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I. INTRODUCTION

The amplitude of a nearly-harmonic wave propagating in a nonlinear disper-
sive medium satisfies a nonlinear Schrédinger equation. Confining ourselves to the
generic, cubic, nonlinearity of the ‘focusing’ type, the resulting nonlinear Schrédinger
equation is of the form

Wy + Uy + 2|00 = —iyT; 4> 0. (1)

The —iy¥ term in the right-hand side accounts for dissipative losses (which were
assumed to be small in the derivation of Eq.(1).) In the underlying physical system
the dissipation is compensated by pumping the energy into the system, in one way
or another. The pumping is modelled by adding a driving term to the right-hand
side of Eq.(1).

Like a simple pendulum, the distributed system can be driven externally or para-
metrically. The typical form of the corresponding amplitude equation is

00, + Uy + 2| 020 = he® — iy 0, (2)

and o
iUy + Uyp + 2|0 20 = KT — iy, 3)

respectively. (The overline in the right-hand side of (3) indicates complex conjuga-
tion.) Both the externally and parametrically driven nonlinear Schrodinger equations
arise in a great variety of physical contexts. In particular, the parametric equation
(3) describes the nonlinear Faraday resonance in a vertically oscillating water tank
[1-3] and the effect of phase-sensitive amplifiers on solitons in optical fibers [4]. The
same equation controls the magnetisation waves in an easy-plane ferromagnet ex-
posed to a combination of a static and microwave field [5] and the amplitude of
synchronised oscillations in vertically vibrated pendula lattices [6].

Both equations (2) and (3) exhibit soliton solutions [7-9], [1, 2, 5], stable and
unstable [5, 8], which can also form (stable and unstable) multisoliton complexes
[10-12]. All localised solutions that have been found so far, were nonpropagating.
In fact, it is widely accepted that the nonlinear Schrédinger solitons simply cannot
travel in presence of the dissipation. This perception is based on the rate equation

which is straightforward from (2) and (3). Here P is the total field momentum,

P= % /_ :(E\IJ - ¥, U)dz. (5)

In the undamped case (y = 0) the momentum is conserved; however if v > 0, P
decays to zero and this seems to suggest that a solitary wave, initially moving with
a nonzero velocity, will have to slow down and eventually stop [13].



Another indication that only quiescent solitons are possible in the damped-
driven Schrédinger equation, comes ostensibly from the singular [2, 14] and Inverse
Scattering-based perturbation theory [7, 15, 16]. Here we should mention however
that these techniques are well developed only in the one-soliton sector and in the
case of several well separated solitons. They either make use of the smallness of the
perturbation in the right-hand side of (2)-(3) [2, 7, 15] or utilise an explicit form of
the perturbed soliton (to study its stability and bifurcation) [16]. In any case, the
resulting finite-dimensional system of equations for the parameters of the soliton
and radiations, leads to the conclusion that the soliton’s velocity has to decay to
zero as t — oo.

Meanwhile, the moving solitary waves could play a significant role in a variety
of physical situations modelled by the damped-driven nonlinear Schrédinger equa-
tions. Stable travelling waves could compete with nonpropagating localised attrac-
tors; unstable ones might arise as long-lived transients and intermediate states in
spatiotemporal chaotic regimes. Both types of moving solitary waves could medi-
ate energy dissipation in damped-driven systems. One more reason for not reject-
ing the unstable solutions outright is their possible persistence within the (directly
or parametrically driven) Ginzburg-Landau equations of which the damped-driven
Schrédinger equations (2)-(3) are special cases [18]. The diffusion and nonlinear
damping (the terms ic;¥,, and —icy|¥|>*¥, to be added to the right-hand side of
(2)-(3)) are known to have a stabilising effect on the Ginzburg-Landau pulses; hence
the unstable Schrodinger solitons may gain stability as they are continued to nonzero
positive ¢; and cy.

The purpose of this paper is to show that the damped-driven nonlinear
Schrédinger equations do support solitary waves travelling with nonzero velocities.
For the demonstration of this fact we confine our study to the parametrically driv-
en Schrodinger only. The ezternally driven equation is left as an object of future
research.

Two complementary strategies will be pursued to achieve our goal. First, in sec-
tion III, we consider the motionless damped solitons (V = 0, v # 0) and derive
the condition under which they can be continued to nonzero velocity. Having iden-
tified values of v for which this condition is satisfied, we perform the numerical
continuation obtaining a branch of solitary waves with nonzero V' and 7. Our sec-
ond approach is presented in section IV; the idea is to continue undamped travelling
waves (v = 0, V # 0) to nonzero dampings. We show that this is only possible if the
travelling wave has zero momentum. For complexes with P = 0, we then carry out
the numerical continuation in 7. In section V we discuss the consistency of results
obtained within these two complementary approaches.

We examined, numerically, stability of all solutions obtained within both ap-
proaches. The general framework of the stability analysis is outlined in section II.
Results of the stability analysis are presented along with results of the numerical
continuation. Finally, section VI summarises conclusions of this study.



