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Abstract. The method of large-scale averaging is introduced to derive and analyze the most
general form of the dual-porosity model of single phase flow in naturally fractured reservoirs. The
dual-porosity model contains the usual equations based on Darcy’s law and the coupling terms rep-
resenting the fluid transfer between the matrix and the fractures. A transient closure problem is
developed in order to obtain and analyze the fracture and matrix permeability tensors and the fluid
transfer terms. The spatial averaging theorem is presented from a mathematical point of view and
proved rigorously by the distribution theory. The problem of well-posedness of the dual-porosity
model is also considered. The techniques developed here are not restricted to either regular geomet-
ric fractures or spatially periodic reservoirs.
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1. Introduction. It has been known that flow in naturally fractured reservoirs
is not like that in unfractured reservoirs [2], [3], [5], [10], [19], [24], [30]; the flow acts
as if the fractured reservoirs possessed two porous structures, one associated with the
system of fractures and the other with the matrix. This dual-porosity concept has
been used to model the flow of fluid within naturally fractured reservoirs since the
1960’s [5], [19], [30], [33].

Recently, a general form of the dual-porosity model of single phase flow has been
described [2], [3], [4], [12]. Some of these models, including the earlier ones, were
derived on the basis of physical intuition under the main assumption that the fluid
pressure ( or density) is uniform at the surface of each matrix block. The rest were
obtained from the point of view of homogenization theory [7], [27], which limited
to reservoirs having spatially a locally periodic structure with geometrically regular
fractures.

The critical process in any naturally fractured reservoir is the transfer of fluid
between the matrix and the fractures. There exists an extensive literature on the
modelling of the fluid transfer [2], [3], [4], [10], [12], [17], [19], [20], [29], [31]. Some of
these papers consider models that define the matrix-fracture interaction by introducing
various ad hoc parameters; the rest handle the interaction directly through boundary
conditions imposed on the surface of the matrix blocks. However, the applicability of
these models is restricted to fractured reservoirs having a fine and specific geometry
of the fractures such as those mentioned above.

In this paper we shall derive and analyze the most general form of the dual-
porosity model of single phase flow in naturally fractured reservoirs. We consider the
fluid in the fracture system and the fluid in the matrix as separate continua. We
make the continuum hypothesis so that the interfaces between the matrix blocks and
the fractures are no longer recognizable; i.e., we consider transport on a scale that is
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much Ia.!'g.er than the individual geometric heterogeneities of the rock. In this sense
the explicit geometric features of the fractures are not important. ,

The method of large-scale averaging [25] is introduced to derive the dual-porosity
model. Traditionally, one uses this averaging process to analyze heterogeneous porous
media with the object to capture the effects of heterogeneities [25]. The idea here is
to treat a naturally fractured reservoir as a heterogeneous porous medium composed
of the fractures and the matrix blocks at the reservoir scale. The interaction between
these two very distinct porous structures, as pointed out earlier, has a strong influence
on the flow of fluid in the reservoir. The influence will be analyzed by the large-scale
averaging method; in particular, we shall derive an explicit expression for the transfer
of fluid between the matrix and fractures, which is incorported into both the fracture
and the matrix differential equations in a very general way.

A method of closure is also developed in order to obtain expressions for the
fracture and matrix permeability tensors. In previous studies (8], [23], [25], [26], a
considerable amount of effort has been put in favor of the use of quasi-steady closure
schemes for transient processes. In this paper the complete transient closure problem
will be solved directly.

The key mathematical tool used in the large-scale averaging method is the spatial
averaging theorem [1], [28], [34]. Its derivation has been so far initiated with a temporal
form known as the general transport theorem [35] rather than with a direct argument.
We shall here present this theorem from a mathematical point of view and rigorously
prove it by the distribution theory.

The rest of the paper is organized as follows. In the next section we shall es-
tablish the spatial averaging theorem in its most general form. After giving some
basic background on the large-scale averaging method in §3, we shall derive the dual-
porosity model of single phase flow in §4. The present model will also be compared
with other dual-porosity models. Finally, in §5, we shall state a result on the existence,
uniqueness, and continuous dependence on data of solution to the present model.

