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This series is divergent, therefore we
may be able to do something with it.

Oliver Heaviside

Nature laughs at the difficulties of integration.
Pierre-Simon Laplace

Abstract

In the present paper an iterative time-reversal algorithm, that retrofocuses an
acoustic wave field to its controllable part is established. For a fixed temporal
support, i.e., transducer excitation time, the algorithm generates an optimal
retrofocusing in the least-squares sense. Thus the iterative time-reversal algo-
rithm reduces the temporal support of the excitation from the requirement of
negligible remaining energy to the requirement of controllability. The time-
reversal retrofocusing is analyzed from a boundary control perspective where
time reversal is used to steer the acoustic wave field towards a desired state.
The wave field is controlled by transducers located at subsets of the boundary,
i.e., the controllable part of the boundary.

The time-reversal cavity and time-reversal mirror cases are analyzed. In the
cavity case, the transducers generate a locally plane wave in the fundamental
mode through a set of ducts. Numerical examples are given to illustrate the
convergence of the iterative time-reversal algorithm. In the mirror case, a
homogeneous half space is considered. For this case the analytic expression
for the retrofocused wave field is given for finite temporal support. It is shown
that the mirror case does not have the same degree of steering as the cavity
case. It is also shown that the pressure can be perfectly retrofocused for
infinite temporal support. Two examples are given that indicate that the
influence of the evanescent part of the wave field is small.

1 Introduction

Time-reversal acoustics is based on recording the wave field by a set of transducers,
time reversing the recorded signal, and retransmitting the result. The retransmitted
wave field propagates back in the medium towards its source of origin [5, 9–11,
13]. In this paper, the time-reversal approach is analyzed from a boundary control
perspective [2, 3] in which time reversal is used to steer the acoustic wave field
towards a desired state, corresponding to the original state. The boundary is divided
into a controllable and an uncontrollable part. On the controllable part of the
boundary, transducers are used to record or generate the acoustic wave field. The
uncontrollable part of the boundary is acoustically hard [25].

Both the time-reversal cavity and the time-reversal mirror have been exten-
sively studied by M. Fink et al., see e.g., [5, 9–11, 13]. The cavity and mirror
cases describe measurement situations with transducers surrounding the original
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source and only occupying a limited angular area, respectively. Applications of
time-reversal algorithms include lithotripsy, pulse focusing, medical imaging, in-
verse scattering [10, 11], and optimal distinguishability measurements [6, 7]. The
time-reversal approach gives a perfect retrofocusing if the transducers surround the
original source, i.e., the time reversal cavity, and the wave field is recorded until the
wave field is quiescent, see e.g., [2]. If the conditions for local energy decay are sat-
isfied [1, 22], the retrofocusing error can be made arbitrary small as times approach
infinity. An analysis of the super-resolving property of the time-reversal mirror is
presented in [4].

From boundary control theory, it is known that transducers can steer the wave
field towards an arbitrary field distribution if the region is controllable [3, 21]. If the
configuration is not controllable an optimal control produces an optimal retrofocused
wave field. The present paper establishes an iterative time-reversal algorithm that
retrofocuses an acoustic wave field to its controllable part. The obtained iterative
time-reversal algorithm reduces the temporal support of the transducer excitation
from the requirement of negligible remaining energy to the requirement of control-
lability. In particular for a fixed temporal support of the excitation, the algorithm
generates an optimal retrofocusing in the least-squares sense. The characteristics of
the transducers are included. The considered cavity is a bounded domain with a
perforated acoustically-hard boundary. Transducers induce the wave field through
the fundamental (or plane wave) mode in a set of ducts [25]. Numerical examples
are given to illustrate the convergence of the iterative time-reversal algorithm.

In the mirror case, a homogeneous half space is considered. For this case, it is
shown that the pressure can be perfectly retrofocused for infinite temporal support.
For finite temporal support the algorithm gives an optimal control for the propagat-
ing part of the wave field. A closed-form representation for the retrofocused wave
field, with finite temporally supported excitation, from an initial Dirac-pressure
source is given. Its behavior in the long time limit is calculated. Two examples of
retrofocusing of a pressure source are given and the influence of the evanescent part
of the wave is discussed.

The optimal measurements [6, 7] are discussed in the sense of maximal mea-
sured least-squares distinguishability of a scattering operator relative to a reference
scattering operator. The obtained algorithm is the limit of a renormalized-series of
iterated time reversals. It is noted in [6] that the limit of this renormalized-series is
a time-harmonic, frequency tuned wave form that is corresponding to the frequency
such that the largest eigenvalue of the squared time-reversed reflection operator, at-
tains it maximum in a given frequency interval. The algorithm in the present paper
uses the sum of the iterated squared time-reversed response operators, to obtain
the retrofocusing of an initial prescribed field. Thus the resulting input signal for
retrofocusing has a multi-frequency content, as opposed to the proposed algorithms
in [6, 7].

The present paper begins with a short discussion of the boundary control of
acoustic wave fields. Transducers are introduced and their restrictions on the bound-
ary conditions are analyzed. In Section 3, the sufficient conditions for optimal
boundary control with respect to a least-squares measure is given. As the first
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example we consider the case where the material parameters are unknown, see Sec-
tion 4. In Section 5, a cavity with acoustically hard walls and attached ducts is
analyzed. Numerical examples are given. The time-reversal algorithm is shown to
efficiently retrofocus the field of a initial pulse source. In Section 6, the mirror
case is analyzed. The optimal control for measurements with negligible evanescent
part is derived. For non-negligible evanescent part of the measured response, the
closed-form expression for the time-reversal of an initial pressure source is derived.
It is shown that for an initial pressure distribution, the evanescent part of the con-
trol have a marginal influence the resulting field, in the long excitation time limit.
Section 7 is a discussion of the results.

2 The acoustic wave field and boundary control

2.1 The control state

In this section we state the acoustic equations, the boundary conditions and initial
values assumed in the analysis. The goal is to focus the acoustic wave field to a
desired state at a given finite time. To quantify the focusing, relative to the desired
state, we use a weighted L2 measure, in the form of an energy functional. We also
introduce the boundary control, the admittance operator, a representation of the
characteristics of a transducer, and the response operator due to a boundary control.

The control state is an acoustic wave field in the domain Ω ∈ R
3 and time

interval [0, T ]. The boundary of the domain, ∂Ω, is assumed to be piecewise C1, and
thus the normal to the boundary is well defined almost everywhere. At the open
subset Γt ⊂ ∂Ω we have a set of transducers that are used to generate an acoustic
wave field in the domain. The control state at time t is represented by the pressure,
p = p(x, t), and the particle velocity, v = v(x, t). Given a desired final state,
{pT , vT}, we quantize the degree of focusing between the obtained control state at
time T , {p(·, T ), v(·, T )}, and the desired state, with the weighted L2-functional

J =
1

2

∫
Ω

(
κ(x)|p(x, T ) − pT (x)|2 + ρ(x)|v(x, T ) − vT (x)|2

)
dV(x) . (2.1)

The control state {p, v} satisfies the source-free acoustic equations{
κ(x)∂tp + ∇ · v = 0
ρ(x)∂tv + ∇p = 0

for x ∈ Ω , and t ∈ [0, T ] , (2.2)

where the compressibility κ(x) and the density ρ(x) model the interaction between
the acoustic wave field and the material. It is assumed that material parameters
κ and ρ are positive and belong to L∞(Ω), i.e., the parameters are bounded and
measurable. In the process of retrofocusing we assume the initial conditions

p(x, 0) = 0 and v(x, 0) = 0 for x ∈ Ω . (2.3)

In our model the transducers are supported on the controllable part Γt of the bound-
ary. Given a boundary control [21], p+ = p+(x, t), x ∈ Γt the characteristics of the
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(a)

n

(x, t)p+
(b) t

0,0
t = 0

t = T

x

pT , vT

p−

p+

{p(x, t), v(x, t)}

Figure 1: The control state: The boundary control p+ is prescribed at the boundary,
given quiescent initial condition, we measure the response p−. The desired final state
{pT , vT} is shown as the state at time t = T in Figure (b).

transducers determine how the field is induced in the domain. Here, we model the
transducer characteristic with the transducer’s admittance operator Y , that maps
its domain D ⊂ L2 to L2, and is invertible. Thus the boundary condition at the
controllable part of the boundary, see Figure 1, takes the form,

(Yp)(x, t) + vn(x, t)

2
= p+(x, t) for x ∈ Γt , and t ∈ [0, T ] , (2.4)

where vn is the normal component of the particle velocity, i.e., vn = v · n and n
is the inward unit normal vector to the boundary, see Figure 1a. The boundary
condition above, is said to be in the velocity normalization [16–18].

The uncontrollable part of the boundary, Γw = ∂Ω \Γt (the ‘wall’), is made of a
particular material with characteristics U giving the boundary condition

(Up)(x, t) + vn(x, t) = 0 for x ∈ Γw and t ∈ [0, T ] . (2.5)

Here, U is a continuous mapping from L2 to L2.
The operators Y and U are chosen such that they admit only ingoing wave

constituents and such that the problem of solving the acoustic wave equation is
well posed with this boundary condition, see Ref. 19. Observe that U = 0 in
(2.5) corresponds to an acoustically hard (uncontrolable) boundary. The case with
Y = 1 in (2.4) represents boundary conditions in the form of a locally plane wave
propagating inward into the domain i.e., in the n-direction [25].

We assume that the transducers can also be used as receivers, and measuring
the outgoing field component, p−, at the boundary, see Figure 1b. This component
is given by

p−(x, t) =
(Yp)(x, t) − vn(x, t)

2
for x ∈ Γt and t ∈ [0, T ] . (2.6)

The relation between the boundary control p+ and the measured outgoing field
component p−, for zero initial conditions, is the response operator R, which is also
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called scattering operator or reflection operator e.g., [6, 7],

p−(x, t) = (Rp+)(x, t) for x ∈ Γt and t ∈ [0, T ] . (2.7)

Given a boundary control, we assume that we can obtain its response either by
measurements on the domain, i.e., using the transducers to measure the response
to the given boundary control, or by simulation, given that the density and the
compressibility in Ω

In our formulation the boundary control is not uniquely determined. There
are many acoustic wave field configurations where it is clear that several boundary
controls minimize J , e.g., a homogeneous slab with excitation times that allows the
wave field to pass through the slab.