II. MATHEMATICAL PRELIMINARIES

For purposes of this paper we transform equation (3) to an autonomous form.
First, we normalise the driving frequency 2 to unity; after that, the transformation
U(z,t) = ep(z,t) takes Eq.(3) to

Wt + Yz + 2% — Y = hp — iyy. (6)

This is the representation of the parametrically driven damped nonlinear Schrédinger
equation that we are going to work with in this paper. We confine ourselves to
uniformly travelling solutions of the form

Y(z,t) = P(z — V) = %(§), (7)
where 9(§) — 0 as |€| — oo. These satisfy an ordinary differential equation
—iVie + e + 200" — ¥ = hp — iy, 8)

The analytical part of this paper deals mainly with identifying those of the previ-
ously found solutions of (8) with V' = 0 or v = 0 which can be continued in V and 7,
respectively. The actual continuation will be carried out numerically. Our numerical
method employs a predictor-corrector continuation algorithm with a fourth-order
accurate Newtonian solver. Typically, the infinite line was approximated by an in-
terval (—100,100). The discretisation stepsize was typically 0.005. The numerical
tolerance was set to be 1071°; that is, the grid solution would be deemed accurate if
the difference between the left- and right-hand sides in (8) were smaller than 10~1°,

Along with the continuation of solutions in V' and v, we will be analysing their
stability to small perturbations. To this end, we linearize equation eq.(6) in the co-
moving frame of reference. Assuming that the linear perturbation depends on time

exponentially,
(&, t) = e [u(€) +idv(€)],

we arrive at an eigenvalue problem

Hog = (A+7)J7, 9)
where the operator H, is defined by
-2 +1+4h—6u?—202 Vo — 4wv
= (3 3
Hm‘<V&-4m; —R+1-h-6r-22) (10

and the skew-symmetric matrix J is

0 -1
J‘(1 o)‘
The column vector 7(£) = (du,dv)T. The eigenvalue problem (9) was solved by

expanding du and v over a Fourier basis, typically with 500 modes, on the interval
(—50, 50).



The last point that we need to touch upon in this preliminary section, is the
integrals of motion of eq.(3), or, more precisely, the quantities which are conserved
in the absence of dissipation. When « = 0, the equation (3) conserves the momentum
(given by eq.(5) where one only needs to replace ¥ — 1), and energy,

E=/ (|92 + |%|? = |9]* + h Rey?) da. (11)

In the damped case, the momentum decays according to the rate equation (4) while

the energy satisfies
E =2y (/ |[v|*dzx — E) . (12)

—00

III. CONTINUATION OF DAMPED SOLITONS TO NONZERO
VELOCITIES

A. Continuability criterion

Our first strategy is to attempt to continue stationary solutions with nonzero +y to
nonzero V. Two basic soliton solutions, denoted ;. and v_, are available explicitly:

Yo (z) = e ¥ Ay sech (Asz); (13)
Ai= \/1:&\/]12—’)’2,
1 =T _
0y = 5 arcsin 7, 0_ = 5 0.

The two solitons can form a variety of stationary complexes. These are denoted,
symbolically, ¥4+, ¥(--), Y(+—+), Y(—+-), and so on [12]. Let 1o(z) be a particular
complex; we want to find out whether it can be continued in V. Assuming there is a
solution 9(&; V') such that 9(&;0) = ¥o(£) (= vo(z)), we expand ¥(&; V) in powers
of V as

Y& V) = e { uo(€) +iwo(€) +VIur(€) + w1 (€)] + V{ua(€) +iva(§)] + ...}, (14)

where the constant phase 6 will be chosen at a later stage. We also expand A and
h=ho+hV+..,v=9%+m1V +... Substituting into (8), the order V! gives

e(u)=(2%)+=(x) (15)

where the operator £ has the form

r= =82 + 1+ ho cos 20 — 6u — 2v} Yo + hosin 20 — 4ugvp \ (16)
T\ =70 + hosin 26 — 4ugy, —8%2+1—hocos260 — 2u¢ — 6v3 |’



the constant matrix B is given by

—h, cos 26 —~1 — hy sin 26
Y1 — hy sin 20 hicos28 )’

and the primes over up and v indicate derivatives with respect to z. (In (15) and
(16) we have replaced £ with = as £ coincides with x for V = 0.) According to
Fredholm’s alternative, eq.(15) has a bounded solution u;(z), v1(z) iff the vector in
the right-hand side is orthogonal to the kernel of the Hermitean-conjugate operator

“ /(y,w) (_’L;";a)d:c%-/(y,w)li’(zz)dzzo. (17)

Here §(z) = (y,w)7 is the eigenvector of L' associated with the zero eigenvalue:
L'y = 0. That the operator £! has a zero eigenvalue follows from the fact that
the operator £ has one, namely, the translation eigenvalue corresponding to the
eigenvector (up, vy)T. Eq.(17) gives a necessary continuability condition of damped
queiscent solitons to nonzero velocities.

B. Noncontinuability of the ‘building blocks’

It is quite easy to check that when 7o # 0, the individual ¢, and 9_ solitons (the
basic ‘building blocks’ of which all complexes are constructed) are not continuable
to nonzero V. Choosing 6 = 6, for the 1 soliton and 6 = 6_ for the ¢)_ (where 6.
are to be computed from the bottom formula in (13) with v = 7 and h = hy), we
get vo(z) = 0, o — hosin20 = 0 and so the 2 X 2 matrix £, eq.(16), becomes upper
triangular. The zero mode of £ can now be readily found.