We close this section with a remark. It is relatively simple to model the flow of
single phase within a naturally fractured reservoir; the two-phase flow is much more
complicated and is of greater practical interest. The problem of two-phase flow in a
naturally fractured reservoir is investigated in a forthcoming paper.

2. The spatial averaging theorem. The spatial averaging theorem was pre-
sented independently in 1967 by Anderson and Jackson [1], Slattery [28], and Whitaker
[34]. The final result was obtained by three different methods and since then many
other workers [11], [13], [15], [35] have presented their own versions of this important
theorem. Recently, questions have been raised about the validity of the theorem since
its derivations were initiated [32], [28], [35] with a temporal form known as the general
transport theorem [36] rather than directly with a rigorous argument, as mentioned
in the introduction. Howes and Whitaker [18] have re-examed the derivation of this
theorem and confirmed its correctness. However, while their argument is formally
correct, it is still a re-illustration of the approach above with great care and is not
mathematically rigorous. Therefore, the spatial averaging theorem needs to be proven.

We shall restrict our analysis below to transport phenomena associated with a
single fluid phase, which will be called the a-phase, in a porous medium 2 € R3.
We begin by considering the most general form of the phase average, introduced in
(1], which will make use of a weighting function Mm({), assumed integrable with finite
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support such that
[ =1
RS

For some generic function 1, associated with the a-phase, the phase average is then
defined by

C) W= W)E)= [ valetOxale+OREOE, e

where x4 is the characteristic function of the a-phase (i.e., Xo is unity in the a-pahse
and zero elsewhere). This expression can be used to rigorously match theory and
experiment since the weighting function can be chosen to correspond to the charac-
teristics of measuring devices [6], [11].

If the transformation z + ¢ — y is introduced in (2.1) along with the transposed
weighting function m(€) = m(—£), the resulting expression is

(Vo) = | alo)Xalw)m(z - )y
(22) = [ ¥tz - vxelz - m)ay,
which is, by definition, the convolution product of 14 xo and m, denoted by

(2.3) (Ya) = m* (YaXa)-

This formal definition, if understood in the sense of distribution, can be exploited to
generalize (2.1) mathematically so that 1, needs not be a continuous or piecewise
function but can be a generalized function. It is in the most general case that we shall

establish the spatial averaging theorem.
LEMMA 2.1. For some quantily vy, associated with the a-phase, we have

(2.4) (Vo) = V ($a) + /a  a0)ao(9)m(z ~ 1)da(y),

where Q. denotes the volume occupied by the a-phase with the boundary Q4 and nqo
represents the normal unit-vector to the boundary 0Q, outwardly directed from the

a-phase.
Proof. Equation (2.4) follows by the differentiation of the convolution:

V (Ya) = m* (XaV¥a) + m* (¥ VXa)
= (Vo) + [ $a@)Vxalp)m(z - v)dy

— (V¥a) - /a  a(u)nao(W)m(z — y)da(y),

by the definition of Q4. 0
As an application of this lemma, we shall now consider the local spatial averaging

theorem introduced in [28], [34]. For z € Q, let V be the local averaging volume
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centered at x (see Figure 1) and let the weighting function m(€) be the characteristic
functionof V=z-V:

1
(2.5) m(é) = 7ixp (),

where |V| is the measure of the set V. Then, as a particular case of Lemma 2.1, we
have
CoROLLARY 2.2. (The local spatial averaging theorem).

1

(26) <V¢a) =V ('/’a) + = Yanaoda,
WVl Ja..
where the local phase average is defined by
(27) (Vo) = 7 | ady
. a |v| V° a )

with Vy being the volume of the a-phase contained within the averaging volume V, and
Aqo indicates part of the interface 0Q, contained within V. ]

FIG. 1. The local averaging volume V.
Taking ¥ = 1 in (2.6), we obtain the useful relation

L
V| Ja..

