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THE DYNAMICS OF A TIPPE TOP* 

A. C. ORt

Abstract. Despite the numerous studies devoted to the dynamics of a spinning top, some
disputable issues concerning the classical motion still remain unsettled. The complexity of the six 
degree-of-freedom motion is compounded by the assumptions that must be made about the friction 
law. In this paper, a numerical model based on a more general description of contact friction is 
developed to simulate the unusual flip behavior of an old toy, known as the Tippe top. The results 
appear to explain some of the puzzles raised and disputed by previous investigators. 
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1. Introduction. Motion of gyroscopic bodies tends to bewilder intuition.
Many interesting examples described in early treatises of the subject [1], [2] still 
provide inspiration for modern readers. Recently, I came across a toy top that I later 
learnt to be the famous Tippe top (shown in Fig. 1). Unlike a regular top, this one 
spins on a spherical peg capable of rolling. The top has also generated numerous 
studies, especially in the 1950s. On the toy peg, it reads "Spin Fast! I Will Flip 
Over . . . and Spin on the Stick! " The top appears stable when spun slowly. When 
spun more rapidly, however, an instability develops that leads to overturning. The 
top is made of a symmetric truncated wooden sphere, with a stick attached to the 
base of the trucated cylindrical cavity. The center of mass of the top is slightly shifted 
to below the sphere's center. Table 1 summarizes the measured mass property of a 
sample. Figure 1 also illustrates the observed sequence of tumbling motion. Such mo­
tion occurs typically over tens and hundreds of spin periods. Following the tumbling, 
the toy top eventually starts to spin on its stick in the reversed vertical position. 
This happens regardless of the type of contacting surfaces, and seems to be quite 
independent of initial conditions. The overturning motion is a transition from an 
unstable equilibrium to the stable one, but preliminary study of the motion suggests 
that rolling motion always remains neutrally stable, even though the center of mass 
can oscillate about the level plane of the center of sphere. Thus, pure rolling cannot 
lead to an instability. Therefore, a friction law has to be postulated in addition to 
the governing conservation laws. Initial conditions seem to play an unimportant role. 
Transitions only occur as the spin speed increases through a threshold, and the fric­
tion force destabilizes or stabilizes depending on whether the top's center of mass is 
below or above the sphere's center. 

These observations are supported by the results of many papers of which I later 
became aware. A majority of these studies devoted to the Tippe top problem dated 
back to the 1950s, at a time when the digital computer was not widely available. 
Synge's [3] pioneer study attributed the reversal phenomenon to an unusual mass 
property of the top while his analysis assumed rolling contact. Braams [4] realized the 
importance of sliding friction. His analysis contains some less justifiable assumptions 
such as vanishing of the translational velocity at the center of mass. Hugenholtz 
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TABLE 1 

Mass property of the toy top. 

Top Mass (oz.) 
Density of wood (oz-in3) 
Trans. MOl about 0 (oz-in2)
Trans. MOl about G (oz-in2) 
Trans. MOl about C (oz-in2) 
Axial MOl (oz-in2) 

0.64 
0.42 
0.067 
0.066 
0.220 
0.066 

q, Center of mass offset 
<J, Inertia ratio about G 
J.£, Dimensionless mass 
1/Froude (spin at 100 rpm) 
(spin at 200 rpm) 
(spin at 300 rpm) 

-0.094 
1.011 
2.28 
5.53 
1.38 
0.62 

Length measures (inch) of the toy top. 

Stick diameter, a 0.25 
Cavity diamater, b 0.75 
Cavity depth, d 0.50 
C.M. height, h 0.57 
Radius of sphere, R 0.63 
Stick length, l 1.00 