2.2 The observation states

In this section, we define the notion of initial observation, an observation, and
observation state. The observation of an observation state is used in constructing
the boundary control for the control state.

To distinguish between the control states and the field used for observation, we
introduce the notation {q(x, t), u(x, t)} for the observation state at times t ∈ [−T, 0].
The observation state {q, u} solves (2.2) and for convenience we let the observation
take place in the time interval [−T, 0].

We define the initial observation state through its initial conditions

q(x,−T ) = pT (x) and u(x,−T ) = −vT (x) for x ∈ Ω . (2.8)

The observation of the initial observation state is carried out with the receivers
coinciding with the transducers for the control state, i.e., the measurement in terms
of the field at the boundary is

q−(x, t) =
(Yq)(x, t) − un(x, t)

2
for x ∈ Γt and t ∈ [−T, 0] . (2.9)

Consequently, the boundary condition for the controllable part of the boundary
takes the form

(Yq)(x, t) + un(x, t)

2
= q+ for x ∈ Γt and t ∈ [−T, 0] . (2.10)

The initial observation is thus given by q
(0)
− = q− setting q+ = 0 in (2.10). On the

uncontrollable part of the boundary, the field satisfies the boundary condition (cf.
(2.5))

(Uq)(x, t) + un(x, t) = 0 for x ∈ Γw and t ∈ [−T, 0] . (2.11)

The relation between q− and q+ and the initial conditions are, by the superposition
principle

q−(x, t) = (Rq+)(x, t) + q(0)
− (x, t) for x ∈ Γt and t ∈ [−T, 0] , (2.12)
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where R coincide with the R in (2.7) since q− and p− are both the measured response
with the same receivers of the acoustic wave equations with identical domain and
type of boundary conditions.

We consider only operators Y and U such that the initial boundary value problem
(2.2), (2.8), (2.10)–(2.11) is well posed, i.e., we do not admit boundary conditions
that specify an out-going field, see Ref. 19.

With the above given information about the response operator and the initial
observation, we will search for an optimal boundary control, i.e., the control applied
in (2.4) such that the resulting control state at time T minimizes the least-squares
functional J , see (2.1), for a given {pT , vT}.

3 Retrofocusing by time reversal

The time-reversal operator T is defined as

(T p)(x, t) = p(x,−t) . (3.1)

If {p, v} solves the acoustic wave equation, (2.2), then so does {T p,−T v}.

3.1 Energies

In this section, we define the energy corresponding to the acoustic wave field, and
reformulate the least-squares functional J on the interior of the domain into a
functional on the boundary.

The energy at time t of the observation state {q(x, t), u(x, t)} is defined by

E[q, u](t) =
1

2

∫
Ω

κ(x)|q(x, t)|2 + ρ(x)|u(x, t)|2 dV(x) . (3.2)

The energy conservation is given as

E[q, u](0) − E[q, u](−T ) =

∫ 0

−T

∫
∂Ω

q(x, t)un(x, t) dS(x) dt , (3.3)

by Gauss theorem with the direction of normal unit vector as in Figure 1a. Let
E0 = E[q, u](0) then, with initial conditions (2.3) and (2.8) and energy identities
(3.2)–(3.3), we rewrite J according to

J = E0 +

∫ T

0

∫
∂Ω

(
p(x, t) − (T q)(x, t)

)(
vn(x, t) + (T un)(x, t)

)
dS(x) dt . (3.4)

3.2 Controllability

In this section, we show that the uncontrollable subspace is orthogonal to the con-
trollable subspace. Assumptions: for acoustically hard or soft uncontrollable bound-
aries, under conditions to be made precise below. We also introduce the concept of
‘equal fields on the boundary’.



7

t t t

0,0pT ,−vT

t = 0

t = T

x
t = 0

t = T

x

x

q0, u0

q0,−u0

+⇔

t = 0

t = −T

q

un

p = T q

vn = −T un

p′ = 0

v′
n = 0

pT − p′T vT − v′
T p′T , v′

T
,

a) c)b)

{q, u} {p, v} {p′, v′}

Figure 2: Controllable and uncontrollable subspaces for the equal fields on the
boundary. Boundary fields such that p = T q and vn = −T un decompose the
original state into its controllable and uncontrollable part. a) In the observation
state, the wave field is decomposed into the observed boundary field {q, un} and
the non-observed remaining field {q0,−v0}. b) In the control state, the boundary
field (2.6) is time reversed and retransmitted into the region. c) The error term
corresponds to the non-observable and non-controllable part of the wave field.

In general it is not possible to retrofocus the wave field to the desired wave
field {pT , vT}, at best the wave field retrofocuses to the controllable part of the
wave field i.e., to the part of {pT , vT} that is possible to reach from the boundary.
This projection, to the controllable part, is achieved when the boundary fields are
identical in the control and observation state viz.,

p = T q and vn = −T un when x ∈ Γt and t ∈ [0, T ] . (3.5)

This goal of retrofocusing cannot always be achieved. For an example, see Section 6.
We denote the condition (3.5) as the ‘equal fields on the boundary’ condition. If the
‘equal fields on the boundary’ condition is achieved it gives a constructive description
of the controllable, the uncontrollable, observable and unobservable parts of the wave
field. Observe that it is not possible to enforce (3.5) for the acoustic wave equation
together with arbitrary initial data. In general, on set of boundary condition (2.4)
uniquely determines both the pressure and the particle velocity in the region. In
this section we examine what the ‘equal fields at the boundary’ condition implies.
In Section 3.3 it is shown that the time reversal approach can be used to achieve
the ‘equal field on the boundary’ condition from well posed initial boundary value
problems if the admittance operator commutes with the time reversal operator.

The observation (measurement) of the response of a boundary control p+ and an
initial state {p0(x), v0(x)} is expressed as

p− = Rp+ + OΓt(p0, v0) for x ∈ Γt and t ∈ [0, T ] , (3.6)

where OΓt is an linear map from L2(Ω) to L2(Γt × [0, T ]). The unobservable initial
states NΩ are defined as

NΩ =
{
{p0, v0} ∈ L2(Ω) : OΓt(p0, v0) = 0 ∈ L2(Γt × [0, T ])

}
, (3.7)
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i.e., they are the null space of OΓt , and thus a closed linear subspace of L2
Ω. The ob-

servable initial states is the orthogonal complement to NΩ, and N⊥
Ω is a closed linear

subspace of L2
Ω, hence L2

Ω = NΩ ⊕ N⊥
Ω. Solving the control problem (2.2)–(2.4) for

some p+, and its corresponding observation problem (2.2),(2.8),(2.10) and (2.11), for
some q+, gives the corresponding field {p, vn} and {q, un} at the controllable bound-
ary Γt. If this field for some given p+, q+ satisfy (3.5), then from the superposition
principle, see Figure 2 we note that the controlable and uncontrollable part of the
wave field coincide with the observable and unobservable. In the next section we
derive a sufficient condition on the transducer admittance Y so that the ‘equal field
on the boundary’ condition is achievable.

Now, since L2
Ω is a Hilbert space with the κ, ρ-weighed standard inner product,

the least-squares functional (2.1) is minimized by projecting the desired state on
the controllable space, N⊥

Ω. This follows from the orthogonal projection theorem in
Hilbert spaces, see e.g., [24]. The final state {pT − p′T , vT − v′

T} is the controllable
part of the original state {pT , vT}. The error {p′T , v′

T} is the uncontrollable (and un-
observed) part of the original state. To show that the controllable and uncontrollable
parts are orthogonal, in other words

∫
Ω

κ(x)
(
pT (x) − p′T (x)

)
p′T (x) + ρ(x)

(
vT (x) − v′

T (x)
)
· v′

T (x) dV(x) = 0 , (3.8)

we use the energy estimates of the three problems depicted in Figure 2. Energy
identities give, for an acoustically hard or soft uncontrollable part of the boundary,

E[pT , vT ] +

∫ 0

−T

∫
Γt

qun dS dt = E[q0, u0] , (3.9)

while ∫ T

0

∫
Γt

pvn dS dt = E[pT − p′T , vT − v′
T ] , (3.10)

and E[q0, u0] = E[p′T , v′
T ]. Upon combining these identities we obtain the orthogo-

nality (3.8).
Thus if it is possible to generate ‘equal fields on the boundary’, we are able to

reconstruct the controllable part of the final state {pT − p′T , vT − v′
T}. We derive in

the next section sufficient conditions for the fields on the boundary to be equal in
the sense of (3.5).

3.3 Iterated time-reversal retrofocusing

In this section a well posed iterative algorithm is introduced to solve the condition
of equal fields on the boundary, (3.5) for a class of transducer admittances.

Using a standard energy argument on Figure 2b, with either p = T q or v3 =
−T u3 for x ∈ Γt and either acoustically soft, p = 0 or acoustically hard, v3 = 0, for
x ∈ Γw, the interior field is uniquely defined.

The equal boundary fields condition (3.5) can be rewritten in the observed quan-
tities {p−, q−}, and the boundary controls {p+, q+} using (2.4), (2.6), (2.9) and (2.10).
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t

0,0
t = 0

t = T

x

p′T , v′
T

q(n)
− p(n)

−

t

pT ,−vT

x
t = 0

t = −T

q(n)
+ = T p(n)

−
p(n)

+ = T q(n−1)
−

Observation Boundary control
a) b)

{p(n), v(n)}{q(n), u(n)}

Figure 3: The iterated time-reversal algorithm. b) an observation q(n − 1)
− is time

reversed and used as a boundary control, to produce the output fields and the final
state {p(n)

T , v(n)

T } and the output p(n)
− . a) the output, p(n)

− , is recorded, time reversed,
and used as boundary control for the observation states, to produce the observation
q(n)
− , that, once again, is used to improve the final state.