Neoda = —Veaq,

(2.8)

where ¢, is the volume fraction of the a-phase given by

Vel

€a = .
Vi
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3. The large-scale averaging. As pointed out in the introduction, the objec-
tive of the method of large-scale averaging is to capture the effects of heterogeneities in
a formal manner that can be applied to all transport processes in poroue media. It is
important to note that all large-scale averaging precesses incorporate the influence of
heterogeneities into averaged equations [25], while local volume averaging procedures
as originally put forth [1], (28], [34] incorporate boundary conditions into averaged
equations. Here, we would expect that the large-scale averaging methods incorporate
the effects of the interaction between the matrix blocks and the fractures into the
averaged differential equations.

FIG. 2. The fractured reservoir Q. FIG. 3. The large-scale average V.

The large-scale averaging method is applied to average the Darcy-scale equations
over a volume V,, which will be called the large-scale averaging volume. Crucial to
the validity of the large-scale averaging process is the assumption that the averaging
volume size is independent of the location in the medium. Thus, we would expect that
a sufficient number of fractures and matrix blocks exist in the averaging volume. If we
denote by Iy and I, the characteristic scales of the fractures and the matrix blocks,
respectively, the radius Ry of the volume Vo, must be large compared to Iy and Iy:

(3.1) ly K R, a=f, m.

In addition, because the averaging volume acts as the smallest discernible dimensions
that are indicative of the continuum scale, we shall also assume that the radius R
is small relative to the macroscopic length scale L of the fractured reservoir:

(3.2) Rew < L.

While these constraints are usually satisfied, in the analysis later we shall be careful
to point out where they are applied.
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A typical reservoir is shown in Figure 2 and a large-scale averaging volume is
illustrated in Figure 3.

There are two types of volume averages that will be used in the theoretical de-
velopment of averaged equations. The first of these is the large-scale phase average
defined by

1
(3.3) 1) = /V e
(3.4) (Ym) = TVI;J /V Ymdz,

where t; and t,, represent some generic functions associated with the fracture and
matrix systems and V; and V, indicate the volumes of the fractures and the matrix
blocks contained within the averaging volume Vi, respectively. To describe more
closely measured values or values imposed on a boundary, one usually uses the second
volume average; i.e., the intrinsic phase average defined by

1
(3.5) (¢J)!=|TI/ Yydz,
(3.6) (bm)™ = / bmdz.

With the definitions above, we shall derive some useful relations. First, it follows from
Corollary 2.2 that

1

(3.7) (Vs) =V () + o /Am nymiby da,
1

(3.8) (V) = ¥ () + 7 /A g

where Ay = Amy is the interface between the fractures and the matrix blocks con-
tained within the averaging volume Vo, and nym and np,y denote the unit outwardly
directed normal vectors for the fracture system and the matrix, respectively. Secondly,
the phase average is related to the intrinsic phase average by

(3.9) () = ¢s (¥g)
(3.10) (¥m) = €m (¥m)™,
where €; nad ¢, are the volume fractions of the fractures and the matrix given by
IV
3.11 €r = ,
( ) J Vool
[Vim|
3.12 = —
(312 Voo
Consequently,

(3.13) € +€m = 1.
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Finally, taking ¢; = 1 and %,, = 1 in equations (3.7) nad (3.8), we see that

1

(3.14) m " n,mda = —-ch,
1

(3.15) m nm,da = —me.
)

Amy

In the following, the large-scale averaging volume V,, will be taken to be a sphere
of constant radius as shown in Figure 3, while V; and V;,, depend on the nature of the
reservoir under consideration and will be functions of the space only. However, V,, is
not necessarily chosen to be a sphere; in the analysis below it can be taken to be a
parallelepiped constructed by the lattice vectors [35], for example.

4. Derivation of the dual-porosity model. In this section we shall derive the
dual-porosity model of single phase flow in a naturally fractured reservoir Q by using
the large-scale averaging method introduced in the previous sections. The microscopic
model, which for simplicity will be taken to have all physical parameters as constants,
is given by a single porosity system with discontinuous porosity and permeability;
it does so without requiring any concept of dual-porosity [3], [4]. The equations
describing single phase flow in a single porosity system are thus posed over the whole
domain Q. However, for use of the averaging method, we shall write these equations
on the fractures Q; and the matrix Q,, separately.