[5], followed by Parkyn [6], [7], also performed similar analyses, which confirmed 
the importance of eccentricity and sliding friction to the stability of the Tippe top. 
As later noted by Kane and Levinson [8], however, the results of [4], [7] are rather 
dependent on initial conditions-a property that does not seem to fit observations well. 
At one time, the Tippe top had attracted such attention that numerous articles were 
published [9]-[16]. To summarize, many of these studies recognized the importance 
of sliding friction, but yet most only attempted to solve the linear stability problem. 
O'Brien and Synge [17] argued that the simple friction law cannot account for the 
observed instability. Instead, the authors used a viscous friction law, which has the 
viscous friction varied linearly with the sliding velocity at the contact point. The 
authors derived the stability criterion, which shows that the top becomes unstable 
when exceeding a certain spin speed. Cohen [18] revisited the Tippe top problem 
in the 1970s and provided the first numerical simulation of the reversal motions of 
the top. Cohen's paper also showed a photograph of Wolfgang Pauli and Niels Bohr 
fascinated by the Tippe top in action. Kane and Levinson [8] conceived the Tippe 
top as a particular case of the more general rigid body problem and developed full 
numerical simulations for bodies of different shapes using the general equations of 
motions. However, their paper dealt with the Tippe top problem only in passing 
mention, although some other examples such as that of a hemispherical shell were 
given. Kane and Levinson also criticized O'Brien and Synge's stability condition for 
being insensitive to the frictional coefficient. They also criticized Cohen's model as 
not including adequate provisions for transitions from sliding to rolling. Indeed, Kane 
and Levinson's model permits a switch between rolling and sliding motions. The 
sliding friction according to Coulomb is /J>K N, where /J>K is the coefficient of kinetic 
or dynamic friction and N is the normal reaction. A switch to rolling is assumed to 
occur as the absolute contact velocity vanishes. A switch to sliding occurs when the 
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(a) (b) (c) (d) 

FIG. 1. Toy top configuration and tumbling sequence. 

friction required to maintain rolling exceeds p,5N, where JJs is the coefficient of static 
friction. Typically, the authors assume /JK to be slightly less than P,s to permit the 
mechanism to work. Like Cohen, however, Kane and Levinson do not include the 
viscous term in their friction law. For the class of problems, the contact friction is 
extremely important, and it dictates the motions. Descriptions of friction laws are 
available in the literature since the last century. For references, refer to Routh [19] 
and the references in Cohen [18]. 

The aim of this paper is to provide a direct solution to the Tippe top motion, which 
may serve to summarize previous findings and to resolve the puzzles that still remain. 
Indeed, it becomes clear in the following that both viscous and Coulomb frictions can 
cause the transition to reversal. For the case of the Tippe top, a transition from sliding 
to rolling never seems to occur. For this purpose, our model uses a general frictional 
law that includes both Coulomb and the viscous terms, with sliding being assumed 
throughout. Along with the sliding model, the model based on the assumption of 
pure rolling is also simulated, to provide a comparison between the two cases. Section 
2 contains the formulation of the problem. Section 3 provides the linear stability 
analysis. Section 4 contains the full numerical solution of the nonlinear problem. In 
§5, we conclude with some further remarks.

2. Formulation. Governing equations. We refer to Fig. 2 for the geometry of
spherical top. We use a nonrotating Cartesian frame attached to the sphere's center 
0, Fa, which is defined by a triple of unit vectors, (f, J, K)T (T denotes transpose
of a column vector) . A second Cartesian frame fixed rigidly to the body, Fb, is also
used. This frame's axes are defined by a second triple of unit vectors, (T, ), k)T, where
the axes align with the body's principal axes. The vectrix notation [20] is used here 
for developing the governing equations from a vectorial form. In this notation, an 
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FIG. 2. Spherical model configuration. 

abstract vector iJ is expressed as 

iJ = f[;v = f[v, 

where the upper (lower) case boldface variable refers to the column vector relative to 
Fa (Fb), that is, v =(VI, v2, V3)T and v = (vl , v2, v3)T. The cross product between
two vectors ilx vis defined as F;ru xv or, equivalently, F[u xv . For a column vector
u = ( u1 , u2, u3)T, u x is the skew-symmetric matrix

To reduce the number of parameters, we introduce the spin period n�I as the timescale
and the radius R as the lengthscale. The linear and angular momentum equations 
referring to Fa are then

(1) 

(2) 

tJ(Vo + qk) = F - tJFr�1 K,

d . 1 
dt 

(low)= f.LQV�k- tJqFr� kxK- KxF,

where 10 is the moment of inertia tensor about point 0; V 0 is the absolute velocity 
at point 0; w is the angular velocity, k is the unit vector along the top axis; F is
the force acting on the body through the contact point. The major nondimensional 
parameters are the scaled top mass f.L, the Froude number Fr, the inertia ratio a, and
the initial center of mass offset q. The nondimensional parameters are defined as

(3) 
ca= Ao' 
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where M is the body mass; g is the gravity acceleration; A0 and C are, respectively, 
principal moments of inertia about point 0. The equilibrium solution of the initial 
state is 

F= tJFr-1K, w= DK, V0= 0, k= K .

