CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS
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Abstract.

We study the influence of convection by periodic or cellular flows on the effective diffusivity of a
passive scalar transported by the fluid when the molecular diffusivity is small. The flows are generated
by two-dimensional, steady, divergence-free, periodic velocity fields.
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1. Introduction. The temperature T of a weakly conducting fluid in R? satisfies
the heat equation

oT

with T(0,z,y) = To(x,y) given. Here u(z,y) = (u(w, y), v(x, y)) is the fluid velocity

which we assume incompressible
V.ou=0

and € > 0 is the molecular diffusivity which we assume small. We are interested in
velocity fields that represent convective flow, as for example in Benard convection.
Since u is incompressible there is a stream function H(x,y) such that

(1.2) ViH =(eH, H,)=u
A typical convective or cellular flow is the one given by
(1.3) H(z,y)=sinasiny

Fig. 1.1 shows the stream lines of this periodic flow, which are given by H(z,y) =
constant. We are interested in the effective diffusivity of the fluid and its behavior as
the molecular diffusivity € tends to zero.
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Fia. 1.1. Cellular flow

In Section 2 we review briefly the definition and basic properties of the effective
diffusivity. In this introduction we may simply define it as

(1.4) = liml//(xz—l-yz)T(t,x,y) dx dy
tToo

when the initial function Ty is the delta function at the origin. With this initial
function, T(t, z,y) is the probability density of a test particle diffusing in the flow and
(1.4) says that when ¢ is large the mean square displacement of the particle behaves
like o.t.

We are interested in the behavior of o, as € — 0. In [1], Childress showed by a
boundary layer analysis that when H is given by (1.3) then

(1.5) O ~ /e

as € tends to zero and he also characterized the constant ¢*. The same problem was
reconsidered in [2] and [3] and the constant ¢* was evaluated analytically by Soward [4].
The asymptotic relation (1.5) is the simplest example of convection enhanced diffusion
because the effective diffusivity o, is much larger than the molecular diffusivity e. The
enhancement is due to the convective flow with the stream function (1.3) (see Fig.
1.1). Flows with stream functions

(1.6) H(z,y)=sinzsiny + dcosx cosy ,

with 0 < § < 1 are considered in [5] along with discussion of the associated dynamo
problem (see Fig. 1.2). In [6] Soward and Childress study diffusion and dynamo action
in flows with nonzero mean motion.

Our aim in this paper is to study in detail the effective diffusivity of a passive
scalar in a convective flow by variational methods, avoiding thus direct boundary layer
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Fia. 1.2. Cat’s-eye flow with 6§ = 0.2.

analysis. This is important because boundary layer analysis becomes too complicated
to be useful when the flow u is more complex than simple cellular flow or cellular flow
with channels (Fig. 1.2).

In Section 2 we review the various definitions of effective diffusivity for periodic
flows. In Section 3 we introduce a Hilbert space formulation for the effective diffusivity.
With a simple symmetrization transformation we can get variational principles for the
effective diffusivity. The Hilbert space formulation follows the general framework
introduced in [7]. The variational principle suitable for upper bounds of the effective
diffusivity was noted by Avellaneda and Majda [8]. Another form of this variational
principle was given by Cherkaev and Gibiansky and is presented by Milton in [12].
The relations between the various variational principles are analyzed in Appendix A.
The variational principle for lower bounds is new and is one of the main contributions
in this paper. In Section 4 we show how to use the variational principles to prove
the result (1.5), including the characterization of the constant ¢*. In Section 5 we
use the variational principles to study the effective diffusivity for cellular flows in
point-contact, for which a corner layer theory is developed. In Section 6 we study
the effective diffusivity of cellular flows with open channels, in particular the cat’s-
eye flow with stream function (1.6). In Section 7 we study general periodic flows
with zero mean drift. In these problems one sees clearly the power of the variational
methods. The only Section in which variational methods are not used in an essential
way 1s Section 8 where we study general periodic flows with non-zero mean drift. In
Appendix B we derive variational principles for time dependent flows.

We treat only periodic flows in this paper. Convection enhanced diffusion for
random flows is studied in [14,15,16] and in the second part of this work [17].

2. The effective diffusivity. We consider the periodic case [11] and for time
independent flows with mean zero. For d-dimensional flows u(x) that are incompress-
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ible and have mean zero there exists a skew-symmetric matrix H = (H;;(x)) such that
V -H = u. The flow u has the Fourier representation

(2.1) up(x) = 3 ¥, (k)
k#0

and

1 n o bpilg(K) < kyiiy(K)
(2.2) Hyy(u) = : D erx P P
k+£0

From the fact that V -u = 0 it follows that V- H = u. Equation (1.1) for T' can now
be written in divergence form

oT
(2.3) 57 =V (I +H)VT

with initial conditions T(0,x) = Tp(x). To recall the basic facts in homogenization
[11] we write (2.3) in the form

7] orT
)

d
(2.4) 5= % (g,

7,7=1

where
aij(x) = ebij + Hij(x) .

Note that the diffusivity matrix (a;;) is not symmetric but that for e > 0 the right
side of (2.4) is uniformly elliptic. In homogenization we look for the large time, long

distance behavior of solutions of (2.4). This is expressed in terms of a small parameter
§ > 0 by replacing ¢ by ¢/ and x by x/é in (2.4). We then have

d
@9 Y

7,7=1

9 T
o, (%(%)3—%)

and we assume now that the initial conditions do not depend on ¢,
(2.6) T(0,x) = To(x)

This is equivalent to saying that the initial data for (2.4) are slowly varying.

For periodic diffusivity coefficients in (2.5) that are uniformly elliptic but not nec-
essarily symmetric, it is not difficult to show [11] that T(t,x) = T°(t,x), the solution
of (2.5), converges to T(t,x), the solution of an equation with constant coefficients

or L 8T
at Z i dx;0x; ’

1,5=1

(2.7)

T(0,x) = To(x) -
The convergence is in L?

(2.8) sup /|T5(t,x) eT(tx)[2dx — 0
0<t<to
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as & — 0, for any #p < oo. The effective diffusivity matrix (a;;) is obtained by solving
a cell problem as follows. For each unit vector e let x = y(x;e) be the unique (up to
a constant) periodic solution of

d
(2.9) > 81 laij(x)(agij) n ej)] =0

Then

(2.10) ae-e=(a(Vy+e) - (Vy+e))

where ( ) stands for normalized integration (averaging) over the torus.
The cell problem for the convection-diffusion equation (2.3) has the form

(2.11) V- [(eI + H)(Vx +e)] =0

which, in view of the relation V - H = u, is equivalent to

(2.12) eAx+u-Vy4+u-e=0

The effective diffusivity matrix in this case is denoted by o, as in Section 1, and (2.10)
becomes

(2.13) o(e)=oce-e=o(e)=¢(Vx+e) (Vx+e))

We see, therefore, that in the periodic case the small diffusion limit (¢ — 0) of the
effective diffusivity o, reduces to the analysis of the singularly perturbed diffusion
equation (2.12) on the torus.

The fact that the cell problem (2.9), or (2.11), determines the effective diffusivity
can be understood physically from the following. Let {e;} be a basis of orthogonal
unit vectors in R?, let X; be the solution of the cell problem (2.11) and let

(2.14) E;, =Vyx, +e;
Then E; is the concentration or heat intensity and
(2.15) D]‘ = (t’I + H)E]‘

is the flux. Since H is skew symemtric, the intensity-flux relationship is similar to
that of a Hall medium [12,13]. From (2.11) and (2.14) we see that

(2.16) VxE;j=0, V-D;=0, (E;)=c¢e;
and
(2.17) o(E;) = (Dj)

Relation (2.15) is the linear constitutive law relating intensity and flux. Relations
(2.16) tell us that E; is a gradient, there are no sources or sinks and the mean or
imposed intensity is a unit vector in the direction e;. The effective diffusivity o,



is defined by (2.17), which is the linear constitutive law relating mean intensity and
mean flux. It is in general a nonsymmetric matrix given by

(2.18) oee;-e; = oc(ej,e;) = (D;-e))
={(eI + H)E; -E;)

In this paper we will require the effective diffusivity matrix to be symmetric as this
will make it easier to apply the variational principles that we introduce in the next
section. It is shown in Appendix A.3 that if the effective diffusivity matrix is the same
when the stream function H is changed to <H then it is a symmetric matrix. The
same is true in any number of dimensions if u is changed to <u. If in particular, for
two-dimensional periodic flows, the stream functions have one of the following forms
of antisymmetry then the effective diffusivity tensors are symmetric.

a)Translational antisymmetry: H(x +r) = <H(x), for all x and for some r.
b)Reflectional antisymmetry with respect to an axis, for example the x-axis: H(x1,22) =
<H (21, ©n2), for all @1, 23.