Let py be the density of the fluid and p; be the pressure in the fracture domain
and let ¢} and k} represent the porosity and permeability of an individual fracture.
Denote the correponding matrix quantities by pm, pm, ¢;,, and k;,. Then, the flow
in the fracture system is controlled by

i) ky
(4.1) QS;%—V (”—’;fo) = qf,ext, -TGQI, t>0,

and the flow in the matrix domain by

5] k;,
(42) ¢:n—ap—tm - V- (u—'Zme) = ¢qmext, TE Qn, t>0,

where we have denoted by p the viscosity of the fluid, assumed that the fluid is of a
constant compressibility ¢, i. e., a fluid that satisfies the equation of state

(43) dpa = Cpadpa) o= fam)

indicated wells as external source terms of the form ¢q ext, @ = f, m, and, for simplicity,
ignored gravity. Note that equations (4.1) and (4.2) represent conservation of mass
combined with Darcy’s law and the equations of state given by (4.3).

On the interface 99, between the two domains, we impose continuity of density
and continuity of mass flux. Namely,

(4.4) Ps = Pm, T €00m, t>0,

k* k*
(4.5) (u—chpf) Nfm = (p_'szm) “Nfm, T EOMm, t>0.
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The microscopic model is completed by specifying outer boundary conditions and the
initial densities. However, we shall ignore the outer boundary conditions since they
play no role in the analysis below. But, the initial densities must be given as we shall
be concerned with transient closure problems later:

(4.6) pf(:c,O):p?, T € Qy,
(47) pm(, 0) = p?ru z € Qm

We now begin the large-scale averaging process with equation (4.1) to obtain

5 {82) (e () -t

Since averaging volumes under consideration are independent of time, this together
with relation (3.7) leads to

b2 o -v (o, Nm [ a5, da = (g e)
fat pf ”c pf |V°°| fm“c pf - (If,ext .

Arm

A second application of equation (3.7) to this expression implies that

¢}% (ps) =V - ( Vips) + = Vil /M fda>

1

(4.8) —m

k%
Lvp;da =
A!mn mee VPrda (g7 ext) -

We now repeat the argument above combined with use of relation (3.8) for equa-
tion (4.2) to obtain

3
mat(pm) -V. ( V( m)+|V I/ pmda)
(49) 1 fo s Vomda = (m ).

As mentioned in the last section, the phase average is not the preferred one;
indeed, one normally requires the intrinsic phase average since it more accurately
corresponds to measured values. This needs to use relations (3.9)-(3.10) along with
the following decompositions [14], [37]:

(4.10) pr = ps) +5y,
(4.11) pm = {pm)? + Pm,

where p; and p are spatial deviations of the density in the fracture and matrix
domains, respectively, which we shall assume to satisfy the relationship on the interface

0

(4.12) By =Pm» TE€OUn.
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That is, we require continuity of the spatial deviations of the density on 99Q,,

In the performance below we shall remove the averaged quantities (pf)f and
(pm)™ from the integrals over A;,,. By doing this, we are committed to assuming
these quantities to be constant with respect to integration over A;,,. The process of
removing the large-scaled quantities from integrals over Ay, or over V4, a@ = f,m
will be repeated in the analysis of the closure problem later on and gives rise to a
constraint of the form [9)

(4.13) (R—L"°)2 <1

This is satisfied by assumption (3.2).

We now turn to equations (4.8) and (4.9). Substitute expressions (4.10) and
(4.11) into these two equations and use relations (3.9)-(3.10) and (3.14)-(3.15) to find
that

(4.14)
b2 o) -9 (Leyv (o) + / L 5yda
ot 7 pe ! IVooI !
- n ﬁV(p Y da — — Vp da = ( ),
Vool Jay I™pc” ¥ |voo| g 198 = Mot
and
(4.15)
5] k;, 1 k*
m; \Pm m-v. —ZenmV(pm + = Nm _mAmda
¢ 6t<p ) (/‘ (P ) |V°°| f"cp )
V m) da — —— / dea_ m,ex
|V I/m, (P ) |V | P (q t)

where ¢; = ¢;¢} and ¢m = emdy, are clearly the fracture and matrix porosities,
respectively. For convenience below, we rewrite (4.14) and (4.15), using the fact that
(7)Y’ = (Pm)™ = 0 and relations (3.7)-(3.8) and (3.14)-(3.15), as

@19) g o0’ -9 (00 - (v (L2) ) = (o).
(4.17)

i} m k. m kn
¢m5t' (Pm) —€mV - (EV(Pm) ) - <V * (rc'vpm)> = <Qm,ext) .

