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ABSTRACT

The problem of recovering geometric properties of a domain from the trace of the heat
kernel for an initial-boundary value problem arises in NMR microscopy and other appli-
cations. It is similar to the problem of “hearing the shape of a drum”, for which a Poisson
type summation formula relates geometric properties of the domain to the eigenvalues of
the Dirichlet or Neumann problem for the Laplace equation. It is well known that the
area, circumference, and the number of holes in a planar domain can be recovered from
the short time asymptotics of the solution of the initial-boundary value problem for the
heat equation. It is also known that the length spectrum of closed billiard ball trajec-
tories in the domain can be recovered from the eigenvalues or from the solution of the
wave equation. This spectrum can also be recovered from the heat kernel for a compact
manifold without boundary. We show that for a planar domain with boundary, the length
spectrum can be recovered directly from the short time expansion of the trace of the heat
kernel. The results can be extended to higher dimensions in a straightforward manner.
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1. Introduction

The problem of recovering geometric properties of a domain from NMR measure-
ments arises in oil explorations and in non-invasive microscopy of cell structure [1]. In
these measurements the trace of the heat kernel for the initial value problem with reflect-
ing (Neumann) boundary conditions is measured directly. The problem is analogous to
“hearing the shape of a drum”, where the solution of the wave equation in the domain is
measured directly (it is “heard”).

The problem of recovering geometrical properties of a domain from the eigenvalues of
the Dirichlet or Neumann problem for the Laplace equation in a domain has attracted
much attention in the literature (see [2]-[7] for some history and early results; for more
recent work see [8], [9] an references therein).

The mathematical statement of the problem is as follows. Green’s function for the heat
equation in a smooth planar domain Ω, with homogeneous Dirichlet boundary conditions,
satisfies

∂G(y,x, t)

∂t
= D∆yG(y,x, t) for y,x ∈ Ω, t > 0 (1.1)

G(y,x, 0) = δ(y − x) (1.2)

G(y,x, t) = 0 for y ∈ ∂Ω, x ∈ Ω, t > 0. (1.3)

The function G(x,x, t) dx is the probability of return to x dx at time t of a free Brownian
particle that starts at the point x at time t = 0 and diffuses in Ω with diffusion coefficient
1, with absorption at the boundary ∂Ω. If it is reflected at ∂Ω, rather than absorbed, the
Dirichlet boundary condition (1.3) is replaced with the Neumann condition [10]

∂G(y,x, t)

∂ν(y)
= 0 for y ∈ ∂Ω, x ∈ Ω, t > 0, (1.4)

where ν(y) is the unit outer normal at the boundary point y. The trace of the heat kernel
is defined as

P (t) =
∫

Ω
G(x,x, t) dx (1.5)

and can be represented by the Dirichlet series

P (t) =
∞
∑

n=1

e−λnt, (1.6)

where λn are the eigenvalues of Laplace equation with the Dirichlet or Neumann boundary
conditions (1.3) or (1.4), respectively.
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It has been shown by Kac [2] that for a domain Ω with smooth boundary ∂Ω, the
leading terms in the expansion of P (t) in powers of

√
t are

PKac(t) ∼
|Ω|
4πt

− |∂Ω|
8
√
πt

+
1

6
(1− r) +O

(√
t
)

, for t → 0,

where |Ω| denotes the area of Ω, |∂Ω| denotes the arc-length of ∂Ω, and r is the number
of holes in Ω. The full short time asymptotic power series expansion of P (t) in the form

P (t) ∼
∞
∑

n=0

ant
n/2−1,

can be deduced from the large s expansion of the Laplace transform

g(s) =
∫ ∞

0
exp{−s2t}

(

P (t)− a0
t

)

dt,

(

a0 =
|Ω|
4π

)

.

in inverse powers of s. Such an expansion was given by Stewartson and Waechter [3] in
the form

ĝ(s) ∼
∞
∑

n=1

cn
sn

,

where

cn = anΓ
(

n

2

)

.

The constants cn are computable functionals of the curvature of the boundary. The full
expansion is denoted

PSW(t) ∼ |Ω|
4πt

− |∂Ω|
8
√
πt

+
1

6
(1− r) +

∞
∑

n=3

ant
n/2−1, for t → 0. (1.7)

If the boundary is not smooth, but has cusps and corners, the expansion contains a term
of the order t−ν , where ν is a number between 0 and 1/2.

The Stewartson-Waechter expansion was used in [8] to deduce further geometric prop-
erties of Ω by extending g(s) into the complex plane. Examples were given in [8] of the
resurgence of the length spectrum of closed billiard ball trajectories in the domain.