¢)180%-rotational antisymmetry or reflectional antisymmetry with respect to a point,
say the origin: H(x)= <H(<x) for all x.

There are flows that may not have any of these properties but have nonetheless sym-
metric effective diffusivity tensors, such as shear layer flows. It is not clear what are the
most general flows that have symmetric effective diffusivity tensors. All flows consid-
ered in this paper are either shear layer flows or have one of the above antisymmetries
so the effective diffusivity tensors are symmetric.

From the skew symmetry of H and (2.16) we conclude that (2.18) reduces to (2.13)
(2.19) oﬁ(ei . ei) = ae(ei) = <(€I + H)EZ . ei>
<(€I + H)EZ . E2>
= e(E; - E;)

The full diffusivity matrix in the general nonsymmetric case is considered again
in Appendix A.

The /e behavior of the effective conductivity for the cellular flow (1.5) (Fig. 1.1)
can be understood by the following simple scaling argument. The concentration of the
diffusing substance will be nonnegligible only in a small neighborhood of the separa-
trices of the flow. Let § be the width of this boundary layer around the separatrices.
Since the molecular diffusivity is €, the time to traverse diffusively the boundary layer
1stp ~ 62/6. The time to go around a flow cell by convection is ¢ ~ 1 since the flow
speed is of order one and the flow cell size is of order one. Convection and diffusion
balance to set up the boundary layer so tp ~ to or § ~ /€, which determines the width
of the boundary layer. The effective diffusivity is now estimated by o, ~ € 672 § = /e
since in (2.13) the concentration gradient is of order §~! in the boundary layer and
negligible elsewhere.

This simple scaling argument does not take into account the stagnation points of
the flow near which it slows down. However, the analysis of section 4 shows that the
stagnation points do not alter the scaling behavior of o.. Ounly the proportionality
constant is affected. An interesting example where the stagnation of the flow affects
the scaling is the following [2]. Consider an one dimensional array of cellular flows
that stick to the lateral walls. Let 6 be again the width of the boundary layer near
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the walls. Here again tp ~ §2/e but since the speed vanishes on the lateral boundaries
and is smooth we have to ~ 1/6 where § is the speed near the walls. Thus t¢c ~ tp
gives § ~ €/3 and hence o, ~ € §2 § = €2/3. We will not treat this case in detail here
but we have given the scaling argument so that the influence of stgnation points and

surfaces can be appreciated. More applications of the scaling argument can be found
in [16].

3. Hilbert-space formulation and variational principles. In this section
we will set € = 1 and study the cell problem (2.15)-(2.17) that defines the effective
diffusivity 0. We will give a variational formulation for this problem, which is partic-
ularly useful in the asymptotic analysis of o, as € — 0. Let ‘H be the Hilbert space of
square integrable, periodic vector functions

(3.1) H={F(x), ([F]*) < oo}

where as before () stands for integration over the unit period cell (the unit torus).
Let H, be the subspace of irrotational (gradient) fields. The orthogonal projection
onto H, is denoted by , ;, and has an explicit expression in terms of Fourier series. If

(3.2) F(x)= Y **F(k)

kez?
then
,,F =VA“IV.F
(3.3) k(kFk) ikx
=2 k£0 — kP ¢

Let Hy be the subspace of constants in ‘H and , g orthogonal projection onto it. Clearly
(3.4) , oF = (F) = F(0)

Let also H. be the subspace of divergence free vector functions, with , . its orthogonal
projection. Then

,.F =&V xA“IVxF
kx (kxF(k)) k.
(3‘5) :Zk;éO %_Dekx
kk-\ 13 ik

from which we deduce that

(3.6) coFt,gt,e=1
or, equivalently, the well known fact that

(3.7) H=HodH, DH.

The cell problem (2.15)-(2.17) (with € = 1) can be expressed through , ; in a very
convenient way

(3.8) E=e<, HE

8



with
(3.9) o(e)=(E-E)

Here we have written the quadratic form ce-e as o(e). That E satisfying (3.8) satisfies
also VX E = 0 and (E) = e is clear. Taking divergence of both sides in (3.8) gives

(3.10) V.E=<V.HE

and hence (2.15) (with € = 1) is satisfied. Note that in addition to being a convenient
way to define E, (3.8) is also a good way to define E mathematically since it is an
integral equation formulation.

3.1. Variational principle for the upper bound. We want to find a way to
express o(e) as the minimum of a functional. However, since H is skew symmetric,
equation (3.8) is not the Euler equation of a quadratic functional. To get a suitable
variational formulation we must first symmetrize (3.8).

Denote E by ET, that is, let ET satisfy
(3.11) Et =e«, ,HET

and let E~ satisfy

(3.12) E" =e+, /HE"
Let also

ET +E- ET <E-
(3.13) A= B , B = zoen

2 2

Then
(3.14) A=es, ;HB, B =<« ;HA
and

(3.15)

Here we have noted that

(A-B) =((es, HB) B)
(. ,HB - B)

- &(B-H. ,B)

= <:><B o QHB>

~ (B (e %, ,HB))
~ (B A)

which makes the cross terms in (3.15) vanish. Substituting B = <, ;HA into the first
equation in (3.14) and in (3.15) we get

(3.16) A=e+,,H ,HA



o(e) =(A-A)e(H, HA - A)

(3.17) — (T =H, JH)A - A)
Let
(3.18) Ky = <H, H

and note that it is a selfadjoint and positive operator
(KyF-F)=(, ,HF -, ;HF) > 0

Thus, A satisfies

(3.19) A=es, KygA
and
(3.20) ole)=(I+Kpy)A-A)

Since Ky is selfadjoint and positive it is easy to see that

(3.21) ole)= inf ((I+Kpg)F-F)
Fer
VXF:O
(Fy=e

In fact, the Euler equation for this variational principle is

V-(I+Kg)F=0

(3.22) VxF=0, (Fj=e

which is equivalent to (3.19). Note, however, that (3.22) is quite different from the
cell problem (2.15)-(2.16) (with € = 1) because Ky is not a matrix but an operator,
given by (3.18). Thus, (3.22) is a nonlocal, elliptic cell problem and the nonlocality
is a direct consequence of the symmetrization. The variational principle (3.21) was
derived before by a different method in [8]. A more general discussion of variational
principles and symmetrization is givem in Appendix A.

When the dependence on € is restored in (3.21)-(3.22) we have that

. 1
(3.23) Ky = <:>€—2H, gH
and
(3.24) cfe)=  mf  (I+Ky)F-F)
vXF=o€,7zF)=e

In two space dimensions, a flow u(x) that is divergence free can be expressed in terms
of a stream function H(x)

(3.25) u(x) = VJ'H(X) = (eHy(x), Hy(x)),

where x = (#,y) and then

(3.26) H(x) = ( @;(X) H (()X) )



The simplest bound one can get for o.(e), which is of course very bad as € — 0, comes
from (3.24) when we put F = e as trial field. Then

o <e+(, ,He He)

=e+i{u-e(cA)(u-e))

€

(3.27)

Much better bounds and asymptotic limits are obtained in subsequent sections.

The variational principle (3.21) can provide upper bounds and careful choice of
test fields in (3.24) can provide upper bounds for o.(e) that do not become trivial as
e — 0. But to get more precise information about o.(e) we need lower bounds as well.
We will describe next how to do this.