From equations (4.14)-(4.15) or (4.16)-(4.17), it becomes clear that representa-
tions for p; and p, are required in order to develop a deterministic set of equations.
This will be done by considering a so-called closure problem.

4.1. A transient closure problem. Substitute equations (4.10) and (4.11)
into equations (4.1) and (4.2), respectively, and use expressions (4.16) and (4.17) to
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see that
¢*6_ﬁ£ S VAN ELV’\ — _ S _ . fz ~ d
f ot (“c pf) qf ext (q,{,ext) <V (,uchj>> s
(4.18) ey, t>0,
-~ . * m
¢:n%”l - Vv (f‘_'zvﬁm) = qm,ext — (qyn,ext)m - <V . (%Vﬁm)> R
(4.19) 2 € Qm, t>0.

On the boundary 0Q,,, in addition to continuity assumption (4.12), we also have

k* Y k:n m ~
(G2 (e +921) ) - = (52 ()™ + V) ) -,
(4.20) 2 €0Qm, >0,

by (4.5).

We need to solve equations (4.12) and (4.18)-(4.20) for p; and p,,. In gen-
eral, time- and length-scale constraints have been imposed to use quasi-steady closure
schemes for transient processes. In analyses of diffusion [27], dispersion [8], heat con-
. duction [23], and local heterogeneity in porous media [25], for example, one can evoke
some time- and length-scale constraints in order to pass from time-dependent closure
problems to the corresponding stationary problems.

In this paper the closure problem given by equations (4.12) and (4.18)-(4.20) will
be solved. Toward that end, we shall now develop initial conditions for p; and py,.
For this, we make the two assumptions: The initial data p} and p, are constant
and (ga,ext)” = qaext; @ = f,m. The second condition implies that the external
source terms ¢sext and gmext are constant with respect to integration over V; and
Vim, respectively. This is satisfied when the source terms are constant or when they
are uniformly distributed over a spatially periodic reservoir (see Figure 4 in §4.2), for
example.

With the first assumption, it follows from equations (4.6)-(4.7) and (4.10)-(4.11)

that

(4.21) pr(x,0)=0, zeQy,

(4.22) pm(z,0) =0, z€Qnm.

We shall now seek solutions of the form

(4.23) Pr =b5(2)- Vips) +85(2)- V(pm)™ +&(2,0),
(4.24) P = ba(2) - V {ps) + 2(2) - V (o)™ + &m (3, 1),

where £; and &, are completely arbitrary functions. The arbitrariness of £; and &,
allows us to specify the coefficients in representations (4.23) and (4.24) in any way we
want; we choose to specify them according to the following boundary-value problems:

(4.252) V- (Vb = (V- (k3V8))Y,  zeqy,
(4.25b) b} = b, z € 0,
(4.25¢) ngm - (k31 +k}Vb)) =npm - (knVbL), € 0Qp,
(4.25d) V. (kL VbL) = (V- (kL VI, 2 € Qm,

(4.25¢) (b3 = (L) =0,
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and

(4.26a) V- (k3V02) = (V- (k5V52)), z €9y,
(4.26b) b7 = b2, T € 0,
(4.26¢) Nym - (kjVb3) = nppm - (kI + k5, V02), z € 0Qy,
(4.26d) V- (knVb2) = (V- (k5 V02))", z € Qpm,
(4.26¢) @Y = ()" =0,

where [ is the identity tensor.

The initial-boundary value problems for £; and &, are obtained by substitution of
equations (4.23)-(4.24) into (4.12) and (4.18)-(4. 22) and use of equatlons (4.25)-(4.26)
and the facts that (ga,ext)” = qa,ext and V {pa)® (2,0) =0, a = f,m

* * f
(427a) ¢j—=L 5f -v. <kfvg) <V (kfvg,» , TE€Q, t>0,

(2.27b) & =&m, z € 0Qm, t >0,
(4.27C) ff(.’l?,O):O, T e Qf,

(4.27d) ) =o, t>0,

and

(4.28a )¢,,,35—"‘-v (k"‘me) ——<V-(l;'"V€m)> y TEQ,, t>0,
(2.28b) (ijEf) nym = (b, VEm) - npm, z €00, t>0,
(4.28¢) Em(z,0) =0, z € Qpn,

(4.28d) (Em)™ =0, t>0.