Consider, for instance, the ¢+ case. The zero mode satisfies

—02 + A% — 6u? 0 v)_o
27 —2+A2 -2 ) \w) 7

hence y(z) = ugy(z) and w(z) is found from
(82 + A2 — 2ud)w = —2yuy(). (18)

Using the explicit expression for uo(z), uo(z) = A sech(A,z), the operator in the
left-hand side of (18) can be written as A3 (Lo — €), where € = 2ho cos(20..)/A2; Lo
is given by

Lo = —8% + 1 — 2sech®X,

and X = A, xz. The operator Ly has familiar spectral properties; in particular it has a
single discrete eigenvalue Ey = 0 associated with an even eigenfunction zy = sechX,
while its continuous spectrum occupies the semiaxis Ej > 1. Consequently, for
0 < € < 1 (that is, for Ay < 4/1+12), the operator Ly — € is invertible and a
bounded solution w(z) of (18) exists and is unique. It can be found explicitly, but



this is not really necessary for our purposes. All we need to know is that, since Lg
is a parity-preserving operator, w(z) has the same parity as the right-hand side in
(18), i.e. it is an odd function. For that reason the second integral in equation (17)
vanishes and the necessary continuability condition reduces to

y / 2(2)(Lo — &)~ u(z)dz = (19)

This quadratic form can be easily evaluated by expanding uy(x) over eigenfuctions
of the operator Ly: -
h(z) = / U (k) 2(X)dk
—00
where Loz (X) = (14k2)z(X). (The ‘discrete’ eigenfunction zo(X) does not appear
in the expansion as it has the opposite parity to ug(z).) Utilising the orthonormality
of the eigenfunctions, the continuability condition (19) is transformed into

y / E%dk —0. (20)

As € < 1, this condition can obviously not be satisfied (unless v = 0).
In the case of the 9_ soliton the analysis is similar. In this case the continuability

condition (20) is replaced by
U(k)? _
/ Rt (—e)F w3k =0,

and this cannot be met for the same reason as eq.(20).

C. Continuation of the complexes

Turning to the complezes of the solitons 1, and v_, the phase of the complex
varies with z and therefore the matrix £ cannot be made triangular no matter how
we choose the constant 6 in (14). For this reason, aggravated by the fact that the
multisoliton solutions are not available explicitly, the continuability condition (17)
cannot be verified analytically. Resorting to the help of computer, we evaluated the
eigenfuction §j(z) associated with the zero eigenvalue of the operator £' numerically.

‘All damped soliton complexes found in [12], were symmetric; that is, the corre-
sponding u and v are even functions of z. Therefore, the operator L' whose potential
part is made up of u(x) and v(z), is parity preserving and all its eigenfunctions per-
taining to nonrepeated eigenvalues are either even or odd. As we move along a
continuous branch of solutions, the parity of the eigenfunction has to change con-
tinuously. Since the parity equals either +1 (for even functions) or —1 (for odd
functions), the only option left to it by the continuity argument, is to remain con-
stant on the entire branch. For that reason it is sufficient to determine the parity
of the eigenfunction for one specific value of » — and we will know it at all other
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Fig. 1. A fragment of the bifurcation diagram for stationary multisoliton complexes (adapted
from [12].) Shown is the energy (11) of the complex as a function of h. The bottom branch
pertains to symmetric two-soliton complexes 1;.;) and %__y and a three-soliton solution
¥(—+-); the top branch includes the three-soliton states 9,1,y and ¥(___), as well as a five-
soliton solution %(_,__y. The thick curve corresponds to stable and thin curves to unstable
solutions. The black dots indicate points where the integral (21) equals zero and therefore
moving solitons are allowed to bifurcate off.

points. Our numerical calculation shows that the eigenfunction #(z) is odd on all
branches reported in [12]. Consequently, the second term in (17) is always zero and
we only need to evaluate the first term.

Having found the solution v(z) = u(z) + iv(x) at representative points along
each branch, we obtained the eigenfunction 7(x) at these points and evaluated what
remains of the integral (17):

/(yv{, —wug) dz = I(h). (21)

The integral I is a continuous function of h, and it was not difficult to find points
on the curve at which it changes from positive to negative values, or vice versa.

We examined two branches of multisoliton solutions obtained previously [12]
(Fig.1). The integral I(h) was found to change its sign at three points, marked
by black dots in Fig.1. (Although it may seem from the figure that I equals zero
right at the turning points, in the actual fact zeros of I do not ezractly coincide with
the turning points.) We were indeed able to numerically continue our solutions in V'
from each of these three points. Results are presented in Fig.2, (a)-(c).

The point ‘1’ in Fig.1 corresponds to the stationary complex t44) and lies just
above the turning point where the ;) turns into 9__). (The turning point has
h = 0.83504217 while I(h) = 0 for h = 0.8353.) This solution has four positive
real eigenvalues in the spectrum of the associated linearised operator and hence is
unstable. The (V') curve which results from the continuation of this solution in
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Fig. 2. Bifurcation curves branching off the points marked by black dots in Fig.1. The curves
- illustrate the relation between the value of the damping v and velocity V' at which the wave
may travel for that «. Each curve begins at the point ¥ = 0.565 on the vertical axis. The insets
show representative solutions at internal points of each branch. (Solid line: real part; dashed
line: imaginary part.) Note the logarithmic scale of V in (b). Here, and in all other diagrams,
arrows indicate our direction of continuation.
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V, is shown in Fig.2(a). As V' grows from zero, the solution looses its even symme-
try (see the inset to Fig.2(a)) while the four positive eigenvalues collide, pairwise,
and become two complex conjugate pairs with positive real parts. After reaching
a maximum velocity of approximately 0.65, the curve turns back towards V = 0,
with ~ first growing but then also turning towards v = 0. The solution transforms
into a (strongly overlapped) t(;_y complex. As V and v tend to their zero values,
the separation between the v, and v_ constituent solitons in the complex grows to
infinity. The spectrum becomes the union of the eigenvalues of the individual v,
and 9_ solitons; in particular, it includes a complex-conjugate pair with positive
real part, and a positive real eigenvalue. Thus the entire branch shown in Fig.2(a)
is unstable.