The full length spectrum of closed geodesics on a compact Riemannian manifold with-
out boundary Ω appeared in the short time asymptotic expansion given in [6],

P (t) ∼ 1√
πt

∞
∑

n=0

Pn(
√
t) e−δ2n/t, for t → 0, (1.8)

where δn are the lengths of closed geodesics on Ω and Pn(x) are power series in x.
In this paper, we construct an expansion of the form (1.8) for the trace of the heat

kernel for the initial-boundary value problem (1.1)-(1.3) or (1.4) in a smooth bounded
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domain Ω in R
2. The results can be generalized to higher dimensions in a straightforward

manner.
The point of departure for our analysis is the observation that transcendentally small

terms are not included in the expansion (1.7). These terms have been neglected in [3] and
[8] even in the case of a circular domain, where the Laplace transform of G(y,x, t) can be
expressed explicitly in terms of modified Bessel functions. In [8] this Laplace transform
is expanded in inverse powers of s and the coefficients cn are evaluated asymptotically for
large n.

A generalization of the asymptotic expansion “beyond all orders” (1.8) has the form

P (t) ∼ PSW(t) +
1√
πt

∞
∑

n=1

Pn(
√
t) e−δ2n/t, for t → 0, (1.9)

where δn, ordered by magnitude, are constants to be determined, and Pn(x) are power
series in x. Transcendentally small terms may be, in fact, quite large and make a finite
contribution to the expansion (1.9) [11].

To recover the geometrical information from the expansion (1.9), given the (measured)
function P (t), we note that

|Ω| = lim
t→0

4πtP (t), |∂Ω| = − lim
t→0

8
√
πt

[

P (t)− |Ω|
4πt

]

, (1.10)

and so on. This way the entire expansion (1.7) can be determined.
Once the coefficients of the expansion (1.7) have been determined, the exponent of the

dominant term of the transcendentally small part, δ1, is found as

δ1 = − lim
t→0

t log
[

P (t)− PSW(t)
]

.

Proceeding this way, we can recover the entire expansion (1.9) if P (t) is known (e.g., from
measurements).

In this paper, we use the “ray method”, as developed in [12]-[15], to construct a short
time asymptotic expansion of the heat kernel. We use it to expand the trace asymptot-
ically beyond all orders (the so called “hyperasymptotic expansion”) and show that the
exponents δi are the squares of half the lengths of the periodic orbits in the domain. The
exponentially small terms in the expansion (1.9) are due to rays reflected in the bound-
ary, much like in the geometric theory of diffraction [16]-[18]. This recovers the length
spectrum of closed billiard ball trajectories in the domain. In particular, the smallest
exponent δ1 is the width of the narrowest bottleneck in the domain.

2. The one-dimensional case

The solution of the heat equation in an interval can be constructed by the method of
images. Specifically, the Green function of the problem satisfies

∂G(y, x, t)

∂t
=

∂2G(y, x, t)

∂y2
for 0 < x, y < a, t > 0 (2.1)
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G(y, x, 0) = δ(y − x) for 0 < x, y < a (2.2)

(

∂

∂y

)k

G(0, x, t) =

(

∂

∂y

)k

G(a, x, t) = 0 for 0 < x < a, t > 0, k = 0, 1. (2.3)

The method of images gives the representation

G(y, x, t) = (2.4)

1

2
√
πt

∞
∑

n=−∞

[

exp

{

−(y − x+ 2na)2

4t

}

− (−1)k exp

{

−(y + x+ 2na)2

4t

}]

, (k = 0, 1).

Note that if the infinite series is truncated after a finite number of terms, the boundary
conditions are satisfied only in an asymptotic sense as t → 0. That is, the boundary values
of the truncated solution decay exponentially fast in t−1 as t → 0 and the exponential
rate increases together with the number of retained terms.

The trace is given by

∫ a

0
G(x, x, t) dx =

1

2
√
πt

∫ a

0

∞
∑

n=−∞

[

exp

{

−(na)2

t

}

+ (−1)k exp

{

−(x+ na)2

t

}]

dx

=
1

2
√
πt

∞
∑

n=−∞

[

a exp

{

−(na)2

t

}

+ (−1)k
∫ a

0
exp

{

−(x+ na)2

t

}

dx

]

=
a

2
√
πt

∞
∑

n=−∞
exp

{

−(na)2

t

}

+
(−1)k

2

=
a

2
√
πt

+
(−1)k

2
+

a

2
√
πt

∑

n 6=0

exp

{

−(na)2

t

}

, (k = 0, 1). (2.5)

On the other hand,

∫ a

0
G(x, x, t) dx =

∞
∑

n=1

e−λnt, (2.6)

where {λn} are the eigenvalues of the homogeneous Dirichlet or Neumann problem for
the operator d2/dx2 in the interval [0, a]. Thus

∞
∑

n=1

e−λnt =
a

2
√
πt

+
(−1)k

2
+

a

2
√
πt

∑

n 6=0

exp

{

−(na)2

t

}

, (k = 0, 1). (2.7)

If instead of a single interval of length a, we consider the heat equation in a set Ω
consisting of K disjoint intervals of lengths lj , (j = 1, .., K), respectively, the resulting
expansion is

