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Abstract. This paper is a continuation of recent attempts to understand, via mathematical
modeling, the dynamics of marine bacteriophage infections. Previous authors have proposed systems
of ordinary differential delay equations with delay dependent coefficients. In this paper we continue
these studies in two respects. First, we show that the dynamics is sensitive to the phage mortality
function, and in particular to the parameter we use to measure the density dependent phage mortality
rate. Second, we incorporate spatial effects by deriving, in one spatial dimension, a delay reaction-
diffusion model in which the delay term is rigorously derived by solving a von Foerster equation.
Using this model, we formally compute the speed at which the viral infection spreads through the
domain and investigate how this speed depends on the system parameters. Numerical simulations
suggest that the minimum speed according to linear theory is the asymptotic speed of propagation.
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1. Introduction. It is known that bacteriophage infection can be a signifi-
cant mechanism of mortality in marine prokaryotes (Bergh et al. [6], Proctor and
Fuhrman [16]). These mortality mechanisms are critical in understanding the marine
production processes. The constituents released by cell lysis can be an important
pathway of nutrient recycling. This has direct bearing on issues such as global warm-
ing and topics of geochemical cycles. Viral infection also has direct implications for
genetic exchange in the sea (Lenski and Levin [14], Bohannan and Lenski [7]).

Although we do not yet have a good understanding of the temporal or spatial
scales at which host-virus encounters occur, it is clear that viral mortality must be
explicitly considered in most models of the marine system. A case in point, recent
experimental work suggests that the contamination of algal cells by viruses can serve
as a regulatory mechanism in its bloom dynamics. Beltrami and Carroll [1] formulated
a simple trophic model including virus-induced mortality. Their model succeeded in
mimicking the actual algal bloom patterns of several species.

Our main interest in this paper is to explore how viral mortality affects both
the temporal and spatial dynamics of marine bacteria and cyanobacteria. Recently,
Beretta and Kuang [4] formulated and carried out a detailed study of the temporal
viral-bacteria model

dS
dt

= αS(t)

(
1 − S(t) + I(t)

C

)
−KS(t)P (t),

dI
dt

= −µiI(t) + KS(t)P (t) − e−µiTKS(t− T )P (t− T ),

dP
dt

= β − µpP (t) −KS(t)P (t) + be−µiTKS(t− T )P (t− T ).

(1.1)
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This system of delay differential equations models a population of marine bacteria in
which the individuals are subject to infection by viruses, also known as bacteriophages.
Prior to that, these authors (Beretta and Kuang [2]) modeled and studied the same
process by a set of nonlinear ordinary differential equations, and Carletti [10] has
studied the stochastic extension of that model. In system (1.1), S is the density
(i.e., number of bacteria per liter) of susceptible bacteria, I is the density of infected
bacteria, and P is the density (number of viruses per liter) of viruses (phages). Viruses
P attack the susceptible bacteria S, and a bacterium becomes infected I when a virus
successfully injects itself through the bacterial membrane. The virus then starts
replicating inside the bacterium, and then all the bacterium’s resources are directed
to replication of the virus. The infected bacterium does not replicate itself by division;
only susceptible bacteria are capable of doing so. After a latency time T , an infected
bacterium will die by lysis; i.e., the bacterium explodes releasing b copies (b > 1) of
the virus into the solution, which are then free to attack other susceptible bacteria.
An infected bacterium may die other than by viral lysis; we allow for this by the term
−µiI(t). The differential equation for I(t) is derived from the fact that I(t) is given
by

I(t) =

∫ T

0

e−µiτKS(t− τ)P (t− τ) dτ,(1.2)

which expresses the fact that the number of recruits into the infected class between
times t − (τ + dτ) and t − τ is KS(t − τ)P (t − τ) dτ , the number of these still alive
at time t is obtained by multiplying by e−µiτ , and then the integral totals up the
contributions from all relevant previous times, i.e., up to T time units ago.

In the virus equation, the third equation of (1.1), all mortalities of viruses are
accounted for by the term −µpP (t). The β term, where β > 0, models a constant
inflow of phages from outside the system. In the absence of viruses the bacteria grow
logistically. The rate of infection is given by the law of mass action to be KS(t)P (t).