We find{
Y−1p+ + Y−1p− = T Y−1q+ + T Y−1q− ,
p+ − p− = −T q+ + T q− .

x ∈ Γt , t ∈ [0, T ]. (3.11)

In terms of the response operator (2.12) we note that for a given boundary control

q+ and given initial observation, we have q− = Rq+ + q
(0)
− .

If (3.11) admits a solution, substituting the response operator, p+ and q+ satisfy
the system{

p+ = 1
2
(YT Y−1 + T )Rq+ + 1

2
(YT Y−1 − T ) q+ + 1

2
(YT Y−1 + T ) q

(0)
− ,

q+ = 1
2
(YT Y−1 + T )Rp+ + 1

2
(YT Y−1 − T ) p+ ,

(3.12)

for x ∈ Γt and t ∈ [0, T ]. If the admittance commutes with the time reversal i.e.,

YT = T Y , (3.13)

as e.g., for a constant admittance operator of a duct, see Section 5, then the require-
ment (3.12) simplifies to the linear system{

p+ = T Rq+ + T q
(0)
−

q+ = T Rp+

or

(
1 −T R

−T R 1

) (
p+

q+

)
=

(
T q

(0)
−

0

)
. (3.14)

This system can be solved in a variety of ways if the response operator R is known.
In the case where only the action of R on an incident field is known, as in our case,
the system is preferably solved by iterative methods. If R is sufficiently small, i.e.,
the spectral radius of R in L2 is smaller than 1, an iterative scheme of the Jacobi
type iterations [28] converges. This gives the iterated time-reversal algorithm{

p
(n)
+ = T Rq

(n−1)
+ = T q

(n−1)
−

q
(n)
+ = T Rp

(n)
+ = T p

(n)
−

for n = 1, 2, ... (3.15)
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tt

0,0
t = 0

t = T

x

xp′T , v′
T

t = 0

t = −T

q(n)
−

p(n)
−

t

qT , uT

x
t = 0

t = −T

q(0)
+ = 0

a) c)b)

0,0

q(n)
+ = T p(n)

−p(n)
+ = T q(n−1)

−

q(0)
−

Initial observation Retrofocusing Observation

{q(0), u(0)} {p(n), v(n)} {q(n), u(n)}

Figure 4: Iterated time-reversal retrofocusing. a) The output field is recorded from
the original field as the initial observation or the initial step of the algorithm n = 0.
b) in the retrofocusing, the recorded output q(n − 1)

− is time reversed and re-emitted
into the domain to produce the final state {p(n)

T ,−v(n)

T } and the output p(n)
− . c) in

the observation, the output p(n)
− is time reversed and re-emitted into the domain to

give the output q(n)
− .

where q
(0)
− is the initial measurement, see Figure 3 and Section 2.2. The boundary

control and the final state are given by

p+ =
∞∑

n=1

p(n)
+ =

∞∑
n=1

(T R)2T q(0)
− and {pT , vT} =

∞∑
n=1

{p(n)
T , v

(n)
T }, (3.16)

respectively. The iterated time-reversal algorithm (3.15) is initiated by recording the

output field, q
(0)
− generated by the original state {pT ,−vT}. This recorded output

field is time reversed and re-emitted into the domain. Recording and time reversal
of the corresponding output field iterates the algorithm.

4 Example: Time-reversal retrofocusing

In this section, the theory of Section 3 is applied to the problem of retrofocusing
a wave field towards its initial state when both the initial state, and the material
parameters of the object are unknown. This problem has been thoroughly analyzed
by M. Fink et al, see e.g., Refs [10–13]. In the time-reversal retrofocusing it is
assumed that an initial state {qT , uT} exists in the object at time t = −T . This
initial wave field is generated either by sources inside the object or by a field on the
surface of the object.

The output q(0)
− is recorded at the boundary Γt for times −T < t < 0, see

Figure 4a. This initial observed field is time reversed and re-emitted into the domain,
see Figure 4b. The retrofocusing is carried out with the iterative time reversal
algorithm (3.15). From Section 3, it is concluded that the final state {p′T ,−v′

T}
coincides with the controllable part of the initial state, {qT , uT}. Observe that
the retrofocusing does not require knowledge of the initial state nor the material
parameters.
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Ω
Γw

n

κ(x) ρ(x)

(t)p+

Hard

Figure 5: The cavity geometry. The boundary of the cavity is divided into the
transducer surface, Γt, and the acoustically hard wall, Γw. The transducers in-
duce the boundary control, p+(x, t), as a locally plane wave propagating in the
n-direction, where n is the inward unit normal.

5 Example: Time-reversal cavity

5.1 Acoustically-hard boundary with ducts

In this section, the acoustically-hard boundary cavity is considered, with transducers
and receivers in the form of narrow ducts. The particular form of the transducers
and receivers corresponds to a simple admittance operator. We present a numerical
simulation in three dimensions of the retrofocusing and the resulting fields.

The cavity is a bounded region with a perforated acoustically-hard boundary.
The perforations are located in the end of a set of ducts. The wave field is induced
through the perforations Γt, see Figure 5. If the ducts are sufficiently narrow and
long, it is only the fundamental mode that propagates, i.e., a locally plane wave,
propagating in the n-direction, see Ref 23,25. In this case the admittance operator
reduces to a scalar constant, e.g., ,

Y = Y0 =
√

κ0/ρ0 . (5.1)

The sufficient condition (3.13) of commutation between the admittance operator
and the time reversal operator is trivially satisfied. Moreover, we consider only
finite times, and hence the spectral radius of R is less than one. This is typical for
finites time as some energy remains in the domain. The uncontrollable part of the
boundary is acoustically hard, i.e., U = 0. For this case the iterated time reversal
focusing algorithm (3.15) reduces to p(n)

+ = T q(n − 1)
− and q(n)

+ = T p(n)
− .

5.2 Numerical results

To illustrate the iterated time reversal algorithm, a numerical example is presented.
A cubic cavity with side length L = 1 and 4 horns attatched to each side is con-
sidered. The acoustic wave equation is solved with a standard Leap-Frog scheme,
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Figure 6: Example of a focused pressure in the cavity. Each improvement of the
respective family of lines above is obtained by including one more term in the sum
(3.16). a: the field energy is concentrated at T = 2.2 s. The standard deviation
of the energy around its center point is minimized at the focusing time T . b: The
error term is

√
J . The pressure part of the energy dominates the velocity part at

the focusing time T .

t=2.3, [-1.7,1.7] t=2.6, [-1.2,1.2] t=2.9, [-2.4,2.4] t=3.2, [-3.7,3.7] t=3.5, [-8.8,8.8]

Figure 7: Example of a retrofocused pressure in the cavity; the range is given in
the brackets. The focusing time is T=3.5.

where the cavity, the horns, and the ducts are discretized on an equidistant grid
with discretization L/82. The fundamental mode is induced with a Huygens surface
in the ducts and the ducts are terminated with a perfectly matched layer. The tem-
poral step is chosen according to the CFL condition [30] to minimize the numerical
dispersion.

In Figure 6a, the first two moments of the energy distribution is depicted. It is
obvious that the field energy is concentrated around the focusing time T = 2.2. At
these times the energy is centered around the focusing point. The concentration of
the energy is measured with the variation of the energy. The variation is scaled such
that an energy with uniform distribution has unit variation. From the variation
curve, it is clear that the wave field is concentrated around the focusing point at
the focusing time but the wave field is not concentrated for other times. The field
energy of each field component is shown in Figure 6b. The retrofocused field for a
case with retrofocusing at T = 3.5 is depicted in Figure 7
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6 Example: Time-reversal mirror

For the time-reversal mirror, we consider the half space Ω = {x : x3 ≥ 0}, with
homogeneous material parameters κ = κ0 and ρ = ρ0. The transducers are located
at the plane Γt = {x ∈ R

3 : x3 = 0}. Thus we assume that the transducers can
prescribe a boundary condition on the whole plane cf. (2.4).

6.1 The impedance operator

A non-reflective admittance operator [16, 17, 31, 32] is given here as an explicit in-
tegral representation, as well as its adjoint with respect to the standard L2-inner
product.

The characteristics of the transducers and receivers are modeled by the wave-
splitting admittance operator, Y , with symbol [8, 29]

y(ξ̃, s) = s−1

√
s2κ0ρ0 + ξ̃2 , (6.1)

where s is the Laplace transform variable corresponding to time, and ξ̃ = (ξ1, ξ2)
the transverse Fourier variable corresponding to x̃ = (x1, x2). We use the notation
x̃ = |x̃| and ξ̃ = |ξ̃| to denote the norm of x̃ and ξ̃, respectively.

The above square root is taken with the branch-cut at the negative real axis,
i.e.,

√
s2 = s, when Re s > 0. An energy re-normalization of the field removes

the constant material parameters in the acoustic wave equation (2.2) [14, p37], and
consequently in (6.1). The inverse of the admittance, the impedance, satisfies the
transform relation

s√
s2 + ξ̃2

= LF δ′(t − |x̃|)
2π|x̃| , (6.2)

for t ≥ 0. Here L denotes the Laplace transform and F denotes the transverse
Fourier transform. Thus the time-space representation of the impedance operator
action is

(Y−1p+)(x̃, t) =

∫
R2

∫ t

0

δ′(t − t′ − |x̃ − x̃′|)
2π|x̃ − x̃′| p+(x̃′, t′) dt′ dx′

1 dx′
2 , (6.3)

for sufficiently smooth controls, p+. Here, x ∈ Γt, t ∈ [0, T ].
In Section 6 and the Appendices, we use Fourier and Laplace transforms, to

utilize their properties we consider the case that all fields, p, v and q, u, to have
temporal support contained in [0, T ]. Consequently, the time-reversal operator is
redefined as

(T p+)(x, t) = p+(x, T − t) , x ∈ Ω , t ∈ [0, T ] . (6.4)

As the system is linear, and independent of starting time, the change of definition
of T , is only a matter of shifting the solution with respect to time.

