G(x) = G(x) outside of Σ and inside Σ the shear
modulus G(x) = GN

f in the fiber and G(x) = GN
c in the coating. We regroup terms

in the variational principle (5.3) and write:

E(A,Ω) = min
ϕ

{1

2

∫

Ω

G−1(x)|∇ϕ|2dx − 2

∫

Ω

ϕdx +

+
1

2
(

∫

Σ

(G−1
m − G−1(x))|∇ϕ|2dx}.(5.4)

We obtain an estimate by substitution of a suitable trial field in (5.4). Our choice
is made as follows. We introduce the stress potential Φ̃ for the configuration A ∪ Σ.
Here Φ̃ is continuous in Ω,

−G−1(x)∆Φ̃ = 2(5.5)

and satisfies the transmission conditions

Gi
f
−1∇Φ̃|f · n = Gi

c
−1∇Φ̃|c · n on the fiber–coating interface,|x − xi| = ai

(5.6)

and

Gi
f
−1∇Φ̃|c · n = Gm

−1∇Φ̃|m · n on the matrix–coating interface,|x − xi| = bi.

(5.7)

The trial field ϕ is chosen to match Φ̃ outside the coated fiber cross-section Σ but
inside we suppose that ϕ = Φ̃ + δ. Where δ is continuous, vanishes on the boundary
of Σ, is square integrable inside Σ and has square integrable gradient over Σ. One
easily checks that

∫

Σ

G−1(x)∇Φ̃ · ∇δ dx = 2

∫

Σ

δ dx.(5.8)

Substitution of ϕ into (5.4) gives:

E(A,Ω) ≤ 1

2
(

∫

Ω/Σ

G−1(x)|∇Φ̃|2dx +

∫

Σ

G−1(x)|∇Φ̃ + ∇δ|2dx)

− 2

∫

Ω

Φ̃dx − 2

∫

Σ

δdx

+
1

2
(

∫

Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(5.9)

We apply (5.8) and expand the second term on the right-hand side of (5.9) to find:
∫

Σ

G−1(x)|∇Φ̃ + ∇δ|2dx =

∫

Σ

G−1(x)|∇Φ̃|2dx +

∫

Σ

G−1(x)|∇δ|2dx + 4

∫

Σ

δdx.

(5.10)

Substitution of (5.10) into (5.9) yields:

E(A,Ω) ≤ E(A ∪ Σ,Ω) +
1

2

∫

Σ

G−1(x)|∇δ|2dx +

+
1

2
(

∫

Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(5.11)
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Multiplying by −2 and arranging terms we find that

T (A ∪ Σ,Ω) ≤ T (A,Ω) +

∫

Σ

G−1(x)|∇δ|2dx +

+

∫

Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(5.12)

Next we minimize the right-hand side of (5.12) with respect to δ to obtain

T (A ∪ Σ,Ω) ≤ T (A,Ω) + U .(5.13)

where

U =

∫

Σ

(G−1
m − G−1(x))∇ϕ̂ · ∇Φ̃ dx.(5.14)

Here ϕ̂ = δ̂ + Φ̃ in Σ and δ̂ solves

∫

Σ

G−1
m ∇δ̂ · ∇u dx =

∫

Σ

(G−1(x) − G−1
m )∇Φ̃ · ∇u dx,(5.15)

for every trial u vanishing on the boundary of Σ. From (5.15) and (5.5 – 5.7) we see
that ϕ̂ solves

∫

Σ

G−1
m ∇ϕ̂ · ∇u dx = 2

∫

Σ

u dx,(5.16)

for every trial u vanishing on the boundary of Σ. This is equivalent to the differential
equation −G−1

m ∆ϕ̂ = 2 over Σ.
We decompose the trial ϕ̂ into two parts: ϕ̂ = r + ψh, where the function r

satisfies:

∆r = 0, in Σ and r = Φ̃ on the boundary of Σ,(5.17)

and ψh satisfies:

∆ψh = −2Gm in Σ and ψh = 0 on the boundary of Σ.(5.18)

Next we decompose Φ̃ into two components over Σ. We write Φ̃ = ψ − h. Here ψ is
continuous, vanishes on the boundary of Σ and solves the torsion problem

−G−1(x)∆ψ = 2(5.19)

with the transmission condition

(GN
f )−1∇ψ|f · n = (GN

c )−1∇ψ|c · n on the fiber–coating interface,|x − xN | = aN .