One more comment that we need to make here, concerns the validity of the
continuation scenario presented in Fig.2(a) for other values of h. Note that if we
chose a smaller value of v in Fig.1, the value of h corresponding to the point ‘1’
would also be smaller. (For example, taking v = 0.548 gives h = 0.82.) For this
smaller h the final product of the continuation turns out to be not a pair of infinitely
separated stationary ¥, and ¢_ but a totally different complex. This is discussed
below in section V; see also Figs.4(c) and 5.

Another branch bifurcates off at the point marked ‘2’ in Fig.1. Here h = 0.867.
The corresponding (V') diagram is displayed in Fig.2(b). As we move along the
branch departing from V' = 0, the original stationary complex 1)(—__) transforms into
a solution displaying three widely separated peaks in its real part: one corresponding
to a strongly overlapping complex t(_,_); the next one to the 1, and the last
one to the v_ soliton. After passing a turning point, the curve is reapproaching,
tangentially, the V' = 0-axis. However, having reached V = 2.2 x 1078, it suddenly
turns back and the velocity starts to grow again. The separation between the solitons
decreases and the solution can now be interpreted as a strongly overlapping four-
soliton complex t(;++—) (shown in the inset to Fig.2(b)). As we continue further,
the four constituent solitons regroup into two complexes, 1(;4) and % _). The
distance between the two complexes grows rapidly and, for certain finite V' and
(at the endpoint of the curve in Fig.2(b)) becomes infinite. At this point we have
two coexisting solutions, (;.+) and v(;._), and so this point corresponds to the point
of self-intersection of the curve shown in Fig.2(a). Continuing the two solutions,
separately, from the endpoint of the curve in Fig.2(b), we reproduce the diagram of
Fig.2(a) for a slightly different value of A (i.e. for A = 0.867.)

The entire branch shown in Fig.2 (b) is unstable. The start-off stationary solution
Y(———) has three positive real eigenvalues in its spectrum; one of these persists for
all V and v while the other two collide and form a complex-conjugate pair with
positive real part.

The branch continuing from the point ‘3’ in Fig.1, for which A = 0.863645, leads
to the least expected solutions. The resulting (V) curve is shown in Fig.2(c). For
points lying on the ‘spiral’ part of the curve, the function 1(z) is equal to a constant
in a relatively large but finite region, and zero outside that region. (See the inset
to Fig.2(c).) The constant is % = (A_/+/2)e~-; it defines a stationary spatially



uniform solution to eq.(6). (This flat background is unstable with respect to the
continuous spectrum perturbations. Figuratively speaking, our pulse solution %(z)
represents a ‘droplet’ of the unstable phase in the stable one.) On one side (at the
rear of the pulse) the zero background is connected to the background % by a
kink-like interface. In the front of the pulse, the interface has the character of a
large-amplitude excitation, with the shape reminding the 1(;_) complex. As the
curve (V) spirals towards its ‘focus’ in Fig.2(c), the length of the region where
P(z) = 9O is growing. The entire branch is unstable; the start-off ¢__y solution
already has two real positive eigenvalues in its spectrum and more appear as we
move along the branch. Those additional positive eigenvalues are remnants of the
unstable interval of the continuous spectrum of the flat nonzero solution (.

IV. CONTINUATION OF TRAVELLING WAVES TO NONZERO
DAMPINGS

A. Continuability conditions

When v = 0, the equation (8) has a plethora of localised solutions with nonzero
V [17], and our second strategy will be to attempt to continue these undamped
travelling waves to nonzero y. We start with establishing the necessary and sufficient
conditions for such a continuation.

A set of the necessary conditions can be easily derived using two integral char-
acteristics of equation (6), the momentum P = (i/2) [ (4,4 — 1,%¥)dz, and energy
(11). No matter whether -y equals zero or not, the uniformly travelling solitary waves
(i-e. solutions of the form (7)) satisfy P = E = 0. Using these relations in eqgs.(4)
and (12) with v # 0, we get

P=0, (22)

and

E= / |9]dz. (23)

Equations (22)-(23) have to be satisfied by the undamped solutions continuable to
nonzero 7.

In fact, eqs.(22) and (23) are not independent. Indeed, multiplying Eq.(8) by 1,
adding its complex conjugate and integrating, gives an identity

E- / lp|*dz = VP. (24)

Letting P = 0 in (24), eq.(23) immediately follows. Thus we can keep equation
P = 0 as the only necessary condition for the continuability to nonzero v; eq.(23)
is satisfied as soon as eq.(22) is in place.

It turns out that P = 0 is also a sufficient condition. To show this, we expand
the field ¥ = u + v in powers of ~:

U= ug+ yu; + 72uz +.., v=v+yv+ 72112 +...,

10



substitute into (8) and equate coefficients of like powers. At the order O(v!), we

obtain:
U\ _ [ —Y
wo()- (). -

Here the hermitean operator H, is as in (10) where we only need to attach zero
subscripts to u and v:

( —0f + 1+ ho — 6u — 2v} —VoOe — duguo )
Ho = .