3.2. Variational principle for the lower bound. Let us return again to the
case € = 1 since this parameter does not play any role in the calculations that follow

and can be reinserted at the end. From general duality considerations we know from
(3.21) that

(3.28) (o(e)) ™ = én; (I+Ky)'G-G)
e

where (o(e))™! is the inverse of the quadratic form o(e). This variational principle
is not useful, however, because Ky is a nonlocal operator and when the e-scaling is
restored the operator (I + K% )™! is difficult to handle.

To avoid having an operator such as (I + Ky)~! in the variational expression
for (o(e))™! we proceed as follows. We will work in R® or R? in order to be able to
use simple vector analysis but there is no loss in generality!. Let {e',e? e®} be an
orthonormal basis in R®. We return to the cell problem (2.15)-(2.16), with € = 1, and
write it in the form

V-(I+H)EF=0
(3.29) VxEF=0

(EFy=e*, k=1,2,3
Let
(3.30) (I+H)E" =Y Doy

l

where oy are the matrix elements of o(e) = oe - e given by (2.13) or (2.19) (with
e=1). If for { = 1,2,3, D satisfies

Vx(I+H)™'D'=0
(3.31) V.-D'=0

(D) =
then EF = 3°,(I + H)"'Df0y;, satisfies (3.29) and

e’ =Y ((I+H)"'D")oy
l

! In Appendix B we use differential forms for a similar computation in four dimensions.

11



Dropping the superscripts this is equivalent to solving for D such that

VX(I+H)_1D:0
(3.32) V-D=0

(D)=-e
and then

(o(e))™ =(I+H)"'D-e)

(3.33) — (I+H)"'D-D)

In two dimensions the matrix H has the form (3.26)
0 H
H= ( <H 0 )

1
1+ H?

Therefore

(3.34) (I+H)™ =

(I <H)

In three dimensions H has the form

0 <as ag
(335) H= as 0 ©aq
<9 aq 0

Define the vector
(336) a = (al, as, CL3) .

and let a = |a| be the length of a. Then

1
-1 _

Returning to (3.33) we see that in two dimensions

1

(3.38) (o(e))! = <m

while in three dimensions

(3.39) (o)) = {

D -D)

1

In both two and three dimensions problem (3.32) has the form

V x (S ©U)D = 0
(3.40) V-D=0
(D)=-e

where S is a symmetric, positive definite matrix and U is a skew symmetric matrix.
We will rewrite (3.40) as an integral equation as we did for the cell problem for E,
(2.15)-(2.17), with equation (3.8). Asin (3.1), let

(3.41) HY = {F(x), {[F[*)s < oo}

12



be the Hilbert space of square integrable, periodic vector functions with inner product

(3.42) (F,G)s = (SF, G)
Let
(3.43) Ag=V x(SVx-).

It is a second order elliptic operator with bounded inverse Agl, defined over all square
integrable, divergence free fields F with (F) = 0. Define on H® the projection operator

(3.44) T =V xAFIV x(S)
This is indeed a projection operator:

(,F,G)s =(SV x A3'V x (SF),G)
(S

= (SF,V x AS'V x (SG))
= <F77 cSG>S
and
(,9)?PF =V xA7'Vx(SVx AV x (SF))
=V xAG'V x(SF)=,7F
Using , © we can now write (3.40) in the form
(3.45) D=e%s,’e+,787'UD

Clearly D satisfies (D) = e and V- D = 0. We also verify that

V x(SD) =V x (Se) =V x(S,Je)

+V xS, 9S71UD
=V x (UD)

so that
Vx(S<U)D=0

Thus, (3.45) is equivalent to (3.40).

The projection operator , 2 takes vector fields F in H® into divergence free fields

?C
that have mean zero. It is therefore analogous to the projection operator , . on H
given by (3.5). It is interesting to look for a characterization of the operator I <, CS
which projects into the orthogonal complement of divergence free fields in H°. For

this purpose we let
(3.46) Fe,'F=G

and note that

(3.47) (G)=(F), V-G=V_-F
and
(3.48) VXx(SG)=0



From (3.48) we deduce that

(3.49) G =S"1'vh

and from (3.47)

(3.50) V- (S7'Vh)=Ash=V-F

The elliptic operator Ag has a bounded inverse on zero mean square integrable func-
tions. Thus

(3.51) Vh=VAF'V.F+S[(F) &(S"'VA;'V . F)]

and if we set

s —1g A -1

(3.52) sy =ST VAV
then
(3.53) G=,'F+(F)<(F)
and

S S S
(3.54) F=,F+,F+(F)&( /F)
The operator , 5 is selfadjoint in H® and ( 5)2 =, 5 so it is a projection operator. It
is, moreover, orthogonal to , 5 since , 7, 5 = 0. However, , 5 does not map vector fields

to mean zero, curl free vector fields but rather to fields annihilated by the operator
V x (S-). Since the mean of , jF is not zero it must be subtracted off on the right in
(3.54).

We now return to (3.45) and cary out its symmetrization, as we did for (3.8). Let

(3.55) e =es, e

and rewrite (3.45) in the form

(3.56) D=e’+,7S7'UD
With the notation of (3.40) both (3.38) and (3.39) become
(3.57) (c(e))™' =(SD-D) = (D - D)s
For the symmetrization let DV satisfy (3.56)

(3.58) DT =e°+,7S7'UD*
and D~ satisfy

(3.59) D™ =e’ &, s7'UD™!
Asin (3.13), let

Dt +D- g_ DfeD”
B 2 ’ B 2
14
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Then
(3.61) A=e’+,787'UB, B=,7s7'UA

and

(c(e))™ ={(A+B)-(A+B)s

(3.62) =(A-A)s+ (B -B)s.

where the cross terms vanish as in (3.15). Substituting B = , SUA into the first
equation in (3.61), and in (3.62) we get

(3.63) A=e"+, 787U, 9s7lUA

(c(e)™ =(A-A)s+{,7S7T'UA -, S7'UA)s

(3.64) = (I &S™'U, S7IU)A - A)s
Put
(3.65) K; = «S7!'U, Js-'U

As with Kp in (3.18), we note that it is selfadjoint and positive definite in HS

(KZF-F)s = <{U,S7'UF - F)
=(,7S7IUF-S™'UF)s
= <7 cSS_lUF o cSS_lUF> >0

In terms of Kg we can write equation (3.63) for A in differential form

S _
(3.66) V x[S(I+Ky)A]=0
V-A=0, (Ay=e
From the differential form of the equation for A and (3.64) we see that we have
the following variational principle for (o(e))™?

(3.67) (o(e)™' = inf (I+K;)G-G)s
Gens
v.G=o
(Gy=e
3.3. Summary for the two-dimensional case. We are particularly interested
in the two-dimensional case where by (3.34) and (3.40)

1 1

3.68 S=——1T U=——F"7-T-JH
( ) 1+ H?2 1+ H?

Since the curl operator in two dimensions can be expressed in terms of the perpendic-
ular gradient

a 9
3.69 vt = —
(3.69) (53, 55)
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we have that

1
As =VE TV )

(3.70) S N

?C

Kj =«H,°H

14 H? )

and the equation (3.66) for A is

Vi G s H, SH)A] =0

(8.71) V-A=0, (A)=e

In the two-dimensional case we also use the simpler notation

(3.72) , =,,=VATIV. = =viaTlve.
Ay = Ag
_ S lr _ S
s H =59 5 v H — -

With this notation and the € dependence reinserted, the direct and inverse variational
principles become

. 1
(3.73) ode)= Jnf {e(Vi-vE)+ ~(.HVf-, HVf)}
and
(3.74) ()Y e)= inf i (—1 __vig.vig)
¢ (Vigy=e | € 1+ HH?
+i< - 1, HVYg ., 1, HVYg)
A\ Lge ‘in
where
1
1 _ 1 A-1 1
(3.73) = VALY (e )
1
_ ol 1
(3.76) Apig=V (1—|—e—2H2V )

In the following sections we will use the variational principles in the form (3.73)
and (3.74).