∞
∑

n=1

e−λnt =

∑K
j=1 lj

2
√
πt

+ (−1)k
2K

4
+

K
∑

j=1

lj

2
√
πt

∑

n 6=0

exp

{

−(nlj)
2

t

}

, (k = 0, 1). (2.8)
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The numerator in the first term on the right hand side of eq.(2.8) can be interpreted
as the “area” of Ω, so we denote it

∑K
j=1 lj = |Ω|. The number 2K is the number of

boundary points of Ω, which can be interpreted as the “circumference” of the boundary,
so we denote it |∂Ω| = 2K. The exponents in the sum on the right hand side of eq.(2.8)
can be interpreted as the “widths” of the components of Ω. Clearly, for small t, the term
containing the smallest width, r = min1≤j≤K lj , will dominate the sum. Thus we can
rewrite eq.(2.8) as

∞
∑

n=1

e−λnt =
|Ω|

2
√
πt

− |∂Ω|
4

+
mr√
πt

exp

{

−r2

t

}

+
∑

lj>r

lj

2
√
πt

∑

n 6=0

exp

{

−(nlj)
2

t

}

, (2.9)

where m is the number of the shortest intervals in Ω.
Equation (2.9) can be viewed as the short time asymptotic expansion of the sum on

the left hand side of the equation. The algebraic part of the expansion consists of the first
two terms and all other terms are transcendentally small. The geometric information in
the various terms of the expansion consists of the “area” of Ω and the “circumference”
|∂Ω| in the algebraic part of the expansion. The transcendental part of the expansion is
dominated by the term containing the smallest “width” of the domain, r.

The geometric information about Ω contained in the algebraic part is the information
given in the “Can one hear the shape of a drum” expansions [2], [3]. The geometric
information contained in the transcendentally small terms in (2.9) can be understood as
follows. The terms nlj in the exponents are the lengths of closed trajectories of billiard
balls in Ω, or the lengths of closed rays reflected at the boundaries, as in [5].

The representation (2.4) can be constructed as a short time approximation to the
solution of the heat equation (2.1)-(2.3) by the ray method [12]. In this method the
solution is constructed in the form

G(y, x, t) = e−S
2(y, x)/4t

∞
∑

n=0

Zn(y, x)t
n−1/2. (2.10)

Substituting the expansion (2.10) into the heat equation (2.1) and ordering terms by
orders of magnitude for small t, we obtain at the leading order the ray equation, also
called the eikonal equation,

∣

∣

∣

∣

∣

∂S(y, x)

∂y

∣

∣

∣

∣

∣

2

= 1, (2.11)

and at the next orders the transport equations

2
∂S(y, x)

∂y

∂Zn(y, x)

∂y
+ Zn(y, x)

(

∂2S(y, x)

∂y2
+

2n

S(y, x)

)

2

S(y, x)

∂2Zn−1(y, x)

∂y2
, n = 0, 1, . . . . (2.12)
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Denoting

p(y, x) =
∂S(y, x)

∂y
,

we write the equations of the characteristics, or rays of the eikonal equation (2.11) as [13]

∂y(τ, x)

∂t
= 2p,

dp(τ)

dt
= 0,

dS(τ)

dτ
= 2p2(τ) (2.13)

with the initial conditions

y(0, x) = x, p(0) = ±1, S(0) = 0.

The condition S(0) = 0 is implied by the initial condition G(x, y, 0) = δ(x − y). The
solutions are given by

y(τ, x) = x+ 2pτ, p(τ) = ±1, S(τ) = 2τ = ±(y − x). (2.14)

Thus S(y, x) is the length of the ray from y to x. We denote this solution by S0(y, x).
It is easy to see that the solution of the transport equations corresponding to S0(y, x) is
given by Z0(y, x) = const, and Zn(y, x) = 0 for all n ≥ 1. The initial condition (2.2)
implies that

Z0(y, x) =
1

2
√
π
.

Combined in eq.(2.10) this solution gives Green’s function for the heat equation on the
entire line,

G0(y, x, t) =
1

2
√
πt

exp

{

−(y − x)2

4t

}

,

which is the positive term corresponding to n = 0 in the expansion (2.4).
The ray from x to y is not the only one emanating from x. There are rays emanating

from x that end at y after reflection in the boundary. Thus the ray from x that reaches y
after it is reflected at the boundary 0 has length y+x. Therefore there is another solution
of the eikonal equation, S1(y, x), which is the length of the reflected ray, given by

S1(y, x) = y + x.

The ray from x that reaches y after it is reflected at the boundary a has length 2a−x−y.
The ray from x to 0, then to a, and then to y has length 2a+x−y. Thus the lengths of all
rays that reach y from x after any number of reflections in the boundary generate solutions
of the eikonal equation, which are the lengths of the rays, which in turn generate solutions
of the heat equation. We denote them by Sk(y, x) with some ordering. The corresponding
solutions of the transport equation are

Z0,k(y, x) =
Ck

2
√
π
,
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where Ck are constant. They are chosen so that the sum of all the ray solutions,

Gk(y, x, t) =
Z0,k(y, x)√

t
e−S

2
k(y, x)/4t,

satisfies the boundary conditions (2.3). Note that for all k 6= 0

Gk(y, x, t) → 0 as t → 0.