(5.20)

The function h is continuous on Σ and h = −Φ̃ on the boundary of Σ. It is the
solution of

−G−1(x)∆h = 0(5.21)
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and h satisfies the transmission condition

(GN
f )−1∇h|f · n = (GN

c )−1∇h|c · n on the fiber–coating interface,|x − xN | = aN .

(5.22)

Substitution of the functions ψh, ψ, r, and h into U and (5.13), gives

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N

+

∫

Σ

G−1
m |∇r|2 dx −

∫

Σ

G−1(x)|∇h|2 dx − 4

∫

Σ

r + h dx.(5.23)

For circular fiber cross sections calculation shows that
∫

Σ r+h dx = 0 and we obtain

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N

+

∫

Σ

G−1
m |∇r|2 dx −

∫

Σ

G−1(x)|∇h|2 dx.(5.24)

It is clear that Proposition 5.1 holds when the indefinite term

D =

∫

Σ

G−1
m |∇r|2 dx −

∫

Σ

G−1(x)|∇h|2 dx

= G−1
m

(
∫

Σ

|∇r|2 dx −
∫

Σ

Gm

G(x)
|∇h|2 dx

)

≤ 0.(5.25)

If Φ̃ = const. on the boundary of Σ then r = const. and h = −const. and D = 0. We
now examine conditions for which D ≤ 0 and r 6= const. and h 6= −const. To do this
we search for the largest number β for which

β

∫

Σ

|∇r|2 dx −
∫

Σ

Gm

G(x)
|∇h|2 dx ≤ 0,(5.26)

for every choice of r and h such that h = −r on the boundary of Σ, r is harmonic
inside Σ, h is harmonic in the fiber and in the coating and satisfies the transmission
conditions

Gm

GN
f

∇h|f · n =
Gm

GN
c

∇h|c · n,(5.27)

on the fiber–coating interface. The set of all such r and h for which r 6= const. and
h 6= const. is denoted by C. The largest β is given by

β̂ = Gm inf
C

∫

Σ G(x)−1|∇h|2 dx
∫

Σ
|∇r|2 dx .(5.28)

The stationary values for the quotient given in (5.28) are denoted by βn and the
stationary conditions for the stationary functions (rn, hn) in C are given by

(GN
c )−1∇hn · n = −βn∇rn · n(5.29)

on the coating matrix boundary |x − xN | = bN . Choosing polar coordinates (θ, r)
such that the θ = 0 axis is along xN and r = |x − xN | one finds that the stationary
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functions are given by

rn = Kn
1 r

n exp(jnθ), for 0 ≤ r ≤ bN ,

hn = (Kn
2 r

n) exp(jnθ) for 0 ≤ r ≤ aN ,

hn =
(

Kn
3 r

n +Kn
4 r

−n
)

exp(jnθ) for aN ≤ r ≤ bN .(5.30)

here j =
√
−1 and both real and imaginary parts of rn and hn are stationary functions.

The constants Kn
1 are arbitrary and the remaining constants are given by

Kn
2 = −Kn

1

(

2GN
f

GN
f − GN

c

)

b2n
N

b2n
N

GN
c +GN

f

GN
f
−GN

c

+ a2n
N

,

Kn
3 = −Kn

1

(

GN
c + GN

f

GN
f − GN

c

)

b2n
N

b2n
N

GN
c +GN

f

GN
f
−GN

c

+ a2n
N

,

Kn
4 = −Kn

1

a2n
N b2n

N

b2n
N

GN
c +GN

f

GN
f
−GN

c

+ a2n
N

.(5.31)

The stationary values are given by

βn = (GN
c )−1

(

GN
f (b2n

N − a2n
N ) + GN

c (b2n
N + a2n

N )

GN
f (b2n

N + a2n
N ) + GN

c (b2n
N − a2n

N )

)

.(5.32)

One readily checks that for GN
f ≥ GN

c that βn is increasing with n and that β1 =

1/GN
CCA. It can also be easily checked that (5.32) gives all of the stationary values.