Beretta and Kuang [4] assumed that infected bacteria still compete with suscep-
tible bacteria for common resources. This is represented by the −(S + I)/C term in
the first equation of (1.1). This is clearly a disputed subject. For example, a model
by Campbell [8] consists of the following equations:

dS(t)

dt
= αS(t)

(
1 − S(t)

C

)
−KS(t)P (t),(1.3)

dP (t)

dt
= bKS(t− T )P (t− T ) − µpP (t) −KS(t)P (t),

where

I(t) =

∫ t

t−T

KS(θ)P (θ)dθ.(1.4)

Clearly, in (1.3) the competition for common resources and additional mortality rate
endured by infected bacteria is neglected. The equations (1.3), (1.4) can be obtained
from (1.1) by setting β = 0, µi = 0. Extensions of the above Campbell model can
be found in Beretta, Carletti, and Solimano [3] (taking into account environmental
fluctuations) and Carletti [9] (replacing b by be−µiT ).

In the present paper, like the model of Campbell [8], we assume that once a
bacterium becomes infected by a virus, it no longer competes with susceptibles for
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resources. We will allow the possibility of a density dependent mortality term in the
phage equation. In Beretta and Kuang [4], and also in the present paper, it is assumed
that T and b are constant and the same for the whole population. Modifications of
this assumption (e.g., replacing the constant incubation time T by a distribution of
incubation times modeled using a probability density function) are the subject of
further work presently in progress.

In the next section, we will present our delay model of bacteriophage infection
and a simple preliminary result on the positivity of its solutions. This is followed by
a short section on the global stability of the disease-free equilibrium. The analysis
of endemic equilibrium is highly nontrivial and we provide only generic conditions
for its stability switch. To complement this analytic work, we present some carefully
designed and data-based simulation results. We then proceed to formulate and study
a delay reaction-diffusion model of the spread of bacteriophage infection. The paper
ends with a discussion.

2. Preliminaries. Most of our effort will be devoted to understanding the sys-
tem

S′(t) = αS(t)
(
1 − S(t)

γ

)
−KS(t)P (t),

P ′(t) = −µpP (t) −mP 2(t) −KS(t)P (t) + bKe−µiTS(t− T )P (t− T ),
(2.1)

and with a reaction-diffusion version of (2.1). The initial conditions for (2.1) are

S(s) = S0(s) ≥ 0, s ∈ [−T, 0], with S0(0) > 0,
P (s) = P 0(s) ≥ 0, s ∈ [−T, 0], with P 0(0) > 0,

(2.2)

where S0 and P 0 are prescribed continuous functions. Our system (2.1) differs from
that studied in [4] in three respects: (i) we do not have an inflow of phages from
outside the system, (ii) we allow the possibility of a density dependent mortality term
(the term −mP 2 in (2.1)), and (iii) we assume that an infected bacterium no longer
competes with the susceptibles for resources. The latter assumption means that we
do not need the differential equation for I(t) for the analysis (though I(t) is still given
by (1.2)). An additional difference is that in the present paper we shall consider the
effects of including diffusion to model the motion of the phages and bacteria.

If we had P 0(s) ≡ 0 on [−T, 0], the method of steps would immediately yield
P (t) = 0 for all t > 0. The dynamics of S(t) would then be governed by the logistic
equation. Similarly, if S0(s) ≡ 0, then clearly S(t) remains zero for all t > 0 and
thus P (t)→0 as t→∞. These trivial cases are removed from consideration by the
assumptions in (2.2).

Proposition 1. Solutions of (2.1), (2.2) satisfy S(t) > 0, P (t) > 0 for all t > 0.
Proof. The equation for S(t) in (2.1) contains a factor of S(t) and therefore

positivity for S(t) follows by the standard argument. For P (t), note that on t ∈ [0, T ]
we have P ′(t) ≥ −µpP (t) − mP 2(t) − KS(t)P (t) so that P (t) ≥ P̃ (t), where P̃ is

the solution of P̃ ′(t) = −µpP̃ (t) −mP̃ 2(t) −KS(t)P̃ (t) satisfying P̃ (0) = P (0) > 0.

Clearly P̃ (t) > 0 for all t > 0, and so we conclude that P (t) > 0 for all t > 0. The
proof is complete.

3. Equilibria and their stability. The equilibria of (2.1) are (S, P ) = (0, 0),
the disease-free equilibrium (γ, 0), and possibly an endemic equilibrium

(S∗, P ∗) :=

(
mγα + Kγµp

mα + K2γ(be−µiT − 1)
,
αγK(be−µiT − 1) − αµp

mα + K2γ(be−µiT − 1)

)
.(3.1)
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The latter is ecologically relevant if and only if

be−µiT > 1 +
µp

γK
,(3.2)

which, of course, can only possibly hold for T up to a finite value. As long as (3.2)
holds, there is an endemic equilibrium. Note that as m→∞ the endemic equilibrium
approaches the disease-free equilibrium (γ, 0).

We shall first prove that, if condition (3.2) does not hold, then any positive
solution approaches the disease-free equilibrium (γ, 0).

Theorem 1. Assume that

be−µiT ≤ 1 +
µp

γK
.