This construction recovers the solution (2.4).

3. The ray method for short time asymptotics of Green’s function

The ray method consists in the construction of Green’s function G(y,x, t) in the
asymptotic form

G(y,x, t) ∼ e−S
2(y,x)/4t

∞
∑

n=0

Zn(y,x)t
n−1. (3.1)

The function S(y,x) is the solution of the eikonal equation

∣

∣

∣∇yS(y,x)
∣

∣

∣

2
= 1 (3.2)

and the functions Zn(y,x) solve the transport equations

2∇yS(y,x) · ∇yZn(y,x) + Zn(y,x)

[

∆yS(y,x) +
2n− 1

S(y,x)

]

=

2

S(y,x)
∆yZn−1(y,x), for n = 0, 1, 2, . . .. (3.3)

The eikonal equation (3.2) is solved by the method of characteristics [13]. The char-
acteristics, called rays, satisfy the differential equations

dy(τ,x)

dτ
= 2∇yS(y(τ,x),x),

d∇yS(y(τ,x),x)

dτ
= 0,

dS(y(τ,x),x)

dτ
= 2. (3.4)

The initial condition (1.2) implies that the rays emanate from the point x. Thus we
choose the initial conditions

y(0,x) = x, ∇yS(y(0,x),x) = ν, S(y(0,x),x) = 0, (3.5)

where ν is a constant vector of unit length. The solution is given by

y(τ,x) = x+ 2ντ, S(y,x) = |y − x| = 2τ, ∇yS(y,x) = ν. (3.6)
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The pair (τ,ν) determines uniquely the point y = y(τ,x) and the value of S(y,x) at the
point. The parameter τ is half the distance from y to x or half the length of the ray from
x to y. The vector ν is the unit vector in the direction from x to y.

The function Z0(y,x) is easily seen to be a constant, 1/4π, and Zn(y,x) = 0 for all
n > 0. This construction recovers the solution of the heat equation in the entire plane
and disregards the boundary ∂Ω, because in the plane every point can be seen from every
other point by a straight ray. Note that to calculate the function P (t) in eq.(1.5) only the
values of S(x,x) and Z0(x,x) are needed. Thus S(x,x) = 0 and the first approximation
to G(x,x, t) is

G(x,x, t) =
1

4πt
,

hence the first approximation to P (t) is

P0(t) =
|Ω|
4πt

.

There is another solution of the eikonal equation (3.2) constructed along rays that
emanate from x, but reach y after they are reflected in ∂Ω [12]. The law of reflection is
determined from the boundary conditions. Dirichlet and Neumann boundary conditions
imply that the angle of incidence equals that of reflection [12]. Similarly, there are solu-
tions of the eikonal equation that are the lengths of rays that emanate from x and reach
y after any number of reflections in ∂Ω. We denote these solutions Sk(y,x) with some
ordering. Thus the full ray expansion of Green’s function has the form

G(y,x, t) ∼
∞
∑

k=1

e−S
2
k(y,x)/4tZk(y,x, t), (3.7)

where

Zk(y,x, t) =
∞
∑

n=0

Zn,k(y,x)t
n−1.

As above, each one of the series

e−S
2
k(y,x)/4tZk(y,x, t)

is called a ray solution of the diffusion equation. The boundary values of Zk(y,x, t)
are chosen so that G(y,x, t) in eq.(3.7 ) satisfies the imposed boundary condition. In
particular, the values of Sk(x,x) are the lengths of all rays that emanate from x and are
reflected from the boundary back to x. Note that sums of ray solutions satisfy boundary
conditions only at certain points.

To fix the ideas, we consider first simply connected domains. We denote

S0(y,x) = |x− y|

9



and

G0(y,x, t) =
1

4πt
e−S

2
0(y,x)/4t.

We consider first solutions corresponding to rays that are reflected only once at the bound-
ary, and in particular, rays that are reflected back from the boundary to the points of
their origin. Such rays hit the boundary at right angles (see Fig. 1 and [12]). If there
is only one minimal eikonal S1(x,x) > 0, we say that x is a regular point of Ω. If there
is more than one minimal eikonal S1(x,x), we say that x is a critical point of Ω. We
denote by Γ the locus of critical points in Ω. The eikonal S1(y,x) is the length of the
shortest ray from x to y with one reflection in the boundary such that the ray from x to
the boundary does not intersect Γ. For x = y the eikonal S1(x,x) is twice the distance
of x to the boundary. We denote by x′ the orthogonal projection of x on the boundary
along the shortest normal from x to the boundary. When y = x′

S1(x
′,x) = S0(x

′,x) = |x− x′| . (3.8)

The function

G1(y,x, t) = e−S
2
1(y,x)/4tZ1 (y,x, t)

has to be chosen so that G0(x
′,x, t)−G1(x

′,x, t) = 0. In view of (3.8), we have to choose

Z1 (x
′,x, t) =

1

4πt
.