We further introduce three direction cosine parameters l, m, n for the attitude, to
facilitate the equations to be expressed in the component form. The direction cosines 
satisfy identities 

k = (l, m, n)T , 

It can be easily checked that 10 has an expression 

lo = b + (0'- l)kkr,
where 13 is the order-3 identity matrix. The transverse axes have a degenerate ori­
entation due to axisymmetry. The kinematics are governed by 

(4) 

Equations (1 ), (2), ( 4) complete the twelfth-order six degree-of-freedom dynamical
problem with the specification of F. The translational displacement X0 is not coupled
into the dynamics and can be determined from 

Xo = Vo . 

In the case of a pure rolling, the velocity at the moving contact point vanishes iden­
tically throughout the motion, that is, 

(5) Vc = 0, 
The rolling constraint permits F to be eliminated from combining the translational
and rotational equations. In general, the force at contact point F has the following
representation: 

F = NK + f,

where N is the normal reaction and f is the tangential force. While N can be deter­
mined from the normal component of the dynamical equations, f must be supplied 
independently. In any case, it is known that f opposes motion. In a dimensional form, 
f is given by 

(6) 

where f.lv is the coefficient of viscous friction; Vc is given by V c = Vcev. The above
expression is a generalization of the Coulomb friction law to include the viscous term. 
The Coulomb's dynamic law the corresponds to the following truncated expression: 

f = -tJx N, 
The next term in (6) is proportional to the sliding velocity, which is similar to viscous 
friction. In nondimensional form, the friction law becomes 

(7) 

where now the Coulomb parameter ax and the viscous parameter av are given by
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3. The results. (i) Stability. The component form of our governing equations is 
shown in the Appendix. O'Brien and Synge's stability condition appears qualitatively 
correct, but the dependence of the stability on the friction coefficient is not included. 
To understand the roles of various parameters, the stability problem will be briefly 
discussed before we turn to the numerical sliding model. First, we consider the two 
classical examples of a top with a fixed-pivot and a rolling peg. Stability conditions 
similar to those given below can be found in [1], [2]. Introducing time dependence 
of ei>.t, we obtain the characteristic roots after simple manipulation of the governing 
equations, 

(8) 

where & is the axial to transverse moments of inertia ratio about the contact point, 
and 

(9) 
for a rolling top, 
for a fixed-pivot top. 

The stability condition is 

and a rolling top always satisfies this condition since q < 0. A rolling top also possesses
two integrals of motion (a fixed-pivot top has three integrals) . One is the total energy. 
The other is the angular momentum projected on to the line connecting the contact 
point C to the center of mass G, as there is no moment applied about this line. This
angular momentum hcg is given by

(10) reg = qk +K .

Next, we consider the sliding case. As remarked by Kane and Levinson [8], the linear 
stability criterion of O'Brien and Synge [17] is inadequate, since it does not depend on 
the friction coefficient. We only need to focus on the case of aK = 0 and av =J 0. The
Coulomb term is nonlinear. The subsequent numerical simulations will show that this 
term alone can also produce instability, but with an algebraic rather than exponential 
growth rate. We let W3 = n = 1, w =WI + iw2, <I> =  l + im, and v = vl + iV2 and we
obtain the following linearized set: 

(11) 