Then any solution of (2.1), (2.2) satisfies

lim
t→∞

(S(t), P (t)) = (γ, 0).

Proof. Consider the positive definite functional

V = S − γ − γ ln
S

γ
+

γK

µp
P +

bγK2

µp
e−µiT

∫ t

t−T

S(s)P (s) ds.

Differentiating along solutions of (2.1) yields

V ′ = −α

γ
(S − γ)2 − γmK

µp
P 2 + K

(
bγK

µp
e−µiT − γK

µp
− 1

)
SP

≤ −α

γ
(S − γ)2.

Thus

V (t) +
α

γ

∫ t

0

(S(s) − γ)2 ds ≤ V (0),

and, letting t→∞, we conclude that |S(t) − γ| ∈ L2(0,∞) so that S(t)→γ as t→∞.
The differential equations (2.1) then yield P (t)→0. The proof is complete.

3.1. The endemic equilibrium: Linearized analysis. Let us investigate the
endemic equilibrium (S∗, P ∗) given by (3.1). In this subsection we shall assume, of
course, that (3.2) holds, so that the equilibrium is feasible. The linearized analysis
about the endemic equilibrium is algebraically quite complicated. The main reason
for this is that the delay T appears not only in the S(t − T )P (t − T ) term in the
second equation of (2.1), but also in the factor e−µiT in front of that term. The
paper by Wolkowicz, Xia, and Wu [20] shows how such additional factors involving
time delay can appear in distributed delay equations. Surprisingly, this represents
a significant complication and prevents us from analytically computing the precise
parameter regimes in which the endemic equilibrium can change stability as the delay
T is increased, or the actual values of T when stability switches occur. Note further
that the equilibrium itself depends on T and exists only for T up to a finite value.
This renders many of the existing stability switch methods (see Kuang [12]) powerless.
However, a method has recently been developed by Beretta and Kuang [5] to address
the problem of computing stability switches for delay equations which do not lend
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themselves to classical methods because of these complications. We shall use this
method in this section.

To linearize about (S∗, P ∗) we set S = S∗ + S̃ and P = P ∗ + P̃ . Ignoring higher
order terms in S̃, P̃ gives us the linearized system

S̃′(t) = −α
γ S

∗S̃(t) −KS∗P̃ (t),

P̃ ′(t) = −KP ∗S̃(t) − (µp + 2mP ∗ + KS∗)P̃ (t)

+ bKe−µiT (P ∗S̃(t− T ) + S∗P̃ (t− T )).

(3.3)

We shall find it convenient to introduce the parameter

ρT =
γK

µp
(be−µiT − 1).(3.4)

Then the endemic equilibrium (S∗, P ∗) exists if and only if

ρT > 1.

In terms of ρT ,

(S∗, P ∗) =

(
γ(mα + Kµp)

mα + KµpρT
,

αµp(ρT − 1)

mα + KµpρT

)
.

Nontrivial solutions of the linearized system of the form (S̃(t), P̃ (t)) = eλt(c1, c2) exist
if and only if

D(λ;T ) = 0,

where

D(λ;T ) = λ2 + a(T )λ + b(T )λe−λT + c(T ) + d(T )e−λT(3.5)

and

a(T ) =
α(mα + Kµp) + mα(Kγ + 2µpρT − µp) + Kµp(Kγ + µpρT )

mα + KµpρT
,(3.6)

b(T ) = −bγKe−µiT (mα + Kµp)

mα + KµpρT
,(3.7)

c(T ) =
α(mα + Kµp) {mα(Kγ + (2ρT − 1)µp) + Kµp(µpρT + (2 − ρT )Kγ)}

(mα + KµpρT )2
,(3.8)

d(T ) =
bKγαe−µiT (mα + Kµp) {Kµp(ρT − 2) −mα}

(mα + KµpρT )2
.(3.9)

Keeping in mind that b > 1, it is straightforward to see that when T = 0 the equilib-
rium (S∗, P ∗), if feasible, is linearly stable. This is because when T = 0, (3.5) becomes
a quadratic in λ, and it is easy to see that a(0) + b(0) > 0 and c(0) + d(0) > 0. The
question is whether the equilibrium can undergo any stability switch as T is increased,
remembering that the equilibrium is only feasible up to a finite value of T . To identify
a stability switch we seek solutions of the characteristic equation D(λ;T ) = 0 of the
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form λ = ±iω, with ω a real positive number. We find that it is necessary for ω to
satisfy

ω4 + (a2(T ) − 2c(T ) − b2(T ))ω2 + c2(T ) − d2(T ) = 0.(3.10)

However, the existence for a particular T of a real root ω(T ) of (3.10) does not in
itself imply that a stability switch occurs at that value of T , since T also has to
satisfy (3.11) and (3.12) below. Nonetheless, certain general analytical conclusions
can be drawn in spite of the algebra. Straightforward but tedious computations show
that, for any parameter values consistent with ρT > 1 (i.e., with existence of the
endemic equilibrium (S∗, P ∗)), we have

a2(T ) − 2c(T ) − b2(T ) > 0.