Indeed one supposes there exists a stationary value β̃ not given by (5.32) to find that
the only associated stationary functions are of the form r = const., h = −const. Thus
we find that β̂ = Gmβ1 = Gm/G

N
CCA to conclude that

If
Gm

GN
CCA

≥ 1, then D ≤ 0(5.33)

and Proposition 5.1 follows.
The torsional rigidity for an arbitrary simply connected cross section reinforced

with N circular coated fibers is denoted by T N (Ω) and repeated application of Propo-
sition 5.1 gives

Proposition 5.2. Upper bound

If Gi
c ≤ Gi

f , i = 1, . . . , N and

Gi
CCA ≤ Gm, for i = 1 . . . , N(5.34)

then

T N (Ω) ≤ GmT0(Ω) +

N
∑

i=1

(

T i
f − π

2
Gm b4i

)

,(5.35)

where T0(Ω) is the torsional rigidity of the homogeneous cross section containing ma-
terial with unit shear modulus.
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Proposition 2.6 follows directly from Proposition 5.2. To establish Proposition
2.4 one recalls the isoperimetric inequality

T0(Ω) ≤ π

2
R4,(5.36)

that holds for all cross sections Ω with area πR2, see Polya (1948). Proposition 2.4
then follows from (5.36) and (5.35) when Gi

f = Gf and Gi
c = Gc, and ai/bi = ν1/2

for i = 1, . . . , N .

6. Lower bounds on the torsional rigidity for Gi
f ≤ Gi

c. We focus on the

case where Gi
f ≤ Gi

c, i = 1, . . . , N . We proceed as in the last section and investigate
the effects of adding a circular coated fiber to an already existing configuration ofN−1
coated fibers. At present no assumptions on the geometry or shear moduli of the N−1
coated fibers are made. The part of the shaft cross-section already occupied by the
coated fibers is denoted by A and the cross-section of the circular coated fiber to be
added by Σ. Here Σ is composed of a circular fiber of radius aN with shear modulus
GN

f surrounded by a coating of outer radius bN with shear modulus GN
c . The torsional

rigidity of the original configuration is denoted by T (A,Ω). The rigidity associated
with the added fiber is written as T (A ∪ Σ,Ω). We state the following:

Proposition 6.1. Lower rigidity inequality

If GN
f ≤ GN

c and if

Gm ≤ GN
CCA,(6.1)

then

T (A,Ω) + TN
f − π

2
Gm b4N ≤ T (A ∪ Σ,Ω).(6.2)

Proposition 6.1 is established with the aid of the variational principle given by
(2.1). One writes (2.1) as T (A ∪ Σ,Ω) = −2E(A ∪ Σ,Ω) where

E(A ∪ Σ,Ω) = min
ϕ

{

1

2

∫

Ω

G−1(x)|∇ϕ|2 dx − 2

∫

Ω

ϕdx

}

,(6.3)

where the piecewise constant shear modulus G(x) is Gm in the matrix and takes the
values Gi

f and Gi
c in the ith fiber and coating respectively for i = 1, . . . , N . The idea

of the proof is to estimate the quantity E(A∪Σ,Ω) in terms of E(A,Ω) associated with
the original configuration of N − 1 fibers. We let G(x) denote the piecewise constant
shear modulus for the original configuration A of N − 1 fibers. Here G(x) = G(x)
outside of Σ and inside Σ the shear modulus G(x) = Gm. We regroup terms in the
variational principle (6.3) and write:

E(A ∪ Σ,Ω) = min
ϕ

{1

2

∫

Ω

G−1(x)|∇ϕ|2dx − 2

∫

Ω

ϕdx +

+
1

2
(

∫

Σ

(G−1(x) − G−1
m )|∇ϕ|2dx}.(6.4)

We obtain an estimate by substitution of a suitable trial field in (6.4). Our choice is
made as follows. We introduce the stress potential ΦA for the configuration A. Here
ΦA is continuous in Ω,

−G−1(x)∆ΦA = 2(6.5)
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and satisfies the transmission conditions

Gi
f
−1∇Φ̃|f ·n = Gi

c
−1∇Φ̃|c ·n on the fiber–coating interface,|x−xi| = ai, i = 1, . . . , N−1,

(6.6)
and

Gi
f

−1∇Φ̃|c ·n = Gm
−1∇Φ̃|m ·n on the matrix–coating interface,|x−xi| = bi, . . . , N−1.