w + ij.LqV = i(-(o- - 1) + j.LqFr�1 )<I> + (-av + i(o-- 1))w + iavV,

<i> = iii>- iw, 

v - iqw = q<I> -( q + i �nw - :v v,

The problem depends on the parameters J.L, q, Fr, a-, and av. The growth rate and
frequency dependence on these parameters will be discussed only in cases relevant 
to the physical problem. Figures 3 (a) and 3 (b) show the change of growth rate and 
frequency, respectively, with respect to the center-of-mass offset q for different Fr�1 
(marked alongside curves) at a- = 1.0, J.L = 2.28, and av = 0.5. We see that a weak
spin relative to gravity (i.e., small Fr) is stabilizing if the center of mass is below
0 and destabilizing if it is above 0. A reversal of this stability property occurs 
at high Fr. The inertia ratio a- also affects the stability property, as suggested by
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Figs. 3 (c) and 3 (d) (O" marked alongside curves) . In the limit of very strong spin
or very weak gravity, i.e., Fr-1 = 0, the inertia ratio stabilizes the top above the
value of O" = 1. 14. The result is consistent with the well-established principle that the 
stability of a body depends on the shape of its moment of inertia ellipsoid, if energy 
dissipation is permitted (see also [4]). An oblate spheroid (O" > 1) indicates stability,
while a prolate spheroid (O" < 1) indicates instability. To show the dependence of the
growth rate on the friction coefficient av, we now consider the case where Fr-1 = 0
and O" = 1. Figure 4 shows a family of growth-rate curves versus q. The solid curves 
rise with increasing av to 0. 1 to 1.0. For this branch, a stronger friction means more 
destabilization. The family of curves has a maxima with respect to av, however, after 
which further increase in friction leads to a decrease in growth rate. The second branch 
corresponds to av = 2.0 and 5.0 (dotted lines) . Thus, while a moderate amount of
friction destabilizes, a stronger friction tends to destabilize. 

(ii) Numerical simulation. The full sliding model (see Appendix for the full equa­
tions) is now simulated using a fourth-order Runge-Kutta scheme. The initial con­
dition is such that w3 � 1 and n � 1, otherwise arbitrary. The parameters used 
resemble that of the actual top. First, we investigate the case for vanishing aK and 
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FIG. 3. Stability plots showing (a) growth rate; (b) frequency for a= 1 and varying Fr-1; (c) 
growth rate; (d) frequency for Fr-1 = 0 and varying a. 
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FIG. 4. Stability plot showing growth rate with varying friction parameter, for Fr-1 = 0 and 
0" = 1. 
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finite av and later we examine the effect of finite aK. The simulation corresponds to 
av = 0.5, JL = 2.28, q = -0. 1, and CJ = 1.0. We present two solutions in Fig. 5, which 
correspond to Fr-1 = 0.3 and Fr-1 = 0. 1 (marked alongside curves) . With the top's
radius of 0.6366 inch, the parameter values correspond to a spin speed of 7. 15 and 12.4 
revolutions per second, respectively. For the low Fr case, the initial conditions are
w1 = 0.021g, w2 = 0.0047, w3 = -o.ggg7, l = 0.0676, m = 0.0676, n = o.gg54,
V1 = 0.0g35, and V2 = 0.0384. For the high Fr case, we have w1 = 0.0021g,
W2 = 0.0047, W3 = -o.gggg, [ = 0.0080, m = 0.0150, n = 0.9gg8, V1 = 0.0110,
and V2 = 0.0038. Figure 5 (a) shows that there is a drop of spin speed after reversal
due to a loss of energy and the work done in raising the center of mass. Figure 5 (b) 
shows the magnitude of transverse velocity (note that all components are measured
with respect to Fa)· Where the top axis passes through a polar angle of goo, the
transverse angular speed only peaks at a small value of about 0. 12. Figure 5 (c) shows
the polar angle of the top's overturning axis, measured from the upward vertical. The 
crossing at the goo plane occurs at about 78 and 41 spin periods from the start, or 
10.g seconds and 3.3 seconds after spun off. For the case of Fr-1 = 0.3, we further
show the components of energy. Figure 6 indicates that the translational energy at 
G is very small. Even the potential energy is significantly smaller than the spin en­
ergy (about G) for this low Fr case. The dissipation of energy is quite noticeable.
The axial and transverse angular momenta are quite similar to the angular velocities, 
which will not be shown. For the same simulation, we show in Fig. 7 the translational 
displacement of the sphere's center of mass. Along the locus, the translational veloc­
ity vector is indicated by arrows at a regular interval of 5/(27r) spin-period. In the 
enlarged portion of the curve, the arrows are shown at intervals of 1/(27r). In Fig. 8, a 
three-dimensional view of motion of the axis is shown by tracking k on a unit sphere
at uniform intervals of 1/(27r) (cross marks) . The axis spirals outward from the north
pole and inward to the south pole. 