In light of this fact, and assuming that (S∗, P ∗) is feasible when T = 0, certain
conclusions follow.

(i) A stability switch cannot occur in an interval of T throughout which c2(T ) >
d2(T ).

(ii) If there are values of T with c2(T ) < d2(T ), then a stability switch may occur
as T is varied. Pairs of eigenvalues cross the imaginary axis as T passes through
certain critical values. The critical values of T and the corresponding purely imaginary
eigenvalues ±iω(T ), ω(T ) > 0, are given implicitly by

sin(ω(T )T ) =
b(T )ω(T )(ω2(T ) − c(T )) + ω(T )a(T )d(T )

ω2(T )b2(T ) + d2(T )
,(3.11)

cos(ω(T )T ) =
d(T )(ω2(T ) − c(T )) − ω2(T )a(T )b(T )

ω2(T )b2(T ) + d2(T )
,(3.12)

ω2(T ) =
1

2

(
− a2(T ) + 2c(T ) + b2(T )(3.13)

+
√
a4(T ) − 4a2(T )c(T ) − 2a2(T )b2(T ) + 4c(T )b2(T ) + b4(T ) + 4d2(T )

)
,

where a(T ), b(T ), c(T ), and d(T ) are given by (3.6), (3.7), (3.8), and (3.9) above. It
is impossible to solve these equations for T explicitly, so we shall use the procedure
described in Beretta and Kuang [5]. According to this procedure, we define θ(T ) ∈
[0, 2π) such that sin θ(T ) and cos θ(T ) are given by the right-hand sides of (3.11)
and (3.12), respectively, with ω(T ) given by (3.13). This defines θ(T ) in a form
suitable for numerical evaluation using standard software. Then T is given (still
implicitly) by

T =
θ(T ) + 2nπ

ω(T )
, n = 0, 1, 2, . . . ,

and the idea is to identify the roots of this equation for various n, i.e., to solve
numerically the equation Sn(T ) = 0 for n = 0, 1, 2, where

Sn(T ) = T −
(
θ(T ) + 2nπ

ω(T )

)
, n = 0, 1, 2, . . . .(3.14)
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Accurate plots of these functions Sn(T ) quickly reveal whether stability switches can
occur or not, but one must remember to keep track of the feasibility of the equilibrium
(S∗, P ∗) since it disappears completely (by coalescing with the disease-free equilibrium
(γ, 0)) at a finite value of the delay T .

By reference to (i) above, it is possible to obtain sufficient and easily verifiable
conditions for the equilibrium (S∗, P ∗) to remain locally stable. Indeed, the condition
c2(T ) > d2(T ) amounts to

(3.15)

m2
{
α2(Kγ + (2ρT − 1)µp)

2 − α2b2K2γ2e−2µiT
}

+ 2αKµpm
{
(Kγ + (2ρT − 1)µp)(µpρT + (2 − ρT )Kγ) + (ρT − 2)b2K2γ2e−2µiT

}
+ K2µ2

p(µpρT + (2 − ρT )Kγ)2 −K2µ2
p(ρT − 2)2b2K2γ2e−2µiT > 0.

Thus, if (3.15) holds, then (S∗, P ∗), if feasible, is locally stable. The coefficient of m2

in (3.15) is automatically positive if ρT > 1 (the condition for feasibility of (S∗, P ∗)),
and therefore one parameter regime in which (3.15) is satisfied is that the parameter
m be large.

For the convenience of comparison and computation, we perform the same di-
mensionless analysis as was carried out in Beretta and Kuang [4]. We choose the
dimensionless time as τ = Kγt. Note that one unit of the dimensionless time scale,
i.e., τ = 1, corresponds to tτ = (1/Kγ) in the original time unit. We also need the
dimensionless variables

s =
S

γ
, p =

P

γ
.

Below are the dimensionless parameters:

a =
α

Kγ
, mp =

µp

Kγ
, mi =

µi

Kγ
, mq =

m

K
.