VoOr — duouo -0} + 1 — ho — 2u} — 6v¢ (26)

Since the operator H, has a zero eigenvalue, with the translation mode as an asso-
ciated eigenvector, equation (25) is only solvable if its right-hand side is orthogonal

to (ug, vp):
/(ua,va) (‘;’g) € =P =0.

(Here the prime indicates the derivative with respect to &.)

Assume P = 0 so that a bounded solution to (25) exists. All travelling waves
found in [17] have even real and odd imaginary parts: uo(—z) = uo(z), vo(—z) =
—up(z). Noticing that the diagonal elements of the operator H, are parity-preserving
while the off-diagonal elements change their sign under the £ — —£, we conclude
that u;(z) is odd and v (z) is even.

Proceeding to the order O(y?), we have

Ho (ug ) _ ( —v; + uo[6u? + 2v?] + dvpuiv; ) . 27)

Vg u1 + vo[2u? + 6vf] + duousv;

The top entry in the right-hand side of (27) is even and the bottom one odd; hence
the right-hand side is orthogonal to the null vector (ugp, vj) and a bounded solution
ug(§), v2(€) exists. This time the u-component is even and the v-component odd:
uz(—€) = uz(§), va(—€) = —v2(§).

It is not difficult to verify that this parity alternation property guarantees the
boundedness of u,(§) and v,(£) for all n. Therefore, equation (8) has a localised
solution (1)(§) — 0 as €| — oo) for sufficiently small 7. Thus if we have an undamped
soliton travelling with zero momentum, it can be continued to nonzero values of .

B. Continuable solutions: the bifurcation diagram of the undamped
nonlinear Schrédinger

In this subsection we review the P(V') dependence for the undamped solitons and
solitonic complexes [17]. Of interest, of course, are points where the graph crosses
the V-axis, i.e. where P(V) = 0.

The simplest solutions arising for V' = 0 are, obviously, our stationary funda-
mental solitons 1 and 1_. These are given by egs.(13) where one only needs to set
v=0:

Yy(z) = Atpsech (A4z), o_(z) =iA_sech (A_x),

1



with A2 = 1+h. Both v, and 9_ have zero momenta and therefore, are continuable
to nonzero 7. However, the continuation does not produce any travelling waves in
this case; all we get is our static damped solitons ¥, Eq.(13).

Next, both %, and +_ admit continuation to nonzero V' (for the fixed v = 0)

[17]. As V is increased to
c= otz

the width of the soliton %_ increases, its amplitude decreases and the soliton grad-
ually transforms into the trivial solution, ¢ = 0. On the resulting branch, the mo-
mentum vanishes only for V' = 0 and V' = ¢ and therefore, no damped branches can
bifurcate off the travelling v_ soliton.

We now turn to the soliton .. When h < 0.28, its fate is similar to that of
the 9_: as V — ¢, the soliton spreads out and merges with the zero solution. The
momentum equals zero only at two points, V =0and V = ¢; for 0 < V < ¢, the
momentum is positive.

For h > 0.28, the transformation of the ¢, is more promising from the present
viewpoint (see the dashed curve in Fig.3). As V is increased from zero, the momen-
tum grows, then the branch turns back towards the V = 0 axis. For some V < 0
the momentum reaches its maximum and then decreases to zero. The point V = V;
where P(V;) = 0 is of interest to us as a branch of damped solitons can bifurcate
off at this point (and it really does, see subsection IV D.) Continuing beyond V;, the
curve P(V) turns towards V = 0 and then, after one more turning point, we have
another zero crossing: P(V,) = 0. This is how far we have managed to advance in
our previous work [17].

At this point we need to mention that the v, and _ are not the only quies-
cent solitons for v = 0. The dashed P(V) curve in Fig.3 is seen to have one more
intersection with the P axis, apart from the one at the origin. The corresponding
solution represents a symmetric strongly overlapping complex of the v, and 1_ soli-
tons and was coined “twist" (symbolically 1) in [17]. The twist soliton arises both
for h greater and smaller than 0.28. In the former region the twist obtains from
the V-continuation of the 1, soliton while for A < 0.28, it is not connected to the
4. (See the solid curve in Fig.3.) The continuation of the twist in V in the case
h < 0.28 gives rise to a new branch of the undamped solutions which has a point
of intersection with the P = 0 axis, at some V = V;. A damped travelling wave is
bifurcating off at this value of velocity; see the next subsection. We are using the
same notation V; in the small- and large-h case in Fig.3 to emphasise the similarity
of the resulting (V') curves in the two cases (forthcoming).