Finally, we examine the friction effect. For the same case with aK = 0, av = 0.5, 
and Fr-1 = 0.3, we show a comparison between the magnitude of friction force ac­
cording to the sliding model (solid) and to the rolling model (solid lines) in Fig. g(a) .
Since O:K = 0, the sliding friction is thus proportional to the contact velocity Vc, 
and therefore the sliding curve can be interpreted as Vc apart from a multiplica­
tion constant. The friction required for maintaining rolling appears fairly stationary. 
However, during the tumbling process, the sliding friction typically exceeds the rolling 
friction. Toward the final equilibrium, a transition from sliding to rolling may occur, 
as the contact speed tends to zero. In Fig. g(b), we show the tumbling effect for four 
different cases of friction, in terms of the polar angle and at Fr-1 = 0.3. The same
parameters and initial conditions as before apply, and the friction coefficients used 
are (1) O:K = 0, O:v = 0.5; (2) O:K = 0.5, O:v = 0.5; (3) O:K = 0.5, O:v = 0. 1; (4) 
aK = 0.5, av = 0.0. In the last case, viscous friction is absent. The result shows 
that tumbling can still occur but appears considerably weaker. The destabilizing role 
of the Coulomb friction becomes clear if a Fourier expansion of the Coulomb term 
is performed. The expansion contains a sinusoidal forcing that has the same sign as
the viscous friction. The Coulomb forcing yields an algebraic growth, in contrast to 
the viscous forcing that yields an exponential growth. In reality, it is anticipated that 
both Coulomb and viscous frictions are present. Thus cases (2), (3) are more relevant. 
One last debatable issue is whether transitions between rolling and sliding are possible 
during the course of the motion. In all the simulations we studied, the magnitude of 
the contact velocity hardly ever vanishes. As an example, we show the sliding speed 
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FIG. 5. Nonlinear simulations showing the (a) spin speed; (b) transverse angular rate; (c) polar 
angle in time for the cases Fr-1 = 0.1 and 0.3. 
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FIG. 6. The top's energy components in time. 
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FIG. 7. The locus of the center of sphere. (a) Translation of the sphere center. (b) Magnified 
view of the translation. 
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FIG. 8. A three-dimensional view showing the excursion of the sphere's axis during overturn. 

for case ( 4) in Fig. 9 (  c) . The result suggests that a switch between sliding and rolling 
is not an important ingredient for our analysis. 

4. Concluding remarks. The complete sequence of tumbling motions of the
Tippe top between the two vertical spin equilibria is simulated numerically using a 
spherical model with an inertia tensor close to the actual top's. Several important 
points concerning the effects of friction are noted. (i) The viscous friction was first 
introduced in [1] to produce instability of the spin equilibrium. In fact, the Coulomb 
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FIG. 9. Time plots to illustrate the effect of changing frictional coefficients: (a) sliding friction 
(solid) and friction according to the rolling model (dotted); (b) polar angle change; (c) sliding speed 
for the case of zero L>v. 

friction can also destabilize. It produces an initial growth that is algebraic rather 
than exponential. (ii) A linear stability analysis based on the viscous friction indicates 
that the magnitude of the friction coefficient is important to both the growth rate 
and stability limit. (iii) The phenomenon of the Tippe top appears to be almost 
exclusively sliding. Once sliding is established, there is hardly ever any switching to 
rolling motion. 

Appendix. The governing equations in a scalar form. The angular mo­
mentum equations are 

(12) 

w1 +(a-1)lw3 + p,q(-nV2 + mV3) 

=(a-1)( -w2 + m)w3-p,qFr-1m + h ,

w2 +(a-1)mw3 + p,q(nV1 -lV3) 
=(a-1)(wl -l)w3 + p,qFr-1l-h , 

aw3 +(a-1)(lw1 + mw2) + p,q( -mV1 + ZV2) 
=(a-1)(( -w2 + m)w1 + (w1 -l)w2) , 

where h and h are the traction force. The attitude equations are

(13) 
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The translational momentum equations are 

V1 + q(nw2-ffiW3) = q((w� + w5)l-W1W2m-W1W3n) + �fi , 
(14) V2-q(nw1 -lw3) = q((w� + wr)m-W1W2l-W2W3n) + �h , 

v3 + q( mwl -lw2) = q((wr + w?)n-wlw3l-W2W3m) + l N- Fr-1,
1-' 

where N is the normal force. The velocity at the point of contact is given by 

(15) 

Since the top stays in contact with the horizontal surface, we can eliminate the ver­
tical translational momentum equation. Thus N is determined the vertical kinemtic 
constraint. In the rolling model, we can eliminate h and h from the two set of mo­
mentum equations. Then (15) is used to eliminate the translational velocity. The three 
remaining equations, together with the attitude equations form the rolling model. For 
the sliding model, (12)-(14) are solved in conjunction with the following friction law: 
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