T does not commute with an admittance Y of the form (6.1). Indeed observe
that the adjoint Y∗ of Y with respect to the standard L2-inner product over time
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and space at the boundary is

((Y∗)−1p+)(x̃, t) =

∫
R2

∫ T

t

δ′(t′ − t − |x̃ − x̃′|)
2π|x̃ − x̃′| p+(x̃′, t′) dt′ dx′

1 dx′
2 . (6.5)

It follows that Y is not self-adjoint. By the variable substitution τ = T − t′ we
obtain

((Y∗)−1p+)(x̃, t) = T
∫

R2

∫ t

0

δ′(t − τ − |x̃ − x̃′|)
2π|x̃ − x̃′| (T p+)(x̃′, τ) dτ dx′

1 dx′
2

= (T Y−1T p+)(x̃, t) . (6.6)

6.2 Non-solvability of ‘equal fields on the boundary’

In this section, we show that for the time reversal mirror configuration with the
boundary condition (2.4) and admittance operator (6.3), the given algorithm does
not have an optimal boundary control. We also derive an approximate boundary
control, that agrees with the equation for optimal boundary control in the non-
evanescent part of the measured field.

For the homogeneous half space, with transducers characteristics Y−1 as in (6.3),
the boundary condition (2.4) is equivalent to a splitting of the field into an in- and
outgoing field at the boundary [14–17]. Thus a transducer with the (6.3) charac-
teristics is perfectly matched to the domain, and does not introduce any transducer
mismatch reflections. Hence, as the medium is homogeneous, the response operator
vanishes, i.e., Rp+ = 0.

If we consider the solvability of the requirement of equal fields on the boundary,
with (6.6) the equations (3.11) reduce to

(Y−1 + (Y∗)−1)p+ = 2(Y∗)−1T q(0)
− . (6.7)

The operator (Y−1 + (Y∗)−1) is not invertible everywhere on the range of (Y∗)−1.
Thus the requirement of equal fields on the boundary is a too strong condition for
this admittance. We analyze this situation; rewrite the least-square functional, J ,
with the definitions of the boundary control and its observations, as

J = E0 +

∫ T

0

∫
Γt

(Y−1p+ − T Y−1q(0)
− )(p+ − T q(0)

− ) dx1 dx2 dt , (6.8)

where we have made the assumption that q+ = 0. This assumption comes from the
observation that q+ does not have any measurable response at the boundary, and if
a non-zero q+ is applied at the boundary then E0(q+ 	= 0) > E0(q+ = 0).

The least-squares functional J does not have any critical points for this choice
of admittance. To see this, we denote the above integral over time and boundary
by the inner product 〈·, ·〉Γt×[0,T ], and we observe that the field is real-valued and
that the operator Y−1 maps real-valued functions into real-valued functions. Upon
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determining the variation with respect to p+ we find the requirement for critical
points to be

〈DJ , δp+〉Γt×[0,T ] =

− 2 Re〈(Y−1 + (Y∗)−1)p+ − (T Y−1 + (Y∗)−1T )q(0)
− , δp+〉Γt×[0,T ] = 0 , (6.9)

for all δp+ ∈ L2. Using the property (6.6) we find that (6.9) simplifies to

〈(Y−1 + (Y∗)−1)p+, δp+〉Γt×[0,T ] = 〈2(Y∗)−1T q(0)
− , δp+〉Γt×[0,T ] , (6.10)

for all δp+ ∈ L2. This equation is equivalent to (6.7) and to see its non-solvability

for general q
(0)
− , we apply Parseval’s formula to (6.10) and obtain

H(ω2 − ξ̃2)
|ω|√

ω2 − ξ̃2

p+(ξ̃, ω) = lim
η→0+

(η − iω)√
(η − iω)2 + ξ̃2

e−iωT q(0)
− (ξ̃,−ω) , (6.11)

where H(·) is the Heaviside step function. It is obvious that (6.11) does not have a

solution for all q
(0)
− , in particular for |ω| < ξ̃, since the left-hand side is zero whereas

the right-hand side can be non-zero, depending on q
(0)
− . In the Fourier domain for the

corresponding Green’s function the frequency region |ω| < ξ̃ is the non-propagating

part of the field, hence we denote the part where q
(0)
− 	= 0 for |ω| < ξ̃ as the evanescent

part of q
(0)
− , cf. e.g., [25]. Thus the equal fields on the boundary condition is not

applicable in the time reversal mirror, and thus the algorithm does not yield an
optimum for this case.

We conclude that for general q
(0)
− ∈ L2, the least-square functional, J , does not

have a critical point in terms of the field at the boundary. However, if q
(0)
− does not

have an evanescent part, then J has a critical point and the corresponding optimal
control is

p+ = T q(0)
−

∣∣
|ω|≥ξ̃

. (6.12)

6.3 Approximate boundary controls

As shown in Sec. 6.2 it is only possible to satisfy the equal fields on the boundary
condition for the propagating part of the wave field. Hence, it is not clear how to
choose the control in the non-propagating or evanescent part of the wave field. Here,
we consider three different controls, labeled p

(1)
+ , p

(2)
+ , and p

(3)
+ , that satisfy (6.10)

in the propagating region. The first case, p
(1)
+ is the particle-velocity normalized

control, i.e., observation of the initial state q
(0)
− is measured in particle-velocity

normalization, time reversed and retransmitted, viz.,

p(1)
+ = T q(0)

− . (6.13)

Case two: The corresponding pressure normalized boundary control p
(2)
+,Np is to

observe, m(2), the same initial state in pressure normalization, time reverse and re-

transmitted, viz., p
(2)
+,Np = T m(2), where the boundary condition and the observation
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(2.4) and (2.6) are replaced with

p + Y−1v3

2
= p

(2)
+,Np and m(2) =

p − Y−1v3

2
. (6.14)

The boundary control p
(2)
+,Np and observation m(2) can be expressed in pressure nor-

malization1 viz.,
p(2)

+ = YT Y−1q(0)
− . (6.15)

Note that YT Y−1 = T Y∗Y−1 = Y(Y−1)∗T , by using (6.6).
The third case us the linear combination of the first two cases, i.e.,

p(3)
+ = p(1)

+ + p(2)
+ = (1 + Y(Y−1)∗)T q(0)

− . (6.16)

Note from (6.11) that p
(3)
+ cuts the non-propagating part of the q

(0)
− . The results of

case 3 is discussed in Section 6.7.

6.4 Control operators

In this section we derive the control operators for the respective normalization, for
boundary data with temporal duration T , i.e., an operator that takes the boundary
control to the respective final states at t = T .

The control operator in particle velocity normalization is defined as:

{p(1)(·, T ), v(1)(·, T )} = Wvp
(1)
+ . (6.17)

To derive the explicit form of Wv, we solve the acoustic wave equation, (2.2) and
(2.3) together with the transducer boundary condition (2.4) and quiescent initial
conditions. We obtain (see Appendix A.1)

p(1)(x, T ) =

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| ∂t′

(
H(t′)p(1)

+ (x̃′, t′)
)
dx′

1 dx′
2 dt′ , (6.18)

and

v(1)(x, T ) = −∇
∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| p(1)

+ (x̃′, t′) dx′
1 dx′

2 dt′ . (6.19)

The control operator in the pressure normalization, Wp, is obtained by solving
the acoustic wave equation with transducer boundary condition (6.14), and quiescent
initial conditions. We obtain (see Appendix C)

p(2)(x, T ) = −∂3

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| p

(2)
+,Np(x̃

′, t′) dx′
1 dx′

2 dt′ , (6.20)

1The equivalence of the field in the domain from the controls p
(2)
+ and p

(2)
+,Np

in the respective

normalization is utilized to explicitly calculate the response of p
(2)
+ , see Appendix C.
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and

v(2)(x, T ) = ∇∂3

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′|

∫ t′

0

p
(2)
+,Np(x̃

′, t′′) dt′′ dx′
1 dx′

2 dt′ .

(6.21)
Thus we have an explicit expression for the control operator in both normaliza-

tions, expressed in terms of a common Green’s function. Note that the form of the
control operators have the typical retarded time dependence that is associated with
hyperbolic systems.

6.5 The solution operator

In this section, we use the solution operator with initial conditions corresponding to
a pressure pulse to derive the field at the boundary. We also construct the boundary
controls for the two cases (6.13) and (6.15).

To construct the boundary controls, p
(1)
+ , p

(2)
+,Np , corresponding to an initial pres-

sure pulse, the time reversed output field component is needed as data. It is obtained
by solving the acoustic equations (2.2) with the initial value {pT ,−vT} at t = 0.
The solution is [20]

(
q(x, t)
u(x, t)

)
=

(
∂t −∇·
−∇ I∂t

) ∫
R3

δ(t − |x − x′|)
4π|x − x′|

(
pT (x′)
−vT (x′)

)
dx′

1 dx′
2 dx′

3 , (6.22)

for an irrotational initial velocity, i.e., ∇ × vT = 0. Now, to generate the output
field component at the boundary Γt = {x ∈ R

3 : x3 = 0}, we assume that supp pT

and supp vT are bounded and contained in the half space x3 > 0. Furthermore,
we impose a transparent boundary condition at Γt, i.e., no reflection at the bound-
ary x3 = 0. The boundary data in (6.13), (6.15) are measurement with perfectly
matched receivers of the solution to (2.2) at the boundary, and does not change the
solution (6.22).