(6.7)
The trial field ϕ is chosen to match ΦA outside the coated fiber cross-section Σ but
inside we suppose that ϕ = ΦA + δ. Where δ is continuous, vanishes on the boundary
of Σ, is square integrable inside Σ and has square integrable gradient over Σ. One
easily checks that

∫

Σ

Gm
−1∇ΦA · ∇δ dx = 2

∫

Σ

δ dx.(6.8)

Application of (6.8) and rearranging terms as in the previous section yields:

T (A ∪ Σ,Ω) ≥ T (A,Ω) −
∫

Σ

Gm
−1|∇δ|2dx +

+

∫

Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(6.9)

On maximizing the right-hand side of (6.9) with respect to δ we obtain

T (A ∪ Σ,Ω) ≥ T (A,Ω) + U .(6.10)

where

U =

∫

Σ

(G−1
m − G−1(x))∇ϕ̂ · ∇ΦA dx.(6.11)

Here ϕ̂ = δ̂ + ΦA in Σ and δ̂ solves

∫

Σ

G−1(x)∇δ̂ · ∇u dx =

∫

Σ

(G−1
m − G−1(x))∇ΦA · ∇u dx,(6.12)

for every trial u vanishing on the boundary of Σ. From (6.8) and (6.12) we see that
ϕ̂ solves

∫

Σ

G−1(x)∇ϕ̂ · ∇u dx = 2

∫

Σ

u dx,(6.13)

for every trial u vanishing on the boundary of Σ. Proceeding as in the last section
we introduce the continuous functions ψ, r, ψh, and h such that ϕ̂ = ψ − h and
ΦA = r + ψh. Here ψh and ψ are the same functions introduced in Section 5. The
function ψh is the solution of (5.18) and ψ solves the transmission problem given by
(5.19) and (5.20). The function r is harmonic in Σ and r = ΦA on the boundary of
Σ. The function h is continuous on Σ and h = −ΦA on the boundary of Σ. It is the
solution of the transmission problem given by (5.21) and (5.22).

Substitution of the functions ψh, ψ, r, and h into U gives

T (A ∪ Σ,Ω) ≥ T (A,Ω) + TN
f − π

2
Gm b4N +D,(6.14)
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where the indefinite quantity D is given by (5.25). Its clear that (6.2) holds when
D ≥ 0. We find conditions for which D ≥ 0 when r 6= const. and h 6= const. To do
this we search for the largest number ρ for which

∫

Σ

|∇r|2 dx − ρ

∫

Σ

Gm

G(x)
|∇h|2 dx ≥ 0,(6.15)

for every choice of r and h in C and r 6= const. and h 6= −const. The largest ρ is
given by

ρ̂ = inf
C

∫

Σ
|∇r|2 dx

∫

Σ
Gm

G(x) |∇h|2 dx
.(6.16)

Proceeding as in the previous section we find that ρ̂ = GN
CCA/Gm. Thus D ≥ 0 when

GN
CCA/Gm ≥ 1 and the proposition follows.

The torsional rigidity for an arbitrary simply connected cross section reinforced
with N circular coated fibers is denoted by T N (Ω) and repeated application of Propo-
sition 6.1 gives

Proposition 6.2. Lower bound

If Gi
f ≤ Gi

c, i = 1, . . . , N and

Gm ≤ Gi
CCA, for i = 1 . . . , N(6.17)

then

GmT0(Ω) +

N
∑

i=1

(

T i
f − π

2
Gm b4i

)

≤ T N (Ω).(6.18)

Proposition 2.7 follows directly from Proposition 6.2.
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