4. Convection enhanced diffusion for cellular flows. The cell problem
(4.1) eAx+u-Vx4+u-e=0

determines, up to a constant, a periodic function y(z,y), e <z <7, er <y <7,
and the effective diffusivity is given by

(4.2) oc(e) =€{(Vx+e)-(Vx+e))

16



15+ .

0.5+ 4

Fia. 4.1. Quarter-cell

where ( ) is normalized integration over the period cell. The velocity field u is incom-
pressible, V -u = 0, and comes from a stream function H(z,y)

(4.3) u=(eH, H,)=V'H

The stream function H(x,y) = sinasiny gives rise to a cellular flow (Fig. 1.1) and
when e = (1,0) is a unit vector in the x direction then y is odd in the z direction and
even in the y direction. Problem (4.1) can then be restricted to a quarter of the cell
(Fig. 4.1),0< 2 <7, 0<y <, and if we define

(4.4) p=x+z
then
(4.5) eAp+u-Vp=0
dp dp
4.6 —(z,0) = — =0
(46) 2(2.0) = 3 (em)
(4.7) p(0,y)=0,  p(r,y)=7
and

e [ (7| /9p\? ap\?
4.8 [(e)=— — — de d
9 o= [ (30) + (3) ] e
We will consider general cellular flows, that is, flows with stream function H(z,y)
for which the lines #+ = 0 and y = 0 are separatrices, and level lines of H = 0.
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Furthermore, we will assume H is symmetric with respect to the z- and y-axes. Then
the quarter cell reduction (4.5)—(4.8) is possible and we will work with it. First we
introduce a new coordinate system (z,y) — (H,#) from the rectangle 0 < = < «,
0 <y <7 tothe region H > 0, 4 < 8 < 4 so that

(4.9) VH-V8#=0
near the boundary of the rectangle and
(4.10) V8| = |VH|

on the boundary of the rectangle. There is a unique function é(z, y), the circulation or
angle variable, satisfying (4.9) and (4.10). It will not be defined in all of the rectangle,
in general, but only in a region including the boundary of the rectangle. The fact
that # runs over the interval <4 < § < 4 is a normalization condition on the stream
function H. We call the coordinates

(4.11) (h,8) = (%,9)

the boundary layer coordinates. In terms of the boundary layer coordinates the cell
problem (4.5)—(4.7) becomes

ap ap 0
—I-\/_AH——I— |ve|2—+ A Sy

2
4.12 VH 29
(4.12) VA 962 a6 a6

ah?
where J = H,6, < H,6, = &V H - V8 is the Jacobian of the map (z,y) — (H,#8).
Because of (4.10), |[VH|? = |J| at the boundary and hence the principal terms as
€ — 0in (4.12) are

d? 7]
(4.13) 8—712 + 8—5 =0
with
p(0,8) =0, 0<h<2
(4.1 %(0,9) = 2<0<4
p(0,8) =m, << 2
8—2(0,9) =0, «2<0<0

From (4.8) we get that

(4.15) oo(e) ~ \/E% /OOO /_Z (g—Z)thdH

The above analysis is essentially due to Childress [1]. In this section we will derive
(4.15) using the variational principles of Section 3. The main difficulty in attempting
to justify the asymptotic analysis of Childress is the lack of regularity of y at the
separatrices. This lack of regularity is an essential aspect of convection enhanced
diffusion and not only a technical difficulty. In the variational approach regularity is
no longer a problem.
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4.1. Upper bound for the effective diffusivity. As in (4.13)—(4.14) we will
fix e = e; = (1,0) since the case e = e; = (0, 1) is similar. Let

(4.16) For={f=f(h8),h >0, 4 <9< 4, feC™,
f=0forh > N, forsomeN>0}

and suppose that f € Fpr satisfies also the boundary conditions

f(0,6) =0, 0<f<2
9

(4.17) az(oe) —0, “2<6<0,2<6<4
f(0,8) =7, sA<o< e

and the matching conditions on the separatrices

o 7]
dha—g =0, e2<0<0,2<0<4
0
0 haf
(4.18) / an [~z 0<e<2

0, U 90

/ dh/—f =&r/2, << e2

0 ooae

The matching conditions (4.18) are also the solvability conditions in evaluating the
nonlocal term in the functional, as can be seen in the following estimates. Consider
now the variational principle (3.73). We may look for trial fields F that have the
quarter cell symmetry of (4.5)—(4.7). Then the averages in (3.73) can be restricted to
a quarter cell also, and if f € Fpr then F = V f is an admissible trial field.

We now calculate Vf and , HV f for f € Fpr, and € small. We have that

_H:0f  ,9F H,0f  , of
(4.19) fl,_\/gathexae, fy—fathyae
Then
420, e(F - F) N—/ / |VH|2\/_ —) dh df

~ — — dhd9
\/ETFQ,/O /_4 3h

since |[VH|* ~ |J| near H = 0. Similarly , let %, HV f = Vf for some periodic f’,

then f’ is the solution to the singular Poisson problem

(4.21) Af =u-Vf
and
(+22) “( VS HYS) = (Vf -V F)

As far as the energy integral e(V f'-V f’} is concerned, to leading order, it is sufficient to
solve f’ from the dominant terms in equation (4.21) after the boundary layer rescaling

2

)
4.23 VH?—f' ~J—
(4.23) VHP S ~ T f

19



which becomes

d? 17,
4.24 —f'~ =
( ) Oh? 39f
since |[VH|? = J on the separatrices. Equation (4.24) is an ordinary differential

equation in h and can be solved by direct integration. The matching conditions (4.18)
guarantee that the existence of the solution f’ to (4.24) in the function space FgL
satisfying the boundary conditions (4.17). From (4.21) we see that

%(,HVf-,HVf ~ Ve / / ( hgdh) dh df

b [ L) e

Since f € Fpgyr, is identically zero for h large the & integrals are well defined. Using
(4.20) and (4.25) in (4.8) we have

(4.25)

o.(e) < e(Vf-Vf)+ %<, HVf- . HVf)

and hence
h 3]6
(4.26) 12?8 / / { %dh) }dn o
Since the left hand side does not depend on f we also have
1 hof
4.27 lim—o. f —dh dh df
(427)  Imozode) < é%m/ /{ . 09 )}

4.2. Lower bound for the effective diffusivity. To get a lower bound for
o.(e) we use the variational principle (3.74).

1

(4.28) (o.(e))™! = inf —{<

(Vlg>:e €

1

1 1
ey 4V 9)

1 1 1

+ <71 n 2f2 ¢’ 3_—1HHVJ-9 . ;7 g‘_lHHVJ_g>}
where , g_—lH and A1y are given by (3.75) and (3.76), respectively. Boundary layer
trial functions can be constructed by noting that when e = e; = (1,0) they arise from
g = x €y when y is periodic so that V1tg = VLy +(1,0) and (V1g) = (1,0). If the
space Fpyr, in (4.16) is denoted more precisely by Fpr(e1), then the boundary layer
functions for (4.28), with quarter cell symmetry, F; (), are the same as ©Fpr(ey).
Thus Fz; is the same as (4.16) but with the boundary conditions (4.17) replaced by

g(0,6) =0, 2<6<4
2

(4.29) ﬁ(o,e) =0, 0<f<2, &4<f<e2
9(0,8) =7, 2<6<0.
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and the matching conditions replaced by

1 9
h2/ d ——29 0 ash 0, 0<f<2 ei<f< e

(1% 26
D5
(4.30) /dhhz/ dh’ 23? = /2, 0<6<2
"
/ dhhz/ dn’ )233 = or /2, o< h< e,
0

We can now use a trial function G = V+g, with ¢ € ]:]JB_Lv in (4.28). Calculations very
similar to those for (4.20) and (4.25) yield now the bound