When y′′ is the other boundary point on the normal from x′ to x, we have

G0(y
′′,x, t)− G1(y

′′,x, t) =
1

4πt
e−|x−y′′|2/t − e−(|x′−x|+|y′′−x′|)2/tZ1 (y

′′,x, t) . (3.9)

Next, we consider in Ω − Γ the minimal among the remaining eikonals Sk(x, x) >
S1(x, x) and denote it S2(x, x). This eikonal is twice the length of a ray that emanates
from x, intersects Γ once, and intersects the boundary ∂Ω at right angles at a point,
denoted x′′. The eikonal S2(y,x) is the length of the ray from x to y with one reflection
in the boundary such that the ray from x to the boundary intersects Γ once. When
y = x′′

S2(x
′′,x) = S0(x

′′,x) = |x− x′′| . (3.10)

When y′ is the other boundary point on the normal that emanates from x′′ (see Fig.2),
we have

S2(y
′,x) = |x− x′′|+ |y′ − x′′| .

In general x′ 6= y′ and x′′ 6= y′′. However, if the ray is a 2-periodic orbit (that hits the
boundary at only 2 points), x′ = y′ and x′′ = y′′ so that

S2(y
′′,x) = S0(y

′′,x) = |x− y′′|
and

S2(y
′,x) = |x− x′′|+ |y′′ − x′| .
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Figure 1. The locus of critical points, Γ, is the segment AB. The first eikonal is
S1(y, x) = |x− c|+ |c− y|. It is defined as the shortest reflected ray from x to y, such
that x − c does not intersect Γ. For x = y the diagonal values are S1(x, x) = 2|x− x′|.
The diagonal values of the second eikonal are S2(x, x) = 2|x− x′′|. The vectors x − x′

and x − x′′ are orthogonal to the boundary. For x1 ∈ Γ the two eikonals are equal.

Since
|x− y′′| < |x− x′|+ |y′′ − x′| < |x− x′′|+ |y′′ − x′|

for all regular points x, the order of magnitude of the boundary error (3.9) decreases if
we use the approximation

G0(y,x, t) ∼ G0(y,x, t)−G1(y,x, t)−G2(y,x, t) (3.11)

with
Z2(y

′′,x, t) = Z1(y
′′,x, t) = Z0(t).
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Figure 2. The second eikonal S2(y, x) = |x − d|+|d− y|. It is defined as the shortest
reflected ray such that x − d intersects Γ. The eikonals S3(x, x) and S4(x, x) are ordered
according to magnitude.

4. The trace

To find the short time asymptotics of the Dirichlet series (1.6), as given in eq.(1.5),

P (t) =
∫

Ω
G(x,x, t) dx,

we use the ray expansion (3.7) for the evaluation of the integral. We retain in the result-
ing expansion only terms that are transcendentally small, since all algebraic terms are
contained in the expansion (1.7).

4.1 Simply connected domains

We note that according to Sard’s theorem, Γ is a set of measure zero and that all
points in the domain Ω − Γ are regular. For any point x ∈ Ω, we denote by r1(x) its
distance to the boundary and note that S1(x,x) = 2r1(x). We also denote by s1(x)
the arclength at the boundary point x′ (the orthogonal projection of x on ∂Ω along the
shortest normal from x to ∂Ω), measured from a boundary point where the arclength is
set to 0 (see Figure 3).
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Γ 

 x 

 x" 

 x’ 

r
1
( x) 

r
2
( x) 

s
1
( x) 

A B 
E 

Ω 

Figure 3. The arclength s1(x) is measured from the point E. Both transformations
x → (r1(x), s1(x)) and x → (r2(x), s1(x)) are one to one mappings of Ω−Γ. The images
are given in Figure 4.

It follows that the change of variables in Ω− Γ , given by

x → (r1(x), s1(x)), (4.1)

is a one-to-one mapping of Ω− Γ onto a strip 0 ≤ r1 ≤ r1 (s1) , 0 ≤ s1 ≤ L, where r1(s1)
is the distance from the boundary point corresponding to arclength s1 to Γ.
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Figure 4. The domain Ω is the ellipse
x2

a2
+

y2

b2
≤ 1. The domain enclosed between the

s1-axis and the lower curve is the image of the ellipse under the transformation (4.1) and
the domain enclosed between the upper and the lower curves is its image under (4.3).

We evaluate the integral over Ω separately for each summand k in the expansion (3.7).
In this notation, we can write

∫

Ω
G1(x,x, t) dx =

(4.2)
∫

Ω
e
−
[

S1(x,x)
]

2

/4t
∞
∑

n=0

Zn,1(x,x)t
n−1 dx =

∫ L

0
ds
∫ r1(s1)

0
e−r2

1
/tJ1(r1, s1)Z1(r1, s1, t) dr1,

where J1(r1, s1) is the Jacobian of the transformation and

Z1(r1, s1, t) =
∞
∑

n=0

Zn,1(x, x)t
n−1.

Note that the Jacobian vanishes neither inside Ω− Γ nor at r1 = 0, because the transfor-
mation is one-to-one in Ω− Γ, however, it does on Γ.