To obtain an explicit representation of the field, we let the initial field be a pulse
in the pressure, with source point x̃ = 0, x3 = z0 > 0, that is

pT (x) = δ(x̃) δ(x3 − z0) and vT = 0 . (6.23)

The choice of pulse (6.23) substituted into (6.22) makes the field {q, u} into the
components of the pressure Green’s function. At the boundary its {q, u3}-component
becomes

(
q(x̃, 0, t)
u3(x̃, 0, t)

)
=

(
∂t

−∂3

) ∫
R3

δ(t − |x − x′|)
4π|x − x′| δ(x̃′) δ(x′

3 − z0) dx′
1 dx′

2 dx′
3

∣∣∣∣
x3=0

=

(
∂t

∂z0

)
δ(t −

√
x̃2 + z2

0)

4π
√

x̃2 + z2
0

. (6.24)

This field is measured by transducers yielding q
(0)
− , and m(2), respectively, see (2.6)

and (6.14)
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Here, the transducer is perfectly matched to the domain, equivalent to the trans-
parent boundary condition, and measures the velocity normalized out-going com-
ponent of the wave, cf. [18]. As the receiver and transducer characteristics are

identical, the measured response {q(0)
− , m(2)} in the respective normalizations, case

1 and case 2, is (cf. (2.6) and (6.14))

q(0)
− (x̃, t) =

1

2

(
(Yq)(x̃, 0, t) − u3(x̃, 0, t)

)
, (6.25)

m(2)(x̃, t) =
1

2

(
q(x̃, 0, t) − (Y−1u3)(x̃, 0, t)

)
. (6.26)

Substituting the explicit field {q, u3} (cf. (6.24)) into (6.25) and (6.26) gives (see
Appendix A.2 and Appendix C)

q(0)
− (x̃, t) = −∂z0

δ(t −
√

x̃2 + z2
0)

4π
√

x̃2 + z2
0

, (6.27)

m(2)(x̃, t) = ∂t
δ(t −

√
x̃2 + z2

0)

4π
√

x̃2 + z2
0

. (6.28)

The measurements, {q(0)
− , m(2)} of the field at the surface start at time t = 0. We

notice the expected delayed arrival in the measurement, because of the initial pulse
is at depth x3 = z0. The ‘measurement’ ends at t = T and, in general, the field at
this time is non-zero. Hence, to describe the measured field, we have to introduce a
step function that removes the field after t = T .

Now, time reversal in accordance with (6.4) of q
(0)
− and m(2) are the controls that

we search for,

p(1)
+ (x̃, t) = H(t)q(0)

− (x̃, T − t) = −H(t)∂z0

δ(T − t −
√

x̃2 + z2
0)

4π
√

x̃2 + z2
0

, (6.29)

p
(2)
+,Np(x̃, t) = H(t)m(2)(x̃, T − t) = −H(t)∂t

δ(T − t −
√

x̃2 + z2
0)

4π
√

x̃2 + z2
0

. (6.30)

6.6 Retrofocused fields and their properties

Here, the explicit form of the retrofocused field in case 1 is used to analyze the long
time limit of the retrofocused field. In the long time limit, case 1 retrofocuses the
pressure perfectly, modulo a numerical factor, whereas the particle velocity shows a
nonzero remainder, and is hence not perfectly retrofocused. We also give the explicit
form of the pressure for case 2. We also show a number of graphs describing the
degree of retrofocusing versus time duration of the measured data.

For the boundary control (6.29) we can explicitly obtain the final state as dis-
tributions, denoted by {p(1)(·, T ), v(1)(·, T )}, for any finite time T . Toward this end

substitute the control p
(1)
+ of (6.29) into (6.18) and (6.19). Integration with respect
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to time gives the response,

p(1)(x, T ) =

− ∂z0∂t

∫
R2

H(t − |x − x̃′|) δ
(
T − t + |x − x̃′| −

√
(x̃′)2 + z2

0

)
8π2|x − x̃′|

√
(x̃′)2 + z2

0

dx′
1 dx′

2

∣∣∣∣∣
t=T

=
−z0

4π2x3x̃2
∂3

x̃2 − x2
3 + z2

0(
[T 2 − x2

3 −
(
x̃ −

√
T 2 − z2

0

)2
][
(
x̃ +

√
T 2 − z2

0

)2
+ x2

3 − T 2]
)1/2

+

(6.31)

and

v(1)(x, T ) =

∇∂z0

∫
R2

H(t − |x − x̃′|) δ(T − t + |x − x̃′| −
√

(x̃′)2 + z2
0)

8π2|x − x̃′|
√

(x̃′)2 + z2
0

dx′
1 dx′

2

∣∣∣∣∣
t=T

= ∇
[

−z0T

π2 (4x̃2z2
0 + (x̃2 + x2

3 − z2
0)

2)

x̃2 − x2
3 + z2

0(
[T 2 − x2

3 −
(
x̃ −

√
T 2 − z2

0

)2
][
(
x̃ +

√
T 2 − z2

0

)2
+ x2

3 − T 2]
)1/2

+

]
. (6.32)

For details we refer to Appendix B.
The analogous derivation for case 2 yields, upon substituting the boundary con-

trol p
(2)
+,Np of (6.30) into (6.20) and (6.21). Upon integration, see Appendix C, we

find that

p(2)(x, T ) =
−1

4π2x̃2
∂3

x̃2 − x2
3 + z2

0(
[T 2 − x2

3 −
(
x̃ −

√
T 2 − z2

0

)2
][
(
x̃ +

√
T 2 − z2

0

)2
+ x2

3 − T 2]
)1/2

+

, (6.33)

and

v(2)(x, T ) = −∇∂3

∫
R2

(
H

(
T −

√
(x̃′)2 + z2

0

) δ(
√

(x̃′)2 + z2
0 − |x − x̃′|)

8π2|x − x̃′|
√

(x̃′)2 + z2
0

− δ
(
T −

√
(x̃′)2 + z2

0

)H(
√

(x̃′)2 + z2
0 − |x − x̃′|)

8π2|x − x̃′|
√

(x̃′)2 + z2
0

)
dx′

1 dx′
2 . (6.34)

The difference in pressure, between the pressure normalization and the particle
velocity normalization, is the factor z0/x3. Furthermore observe that v3 is zero on
the x3−axis for x3 	= z0. The integration of the first term in (6.34) is analogous to
the normal particle velocity normalization cf. (B.21).
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Figure 8: The retrofocused p(1) and v
(1)
3 , for T = 10, with initial state a Dirac

pulse at z0 = 1, x̃ = 0, and its boundary control p
(1)
+ . The pressure to high degree

concentrated to x3 = 0, z0 = 1, with a small retrofocus error and the velocity have
no corresponding concentration, cf. (6.35). The graphs show the boundary control,

p
(1)
+ is imposed at depth x3 = 0, and has a support for x3 = 0 and x̃ ≤

√
T 2 − z2

0 .
In the graph notice the out-going wave-front with radius T = 10 with center located
at all x̃ such that |x̃| =

√
T 2 − z2

0 , here at {x̃, x3} = {
√

99, 0}, due to the finite
time cutoff of the measurement. Recall that the graphs are distributions, hence it
is smoothed around the wave-front set.

The first observation on the above final state is that p(1), p(2) and v
(1)
3 depend

only on x̃ and not x̃, i.e., they are independent of polar angle — the angle between
x1 and x2. The denominator (...)

1/2
+ describes wave fronts induced from the non-zero

field at the end of a finite measurement time. These wave fronts are centered on
the circle x3 = 0, {x̃ : x̃ =

√
T 2 − z2

0}. The cut off in (...)
1/2
+ , with the polar angle

symmetry, makes the resulting field to have a domain that resembles a donut, cut
horizontally just below the middle, in shape. A cross section of the field is shown in
Figure 8 for T = 10, i.e., the excitation time equals ten times the time it takes for
the initial pulse reach the surface.

With the retrofocusing of this pulse, note that for an expansion as T → ∞,

p(1) =
z0

4π2

(
T−1x̃−3 + (2T )−3

(
x̃−1 + 2x̃−3(x2

3 + z2
0) + 3x̃−5(x2

3 − z2
0)

))
+ O(T−5) ,

and

v
(1)
3 =

x3z0

(
(x2

3 − z2
0)

2 − 3x̃4 − 2x̃2(x2
3 + z2

0)
)

π2x̃
(
x̃4 + (x2

3 − z2
0)

2 + 2x̃2(x2
3 + z2

0)
)2 + O(T−2) , (6.35)

together with

(
v

(1)
1

v
(1)
2

)
=

(
z0(3x̃

2 + 4z2
0)

2π2x̃2(x̃2 + 4z2
0)

(
cos θ
sin θ

)
+ O

(
(x3 − z0)

2
))

+ O(T−2) , (6.36)

where θ is the polar angle. Furthermore, at the axis x̃ = 0 the retrofocused field is
supported only for x3 = z0. In Figure 9 we plot the pressure away from the singular
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see the damping to the Dirac pulse, for the area around the singular point. c: At
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Figure 10: Plots of v
(1)
3 for a source at depth z0 = 1 and its boundary control p

(1)
+ .

In a: The ‘remaining’ field as T becomes large cf. (6.35). b: Plots log10(|v(1)
3 (T ) −

v
(1)
3 (t = 105)|) for T =10, 102, 103, 104, along x3 = z0. In the lowest line the

unevenness is due to numerical inaccuracies. c: Shows v
(1)
3 along r := |x̃| = z0 for

times T = 10 −−105. All lines start along the same ‘remaining’ velocity at x3 = 0.
The first to deviate is v

(1)
3 (T = 10), that encounters its wave front at x3 ≈ 4, cf.

Figure 8b, the next to go off to infinity, is T = 102 that encounters its wave front at
x3 ≈ 15.
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point for different excitation times T . It is apparent that the field is rapidly damped
with respect to T and x̃. The analogous plots for v3 are shown in Figure 10, where
it is apparent that v3 approaches its remaining, non-zero distribution rapidly.

In the limit T → ∞ we obtain for the pressure, (Appendix D)

lim
T→∞

∫
p(1)(x̃, x3, T )φ(x̃, x3) dx1 dx2 dx3 =

1

2
φ(0, z0) , (6.37)

for a compactly supported test function φ. This result agrees with the result pre-
sented in [14], obtained by an argument that utilized symmetries of the cavity case.