— 1 1 [ (4 1 /0g\2
otenves it 5 [0 [ {5 (5)
(4.31) +h2(/h (h1,)2 g‘gdh) }dn

4.3. Equality of upper and lower bounds. We must now show that the upper
bound (4.27) is equal to the reciprocal of the lower bound (4.31) and that they coincide
with the constant in (4.15), obtained by solving (4.13)—(4.14). This will prove

THEOREM 4.1. The limat

(4.32) hm / / — dh dé
el0 6

exists and equals the right side.
Proof: We begin with (4.13) and write it in divergence form

(4.33) d-(I; £ h)apt =0

where p; = p, the solution of (4.13), and

(4.34) o= (;—h, %)

(4.35) i=(5 o) m=( b

Both p™ and p~ are to satisfy the boundary conditions (4.14). We define

(4.36) *(e) = %/OOO /_Z (%)thde

We proceed now to symmetrize this problem as we did in Section 3.
Let
_I_ —
(4.37) A : £ =7
2 2

Then A and B satisfy

%4 9B OB 94

on? 99 7 on? 98
21
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Formally for the moment, we note that

h rh A4
(4.39) B- <:>/OO /Oo .
and hence A satisfies
%A horh 924
(4.40) o @/Oo /OO =0

along with the boundary conditions (4.14). Since pt = A + B, we note from (4.36)
that

o*(e) —/ / o4 + 9N an db
(4.41) h oA
— — dh db
T2 /0 /_4 { 3h + / ) }
where the cross term vanishes
1 9A 6B 194 P oA
— —dhdf = —)dh d#
/ /4371 oh / /43]1(/ 39)

:/ / A—dhd&

We now see that the right side of (4.41) is identical with the integral in (4.27) and
that (4.40) is the Euler equation for this functional. This identifies the upper bound
(4.27) with the constant ¢* in (4.36) that comes from the boundary layer problem of
Childress, (4.13)—(4.14). The sense in which (4.40) holds (plus the boundary conditions
(4.14)) is precisely as the Euler equation of the variational problem (4.27) in the
appropriate Hilbert space defined by the inner product derived from this quadratic
form and by the closure of Fgr with this inner product.

To identify the lower bound (4.31) with (¢*(e))~! we proceed again as in Section 3.
From

- (I + h)dp =
we conclude that there is a function ¢(h,8) such that

a6 90

6’ 8h) = (L +h)dp

(4.42) (en)date = c*(er)(
Thus, since 9 - 91+ ¢ = 0 we have
ot (I +h)tote=0

which is equivalent to

(4.43) ot ) (I2 <h)ote =
with

0 0
(4.44) I = ( 01 )



We will show that ¢ satisfies the dual boundary conditions (4.29) and that

(4.45) (c(er))” :—/ /4h2 9V an a6

We prove (4.45) first. From (4.15) we have that

N 1 00 4 3/) 2

*(er) _ﬁ/o /‘f (ﬁ) dh df

1 (e0)

—2/ / 9p - (I + h)dp dh db
™ 0 —4

1 o] 4
(¢*(ey 2—/ / (I + h)™' o160t pdh do
i 1 8(/5
2dh de
/ /4 h? 8h
which is the same as (4.45).

To prove that ¢, defined by (4.42), satisfies the boundary conditions (4.29) we
write (4.42) in component form

L00 3p dp

g _ Bt

(4.46) 26 “on "6
80 ap
#2L — a2
ah ah

From the second relation we get

“ /h 9
C

) <hp —I—/ P
where ¢() is a periodic function. Using the first relation in (4.46) we get
3¢ R ap
I h—
- a9 —I_ /h 2
9%p
= 0 h—
we'(6) + g@ oo 3h2
p  9p
— ad()+ L 4 2P
we'(6) + a6  Oh

from which we conclude that ¢/(#) = 0 and hence ¢(8) = ¢, a constant. Now on the
sides 2 < 0 < 4 and <2 < § < 0. we have that

0 92, 20(0,6)
dh = 9P = —0
Y] / P Q/ oh? “on

by (4.14). Thus we may choose the constant ¢ to equal
0
c:<:>/pdh, 2<0<4
o0

and then

$(0,6)=0 on 2<6<4
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It remains to show that
(4.47) $0,6)=1 on <2<6<0.

For this purpose we note that on <2 < 4 <0

#(0,8) = ¢(0,0) (0,6 +4)
o+

=& ) %(0,9)
0

Il
| —
S
e
+
N
Q.D|QJ
=D
S
\’O
o
Sa—’

But

1 /4 dp(0,0

— o= [ p0,6) ”éh’ ) (from (4.13)
1 =2 9p(0,8)

= de f; 4.14
-/, o (from (4.14))

and hence (4.47) follows.

We now return to (4.43)—(4.45) and symmetrize it so that (c*(e;))™! is given by
a variational principle. We let ¢ = ¢t and define ¢~ by

1
(4.48) ot 3+ h)o+¢™ =0

where both ¢ and ¢~ satisfy the boundary conditions (4.29). We define again A and
B by

1 1
A= (6t +67), B=(6T wd7),
and find that

0,1 90A OB

P (= )+ —-—S=0
8h(h2 8h)+89

, 0 1 9B ~ 0A

_ - =0
ah(h2 8h)+89
Thus
h Rl 94
B = h2/ — =
Q/oo 1 99
and
o ,1 0A h h1 924
4.49 R (= == /hQ/ — =0
(4.49) 8h(h28h)©oo 72 902
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while from (4.45)

‘1 (221 + %)zdhde

(e =5 [
0A 0B
[(ah) +(G5) Janas

S0
(4.50) :iz/ooo/
([ 2y anas

This is precisely the right hand side of (4.31), since (4.49) is just the Euler equation
for that quadratic functional. This proves that the limit (4.32) exists and equals ¢

5. Corner layer theory: nonoverlapping eddies in point-contact. The
effective conductivity of a two-component conductor with checkerboard geometry is
equal to the square root of the product of the component conductivities. If for ex-
ample the conductivity of the black squares is one and the conductivity of the white
squares € then the effective conductivity is v/e. Conductors with random checkerboard
geometries can also be studied. Now each square has conductivity € with probability p
and conductivity 1 with probability 1 <p, independently of other squares. Kozlov [10]
studied this problem by variational methods and found that there are three regimes:
when 1 > p > p. , the poorly conducting material prevails and the effective conduc-
tivity is O(€); when 1 <p, > p > 0, the normally conducting material prevails and the
effective conductivity is O(1); when p. > p > 1 <p,, the checkerboard configuration
prevails and the effective conductivity for this intermediate regime is O(y/€). The crit-
ical probability p. =~ 0.59 - - - is equal to the critical probability for the site percolation
problem.

In this section we study convection-diffusion problems for a two-dimensional pe-
riodic checkerboard configuation which consists of eddies with stream function H =
sin x sin y, for example, and still fluid, A = 0, alternatively from cell to cell as in
Fig. 5.1. The molecular diffusivity is e. Using variational methods we develop a
corner layer theory which includes the boundary layer theory treated in Section 4 as
a limiting case. We have also studied the random checkerboard configuration for con-
vection diffusion problems. Our results are parallel to those of Kozlov [10] and will be
presented in a forthcoming paper.

Corner layers arise because eddies have in contact only a point instead of an edge
(i.e. a separatrix). For example, if we take away every other vortex in the cellular flow
H = sinzsiny and change the sign of every other remaining vortex. The resulting
periodic array of vortices are in contact only at the corners and have the 180°-rotational
antisymmetry with respect to the origin and consequently a symmetric effective flux
tensor. The contact angle is equal to 7 (see Fig. 5.1). For these flows, the corners
rather than the separatrices control the effective diffusivity.