In deriving equations (4.27a) and (4.28a-b), we have treated the large-scale aver-
aged quantities, as mentioned before, as constants, which can be justified as usual [9],
[37] by requiring the length-scale constraint

(4.29) ., KL, a=fm
except terms of the form
.0 a
¢aav(pa) , a=f,m

Applying equations (4.16)-(4.17) and the fact that V (gsext)” = 0, the quantities
above are equal to

o (i) 5 (- (o)) o

These high order terms can be analyzed by standard magnitude arguments [9], [37]
and be neglected due to constraint (3.1) and (3.2).
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4.2. A spatially periodic reservoir. It is appealing to note that the solution
to the system given by equations (4.27)-(4.28) has the null solution: & =&n = 0.
While we have no general proof, this can be proved for a spatially periodic reservoir
as shown in Figure 4. For the spatially periodic reservoir, we impose, in addition to
conditions (4.27b) and (4.28b), the periodicity condition

(430) Ea(z + IJ) = 60(2)? J = 192’3) a = .f)m>

where [; denote the three lattice vectors that are needed to characterize a unit cell
(see Figure 4).

FIG. 4. The large-scale average in a spatially periodic reservoir.

It can be seen from the development above that the large-scale averaging volume is
not necessarily a sphere. In fact, Vo can be taken to be a parallelepiped constructed
by the lattice vectors l;, j = 1,2,3, as in [37]. Note that this does not compromise
the length-scale constraint (3.1), since one can always choose a unit cell having a
characteristic length that is large relative to lo, @ = f,m. When V,, is constructed in
this manner, it can be easily seen that integration over V; and V;,; always takes place
over the fractures and the matrix contained within an entire unit, respectively, while
not necesarily the same unit cell. Hence, the periodicity condition (4.30) implies that
the integrals on the right-hand side of equations (4.27a) and (4.28a) are constant.

Taking the scalar product of equation (4.27a) with &;, integrating the resulting
equation over V', and using (4.27d), we observe that

k.
(4.31) /V ¢}%§,dz—/v.v. (,chvff) ¢/dz =0,
t J

where V' represents the volume of the fractures contained in a single unit cell. It
should be noted that V;' and V; coincide only in the special case where the centroid
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of Vo has the same coordinates with that of the unit cell. Use of Green’s formula
for the second term on the left-hand side of equation (4.31) and condition (4.30) and
integration of the resulting equation with respect to ¢ shows that

1., t k%
§¢f /. f?(t)dz+/ /; <71.[C-V€'f) -fod.’l:dT
(4.32) / /‘ (—Lfo) ‘nym€pdadr =0, t>0,

by (4.27c), where A}, is the interface between the fractures and the matrix contained
within the unit cell.

The same argument also applies to equation (4.28) to obtain

—¢ / 134 (t)dx+/ / ( ’"vgm>-vgmdxdr
(4.33) / / ‘ ( '"vs,,.) M gémdadr =0, >0,

where V,;; and A}, ; have similar meanings to V" and A},,. Now, add (4.32) and (4.33)
and use equations (4.27b) and (4.28b) and the fact that A}, = A}, ; and nym = —nmy
to find that

%(dﬁ /V; 5?(t)dz+¢:n/.£,2n(t)dm) +/0t /V; (%vg,) Ve, dzdr
/ / ( "‘me) - Vémdzdr = 0.

If k; and k;, are assumed to be nonnegative (nonnegative definite in the case of
tensors), the expression above shows that ;(t) = &m(t) = 0,1 > 0.

The results above are summarized in the next lemma.