We set S2(x, x) = 2r2(x) and use it as a coordinate. We use s1(x) as the other
coordinate of the point x ∈ Ω − Γ. Note that while r2(x) is the length of the longer
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normal from x to ∂Ω (the one that intersects Γ), the other coordinate is the arclength
corresponding to the shorter normal from x to ∂Ω (the one that does not intersect Γ).
The transformation

x → (r2(x), s1(x)) (4.3)

maps Ω−Γ onto the strip r (s1) ≤ r2 ≤ l(s1), 0 ≤ s1 ≤ L, where l(s1) is the length of the
segment of the normal that starts at the boundary point r1 = 0, s1 and ends at its other
intersection point with the boundary. This mapping is one-to-one as well. It follows that

∫

Ω
G2(x,x, t) dx =

(4.4)
∫

Ω
e
−
[

S2(x,x)
]

2

/4t
∞
∑

n=0

Zn,2(x,x)t
n−1 dx =

∫ L

0
ds1

∫ l(s1)

r(s1)
e−r2

2
/tJ2(r2, s1)Z2(r2, s1, t) dr2,

where

Z2(r2, s1, t) =
∞
∑

n=0

Zn,2(x, x)t
n−1.

Note that for x on Γ both transformations (4.1) and (4.3) are identical and

J2(r2, s1)Z2(r2, s1, t) = J1(r1, s1)Z1(r1, s1, t).

It follows that the two equations (4.2) and (4.4) combine together to give

∫

Ω
[G1(x,x, t) +G2(x,x, t)] dx =

(4.5)
∫ L

0

∫ l(s)

0
e−r2/tJ(r, s)Z(r, s, t) dr ds,

where s = s1, r = r1, J = J1, and Z = Z1 for 0 < r < r1(s1), and s = s1, r = r2, J = J2,
and Z = Z2 for r2(s1) < r < l(s1). Thus the domain of integration of the function
e−r2/tJ(r, s)Z(r, s, t) in eq.(4.5) is the domain enclosed by the s1-axis and the upper curve
in Figure 4. Now, for t ≪ 1, we write the inner integral on the right hand side of eq.(4.5)
as

∫ l(s)

0
e−r2/tJ(r, s)Z(r, s, t) dr =

√

πt

2
erf

(

l(s)√
t

)

J(0, s)Z(0, s, t)
(

1 +O
(√

t
))

=

√

πt

2













1−
exp

{

− l2(s)

t

}√
t

l(s)













J(0, s)Z(0, s, t)
(

1 +O
(√

t
))

.
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Recall that J(0, s)Z(0, s, t) 6= 0. Only the exponentially small terms have to be considered,
because the algebraic terms are included in the SW expansion. Thus

∫ L

0

∫ l(s)

0
e−r2/tJ(r, s)Z(r, s, t) dr ds−

∫ L

0

√

πt

2
(0, s)Z(0, s, t)

(

1 +O
(√

t
))

ds =

−
∫ L

0
exp

{

− l2(s)

t

}

J(0, s)Z(0, s, t)

l(s)
O (t) ds for t ≪ 1.

Evaluating the last integral by the Laplace method, we find that each point si that is an
extremum point of l(s) contributes and exponential term of the form

exp

{

− l2(si)

t

}

J(0, si)Z(0, si, t)

l(si)
O (tν) . (4.6)

The expression (4.6) means that some of the δn-s in the expansion eq.(1.9) are the extremal
values l(si) and their multiples. These are half the lengths of the 2-periodic orbits of a
billiard ball in Ω (see Figure 5). The 2-periodic orbits of the ellipse are the major axes,
which correspond to the lowest and highest points of the top curve in Figure 4. There are
other exponents as well, as discussed below.

s
1
 

s
2
 

 

 

Ω 

Figure 5. The rays emanating from the boundary points s1 and s2 are orthogonal the
boundary at both ends. They are 2-periodic orbits.

The pre-exponential terms in the expression (4.6) influence the factors Pn(
√
t) in
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eq.(1.9). For example, if l′(si) = 0, l′′(si) 6= 0, then ν = 3/2. If the boundary is flatter,
then 1 ≤ ν < 3/2.

In addition to the 2-periodic orbits, there are ray solutions corresponding to rays from
x to y that are reflected any number of times in the boundary. There are eikonals from x

to y in Ω with N − 1 different vertices on the boundary, which have N vertices on ∂Ω if
x = y and x ∈ ∂Ω (this is a periodic orbit with N − 1 reflections). Among these periodic
orbits there are eikonals SN (x, x) with extremal length, denoted SN,j , (j = 1, . . .). At
points x ∈ Ω on a 2-periodic orbit the eikonal SN (x, x), which now has N − 1 vertices
on the boundary, may reduce to the 2-periodic orbit with N reflections. Therefore the
change of variables x → (SN(x,x), s(x)) will map the domain into a strip with extremal
widths that are the differences between the lengths SN,j and the length of a 2-periodic
orbit with N reflections. It follows that the evaluation of the trace by the Laplace method
leads to exponents which are the extremal lengths of periodic orbits with any number of
reflections.