Thus we obtain a perfect retrofocusing in the pressure component, modulo an
amplitude factor of 2, even in the presence of an evanescent component in the control.

6.7 Influence of evanescent part of the boundary control

Here, we discuss the influence of the evanescent part of the boundary control on the
resulting fields.

As we noted in 6.3, the two given boundary controls differ only in the evanescent
part, and thus by comparing the responding fields of respective case, we compare
controls that only differ in the evanescent region. As we only derived the pressure
component of the pressure normalized fields explicitly, let us study the difference in
pressure. The pressure field differs only by a factor x3/z0, hence the difference is
independent of time. To understand the difference between the retrofocused fields
we plot the pressure for x̃ = z0, see Figure 11.

For case 1, we proved that as T → ∞ the pressure concentrate at the source point
x3 = z0, x̃ = 0, the appearance of the factor x3/z0 for case 2 does not change the
conclusion for T → ∞, as x3/z0 = 1 at the source point. From the plots in Figure 11
we notice the apparent difference between the two cases, but upon observation of the
amplitudes involved we conclude that for sufficiently large T , the evanescent part
of the control has a negligible influence. As both cases of controls have a pressure



23

component that converge to a pulse, so must their sum, the response to p
(3)
+ , as the

acoustic wave equation is linear.
But, as we have already shown that the sum of the two controls does not have an

evanescent part, and still it converges to the pressure Dirac pulse, the influence of
the evanescent part, in the long time limit, is small on the pressure component of the
final state. As the initial pressure is a Dirac pulse, this implies that for any initial
state with quiescent velocity and non-zero pressure distribution, the evanescent part
of the field has a marginal effect for sufficient long excitation times.

7 Discussion

The use of time-reversal in experiments and theory, both for linear acoustics and
electro-magnetics, has increased rapidly the last years. Here, we develop an itera-
tive time-reversal algorithm for the purpose of retrofocusing that differs from the
iterative time-reversal algorithms described by M. Fink et al., [2, 5, 9–13, 26] and M.
Cheney et al., [6, 7]. The algorithms are identical in the first step where they reduce
to classical time reversal. The present algorithm retrofocuses the wave field towards
the controllable part of its originating distribution, i.e., it uses the transducers in an
optimal way to recreate the original initial wave field. This is achieved by the con-
struction of identical fields at the transducers in the original and retrofocused states.
In contrast to this, the iterative time-reversal algorithm described in Refs 6, 7, 10
retransmit the wave field such that the reflection is maximized. This produces a
focusing on the largest scatterer and largest eigenfunction in [10] and [6, 7], respec-
tively.

The iterative time-reversal algorithm is especially useful in strongly multiple scat-
tering cases such as the cavity described in Section 5. For this type of geometries,
a few iterations improve the retrofocusing as illustrated by the numerical examples.
For the time-reversal mirror examined in this paper, the iterative time-reversal al-
gorithm reduce to the classical time reversal since the homogeneous half space is
non-reflecting. But also in this case the boundary control analysis shows that the it-
erative time-reversal algorithm is optimally retrofocusing, in the least-square sense,
when the evanescent part of the measured wave field is negligible.

In the half-space geometry, both a direct time reversal of the recorded wave
field and a weighed time reversal is considered. The two controls are differ only in
the evanescent part of the wave field. The analytic representation of the pressure
field is given for the two controls when the initial field is a pressure Dirac pulse. As
expected, the retrofocusing is not perfect, i.e., only the controllable part of the wave
field is retrieved. In this case the controllable part is essentially half of the wave
field since only the up-going part [18] of the original pressure pulse reach the surface
and is retransmitted as a down going wave field. The retrofocused field concentrate
around the initial pulse point, and as the excitation time approach infinity, the
pressure pulse retrofocus to half the initial pulse. However, the velocity component
does not vanish in the large time limit.
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Appendix A Calculations on the half-space

A.1 Derivation of the control operator

Here, we give the explicit derivations to obtain the control operator for the particle
velocity normalization.

To derive the control operator for the homogeneous half-space, we solve the
system of equations




∂tp + ∇ · v = 0 , x ∈ Ω , t ∈ (0, T ] ,
∂tv + ∇p = 0 , x ∈ Ω , t ∈ (0, T ] ,
p = 0 , v = 0 , x ∈ Ω , t = 0 ,

1
2
(Yp + v3) = p

(1)
+ , x ∈ ∂Ω , t ∈ [0, T ] ,

(A.1)

where the boundary condition is in the particle velocity normalization.
We Laplace transform the field in time, and with the use of p(x, 0) = 0 and

v(x, 0) = 0, together with the enforced causality, the resulting field are analytic for
Re s ≥ 0. Furthermore, the correspondence ∂t → s holds. We Fourier transform
the transverse coordinates, x̃ → ξ̃, and upon eliminating the transverse particle
velocities we obtain the ‘two-way’ equation for linear acoustic waves




(∂3 + a)f(ξ̃, x3, s) = 0 , x3 > 0 ,

yp + v3 = p
(1)
+ (ξ̃, s) , x3 = 0 ,

sv⊥(ξ̃, x3, s) + iξ̃p(ξ̃, x3, s) = 0 , x3 > 0 ,

(A.2)

f = (p, v3) and where the admittance operator symbol, y, is defined in (6.1). Here,
the acoustic system’s matrix, a, has the form

a =

(
0 s

s + s−1ξ̃2 0

)
. (A.3)

The formal solution to (A.2) is derived through wave splitting, see e.g., [14, 15,
17], also notice the freedom of ‘normalization’, pointed out in [16–18], the normaliza-
tion is arbitrary and related to the transducers characteristics, here we have chosen
boundary condition in the particle velocity normalization, i.e., p

(1)
+ is of ‘dimension’

particle velocity. The formal solution to (A.2) is

{
f(ξ̃, x3, s) = e−x3

√
s2+ξ̃2

η+p
(1)
+ (ξ̃, s) ,

v⊥(ξ̃, x3, s) = − iξ̃
s
e−x3

√
s2+ξ̃2

(
η+p

(1)
+ (ξ̃, s)

)
1

,
(A.4)
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where η+, (η−) is the eigenvector corresponding to the positive (negative) eigen-

value, ±
√

s2 + ξ̃2 of a, and has the form, in particle velocity normalization

η± =

(
s√

s2+ξ̃2

±1

)
. (A.5)

With the above reformulations, the symbol of the control operator, Wv, becomes

w+ = e−x3

√
s2+ξ̃2




s√
s2+ξ̃2

− iξ̃√
s2+ξ̃2

1


 . (A.6)

To transform this operator back into space and time, we observe the identity

F−1 e−x3

√
s2+ξ̃2

√
s2 + ξ̃2

=

∫ ∞

0

ξ̃ J0(ξ̃x̃)e−x3

√
s2+ξ̃2

2π

√
s2 + ξ̃2

dξ̃ =
e−s|x|

2π|x| , (A.7)

by using Purdnikov, Brychkov and Marichev’s volume 2, relation 2.12.10.10 [27].
Thus

L−1F−1 e−x3

√
s2+ξ̃2

√
s2 + ξ̃2

=
δ(t − |x|)

2π|x| , (A.8)

and as the inverse transform of this integral kernel is known, we express the symbol
of the control operator, w+, in terms of the above kernel as


 p

ṽ
v3


 = (w+p(1)

+ )(ξ̃, x3, s) =


 s

−iξ̃
−∂3


 e−x3

√
s2+ξ̃2

√
s2 + ξ̃2

p(1)
+ (ξ̃, s) , (A.9)

where ṽ = {v1, v2}. Using (A.8) on (A.9) we find that

p(x, T ) =

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| ∂t′

(
H(t′)p(1)

+ (x̃′, t′)
)
dx′

1 dx′
2 dt′ , (A.10)

and

v(x, T ) = −∇
∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| p(1)

+ (x̃′, t′) dx′
1 dx′

2 dt′ . (A.11)

Thus we have an explicit expression for the control operator, when the boundary
condition is in the particle velocity normalization. The control operator gives the
field inside the domain, once the control at the boundary is known.
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A.2 The measured data

In this section a calculation to obtain the explicit form of the measured field at the
boundary for case 1 is presented.

From (6.25) we have that the measured data has the form

q(0)
− (x̃, t) =

1

2

(
(Yq)(x̃, 0, t) − u3(x̃, 0, t)

)
, (A.12)

In the Laplace–Fourier domain the equivalent field has the representation

q(0)
− (ξ̃, s) =

1

2

(
s−1q(ξ̃, 0, s)

√
s2 + ξ̃2 − u3(ξ̃, 0, s)

)
. (A.13)

With the relation (A.8) we Laplace–Fourier transform the field {q(x̃, 0, t), u3(x̃, 0, t)},
at the boundary, cf. (6.24). Substituting the result into (A.13) gives

(
q(ξ̃, 0, s)

u3(ξ̃, 0, s)

)
=

1

2
e−z0

√
s2+ξ̃2

η−(ξ̃, s) ⇒ q(0)
− (ξ̃, s) =

1

2
e−z0

√
s2+ξ̃2

, (A.14)

where η− is an eigenvector of a in the particle velocity normalization, see (A.5). In
the time-space domain, using (A.8), we find that

q(0)
− (x̃, t) = −∂z0

δ(t −
√

x̃2 + z2
0)

4π
√

x̃2 + z2
0

. (A.15)

Appendix B The field in the domain for the con-

trol p(1)
+

Given the control p
(1)
+ in (6.29), we substitute it into (6.18) and (6.19). Below we

explicitly calculate the two resulting distributions.

B.1 The pressure component

In this section we give a detailed derivation of the pressure distribution for the case
1.