Returning to the case of large h, the entire dashed curve in Fig.3 corresponds to
symmetric solutions: ¥(—¢) = 1(£). It turns out that there are also nonsymmetric
solutions; these were missed in [17]. The real part of a nonsymmetric solution is
not even and imaginary part not odd. In particular, a pair of asymmetric solutions
arise in a pitchfork bifurcation of the complex 9(rr); see the dash-dotted offshoot
from the dashed curve in Fig.3. (The two asymmetric solutions are related by the
transformation 1(¢) — t(—¢€); they obviously have equal momenta and hence are
represented by the same curve.) Continuing the asymmetric branch we have the

12
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Fig. 3. The momentum of the undamped travelling wave as a function of its velocity (a
combined and advanced version of two diagrams from [17]). The dashed and dash-dotted
curves pertain to the case of large driving strengths (here exemplified by A = 0.7). The starting
point P = V = 0 of the dashed curve corresponds to the stationary undamped %, soliton,
which then transforms to the twist, then to a bound state of two twists and then to a complex
of a twist and two t_ solitons. (This curve appeared in [17].) The dash-dotted offshoot is our
new contribution to the diagram; it corresponds to an asymmetric solution, (—1), detaching
from the 9(rr) curve. The solid curve pertains to the case of small driving amplitudes (here
h = 0.05). (This curve also appeared in [17].) The points of its intersection with the P-axis
correspond to stationary twist solitons; continuing each of these counterclockwise gives rise to a
bound state of two 9 's, while when continued clockwise each twist transforms into a complex
of two _'s. More solution curves can be generated by the mapping V — -V, P — —P.

third zero crossing, at V = V3. When continued to positive P, the asymmetric
solution acquires the form of a complex of %_ and 17 solitons, with the intersoliton
separation growing as P is increased. (Note that although the dashed and dash-
dotted curve end at nearby points, they are not connected.) Our numerical analysis
shows that branches of damped solitons do indeed detach at V4, V, and Vi; these
will be described in the next two subsections.

C. Numerical continuation: Small driving amplitudes

For small h, h < 0.28, our continuation departs from the twist soliton moving with
the velocity V; (the point of intersection of the solid curve with the horisontal axis in
Fig.3.) The real part of this solution is even and imaginary part odd: ¢(—z) = ¥(z).
As we continue to nonzero v, this symmetry is lost; a typical profile at the internal
points looks like a nonsymmetric complex of the 1)_ and v, and is displayed in the
inset to Fig.4(a). The rest of Fig.4(a) shows the resulting (V') dependence. As v
grows, the negative velocity of the travelling wave decreases in modulus. However
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Fig. 4. Results of the numerical continuation of the undamped travelling solitons to nonzero 7.
(a): small h; (b),(c): large h. The inset displays a representative solution at one of the internal

points of the curve. (Solid line: real part; dashed line: imaginary part.) Each curve shown has
a positive-velocity counterpart which arises by the mirror reflection V' — —V of the figure.



the damping cannot be increased beyond a certain limit value; as we reach it, the
7(V)-curve turns down (Fig.4(a)). As V and ~ tend to zero, the separation between
the 9_ and %, solitons in the complex grows without bounds.

These transformations of the solution are reflected by the behaviour of the lin-
earised eigenvalues in the eigenvalue problem (9). At the point V = Vi, v = 0 of
the (V') curve, the twist solution has a quadruplet of complex eigenvalues £\, X
which dissociates into two pairs of complex-conjugate eigenvalues A1, A and A2, Ao
(with ReA; < 0 and Re Ay > 0) as «y deviates from zero. As we move towards the
maximum of the curve, the imaginary parts of A; and ), decrease and the four
complex eigenvalues move onto the real axis. At the point of maximum one of the
resulting two positive eigenvalues crosses to the negative real axis, but the other one
persists all the way to V' = 0— and +y = 0+. Therefore the spectrum of eigenvalues
on the ‘downhill’ portion of the curve is a union of eigenvalues of the ¥_ and v,
solitons. The conclusion of the eigenvalue analysis is that the travelling complex
whose bifurcation diagram is exhibited in Fig.4(a), is unstable for all V and 7.

D. Numerical continuation: Large driving amplitudes

For h > 0.28 we have three starting points with P = 0 corresponding to two
intersections of the dashed curve and one of the dash-dotted curve with the horisontal
axis in Fig.3.

The v(V) curve emanating out of the point V] is the top, arc-shaped, curve in
Fig.4(b). For V = Vj and 7 = 0 the solution is symmetric and its shape reminds two
strongly overlapping twists. The linearised spectrum includes two complex quadru-
plets. As v deviates from zero, the symmetry is lost and the solution starts looking
like an asymmetric complex of two pulses. The two quadruplets of eigenvalues be-
come four complex-conjugate pairs, two with positive and two with negative real
parts. Two of these pairs (one with Re A > 0 and one with Re A < 0) move on to the
real axis. After that one positive real eigenvalue crosses to the negative semiaxis,
while the complex pair with Re A > 0 crosses into the Re A < 0 half-plane but then
returns to ReA > 0. As V,vy — 0, the separation between the 1_ and 1 solitons
comprising this complex increases, and eventually the two constituents diverge to
infinities. On the ‘downhill’ portion of the curve, the spectrum is a union of the
spectra of the individual ¥ _ and 1, solitons; in particular, it includes a positive real
eigenvalue and a complex quadruplet. Since there are eigenvalues with Re A > 0 for
all V, the entire branch is unstable.