LEMMA 4.1. Assume that k} and ky, are nonnegative. Then, the inilial-boundary
value problems (4.27), (4.28), and (4.30) have the null solutions only. 01

4.3. The dual-porosity model. We now turn to equations (4.14) and (4.15).
Substitute expressions (4.23) and (4.24) with {; = €, = 0 into these two equations to
have

0 k
(4.34) b1 (ps) =V (;ﬁva) +45 = (4gext)
m km m
(4.3 b om)™ = 7 (29 (o)™ )+ 4 = mx),

where k;y = (k}j ) and k,, = (k) define the fracture and matrix permeability tensors,
respectively, by

1] * 1 WJ
(4.36) =k (cfé,, v, n,mb“da) ,
Im

(4.37) ki = ke, [ embiy + —— / ni b2da) |
|V°°| Amy
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with é;; denoting the Kronecker symbol, ng,, = (nf,m), b} = (b}"), and b2, = (bﬁ‘),

and ¢; and ¢, are the coupling terms representing the fluid transfer between the
fractures and the matrix:

(4.38)
g=—3( L nym(I+ V64)da - V (ps) + (AB2) - V (o)™
we \ Vel Ja, ! e
(4.39)
g1
m=—tm (L (14 VE2)da -V (o)™ + (ABLY -V (o) |,
¢ uc (|Voo| Ay 4 ) (prm) < > )

by (4.25¢) and (4.26€).

Note that k; and k,, reflect the geometry of the fractures and the matrix through
the interaction functions b} and b2,, respectively.

In practice, one would never solve the boundary value problems (4.25) and (4.26)
in their present forms to determine k, and ¢,, @ = f, m. Instead, one would determine
these variables in some representative region of a reservoir. This region can be natu-
rally treated as a unit cell in a spatially periodic reservoir such as the one illustrated
in Figure 4. Then, as in the previous subsection, we consider the periodicity condition

(4.40) b(z+1;)=0b(z), i=12, =123, a=fm,

and use the same argument as in Lemma 4.1 to have

LEMMA 4.2. Ifk} and k. are positive and condition (4.40) is salisfied, then the
boundary value problems (4.25) and (4.26) have a unique solution. [J

By condition (4.40) and the divergence theorem, we see that

1
b2) = — b2da.
<A .f) |Vw|L;mn1mV1 a

Thus, by (4.38), g5 takes the form
(4.41)
g = K / nym(I+ Vbl)da'V(Pf)f+/
pelVool \ Ja m d A%

.
7 Jm

nymVbjda -V (pm)"‘) :

Similarly, we get
(4.42)

im= =B ([ g1+ 980V (o) +
pelVeo| \ Jas,, Ar

m

Ny VbL. da .V(p,)f) :
7

It now becomes obvious from (4.25¢) and (4.26c¢) that

(4.43) fm = —q5 = qm,

since A}, = A}, and ngm = —nmy. The term gym thus depends on the interaction
functions b, i = 1,2, @ = f,m, and is a dynamic function.
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Finally, our dual-porosity model can be written as

(1.44) brg 00 =V (901 ) = a1 = Carm),
(445) gy )™ = 7 (329 0n)™) 4 4y = (s

As a final remark in this section, we shall compare the present model with other
dual-porosity models. First, the so-called Warren and Root model [5], [33] assumes
the following relationship for the fluid transfer term gy, usually called a quasi-steady
approximation:

(4.46) asm =B ((pm)™ = (1)),

wher [ is a coefficient proportional to the product of the matrix permeability and the
specific surface area of the fractures. That is, ¢y, is assumed to essentially depend
on the density drop between the matrix and the fracture system. However, from our
rigorous analysis, the coupling term ¢y, is much more complicated and in fact depends
upon the density gradient drop even in the special case of

T g -Vb:n = —Nmy- (I+ben), z € 0Qm,

by (4.42).
The other physical dual-porosity model, which has received somewhat greater
attention in recent years, takes ¢sp, as [2], [3], [12]

k*
4.47 Qfm = ——2 / s -V {pm)" da.
( ) f /,lClVoo| s f ( )

This model implies that the matrix blocks act as sources in the fracture system. A
glance of (4.42) show that assumption (4.47) amounts to a special case of our model
where Vbl, = Vb2 = 0 on the interface Q.