Let us introduce the help quantities,

R1 =
√

(x̃′)2 + z2
0 , R2 =

√
|x̃ − x̃′|2 + x2

3 , and τ = T − t , (B.1)

with this notation the pressure, p(1), is represented as

p(1)(x, t) = −∂z0∂t

∫
R2

H(t − R2)
δ
(
τ + (R2 − R1)

)
8π2R1R2

dx′
1 dx′

2 =

∂z0x
−1
3 ∂3

∫
R2

H(t − R2)
δ
(
τ + (R2 − R1)

)
8π2R1

dx′
1 dx′

2 . (B.2)
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The delta Dirac traces out a curve for x̃′, to find the curve consider the x̃′ such that
R1 − R2 − τ = 0

R2
1 = (τ + R2)

2 = τ 2 + R2
2 + 2τR2 ⇔

−τ
√

x2
3 + |x̃ − x̃′|2 = (x̃2 + x2

3 − z2
0 + τ 2)/2 − x̃ · x̃′ ⇔

τ 2(x2
3 + x̃2 + (x̃′)2 − 2x̃ · x̃′) =

(
(x̃2 + x2

3 − z2
0 + τ 2)/2 − x̃ · x̃′)2 ⇔

τ 2(x2
3 + x̃2) − A2/4 = −τ 2(x̃′)2 + (x̃ · x̃′)2 − A(x̃ · x̃′) (B.3)

hence a conical surface. Here,

A = x̃2 + x2
3 − z2

0 + τ 2 . (B.4)

We observe the freedom of choice in the coordinates x̃′, hence we choose the par-
ticular coordinate system for x̃′, such that x̃ = (x̃, 0), this is equivalent to rotate
the coordinate system of x̃′. The compatibly condition imposed on the solution
associated with the square roots is

− sgn(τ) = sgn(x̃2 + x2
3 − z2

0 + τ 2 − 2x̃x′
1) , (B.5)

as is observed from the second line of (B.3). Now we rewrite (B.3) into a more
standard form for conical surfaces

c = (x̃2 − τ 2)(x′
1 − x0

1)
2 − τ 2(x′

2)
2 , (B.6)

hence the set of {x′
1, x

′
2}, that fulfills (B.6), traces out a curve in space. In this case

x0
1 = x̃

A/2 − τ 2

x̃2 − τ 2
and c = τ 2(x2

3 + x̃2) − A2/4 + (x̃2 − τ 2)(x0
1)

2 . (B.7)

We notice that if x̃ > τ , the curved traced out is an hyperbola, when x̃ < τ , an
ellipse and when x̃ = τ , it is a line parallel to x′

1-axis.
In evaluating the integral (B.2) we consider only the limiting case when t = T

i.e., τ = 0. Thus the integral reduces to

p(1)(x, T ) =
1

x3

∂z0∂3

∫
R2

H(T − R2)
δ(R2 − R1)

8π2R1

dx′
1 dx′

2 . (B.8)

We find that

x0
1 = A/(2x̃) =

x̃

2

(
1 +

x2
3 − z2

0

x̃2

)
, c = 0 , A = x̃2 + x2

3 − z2
0 , (B.9)

and the conical curve (B.6) collapses into the line

x′
1 = x0

1 ⇒ x1 =
x̃

2

(
1 +

x2
3 − z2

0

2x̃2

)
. (B.10)

This line fulfills the compatibly condition (B.5), hence it is a solution.
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To evaluate the integral we introduce a change of coordinates, let the new coor-
dinates be: Ψ = R1 − R2 and the arc length, s, along the line (B.10). The integral
in those coordinates collapses into an integral with integrand

(R2|∇Ψ|)−1 ds = x̃−1 dx′
2 , (B.11)

to see this, first note that

ds =

√
1 +

(∂x′
1

∂x′
2

)2

dx′
2 = dx′

2 , (B.12)

and

(R1R2)
2|∇′(R1 − R2)|2Ψ=0 = |(R2 − R1)x̃

′ + R1x̃|2Ψ=0 = R2
1x̃

2
∣∣
Ψ=0

, (B.13)

where we have used R1 = R2, or equivalently x′
1 = x0

1. Hence, the pressure integral
becomes

p(1)(x, T ) =
1

8π2x̃x3

∂z0∂3

∫
R

H(T − R1)|R1=R2
dx′

2 , (B.14)

i.e., the length of the line, x′
1 = x0

1, inside the circle described by H(T − R1). The
height, x′

2, where x′
1 = x0

1 crosses the circle is

T 2 = z2
0 + (x′

1)
2 + (x′

2)
2
∣∣
x′
1=x0

1
= z2

0 + (x0
1)

2 + (x′
2)

2 ⇒

x′
2 = ±

√
T 2 − z2

0 − (x0
1)

2, (B.15)

hence

p(1)(x, T ) =
1

4π2x̃x3

∂z0∂3

(√
T 2 − (z2

0 + (x0
1)

2)H(T −
√

z2
0 + (x0

1)
2)

)
. (B.16)

We now let the derivative with respect to the parameter z0 act on the distribution.
We first observe that

∂z0

√
T 2 − (z2

0 + (x0
1)

2) =
−z0(x − x0

1)

x̃
√

T 2 − z2
0 − (x0

1)
2

, (B.17)

so that

p(1)(x, T ) =
−z0

4π2x3x̃2
∂3

x̃ − x0
1

(T 2 − z2
0 − (x0

1)
2)

1/2
+

=

−z0

4π2x3x̃2
∂3

x̃2 − x2
3 + z2

0

(4x̃2(T 2 − z2
0) − A2)

1/2
+

. (B.18)

We rewrite the denominator in the form([
T 2 − x2

3 −
(
x̃ −

√
T 2 − z2

0

)2][(
x̃ +

√
T 2 − z2

0

)2

+ x2
3 − T 2

])1/2

+

, (B.19)

where the plus sign indicates that we consider it as generalized function, and the
value within the outer parentheses must be positive. With (B.18) and (B.19), we

have obtained the pressure inside the domain corresponding to the control p
(1)
+ . It

is a distribution, and is considered as acting on smooth test functions.
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B.2 The velocity component

With the same notation as in the previous section, we write the particle velocity
inside the domain, for the boundary control p

(1)
+ , in the limit t = T as

v(1)(x, T ) = ∇∂z0

∫
R2

H(T − R2)
δ(R2 − R1)

8π2R1R2

dx′
1 dx′

2 . (B.20)

With the change to the arc-length coordinates, we have, (cf. (B.11))

v(1)(x, T ) = ∇ 1

8π2x̃
∂z0

∫
R

H(T − R2)

R1

∣∣∣∣
R1=R2

dx′
2 . (B.21)

Analogous to the derivation leading up to (B.10), the condition R1 = R2 is equivalent
to x′

1 = x0
1, hence

R1|x′
1=x0

1
=

(
(x0

1)
2 + z2

0 + (x′
2)

2
)1/2

. (B.22)

The integral is straight forward, once we notice that the step function imposes the
boundary value of x′

2, see (B.15)

v(1)(x, T ) = ∇
[

1

8π2x̃
∂z0 ln

(
|x′

2 +
√

(x′
2)

2 + z2
0 + (x0

1)
2|

)]∣∣∣∣
x′
2={x′

2:R1|x′1=x0
1
=T}

=

∇
[

1

8π2x̃
∂z0

(
ln(

T +
√

T 2 − z2
0 − (x0

1)
2

T −
√

T 2 − z2
0 − (x0

1)
2
)H

(
T − c−1

√
z2
0 + (x0

1)
2
))]

. (B.23)

Upon evaluating the derivative with respect to z0, we obtain

v(1)(x, T ) = ∇
(

z0

4π2x̃2

T (x0
1 − x̃)(

T 2 − z2
0 − (x0

1)
2
)1/2

+

(
z2
0 + (x0

1)
2
)
)

, (B.24)

where the generalized function in the denominator is the same as for the pressure
(B.17), and can be rewritten as (B.19).

Appendix C The response field for case 2

To obtain the response for the control in case 2, we start to examine the characteris-
tics of our transducers. The derivation in Appendix A–B is for the particle velocity
normalization of the boundary condition, both for the control and for the measure-
ment. If we instead of velocity normalization use the pressure normalization, then
the boundary condition takes the form (cf. (6.14))

p + Y−1v3

2
= p

(2)
+,Np , and m(2) =

q − Y−1u3

2
. (C.1)

The control operator is then expressed in terms of the eigenvector in the pressure
normalization, i.e., η+ in (A.4) is replaced by η+

(2), where

η±
(2) =

(
1

±s−1

√
s2 + ξ̃2

)
. (C.2)
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Thus the symbol of the control operator, w+
(2), in this normalization is


 p

ṽ
v3


 = (w+

(2)p
(2)
+,Np)(ξ̃, x3, s) =


 −∂3

s−1iξ̃∂3

s−1∂2
3


 e−x3

√
s2+ξ̃2

√
s2 + ξ̃2

p
(2)
+,Np(ξ̃, s) . (C.3)

Using (A.8), we obtain the control operator as

p(x, T ) = −∂3

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′| p

(2)
+,Np(x̃

′, t′) dx′
1 dx′

2 dt′ , (C.4)

and

v(x, T ) = ∇∂3

∫ T

0

∫
R2

δ(T − t′ − |x − x̃′|)
2π|x − x̃′|

∫ t′

0

p
(2)
+,Np(x̃

′, t′′) dt′′ dx′
1 dx′

2 dt′ . (C.5)

Hence, the normalization of the boundary condition changes the field, as expected,
cf. (6.18) and (6.19). The change related to the different transducer normaliza-
tions can be compared to solving a partial differential equation with Neumann and
Dirichlet boundary condition respectively.