For example, there is an eikonal in a circle (centered at the origin) that is the ray from
x to y with 2 reflections in the boundary (see Figure 6).

 x 

 y 

α 
α 

α 
α 

A B 

O 

Figure 6. The eikonal S3(y, x) with two reflections in the circle.
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For x = y it is the equilateral triangle (see Figure 7) with circumference

S(x,x) = R









2

√

2|x|2 + 1 +
√

8|x|2 + 1
√

4|x|2 + 1 +
√

8|x|2 + 1
+

√

4|x|2 + 2 + 2
√

8|x|2 + 1









.

R 

AB 

C 

α
      α 

α
      α 

| x| 

O 

Figure 7. The eikonal S3(x, x) with two reflections, where |x| = OC.

The eikonal S3(x,y) reduces to a 2-periodic orbit with two reflections if x = y = 0
(the center of the circle). If x is on the circumference, the eikonal becomes the isosceles
triangle with one vertex at x. To evaluate the contribution of the corresponding ray
solution to the trace, we use this eikonal as a coordinate that varies between 4R, the
length of the 2-periodic orbit with two reflections, and 3

√
3R, the circumference of the

inscribed isosceles triangle. The contribution of this integral to the exponential sum in
eq.(1.9) contains exponents that are both lengths.

Similarly, the 2-periodic orbit with 3 reflections has length 6R while the periodic orbit
with 3 reflections at 3 different points has length 4

√
2R < 6R.

4.2 Multiply connected domains

Once again, we consider first rays from x to y that are reflected only once in the
boundary. For every connected component of ∂Ω, denoted ∂Ωi (i = 1, . . . , I), a point x
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in Ω is regular with respect to ∂Ωi if there is only one minimal eikonal Si,1(x,x) > 0 with
one reflection at ∂Ωi. We denote by Γi the locus of the irregular points of Ω with respect
to ∂Ωi.

As above, we define in Ω−Γi the minimal eikonal with one reflection in ∂Ωi such that
Si,2(x,x) > Si,1(x,x). We construct an approximation

G(y,x, t) ∼ G0(y,x, t) +
2
∑

k=1

I
∑

i=1

Gi,k(y,x, t)

where Gi,k(y,x, t) are ray solutions with eikonals Si,k(y,x) and Zi,k(y,x) chosen so as
to minimize the boundary values of the sum at the boundary points of rays orthogonal
to the boundary, as above. The trace of the double sum is calculated by introducing
the change of variables 2ri,k(x) = Si,k(x,x) and arclength si(x) in ∂Ωi, as above. The
Laplace evaluation of the integrals produces exponents that are the 2-periodic orbits in
Ω.

Eikonals with two or more reflections contribute exponents that are lengths of ex-
tremal closed orbits with any number of reflections in the boundary, as in the case of
simply connected domains. Thus the exponents δn in (1.9) consist of half the lengths of
2-periodic orbits in Ω and their multiples, and extremal lengths of closed periodic orbits
with any number of reflections in the boundary and their multiples.

5. Discussion

First, we compare our result to that conjectured in [8]. The leading exponent in the
remainder of the short time expansion of P (t) in an asymptotic power series and that in
the large s expansion of its Laplace transform are related by the well known formula [19]

L
[

erfc

(

k

2
√
t

)]

(s) =
1

s
e−k

√
s,

where

erfc(z) ∼ e−z2

√
πz

for z ≫ 1.

Thus the exponential rate of blowup of the Laplace transform on a Stokes line is twice
the square root of the exponential decay rate of the remainder term in the expansion
of the trace. It follows from our result that the exponential blowup rate of the Laplace
transform is twice the square root of the exponential rate of decay in the time domain.

We illustrate our expansion for a disk, whose boundary has only one connected com-
ponent and a single critical point. We consider points x = (x1, y1) and y = (x2, y2) inside
a circle of radius R centered at the origin. The leading order eikonal is

S0 (y,x) = |x− y| .
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When both x and y are on the x-axis, we have y1 = y2 = 0 and S0 (y,x) = |x1 − x2|.
Denoting x1 = (x1, 0) and x2 = (x2, 0), we see that the values of the eikonal on the x-axis
are S0 (x1,x2) = |x1 − x2|. We assume that x1 > 0. The boundary values of the eikonal
are

S0 (x1,x2) = R− x1 at x2 = (R, 0)

and
S0 (x1,x2) = R + x1 at x2 = (−R, 0).

Thus the leading order ray approximation to Green’s function G (y,x, t),

G0 (y,x, t) =
1

4πt
e−S

2
0 (y,x) /4t,

misses the boundary conditions when x and y are on the x-axis, giving

G0 (x1,x2, t) =
1

4πt
e−(R−x1)

2/4t at x2 = (R, 0)

and

G0 (x1,x2, t) =
1

4πt
e−(R+x1)

2/4t at x2 = (−R, 0). (5.1)

The next eikonal, denoted S1 (y,x), is given on the x-axis by S1 (x1,x2) = 2R−x1−x2,
and its boundary values are

S1 (x1,x2) = R− x1 at x2 = (R, 0)

and
S1 (x1,x2) = 3R− x1 at x2 = (−R, 0).