Before analyzing the problem with positive contact angle, let us modify the flow
near the corner as follows. Let us regularize the streamlines near the corner so that
they have well-defined tangent at contact point and therefore zero contact angle (see
Fig.5.2). Let t denote be the tangential coordinate and s the normal coordinate.
Now assume the streamlines near the contact point are asymptotically defined by
s &t = constant. Here v is the degree of the vanishing of the contact angle
approaching the contact point. When two separatrices collapse, 7 is infinite and the
situation is back to cellular flows treated in Section 4. When ~ is zero, the contact
angle is positive.
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Fia. 5.1. Non-overlapping eddies in point-contact

Fia. 5.2. Corner flow
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It turns out that the specific shape of the separatrices is not important. Only
their asymptotic form near the contact point matters. When sufficiently close to the
contact point we may assume, without loss of generality, that the boundaries of eddies
(that is, the separatrices) are defined exactly by s = £[t|1*7 and the stream function
has the form

ug(s <)t when s > [t|1T7
(5.1) H=<{0 when |s| < |t
ug(s + )17 when s < <ft|'+”

We will assume that the velocity at the separatrices ug # 0 in the following. This
assumption makes the flow discontinous and somewhat unrealistic. The case when
the velocity is zero at the separatrices can also be studied but will give rise to different
scalings depending on how fast the velocity vanishes.

As with cellular flow, particles away from the boundary are nearly trapped in
stable closed orbits. But, unlike the cellular flow case, particles that stay near the
boundary and eventually exit are almost trapped again in the adjacent vacant cells,
except for those that exit from near the contact point. They can travel with the flow
near the boundary of the adjacent vortices and exit again. Note that the narrow gap
near the contact point creates a large concentration gradient and hence large diffusive
flux.

Let us define scaled variables

{: t/Ga , §:3/€O‘(1+7)
5.2 -
(5:2) { =0/, h=H/0+)
where 6 is the circulation variable defined as in Section 4. Here o = —1— by the

1427
following scaling argument. The velocity ug at the contact point is not zero so we

let the time it takes to pass the corner be O(eﬁ). The time it takes to diffuse across

the narrow gap between vortices is €26(1%7) /e, These two time scales should be of the
same order and thus g = ﬁ The scaling of time should be the same as that of
_ 1

the tangential coordinate ¢, thus a« = 3 = TToy Since v > 0, the scale of the normal

coordinate is smaller than that of the tangential coordinate. Therefore concentration
gradients are O(Ea(ll—_w)) and o, is proportional to

€ X the area of corner layer X the square of concentration gradient
2
1 1
~ € X (Ga X €a( +’V)) X (m)

~ G%(l—l—ﬁ)
(5.3)

after substituting a = 1

1427
from infinity to zero. Using the variational principles, we will justify this scaling

. The power of of € in o, ranges from 1/2 to 1 as v ranges

argument and prove the following
THEOREM 5.1. For a checkerboard flow with stream function (5.1) near corners
the effective conductivity behaves like

1 1
oo~ crer T Es)

where ¢ 1s a constant that can be computed explicitly.

The proof of Theorem 5.1 is given in the following three subsections. We refer
to (1, 5), for |s| < [t['T7 and (h,8), for |s| > |¢|'t7 as the corner layer variables. The
period cell is [, 7]2.
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Fia. 5.3. Direct corner layer function

5.1. Upper bound for the effective diffusivity. For the upper bound we
again use the direct variational principle and choose trial functions according to our
scaling argument given above. The class of corner layer trial functions for the upper
bound is denoted by C and f belongs to it if it is piecewise smooth and
(a) For some Ny > 0 it satisfies the far field boundary conditions

Fod T for 5 > N7 and 3 > [t|'TY
Tl 0, fors<eNT and <35> |f

Each f € C is associated with a corner region C, defined by {(¢,3) | [t| < No, |3] <
N(}—M}, an eddy region F excluding C' and a vacant region V excluding C. The corner
region C = C(Ny,¢€) depends on Ny which may differ for different f. The period
cell [©r,7]? is the union of the regions C, E and V. We split the region C into
C. U C, where C, and C, are intersections of ¢’ with the eddies and the vacant cells,
ie. C. ={|3 > [t|'*"} and C, = {|3| < [{|'T].

(b) f‘c is a function of the corner layer variables and is piecewise smooth in |3] > ||+
and |3] < |¢|*.

(¢) The matching condition on the separatrices which will be specified later. When €
is small we will choose Ny = Ny(€) T oo while €*Ng | 0 as € | 0, for some o > 0, to be
determined later, and define the corner region C using this Nyo(€). We can then talk
about a common corner region C, eddy region E and vacant region V for all f € C
where C, F and V depend only on e. For every f € C, f‘E =qxif H>0,f p 0

if H < 0 and the profile of f restricted to the vacant cells f‘v o will be determined
UCy

later. The entire profile of f in the period cell is shown schematically in Fig. 5.3. The
functions f are normalized so that (Vf) — (1,0), as € | 0.
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The functional in the direct variational principle (3.73) for the upper bound has
two terms, the local one €(F - F) and the nonlocal one E< HF -, HF). To estimate
them, we break the integral over the period cell (-) into the 1ntegrals over the regions
C, E and V and write () = (e + () + ()v.

Let us consider the local integral (F - F). First, (F - F)r = 0 by the far field

boundary conditions (a). Second, F‘V .. can be chosen so that
UCy

o

e(F-F)y =o (m) as NgToo,el0 while €NyglO

To see this choose f‘v . to be smooth so that f‘v for every V' C V is independent
uCy, !

of € and Ny if V' is. Then the principal contribution to (F - F)y comes from the
tiny region 6 > 0 fixed, where F = Vf is most singular due to the merging of two
separatrices, |s| = £[¢t['T7, and the far field boundary conditions (a). Thus, (F - F)y

1s of order
¢+ 2 ee” fem* ~
— dsdt = - dt
/]\70604/|t|1+7 (tl-l-v) s ea(1+7) /No 1+
o 1 0
(5.4) AT A
o
= 0 (m) as NO T o0
if y>0.

We note that the last identity in (5.4) does not hold for v = 0 and this limiting case

1
will be analyzed later, where a logarithmic factor log — appears. Third, for (F - F)¢,
€

a simple calculation gives

(5.5) «F - Flo ~ 7r12 eo(147) / / dtds (33 )

as €0

since derivatives with respect to § and h dominate those with respect to t and g as
¢ — 0. In summary, we have

e(F - F) <F F
(5.6)

()

We consider next the nonlocal term %<, HF -, HF). Let %, HF = Vf for some
periodic f Then

(5.7) eAf=u-Vf
and
(5.8) “( HF - HF) = (V] - V)
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The right-hand side of (5.7) has zero mean

(- V5) =(uF)
=(u-e)+ (u(F <e))

—~

—~

o

by (u-e) = 0 and integrating the second term by parts. Hence (5.7) is solvable and
f exists. As in the case of cellular flows, to leading order it is enough to solve the
following approximate equation for f’ with the null far field boundary conditions

e 2., 1 ,(0d _
——f = — 1 t— in C,
(5.9) e2o(147) 8§22f €~ Yo <8tf + (14 7) 8§f) H
' 17,
=0 in C,
620z(1—|—’y) 9352
. 1
With a = T oy’ (5.9) becomes
Y
2 ., L[ 0N 8%, ,
(5.10) sl = 8—{f—|—(1—|—7)t %f @f:() in C,

with f’ is continuous across the separatrices 5 = £|#|'77. In (5.9) only the dominant
term of the Laplacian in the corner layer coordinates appears and « is chosen so
that the diffusive flux is balanced by the convective flux. In order that (5.9) be a
valid approximation to the leading order of the energy integral €<Vf . Vf>, it actually
requires that (5.9) can be solved by a solution f’ with the first derivative continuous
across the separatrices. Thus, an additional matching condition needs to be imposed
on the trial function f , which is, in view of the second equation of (5.10),

F==|f1t ) ;) 1 F==[IMtY 3 ) ;!
2 2

(5.11)
With this, f' can be solved continuous up to the first derivative and it has two parts:

, floin C.
= r
fi, i C,
Here f! satisfies the first equation of (5.10) and the far field boundary conditions in

the definition of C, and

(5.12) i = fl(5) is a linear function that matches
' the values of f! on the separatrices

We then have
1

(5.13) —-(, HF -, HF)
€

= €«(Vf-Vf)
~eVf Ve

N %el—aw{/_o:o /_O; di d (%f)Z}
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From the upper bounds for both the local term and nonlocal term in the direct vari-
ational principle, we get the upper bound for the effective diffusivity o..

o 1 1 0o o ~ 8 2 8 2
. i el0™T € < =i 5 9z =
69 B gt < ot {2 o (550) '+ (5]

€2

with f’ defined in (5.10). When f' = f = p in (5.10), equation (5.10) is called the
corner layer equation

d? 17, - 0 )

557 = su? <—~p+(1+’y)t7§p) in C,
(5.16) 332 ot 5

P = in Cv

932

with p and its first derivative continuous across the separatrices 3 = £[t|'*7. Equation
(5.16) is complemented by the boundary conditions

r, for h>0, 6=x+00
5.17 = ’ b
( ) P {0, for h <0, 8§ =+oc0.
and
w, for h =
(5.18) P= { 0, for h =<0

The correct weak form of (5.16) is given by (5.32).