The field from the pressure pulse at the surface, {q, u3}, in (6.24) is independent
of normalization, but we measure particle velocity, see (C.1), thus in the pressure
normalization the measured signal becomes

(
q(ξ̃, 0, s)

u3(ξ̃, 0, s)

)
=

se−z0

√
s2+ξ̃2

2

√
s2 + ξ̃2

η−
(2)(ξ̃, s) ⇒ m(2)(ξ̃, s) =

se−z0

√
s2+ξ̃2

2

√
s2 + ξ̃2

, (C.6)

in the transform domain, and hence

m(2)(x̃, t) = ∂t
δ(t −

√
x̃2 + z2

0)

4π
√

x̃2 + z2
0

. (C.7)

Thus the control corresponding to the m(2) measurement is given by

p
(2)
+,Np = H(t)m(2)(x̃, T − t) = −H(t)∂t

δ(T − t −
√

x̃2 + z2
0)

4π
√

x̃2 + z2
0

. (C.8)

We substitute the control (C.8) into (C.4) and (C.5) to obtain

p(2)(x, T ) = ∂3z
−1
0 ∂z0

∫
R2

H(T − |x− x̃′|) δ(|x − x̃′| −
√

(x̃′)2 + z2
0)

8π2|x − x̃′| dx′
1 dx′

2 , (C.9)

and

v(2)(x, T ) =

−∇∂3z
−1
0 ∂z0

∫
R2

H
(
T −

√
(x̃′)2 + z2

0

)H(
√

(x̃′)2 + z2
0 − |x − x̃′|)

8π2|x − x̃′| dx′
1 dx′

2 . (C.10)
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We rewrite (C.10) by evaluating ∂z0 , thus

v(2)(x, T ) = −∇∂3

∫
R2

H
(
T −

√
(x̃′)2 + z2

0

) δ(
√

(x̃′)2 + z2
0 − |x − x̃′|)

8π2|x − x̃′|
√

(x̃′)2 + z2
0

− δ
(
T −

√
(x̃′)2 + z2

0

)H(
√

(x̃′)2 + z2
0 − |x − x̃′|)

8π2|x − x̃′|
√

(x̃′)2 + z2
0

dx′
1 dx′

2 . (C.11)

The evaluation of (C.9) follows directly of its corresponding evaluation of the re-
sponse in particle velocity normalization, see (B.8), we obtain

p(2)(x, T ) =
−1

4π2x̃2
∂3

x̃2 − x2
3 + z2

0(
[T 2 − x2

3 −
(
x̃ −

√
T 2 − z2

0

)2
][
(
x̃ +

√
T 2 − z2

0

)2
+ x2

3 − T 2]
)1/2

+

. (C.12)

Appendix D The pressure response distribution

for T → ∞
In this section, we give the details for the calculation of the limit T → ∞ of the
pressure response (6.31) in case 1.

We rewrite the denominator of (6.31) in the more convenient form

p(1)(x, T ) =
−z0

4π2x3x̃2
∂3

x̃2 − x2
3 + z2

0(
[
(√

T 2 − z2
0 +

√
T 2 − x2

3

)2 − x̃2][x̃2 −
(√

T 2 − z2
0 −

√
T 2 − x2

3

)2
]
)1/2

+

. (D.1)

In the limit T → ∞, let φ = φ(x̃, x3) be a compactly supported test function, i.e.,
smooth and bounded. We require that

supp φ ⊂ {x ∈ R
3 : x3 > 0} and diam φ ≤ Dφ , (D.2)

for some fixed number Dφ > 0. As we are only interested in the limit T → ∞, we
require that T >> z0. Let us define the pressure functional pf = pf (T ) as

pf =

∫
R

3
+∩supp φ

p(1)(x, T )φ(x̃, x3) dx1 dx2 dx3 . (D.3)

By partial integration we push the derivative to the test function to obtain

pf =

∫
R

3
+∩supp φ

z0

4π2

(
∂3

φ(x̃, x3)

x3

)

(x̃2 − x2
3 + z2

0) dx1 dx2 dx3

x̃2
(
[
(√

T 2 − z2
0 +

√
T 2 − x2

3

)2 − x̃2][x̃2 −
(√

T 2 − z2
0 −

√
T 2 − x2

3

)2
]
)1/2

+

. (D.4)
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We eliminate the appearance of T in the integrand with the change of variables

ž0 =
z0√

T 2 − z2
0

, x̌3 =
x3√

T 2 − z2
0

, ř =
x̃√

T 2 − z2
0

, (D.5)

giving dx1 dx2 dx3 = (T 2 − z2
0)

3/2ř dř dx̌3 dθ. With this change of variables the the
denominator takes the form

(. . .)
1/2
+ =

(T 2 − z2
0)

([(
1 +

√
1 − x̌2

3 + ž2
0

)2

− ř2
][

ř2 −
(
1 −

√
1 − x̌2

3 + ž2
0

)2])1/2

+

.

For notational convenience let

ψ(ř cos θ, ř sin θ, x̌3, T ) =
ž0

2π

∂

∂x̌3

φ(
√

T 2 − z2
0 ř cos θ,

√
T 2 − z2

0 ř sin θ,
√

T 2 − z2
0 x̌3)

x̌3

.

(D.6)
The limit of the integration, R

3
+ ∩ supp φ, in the new variables is included in the set

(x̌3 − ž0)
2 + ř2 ≤

D2
φ

T 2 − z2
0

≡ Ď2
φ , (D.7)

for sufficiently large T . Hence, we only have to consider small ř and |x̌3 − ž0| as we
make T arbitrary large. In particular, we can expand the test function ψ around
ř = 0, ψ(x̌, x3) = ψ(0, 0, x3, T ) + řψx̌1 cos θ + řψx̌2 sin θ + O(ř2). As the integrand,
apart from the test function, is independent of θ, we obtain

pf =

∫
√

(x̌3−ž0)2+ř2≤Ďφ

(
ψ(0, 0, x̌3, T ) + O(T−2)

)

(ř2 − x̌2
3 + ž2

0) dř dx̌3

ř
(
[
(
1 +

√
1 − x̌2

3 + ž2
0

)2 − ř2][ř2 −
(
1 −

√
1 − x̌2

3 + ž2
0

)2
]
)1/2

+

. (D.8)

The ř-integral can be integrated exactly, but as we are only interested in the limit
T → ∞, we simplify the above expression as both |x̌3− ž0| and ř are bounded above
by Ďφ = O(T−1) << 1, for sufficiently large T . Applying Taylor expansion gives

1 +
√

1 − x̌2
3 + ž2

0 = 2 + O(T−1) , 1 −
√

1 − x̌2
3 + ž2

0 =
x̌2

3 − ž2
0

2
+ O(T−2) , (D.9)

hence
(. . .)

1/2
+ =

([
4ř2 − (x̌2

3 − ž2
0)

2
])1/2

+
+ O(T−1) . (D.10)

Thus the pressure functional becomes

pf =

∫
√

(x̌3−ž0)2+ř2≤Ďφ

ř2 − x̌2
3 + ž2

0

ř
[
4ř2 − (x̌2

3 − ž2
0)

2
]1/2

+

ψ(0, 0, x̌3, T ) dř dx̌3 + . . . . (D.11)
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0.5

1

1.5

x3
�������

z0

r =
|x2

3 − z2
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2

√
r2 + (x3 − z0)2 = Ďφ

r =
|x2

3 − z2
0 |

2

Figure 12: The triangle with the gray dot is the area of integration. The outer
circle bounds the domain of ψ and the cutoff, (...)

1/2
+ , is shown as the two lines

entering the half-circle.

The disk
√

(x̌3 − ž0)2 + ř2 ≤ Ďφ, together with the step function indicated by the

plus sign on (...)
1/2
+ is depicted in Figure 12. With the change of variables

ř = |x̌2
3 − ž2

0 |u/2 = ζu/2 , (D.12)

we find

pf =

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

∫ 2ζ−1
√

Ď2
φ−(x̌3−ž0)2

1

ψ(0, 0, x̌3, T )
ζ2u2/4 − x̌2

3 + ž2
0

ζu(u2 − 1)1/2
du dx̌3 + . . . ,

where f(x̌3) =
√

4 + (x̌3 + ž0)2. Upon integrating we have

pf = −
∫
|x̌3−ž0|f(x̌3)≤2Ďφ

ψ(0, 0, x̌3, T )
((x̌2

3 − ž2
0)π

2|x̌2
3 − ž2

0 |
− 1

4

√
4Ď2

φ − 4(x̌3 − ž0)2 − ζ2−

x̌2
3 − ž2

0

ζ
arctan

(
ζ(4Ď2

φ − (x̌3 − ž0)
2 − ζ2)−1/2

))
dx̌3 + . . .

Observe that on the given interval we have the upper bound

1

4

√
4Ď2

φ − 4(x̌3 − ž0)2 − ζ2 ≤ Ďφ/2 , (D.13)

this together with that the square root is a continuous function, and that the test
function is bounded above, gives that the integral of this term vanish as T → ∞. For
the arctan-term, we observe that it is continuous at x̌3 = ž0, since arctan ε = ε+ . . .,
furthermore, on the given interval

∣∣sgn(x̌2
3 − ž2

0) arctan
(
ζ(4Ď2

φ − (x̌3 − ž0)
2 − ζ2)−1/2

)∣∣ ≤ π

2
, (D.14)

thus, as the test function is bounded, this term also give a vanishing contribution
to the integral.
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With the above considerations the pressure functional becomes

pf = −π

2

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

ψ(0, 0, x̌3, T )
x̌2

3 − ž2
0

|x̌2
3 − ž2

0 |
dx̌3 + O(T−1) . (D.15)

If we now substitute the expression for ψ, (D.6), we find that

pf = − ž0

4

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

(
∂x̌3

φ(0, x̌3

√
T 2 − z2

0)

x̌3

)
sgn(x̌2

3 − ž2
0) dx̌3 + O(T−1) .

(D.16)
This integral is evaluated as

pf =
ž0

4

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

φ(0, x̌3

√
T 2 − z2

0)
(
x̌−1

3 ∂x̌3 sgn(x̌2
3 − ž2

0)
)
dx̌3 + O(T−1)

=
1

2
φ(0, z0) + O(T−1) . (D.17)

In the integration we used that z0 is always in the domain |x̌3 − ž0|f(x̌3) ≤ 2Ďφ, for
sufficiently small Ďφ, or correspondingly for large enough T . In the limit T → ∞
we find that the distribution reduce to a delta Dirac at x̃ = 0 and x3 = z0. Hence,
in the limit we get back half original pressure pulse, in the pressure component.
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