Equations (2.1) have the dimensionless form⎧⎪⎪⎨⎪⎪⎩
ds(τ)

dτ
= as(τ) − as2(τ) − s(τ)p(τ),

dp(τ)

dτ
= −mpp(τ) −mqp

2(τ) − s(τ)p(τ) + be−miTτ s(τ − Tτ )p(τ − Tτ ).
(3.16)

The values for the dimensionless parameters and the dimensionless time scale are
taken from the model of Beretta and Kuang [4] (the original parameter estimates are
due to Okubo). They are

a = 10, mp = 14.925,(3.17)

with tτ = (1/Kγ) = 7.4627 days and an average latency time T � 0.303 days. We
have no estimates for mi = (µi/Kγ), but it seems reasonable to assume it is smaller
than m (since the main cause of mortality is the lysis of infected cells). We assume
mi � 0.1mp. In addition, we do not have an estimate on mq. In the following
computational work, we assume that mq � 0.1, a value close to zero. Figure 1 is the
result of an application of the stability switch theory of Beretta and Kuang [5] for
this set of parameters (except that we vary the latency period).

Figure 2 provides simulation results for the above set of parameters with four rep-
resentative values of latency periods. Clearly Figure 2 confirms the findings embodied
in Figure 1.
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Graph of stability switch for S_0(T) and S_1(T), here T=tau
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Fig. 1. Plots of the functions S0(τ) (upper curve) and S1(τ) (lower curve). Parameter values
used are µp = 14.925, b = 75, µi = 1.5, α = 10, and m = 0.1. The equilibrium is feasible for
0 ≤ τ < ln(b/(1 + µp))/µi ≡ τe ≈ 1.033.
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Fig. 2. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0.1, and τ varies from 0.01 to 1.1.
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4. Diffusive models. In this section we propose some reaction-diffusion exten-
sions of system (2.1). The main issues here are (i) what types of diffusion are appro-
priate, and (ii) derivation of the time-delay terms for the case when there is diffusion.
The latter point is important because infectives can move during the period between
infection and lysis, so that when an infective dies by lysis it will release the b copies
of the virus into the water at a different location from where it originally became
infected. We shall show how this can be accounted for in the modeling by including
time and age as independent variables and using an age-structured model approach.
The approach described here has also been used by many other investigators (see,
e.g., Smith [17], So, Wu, and Zou [18], and Gourley and So [11]).

For the simplest case of Fickian diffusion, and working on an infinite one-dimensional
domain −∞ < x < ∞, system (2.1) becomes

∂S(x, t)
∂t

= Ds
∂2S(x, t)

∂x2 + αS(x, t)

(
1 − S(x, t)

γ

)
−KS(x, t)P (x, t),

∂P (x, t)
∂t

= Dp
∂2P (x, t)

∂x2 − µpP (x, t) −mP 2(x, t) −KS(x, t)P (x, t)

+ b× {rate of death of infectives by lysis},

(4.1)

where Ds and Dp are the diffusivities of the susceptibles and the phages. The last
term in the P equation reflects the fact that each time an infective dies by lysis, it
releases b copies of the virus, and we must now compute an expression for the term
in curly brackets. As a first step in doing so, we shall indicate how to compute the
density I(x, t) of infectives at (x, t). This will be achieved by using a standard age-
structured model approach. Let i(x, t, a) be the density of infectives at (x, t) of age
a. We assume that i satisfies the von Foerster-type equation

∂i

∂t
+

∂i

∂a
= Di

∂2i

∂x2
− µii,(4.2)

where Di is the diffusivity of the infectives. The age of an infective will be measured
from its time of infection so that, by the law of mass action,

i(x, t, 0) = KS(x, t)P (x, t).(4.3)

We want to solve (4.2) subject to (4.3) to obtain i(x, t, a). The total density of
infectives at (x, t) will then be obtained by totaling all those of “age” less than T
(since older ones will have died by lysis); thus

I(x, t) =

∫ T

0

i(x, t, a) da.(4.4)

Expression (4.4) can then be used to find the rate of death of infectives by lysis which
is required for model (4.1).

Let

ir(x, a) = i(x, a + r, a).

Then

∂ir

∂a
=

[
∂i

∂t
+

∂i

∂a

]
t=a+r

=

[
Di

∂2i

∂x2
− µii

]
t=a+r
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so that

∂ir

∂a
= Di

∂2ir

∂x2
− µii

r.(4.5)

Applying the Fourier transform

îr(s, a) = F{ir(x, a); x→s} =

∫ ∞

−∞
ir(x, a)e−isx dx

to (4.5) gives

∂îr(s, a)

∂a
= −(Dis

2 + µi)îr(s, a),

the solution of which is

îr(s, a) = îr(s, 0)e−(Dis
2+µi) a

= F {KS(x, r)P (x, r); x→s}e−(Dis
2+µi) a

= F {KS(x, r)P (x, r); x→s}F
{

e−µia

2
√
πDia

e−x2/4Dia; x→s

}
since

îr(s, 0) = F {i(x, r, 0); x→s} = F {KS(x, r)P (x, r); x→s}

and

e−(Dis
2+µi) a = F

{
e−µia

2
√
πDia

e−x2/4Dia; x→s

}
.