5.2. Lower bound for the effective diffusivity. To estimate o, from below,
we use the inverse variational principle (3.74). Let us define a class of corner layer
trial functions for the lower bound, denoted by C* as follows. A function ¢ € C* if it
satisfies
(a) Far field boundary conditions: There exists a positive number Ny > 0 such that

_ ) m for t> Ny
9% o i<

As for the upper bound, we can associate with each ¢ € C1 a corner layer region
{(,3) | [{] < No, |5| < Ny}, an eddy region E and a vacant region V. The period
cell [&m, 7]? is the union of C, E and V.

(b) g . is a function of the corner layer variables which is piecewise smooth in |5| >
[£|**7 and |3 < |[{|'*" and continous everywhere.
(c) g9 = g(t) for [3] < [{|'*7

For every ¢ € Ct, g‘v =m,if t > 0 and g‘v = 0, if t < 0. The profile of ¢
restricted to region E, which is not covered by the definition of C*, is specified later.

We note that the conditions on g are formulated so that <VJ‘g> = e;. The overall
profile of ¢ is shown schematically in Fig. 5.4.
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Fia. 5.4. Dual corner layer function

Let us consider the local term in the inverse variational principle %(WG .
G). We break the integral into three parts

1 1 1 1

E<1+(1/62)1'1I2G"G'> :Ell+(1/e2)H2G'G>C
e e
! 1 G.ay

e (1/e2)H?
First, %(WG -Gy = %(G - G)y = 0 by the far field boundary conditions (a).
Second, we can choose Ng = Ny(e) T o0, 6§ = Npe* | 0 as € | 0 such that g‘v is a
boundary layer function for the lower bound and the boundary layer theory developed
in Section 4 applies. We have

1 1

e (1/e2)H? )

(5.19) G- G)y =0

S

Third, we split the integral over region C' into regions C, and C,,

1 1 1 1 1 1
e (1/62)1'{2Gr Gl =y (1/62)1'{2Gr Gle.+ 7 (1/e2)H?

1 1 1
({———G-G “(G-G
€<1+(1/€2)H2 Jo. + )Cu

G-G)c

v

(5.20)
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Since g = ¢(t) in C,, for the second term we have
|t|1+v ( )2

-l |71+ 2
72 /2 (1 1/ 1+27)) / /|t|1+” ( )

Here we have used the far field boundary condition (a) and o = 1/(1 4 2v). For the
first term,

1
_<G . G>Cv ~ —

€

(5.21)

1 1 1 [dyg 2
522 A—mm——G -G ~ — (2
( ) €<1 + (1/62)H2 >Oe 2 30( 1-|—’)/ //||>|t|1+7 h2 <8§)
With o = 1/(1 4 2v), the right-hand of (5.22) can be further reduced to
1 1 .1 89)2
5.23 I S dids — (4
(5.23) w2 30+a5ey) //|§|Z|{|1+v * h2 <8§

Since W > \/— if 0 < v < oo, we conclude that the integration over region
C gives the dominant contribution and we summarize the estimate on the local term
by combining (5.21) and (5.23)

1 1 1
E<1+(1/e2)ﬂ2 <1—|—(1/62)H2

!
€
1 1 - [(9g\?
< 2
(5.24) ~72 6(1/2)(1—|—1/(1—|—2w)){//|§|<|g|1+y dtds (8{)

- 1 [0g\?
dids = (2
+//|§|2|%|1+v “ 2 <3§) }

We consider next the nonlocal term in the inverse variational principle, which is

S S
1+ (1/2)H2 (/9

G-G) ~ G-G)c

#HG -, §, gHG)

To estimate it, we write %, #‘I/E)HHVJ‘g = V1§ for some periodic function §. Then

1 H
—VJ_~ — VJ_ . —VJ_
1+ (1/eymz " 7 1+ (1/eymz " 7

As before, to leading order it is sufficient to consider only the dominant terms in corner

(5.25) eVt

layer coordinates

91 9 w? /9 9
5.26 gl (1197 Ly
(5.26) 95 h? 03 12 (at9+( +7) agg) m

Equation (5.26) is equivalent to

3g 9 5oy (8 .. 0 ) .
5.27 = Th 2 ' — C.
( ) 93 =+ o 2 8tg+( —I-’y) 8§g n

where the different signs are taken for h > 0 and h < 0, respectively. To insure that the
normal derivative of ¢’ is continuous across the separatrices, an additional matching
condition is needed which is

s 2 8 B 8
5.98 h2/ %o ( L ) —0
(5.28) o n gt Tt oz
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on the separatrices. In summary, we have the lower bound

!
mﬁlo(o_)—16(1/2)(1+1/(1+2’Y)) < i inf // d{dg [(a_«?)Z + (8_g~)2:|
(5.29) m? gect |~|<|%|1+v a1

9 9 9 2]
//||>|t|1+v h2 [(8§g) +(8§g)
with ¢’ and g related by (5.26).

When ¢’ = g = ¢, (5.26) is called the dual corner layer equation,

g1 0 u2 13,
5.30 —— = 1 in C,
(5.30) S b= s (o4 )P 20) in
The dual boundary conditions are
r, for 6 =
5.31 ’ ~
( ) 9= { 0, for 6=

5.3. Equality of upper and lower bounds. We will show how to compute
the constant in Theorem 5.1 in terms of the solution of the corner layer problem.
THEOREM 5.2. The limit of the effective diffusivity is given by

1 1 [ oo d \?
lim —— o, = —2/ / di di <—~p)
€l0 65(14‘@) T oo J—0o Js

where p is the solution of the corner layer problem (5.16).

We will use the saddle-point variational principle to establish the reciprocity of
the upper bound and lower bound. We follow closely Appendix A.2 which is different
from the method we used for cellular flows in Section 2.

We begin with the forward and backward corner layer equation in divergence form

(5.32) d-(I,£h)dpT =0

where pT = p, the solution of the corner layer problem, and

(5.33) 9 = (9;,9) = (%, %)

0 0
(5.34) I, = ( 0 1)

0 h
(5.35) h:(@h 0)

with

ug(3 &) when & > [#|'7
(5.36) h=<{ 0 when |3] < [#['TY
uo(3 + [#117) when & < <ft|'t”
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Set

Bf =0yt B =
(5.37) D+ = (I, 4 h) 9p (12 + h)E+
D™ = (12 C}h) (12 C}h)

Then, in terms of E¥ and D*, (5.32) is equivalent to
(5.38) o-Df=0, ot.-Ef=0

and the boundary conditions (5.17), (5.18) play a similar role to the mean field con-
ditions .
Let us define

E

/

HET+E7)

(Et <E7)
(DT + D7)
D’ =1(DT <D")

(5.39)

1
2
1
2

They satisfy

9-D =9-D=0

and
(5.41) D' =LE +hE

D =LE+hE
or in matrix form
<D’ I, <h E’
5.42 =
Let ¢* denote the quantity of interest

o L// (LopT)’
L[5

= <12E+ E+

(5.43) 1
= (LET - ET) + 5<12E ‘E7)
= 5<D+ "Et) + %<D— ‘E7)
_ %(D* B+ %(D‘ CEY)
where
(5.44) (F-G) = %/0;/00 F-Gdtds
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and ET, E~ satisfy the same direct boundary conditions. The last equality in (5.43)
then follows from integration by parts, in view of (5.38). The representation (5.43) is
equivalent to

¢ = (D' -E)+(D-E)

» () (E)(5)

which is a symmetric, indefinite form. The constant ¢* is given by the saddle-point
variational principle

) eI, <h | ¥
5.46 * = f .
(5.46) C = ;;zsf,<( h I)(F) (F
€Cy

fec £

where C is the space of direct corner layer functions with the direct boundary conditions
and Cy is the space of direct corner layer functions which are difference of functions in
C and hence have null direct boundary conditions.