5. Well-posedness of the model. We shall briefly consider the problem of
existence, uniqueness, and continuous dependence on data of solution to the model
derived in the previous section. Of course, our macroscopic coefficients should have
appropriate properties. The necessary requirement for physical relevance that k; be
symmetric and positive definite is stated in the next theorem. Again, we shall here
consider a periodic system as did in §4.

THEOREM 5.1. The macroscopic fracture permeability tensor ks(z) is symmetric
and positive definite. y

Proof. By (3.7) and (4.25e), we write k} in (4.36) as (with 0; = 0/0z;)

(5.1) kjej = k} (€j5ij + <6ib}’j ) )

and from equations (4.25) and (4.40), we see (exactly as for (4.32) and (4.33)) that

52)  {((e+v)7) wop) - |vl . (5 +V8)7) - nymbyida =0,
o0 ;m

1

(5.3) (VbLi - Wbkt — Vel
=) A:..f

Vbl npnsblida =0,
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where e; is the unit vector in the jth direction. Add equations (5.2) and (5.3) and
use relations (4.25b-c) to obtain

(05077 ) = —(voy? - v} — (Wbl - Wbk,

which shows that k; is symmetric by (5.1). In order to show positive-definiteness, we
rewrite equation (5.1) as

(k5) VK =esbi + (058}
= (Vij - Vi) + (Vo) - V)
+ (Vb vzl ) — (Vb Vi)
=(V (25 +6)7) - 9 (2 4+ 85F) ) + (VoL - VoL,

This implies that k; is positive-semidefinite. Definiteness follows from the connect-

edness of vy and the periodicity of b}’i. Let z be any constant with components z;.
Then,

0 sz (<V (Ij + b}'j) v (x,. + b}.i)> + (VL ‘Vb,l,;i)) %
= 5 (@ G- e+ 57 + (@t 8)7))

Since V{ is connected, z - b}(:c) = ¢ — z - z for some constant ¢. Thus, by periodicity,
z must be zero. The proof 1s complete. [J

We remark that the tensor k; may not be strictly positive definite for some
disconnected geometries. For example, in one space dimension V' consists of disjoint
intervals, so k; = 0, as noted in [2].

As for k,,, we must make the unphysical assumption that V,, is connected, so
that k,, is symmetric and positive definite. But, for the situation under consideration,
obviously ¢; and ¢, are uniformly positive.

We now introduce some notation. Denote the Sobolev space of functions with
derivatives of order n in L%(Q) by H"(2). Let H}(S?) denote the closure in H!(f)
of C§°(Q), the infinitely differentiable functions with compact support. Set J =
(0,T], T > 0, the time interval of interest. For a Banach space X, let L?(J; X) denote
the space of X-valued functions in L?(J) and H!(J; X) the space of those in H*(J).

We shall write the dual-porosity model in a slightly general form:

Oo
(5:4) ¢f3_tf_v'(K!VUf)'*'a.f'V”f_am-Va'm=yf,
(5.5) %%’T"‘ —V  (KmVom) —a; - Vo; + am - Vom = g,

for (z,t) € Q x J, where 0o = (pa)®, Ko = ka/(pc), go denotes the external source
terms, and

kg
Ao = —
* pe|Veo| AL,

nap (I+Vb8)da, o,f=f,m, a5,
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with 6, = 1 for « = f and 6, = 2 for « = m. Hence, we have a system of linear
equations for oy and oy,. If the initial and boundary conditions are given, the unique
solvability of the system will be an ordinary matter provided that the coefficients in
the system are smooth. We consider the Dirichlet boundary condition

(5.6) oo =02, (z,t)€dUxJ,
and the initial condition
(5.7) oa(z,0) = 0d(z), z€Q.

Then (see, e.g., [21]),
THEOREM 5.2. If 90 is smooth and the following conditions are satisfied:

1,
%, a, e LY(Q), 1=1,2,3, a=fm,
ox;
where Ko = (K¥) and ao = (ai,), then the system given by equations (5.4)-(5.7)
has a unique solution oo € H'(J;L%(R)) N L2(J; H3(Q)). Morcover, the solution
varies continuously with the data g, € L%(J;L%(Q)), o2 € L*(J; H(Q)), and ¢ €
HY(Q), a=f,m. 0
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