The second undamped travelling wave with zero momentum (point V5 on the
bifurcation diagram Fig.3) corresponds to a symmetric [¢)(—z) = ()] complex
of two ¢_ and one twist soliton, symbolically 9(_r—). The spectrum includes three
complex quadruplets. As we continue in v and V, the symmetry is lost but the
solution still looks like a complex of three solitons, see the inset to Fig.4(b). The
bottom, spike-shaped, curve in Fig.4(b) depicts the corresponding (V') dependence.
Unlike the branch starting at the value V' = Vj, this solution cannot be continued
to zero velocities. Instead, the (V) curve turns back and, as v approaches zero
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from above, V tends to a negative value Vj, with |V4| > |V,|. For sufficiently small
the corresponding solution consists of two 1. solitons and a twist in between, with
the intersoliton separations growing to infinity as v — 0, V' — V}. The associated
eigenvalues perform rather complicated movements on the complex plane; skipping
the details it suffices to mention that ‘unstable’ eigenvalues (real positive or complex
with positive real parts) are present for all V. Hence the entire branch is unstable.
Finally, the point V3 on the diagram Fig.3 represents two nonequivalent asym-
metric solutions with zero momentum, v;(£) and ¥5(£), with ¥2(¢) = 9,(—£). Con-
sequently, there are two distinct y(V')-branches coming out of this point (Fig.4(c)).
One of these corresponds to a complex of two solitons; when continued to V = 0,
it gives rise to the symmetric complex ;) with nonzero -y. (See the top curve in
Fig.4(c)). Continuing the other asymmetric solution to V = 0, the corresponding
value of 7 reaches a maximum at V' ~ 0.3 and then tends to zero. (The bottom
curve in Fig.4(c)). For sufficiently small V' and + this solution represents a complex
P(——+) (shown in the inset to Fig.4(c)). As V,y — 0, the intersoliton separation
tends to infinity. Turning to the eigenvalues, the start-off solution at the point V3
has two complex quadruplets and a real positive eigenvalue in its spectrum. When
we continue along the top curve in Fig.4(c), two complex eigenvalues move on to the
positive real axis, so we end up with three positive eigenvalues. When we continue
along the bottom curve, the movements of the eigenvalues are more involved but
some of them always remain in the unstable half-plane Re A > 0. The upshot of the
eigenvalue analysis is that both curves represent only unstable solutions.

V. CONSISTENCY OF THE TWO APPROACHES

To complete our classification of damped travelling solitons, we need to comment
on what may seem to be an inconsistency between results obtained within the above
two complementary approaches. The solution representing the well-separated 1,
and 1_ solitons reported in sections III and IV, can be reached by continuing both
off the (v = 0)- and (V = 0)-axes. (This branch connecting to the origin on the
(V,~)-plane appears both in Figs. 2(a) and 4(b).) Although such a curve should
obviously not depend on the starting point of the continuation, one notices that
the 94—y branches ‘flowing into the origin’ in Figs. 2(a) and 4(b) behave differently
when traced backwards (i.e. away from V = v = 0). While the curve in Fig.2(a)
intersects the ~-axis, its counterpart in Fig.4(b) crosses the other, V-, axis. (Here
the reader should not be confused by the fact that the 1;_) branch in Fig.2(a) is
shown for positive and its counterpart in Fig.4(b) for negative values of V. In view
of the { — —¢, V — —V invariance of equation (8), to each + there correspond
two travelling waves, one with positive and the other one with negative value of V.
Therefore, one should mirror-reflect Fig.4(b) prior to comparing it to Fig.2(a). This
reflection maps the solution 9_,) of Fig.4(b) to the ¢,y of Fig.2(a).)

To resolve the paradox, one needs to note that the two figures correspond to
different values of h, Fig.2(a) to h = 0.8353 and Fig.4(b) to h = 0.7. It turns out
that a qualitative change of behaviour occurs for h somewhere between these values,
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Fig. 5. The comparison of the bifurcation diagrams for h = 0.82 and h = 0.8275. Solid curve:
h = 0.8275; dashed curve: h = 0.82. Although the intersection points for the dashed and solid
curves do not coincide, i.e. V3(0.8275) # V3(0.82) and V;(0.8275) # V1(0.82), they are quite
close and hence we mark them as a single point (V3 and V1, respectively.) The branches coming
out of the point V; on the V-axis are omitted for visual clarity. Note the shape of the dashed
and solid curves near V' ~ 0.7, v ~ 0.3, characteristic of phase portraits of 2D dynamical
systems in the neighbourhood of saddle points.

more precisely between 0.82 and 0.8275: For h = 0.82 and smaller (in particular, for
h = 0.7) the 7(V) curve has the form of an arc shown in Fig.4(b) (i.e. it crosses the
V-axis as V is increased) while for h = 0.8275 and greater, the curve is already loop-
shaped and does not reach to v = 0. This change of behaviour, accounting for the
above ‘inconsistency’, is illustrated by Fig.5 which compares the (V') dependencies
for h = 0.82 and h = 0.8275. Fig.5 also serves to illustrate the different outcomes of
the continuation of the complex ¥, for A = 0.8353 and smaller h. (We note that
for h = 0.8353 the continuation of the motionless (;+) produces a pair of infinitely
separated solitons %, and 9_ (Fig.2(a)) while for » = 0.7, the curve departing
from the same starting point 9,y ends up at the undamped asymmetric solution
travelling with nonzero velocity V3 (Fig.4(c).)

The above differences in behaviour result from the presence of a saddle point on
the (7, V)-plane, in the gap between the two lobes of the solid curve in Fig.5. Indeed,
the dashed and solid curves can be seen as sections of the surface h = h(y,V) by
the horisontal planes h = 0.82 and h = 0.8275, respectively. The gap in the upper
solid curve is then accounted for by letting A = hg + z* — y? in the vicinity of the
gap. Here the constant hg lies somewhere between 0.82 and 0.8275, and (z,y) is a
pair of suitably chosen coordinates on the (v, V)-plane.