By the convolution theorem for Fourier transforms,

i(x, a + r, a) = ir(x, a) =

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, r)P (y, r) dy.

Hence

i(x, t, a) =

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, t− a)P (y, t− a) dy,

and so

I(x, t) =

∫ T

0

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, t− a)P (y, t− a) dy da

or, after the substitution a = t− τ ,

I(x, t) =

∫ t

t−T

∫ ∞

−∞

e−µi(t−τ)

2
√
πDi(t− τ)

e−(x−y)2/4Di(t−τ)KS(y, τ)P (y, τ) dy dτ.

From this, we see that I(x, t) obeys

∂I(x, t)

∂t
= Di

∂2I(x, t)

∂x2
− µiI(x, t) + KS(x, t)P (x, t)

−Ke−µiT

∫ ∞

−∞

e−(x−y)2/4DiT

2
√
πDiT

S(y, t− T )P (y, t− T ) dy,
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and it is clear that the last term of this is the rate of death of infectives by lysis.
Thus, system (4.1) becomes

∂S(x, t)
∂t

= Ds
∂2S(x, t)

∂x2 + αS(x, t)

(
1 − S(x, t)

γ

)
−KS(x, t)P (x, t),

∂P (x, t)
∂t

= Dp
∂2P (x, t)

∂x2 − µpP (x, t) −mP 2(x, t) −KS(x, t)P (x, t)

+ bKe−µiT

∫ ∞

−∞

e−(x−y)2/4DiT

2
√
πDiT

S(y, t− T )P (y, t− T ) dy.

(4.6)

The formulation of a simple reaction-diffusion extension of (2.1) is complete. Like (2.1),
system (4.6) does not involve the infectives I(x, t) directly, but it does involve the pa-
rameter Di which measures their diffusivity.

System (4.6) is to be solved on the domain −∞ < x < ∞. Reaction-diffusion
systems with delay are quite difficult to study, and in this paper we will not attempt a
systematic study of all the dynamics of (4.6). It is of interest to investigate what (4.6)
tells us about the spatial spread of a virus infection in a population of bacteria.
Mathematically, it is therefore reasonable to look for traveling wave solutions of (4.6)
connecting the disease-free equilibrium (γ, 0) with the endemic equilibrium (S∗, P ∗)
given by (3.1), assuming (3.2) holds so that an endemic equilibrium exists. A traveling
front solution connecting these equilibria can model an invasion by the virus into the
domain.

A traveling wave solution is one that travels at a constant speed c without chang-
ing shape. Mathematically, it is a solution that depends on x and t through the single
variable z = x+ ct, with c ≥ 0 without loss of generality (this gives a leftward moving
wave). In terms of the variable z, system (4.6) becomes

c S′(z) = DsS
′′(z) + αS(z)

(
1 − S(z)

γ

)
−KS(z)P (z),

c P ′(z) = DpP
′′(z) − µpP (z) −mP 2(z) −KS(z)P (z)

+ bKe−µiT

∫ ∞

−∞

e−y2/4DiT

2
√
πDiT

S(z − cT − y)P (z − cT − y) dy,

(4.7)

where prime denotes differentiation with respect to z, and we need to solve (4.7) for
S(z) and P (z) subject to

(S, P )(−∞) = (γ, 0) and (S, P )(+∞) = (S∗, P ∗).(4.8)

System (4.7), (4.8) remains a difficult mathematical problem, and we have not been
able to establish the existence of a solution, even with the most recently developed
methods for proving existence of traveling front solutions of delay reaction-diffusion
systems such as those of Wu and Zou [21]. We shall therefore assume that such a
solution exists and concentrate on finding out as much as possible about the speed
c at which the virus infection spreads through the spatial domain. On the further
assumption that the infection spreads at the minimum speed consistent with having
an ecologically realistic solution satisfying S(z), P (z) ≥ 0 for all z ∈ (−∞,∞), we
shall formally calculate this minimum speed by examining the situation as z→−∞,
where P (z)→0, and obtaining conditions on c which are necessary for the convergence
of P (z) to 0 to be nonoscillatory. Linearizing as z→−∞, when P→0 and S→γ, the
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second equation of (4.7) becomes, approximately,

c P ′(z) = DpP
′′(z)− µpP (z)− γKP (z) + bγKe−µiT

∫ ∞

−∞

e−y2/4DiT

2
√
πDiT

P (z − cT − y) dy

and has solutions of the form P (z) = exp(λz) whenever λ satisfies

cλ−Dpλ
2 + µp + γK = bγKe−µiT e−λcT eλ

2DiT .(4.9)