Thus the approximation of Green’s function G (y,x, t) ,

G (y,x, t) ∼ G0 (y,x, t)−G1 (y,x, t) ,

corresponding to the ray solutions G0 (y,x, t) and

G1 (x,y, t) = Z1 (x,y, t) e
−S2

1 (y,x) /4t,

will satisfy the boundary condition at (x1, R) if Z1 (y,x, t) is chosen so that

Z1 (x1,x2,t) =
1

4πt
at x2 = (R, 0).

However, this approximation does not satisfy the boundary condition at x2 = (−R, 0).
The error in the boundary values at x2 = (−R, 0) is

G0 (x1,x2,t)−G1 (x1,x2,t) =
1

4πt
e−(R+x1)

2/4t−Z1 (x1,x2,t) e
−4(R−x1)

2/4t, at x2 = (−R, 0)

20



and is of the same order of magnitude as that of the leading order approximation (5.1).
To make up for the missed boundary condition the further approximation

G (y,x, t) ∼ G0 (y,x, t)−G1 (y,x, t)−G2 (y,x, t) (5.2)

can be used, with

G2 (y,x, t) = Z2 (y,x, t) e
−s21 (y,x) /4t,

where on the x-axis
s1 (x1,x2) = 2R + x1 + x2

and

Z2 (x1,x2,t) =
1

4πt
at x2 = (−R, 0).

This eikonal corresponds to rays with two reflections in the boundary. The approximation
(5.2) decreases the error in the boundary condition at x2 = (−R, 0) to

−Z1 (x1,x2,t) e
−4(R−x1)

2/4t,

but misses the boundary condition at x2 = (R, 0) with error

G0 (x1,x2,t)−G1 (x1,x2,t)−G2 (x1,x2,t) = −Z2 (x1,x2,t) e
−(3R+x1)

2/4t at x2 = (R, 0).

This process gives successive approximations to Green’s function with errors that decrease
at transcendental rather than algebraic rates.

The approximation to the trace produced by G0 (y,x, t) is the first algebraic term
in the expansion (1.7). The contributions of the terms −G1 (y,x, t) and −G2 (y,x, t) in

the approximation (5.2) of terms that are O
(√

te−R2/t
)

are identical, but with opposite
signs and thus they cancel each other. The second term contributes a negative term

that is O
(√

te−4R2/t
)

. The term O
(√

te−R2/t
)

for small t corresponds to O
(

1

s
e−2R

√
s
)

for large positive s in the Laplace plane. The number 2R is the length of the periodic
orbit of a billiard ball bouncing inside a circle with the center removed, that is, inside
the domain Ω − Γ, where the set of critical points Γ consists of the center. Similarly,

the term O
(√

te−4R2/t
)

for small t corresponds to O
(

1

s
e−4R

√
s
)

for large positive s in the

Laplace plane. The number 4R is the length of the minimal periodic orbit of a billiard ball
bouncing inside a disk. We conclude that the conjecture of [8] should be supplemented
with the orbit of length 2R.

If Ω is an annulus between two concentric circles, of radii a and b, respectively, (a > b),
the two connected components of the boundary are the two circles and there are no critical
points in the domain relative to either one of them. In this case δ1 = (a− b).

If Ω is the ellipse
x2

a2
+

y2

b2
< 1
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with a > b, the locus of critical points relative to the boundary is the segment

Γ =

[

−a2 − b2

a
,
a2 − b2

a

]

on the x-axis. The segment Γ is the short diagonal of the evolute of the ellipse (the

asteroid (ax)2/3 + (by)2/3 = (a2 − b2)
2/3

). For the ellipse there are exponents in eq.(1.9)
which are δ1 = 2b and its multiples and δ2 = 2a and its multiples, as well as extremal
periodic orbits with any number of reflections in the boundary.

Finally, we observe that if the boundary is reflecting (i.e., a homogeneous Neumann
boundary condition), the exponential decay rate of the transcendental terms in the expan-
sion of the trace is the same as in the case of absorbing boundary (homogeneous Dirichlet
boundary condition). In this case the second term in the expansion (1.9) changes sign.

Obviously, rays that are reflected from the boundary more than once also give rise to
ray solutions. The number of ray solutions needed in the expansion (3.7) is determined
by the required degree of asymptotic approximation of the boundary conditions. If only
a finite sum of ray solutions satisfies the boundary conditions, the sum (3.7) is finite.
Otherwise, additional ray solutions improve the degree of approximation of the boundary
conditions, as described in the one-dimensional ray expansion in Section 2.

Finally, the asymptotic convergence of the ray expansion follows from the maximum
principle for the heat equation in a straightforward manner.
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