VI. CONCLUSIONS

One of the conclusions of this work is that by grouping into complexes, solitons
(or, equivalently, solitary pulses) can adjust their total momentum to zero. By doing
so they can travel with nonzero speed in presence of damping — without violating the
momentum decay law, P = —vP. Two identical solitons travelling at the same speed
in the same direction have equal momenta; therefore, in order to arrange for P = 0
the travelling complex inevitably has to involve solitons of different varieties (i.e.
both 9,’s and 9_’s.) Consequently, the real and imaginary parts of the travelling
complex will always be represented by asymmetric functions of £ = z — V't.

Although the possibility of nondecelerated motion may be out of line with the
common perception of the soliton dynamics in weakly damped Hamiltonian equa-
tions, moving pulses are not unknown in strongly dissipative systems. A suitable
example is given by the complex Ginzburg-Landau equation. Asymmetric Ginzburg-
Landau pulses, uniformly travelling with nonzero velocities, were reported in [19].

All moving solutions that we have found in this paper, turned out to be unstable.
This instability admits a simple qualitative explanation — at least, for small damp-
ings. In the undamped situation the %_ solitons are unstable when travelling with
small velocities while the %, ’s become unstable when moving sufficiently fast [17].
In the presence of dissipation the travelling wave has to include solitons of both va-
rieties; on the other hand, the eigenvalues corresponding to small nonzero vy should
remain close to their (y = 0)-counterparts. Therefore the spectrum of the travelling
complex will ‘inherit’ unstable eigenvalues of either ¢_ (for small velocities) or of
the 9, (for large velocities).

Thus, despite the fact that the parametric driver can sustain the uniform motion
of a damped soliton, an additional agent (such as, possibly, the diffusion and/or a
nonlinear damping term) is required to make this motion stable. Here it is appro-
priate to refer, again, to the complex Ginzburg-Landau equation. Stable Ginzburg-
Landau pulses arise as a result of a delicate balance of the whole series of terms,
including dispersion, cubic and quintic nonlinearity, diffusion, cubic gain and linear
and quintic nonlinear damping [19-21]. In a similar way, the gain/loss and spread-
ing/steepening balances of the damped-driven travelling solitons could be restored
by adding one or several missing agents.
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Bapamenkos U. B., 3emnsnas E. B. E17-2003-53
IBUXyluMecs COMMTOHbI HellMHelHHoro ypaBHeHus LllpemuHrepa
C mapaMeTpHYECKOi HaKayKoH M OUCCHUIaUHeH

XopoLo U3BECTHO, YTO JTHHEHHBIA JUCCHIATHBHBIN WICH B HEJIMHEHHOM ypaB-
HeHuHd llpenuHrepa NPHBOOUT K 3KCIIOHEHLUHMANBHOMY 3aTYXaHMIO HMITyJIbCaA IBH-
XyLIerocs COJMTOHA (Jaxe B TOM CJydae, KOIRa OCYLIECTB/IETCA OTHOPOIHAas
O NPOCTPAaHCTBY MOAKAYKa dHepruu). OCHOBHOI pe3ynbraT HacTosueil pabGoTsl
COCTOHT B TOM, YTO HY/EBOi MMITYJIbC HE 00SA3aTENBHO 03HAYAET HYJIEBYI0O CKOPOCTb
conuToHa. ITokas3aHo, 4To B NPUCYTCTBUH MapaMeTPHYECKOi HaKayKy OBa H Oomnee
AUCCUIIATHBHBIX CONHUTOHA MOTyT 00pa30BaTh KOMIUIEKC, ABUXYLIMHCS C HEHyIle-
BOH IMOCTOSSHHOH CKOPOCTBIO, HO C HYJIEBBIM MMITY/IbCOM.

Ha sToM 3Tane Mbl OOHApYXIIH JIHIIb HEYCTOHYMBLIE ABHXYLIHECS KOMILIECK-
col. TeM caMbIM, XOTd NapaMeTpUYecKasd HaKayKa CIOcoOHa 0GECHEYHTh pPaBHO-
MEPHOE IBUXEHHE JUCCUIIATHBHOTO COJIMTOHA, I CTaGHIH3AIIMH STOTO JBUXKEHHS
TpebGyeTcs MPUCYTCTBHE NOMOIHHUTENbHBIX YWICHOB B YPaBHEHHM.

Pa6ora BemonHeHna B Jlaboparopuu nH(popMalHoHHbIX TexHonmoruii OMSIH.

Ipenpunt O6beaUHEHHOrO MHCTUTYTA SAOEpHBIX HccnegoBaHuil. IyGHa, 2003

Barashenkov 1. V., Zemlyanaya E. V. E17-2003-53
Travelling Solitons
in the Damped Driven Nonlinear Schrodinger Equation

The well-known effect of the linear damping on the moving nonlinear
Schrodinger soliton (even when there is energy supply via the spatially homoge-
neous driving) is to quench its momentum to zero. Surprisingly, the zero momen-
tum does not necessarily mean zero velocity. We show that two or more paramet-
rically driven damped solitons can form a complex travelling with zero momen-
tum at a nonzero constant speed.

All travelling complexes we have found so far, turned out to be unstable.
Thus, the parametric driving is capable of sustaining the uniform motion
of damped solitons, but some additional agent is required to make this motion sta-
ble.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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