Since this analysis is for z→−∞, it is necessary that (4.9) have at least one real positive
root if P (z) is to approach 0 in a nonoscillatory manner. Whether (4.9) has real
positive roots or not depends on the value of c, as can be easily seen by plotting the left-
and right-hand sides of (4.9) against λ and remembering that bγKe−µiT > µp + γK,
since this is the condition for the existence of (S∗, P ∗). If c is very small, then (4.9) has
no real positive roots, but if c is gradually increased, there is a critical value of c which
we shall call cmin (depending on T ) such that when c = cmin (4.9) has one positive
root (a double root), and when c > cmin the equation has precisely two real distinct
positive roots. Only traveling fronts for which c ≥ cmin are ecologically realistic, and
we assume that the virus infection travels with speed cmin since it is usually the case in
reaction-diffusion equations that the front one actually sees is the one with minimum
speed (those with c > cmin usually have very small basins of attraction that rule out
all but special initial conditions having very specific exponential decay rates).

Our aim now is to find out more about cmin and its dependence on the parame-
ters. It is not possible to find an explicit expression for cmin, but we can find some
information about it. Indeed, cmin is the value of c for which (4.9) has a double root
λ∗. Therefore, cmin and the double root λ∗ must satisfy the simultaneous equations

cminλ∗ −Dpλ
2
∗ + µp + γK = bγK exp(−µiT − λ∗cminT + λ2

∗DiT ),
cmin − 2Dpλ∗ = bγK(2λ∗DiT − cminT ) exp(−µiT − λ∗cminT + λ2

∗DiT ).
(4.10)

From these equations, we see that λ∗ must satisfy f(λ) = 0, where

f(λ) := 2DiDpTλ
3 − (2cminDiT + cminDpT )λ2 − (2DiT (µp + γK) − c2minT + 2Dp)λ

+ cmin + cminT (µp + γK).

Now f is a cubic and is such that f(0) > 0 and

f

(
cmin +

√
c2min + 4Dp(µp + γK)

2Dp

)
= −

√
c2min + 4Dp(µp + γK) < 0.

These facts imply that the equation f(λ) = 0 has one real negative root and two
real distinct positive roots. The larger of the two positive roots cannot satisfy the
first equation of (4.10). Therefore, λ∗ is the smaller of the two real positive roots of
f(λ) = 0. Furthermore,

0 < λ∗ <
cmin +

√
c2min + 4Dp(µp + γK)

2Dp
.(4.11)

The roots of a cubic equation are difficult to write down in general terms because there
are numerous cases depending on the signs of various quantities defined in terms of
the coefficients in the equation. An appendix to the book by Murray [15] gives all the
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details. Although the coefficients of our particular cubic equation are complicated,
we know a priori that our cubic equation has only real roots, and this narrows down
the possibilities considerably. In fact, if we let

a∗ = −cmin (2Di + Dp)

6DiDp
,

α∗ =
4c2minTD

2
i − 2c2minTDiDp + c2minTDp

2 + 12D2
iDpTµp + 12D2

iDpTγK + 12DiD
2
p

36D2
iD

2
pT

(it is easily shown that α∗ > 0),

N = 8c2minTD
2
i + 36D2

iDpTµp + 36D2
iDpTγ K + 2c2minTDi Dp − 18DiD

2
p − c2minTD

2
p,

β∗ =
cmin (Dp −Di)N

108Di
3Dp

3T
,

and

φ = (1/3) sin−1

(
β∗

2α
3/2
∗

)
, φ ∈ [−π/6, π/6],

then the only root of f(λ) = 0 satisfying (4.11) can be shown to be

λ∗ = 2α
1/2
∗ sinφ− a∗.(4.12)

Substituting λ∗ into either equation of (4.10) then gives a single, but very complicated,
equation determining the speed cmin.

We define the function g(c) to be the left-hand side minus the right-hand side of
the second equation of (4.10), with λ∗ given by (4.12) and cmin replaced by c. The
resulting function is too complicated to write out explicitly but is easily handled in
MAPLE. Of course, cmin solves g(cmin) = 0 and can easily be found either by reading
off the root from an accurate plot of g(c) or by using MAPLE commands for finding
roots numerically. Figure 3 shows a plot of g(c) for typical parameter values (see
caption). We investigated how cmin depends on the values of all the parameters, and
our main observations were as follows:

• If µi, µp, or T is increased, the result is a decrease in cmin.
• If K, γ, b, Di, or Dp is increased, the result is an increase in cmin.
• If the delay T is large, then the value of cmin is much more sensitive to Di than

to Dp. Presumably this is because virus particles with a host are transported
at the diffusivity of the infectives. To illustrate this, let T = 7 and other
parameters retain their Figure 3 values. Then cmin = 1.265. Keeping T = 7,
if Di is then raised to 100, cmin rises to 5.623. But if instead Di = 5 and Dp

is raised to 100, then cmin rises only to 1.976.
Analytical estimates for cmin can be obtained from other arguments, involving con-
sideration of the graphs of the left- and right-hand sides of (4.9) as functions of λ.
When c = cmin these two graphs just touch, at the value λ∗ just discussed. Consider
first the case when Di < Dp (so the minimum of the right-hand side is to the right of
the maximum of the left-hand side). In this situation the maximum of the left-hand
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8640 2

Fig. 3. Plot of the function g(c) defined in the text. The virus is predicted to spread at the speed
cmin > 0 such that g(cmin) = 0. Parameter values used for this graph were K = 0.134, µi = 0.1,
µp = 2, T = 0.2, γ = 1, Di = 5, Dp = 1, and b = 60. For these values, cmin = 5.646.

side as a function of λ is c2min/(4Dp) + µp + γK, and this must be less than the value
of the right-hand side when λ = 0, which is bγKe−µiT . This leads to the estimate

cmin < 2
√
Dp{γK(be−µiT − 1) − µp} if Di < Dp.

If Di is larger than Dp, but not too much larger, the above estimate on cmin will still
hold.

We also carried out some numerical simulations of system (4.6) with a view to
finding out whether the minimum speed cmin found from the linearized analysis is the
speed which would be observed in practice. The question is whether the minimum
speed wave is in some sense robust, attracting large classes of initial data. These
questions are difficult to resolve analytically. In a recent paper, Thieme and Zhao [19]
proved results on asymptotic speeds of spread for a class of nonlinear integral equa-
tions which include many reaction-diffusion models with delay, but their results do
not include system (4.6). Figure 4 shows the results of a numerical simulation of sys-
tem (4.6). For initial data, susceptibles S were set equal to γ throughout the domain,
and some phages were introduced at x = 0 into an otherwise phage-free domain. Fig-
ure 4 shows how the phages spread out into the domain and the effect on the density of
susceptible bacteria. Note that the traveling wave profiles are nonmonotone. Careful
examination of the profiles suggests that the traveling fronts advance at the minimum
speed cmin computed from the linearized analysis. The numerically computed front
actually appears to travel at a slightly higher speed, but we are confident that this
is purely a consequence of the discretization procedure. The speed varied slightly
with the number of spatial grid points but seemed to approach cmin from above as



564 STEPHEN A. GOURLEY AND YANG KUANG

Fig. 4. Numerical simulation of system (4.6). Parameter values were Ds = 5, m = 1, α = 1.34,
and the remaining parameters were as in Figure 3. The simulation suggests that the asymptotic speed
of spread is cmin, the minimum speed according to the linearized analysis.

the number of grid points was increased. As a result, we suggest that the asymptotic
speed of spread is indeed the speed cmin found from the linearized analysis.

5. Discussion. A key observation of Beretta and Kuang [2, 4] is the sensitivity
of the dynamics on the phage reproduction rate b. This remains so for model (2.1).
The novel observation of this work is the ultrasensitivity of the dynamics on the
phage density dependent mortality rate m. This suggests that the density dependent
mortality rate must be carefully measured to gain a better understanding of the
bacteriophage infection dynamics in marine bacteria. Indeed, the recent work of
Kuang, Fagan, and Loladze [13] contends that the predator death rate almost always
positively correlates with the predator density in nature. To see this for model (2.1),
we present Figures 5 and 6. Both figures use initial data and parameter values identical
to those in Figure 2, except that in Figure 5, m = 0, while in Figure 6, m = 0.2.

The second novel aspect of our work is the rigorous derivation of a delay reaction-
diffusion system to model the spatial spread of the virus infection and the use of
this system to formally calculate the speed at which the infection spreads through
a one-dimensional environment. The speed does not depend on the density depen-
dent mortality parameter m just discussed. Unfortunately, it is not possible to find
a simple expression for the speed, but it can be found from numerical computation.
As we would expect, the speed depends on the diffusivity of both the infectives and
the phages but is much more sensitive to the value of the former than the latter.
This would be because virus replication takes place only inside a host, and therefore
during replication the diffusivity of the viruses is effectively the host diffusivity Di

rather than Dp.
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Fig. 5. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0, and τ varies from 0.01 to 1.1.
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Fig. 6. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0.2, and τ varies from 0.01 to 1.1.
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