We eliminate the supremum by solving the corresponding Euler equation

(5.47) 9-L,of +9-hof=0
With (5.47) holding, (5.46) is equivalent to
(5.48) ¢ = inf {(LF-F)+ (LF-F)}

F=of
fec

More explicitly, (5.47) is equivalent to

82 ! 4 711
—f =0 ,for |3 < ¢
03?2
s ) (ﬁer (1+ ’y)ﬁif) for  |[3] > [¢['*
932 “\ot K ’ -
with f’ € Cp, which is (5.10). Thus, the right-hand side of (5.48) is identical to the
upper bound (5.15).
Now, let E* be scaled by a factor of ¢*, then in view of the quadratic nature of
(5.43), we have

()™ =(LE"-ET)

(5.49) = LD+ .E) + 1D~ -EY)

where D¥ are still related to ET via (5.37). The representation (5.49) is equivalent to

() = «D'-E) + (D-E)
(5.50) =AD" - E')pzo + (D - E)izo
<:><D/ . D/>h:0 + <D . D>h:0

from (5.41).
What boundary conditions do D’ and D, or equivalently, D¥ satisfy after the
contraction? From (5.37), it follows that for |3| > || 17

0507 = shospt

(5.51) 90t = ©h9:pt + 9zpT
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and

9307 =hdzp”

5.52 - - -
( ) c 8{(/5 = hagp + 35/)

if p* satisfy the direct boundary conditions. The following equalities follow easily
from (5.51) and the boundary condition (5.17)

[(;5"’]6,__00 = /h:h (dt 8; +ds 9; )™

1 oo - 1 .
(5.53) = oh, [ (10 +ds o)t + /_ dids p+
1 —No =ho
= —*/ dt; p*
& h=ho

On the other hand, from equation (5.16), we have

o
I

<:>/ dé dhaep
d )
< dt ds —pt 1 (1 = +)
//mo Sto (at” T+ e
dt di—=p™T
//h>ho 8382

= dt 9z p

|, it

=c're dtdz pT
h=ho

(5.54)

.0 1 ~ 4 0
since / dt —pt =7 (—/ dt p+—~p+) = ¢"r , following the definition of ¢*,
h=co 08 2 Jh=co E

e
the boundary conditions and the energy identity of the direct corner layer problem.

Therefore

(5.55) [¢+]€__OO =

and the dual boundary conditions are satified for

1 = [ as oot
(5.56) =o— [ hosp"
c* Js, i
1 5
= &—uy(8 S5,)pt + — ds pt
c 5,

which converges to zero as t approaches infinity by the direct boundary conditions
(5.17). The boundary conditions of ¢1 for h < 0 can be similarly derived.
Let us invert the relation (5.42) and express E' and E in terms of D’ and D

1 1
E' = —=I,D'<-—-hD

(5.57) h? h?
_ ’



Or, in matrix form

' 1 1 /
(5.58) B\ _ (oL gn) (D
E eih LI, J\D
10 o e
where Iy = 0 0 and it is understood that when |§| < |¢|'T7 | h = 0 and

(5.59) LE =D'=1,0), LE=D=ILD

from (5.41). Again, (5.50) is a symmetric, indefinite form in view of (5.58) and (5.59)
and admits a saddle-point variational formulation

= G=9ly G/=a1y’ 1 1 .
(560) gect glecd— <:>h_2h 72 12 G G £
i <I; 0 G/ G/
0 I G G
h=0
Here CL is the space of the dual corner layer functions with the dual boundary condi-

tions and Cy is the space of the dual corner layer functions with null dual boundary
conditions. We eliminate the supremum by solving the corresponding Fuler equation

1 1

(5.61) a+ - ﬁllG’ ot zhG =0 for [3]> ¢+

ot -I,G' =0 for |5 < |¢|*Y
Using (5.61) in (5.60) we get
(5.62) () = o {{(I.G"- G') =0 + (I:G - G)1=0

g;CJ-g
1 , , 1
+ <ﬁI1G -G pzo + <ﬁI1G - G)ho

which is exactly the right-hand side of (5.29).
We have therefore identified ¢* with the constant in Theorem 5.1.

5.4. Limiting cases. There are two interesting limiting cases in the corner layer
problem. In one v | 0, and in the other v T oo. Notice that % < %(1 + ﬁ) < 1 for
v > 0 and lim_. %(1 + ﬁ) = % The edge-contact situation of H = sin « siny can
be thought of as point contact with infinite degree of contact (i.e. ¥ = 0o) and the (/e
asymptotic behavior (but not the constant factor ¢*, since the boundary conditions
are different) is recovered in the limit v T cc.

The preceding analysis breaks down when v | 0 as was pointed out before. The
case ¥ = 0 is the one in which two separatrices meet at the contact point, which is
a stagnation point at a positive angle. Therefore it requires a separate treatment.
For simplicity, we assume that the separatrices meet at a positive angle = 7/2 and
the flow near the corner is similar to that of cellular flows. As we will see in the
following analysis, in addition to €, a log% factor appears. Contrary to what one
might guess from previous analysis, the corner layer scaling involved here is /¢ and
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not € = lim~ g eﬁ. This is because of the presence of the stagnation point at the
corner. As a result it always takes order one time for a particle to pass around the
corner no matter how short the traveling distance is. The small molecular diffusivity
€ then builds up a /¢ corner layer , which will give an order € contribution to the
effective diffusivity while the region outside of the corner layer gives contribution of
order elog % These facts will follow from the construction of suitable trial functions
and the estimate of the variational principles. A similar argument handles also the
case that the contact point is not a stagnation point provided that we work with the
corner layer of order € and the result is similar to
THEOREM 5.3. If v = 0, then there exist positive constants c§ and ¢ such that

1 1
cielog — < o, < celog —
€ €

We have not been able to show that ¢j = ¢ and determine this constant. The ac-
tual value of the angle is not important since it will affect the constants only. Although
the tangent at the corner is no longer well defined, we will still use ¢ as the “tangential”
coordinate whose axis is parallel to (1,<1) and s as the “normal” coordinate whose
axis is parallel to (1,1) (Fig. 5.5). We now turn to the proof of Theorem 5.3.
Upper bound

Consider trial functions f defined as in the direct corner layer functions C except
that the corner layer scaling € x (147 is replaced by Ve x \/e. We decompose the
period cell into the regions C, E and V as before. For the local term ¢(Vf -V f) in
the direct quadratic functional , it is easy to see that the corner layer region C gives
a contribution only of order ¢ while

NG

(5.63) (VF-Vf)y = 0(6/ (%)% dt) = O(elog 2)
1 €

since Vf = O(%) and the area element is ¢ dt. Thus

(5.64) €V F-VF) ~ (V- V) = Ofclog %)

Next, we can estimate the nonlocal term %<, HVf.-, HVf)in the following way.
Let %, HVf = Vf for some periodic function f, or equivalently

(5.65) eAf=u-Vf
so that
(5.66) %(, HVf -, HVf)=¢Vf-Vf)

We claim is that the right-hand side of (5.66) is of order €. The is because of the
scale invariance of the energy integral

e(Vh-Vh)
where h is a arbitrary nice function, and the convection operator

u-Vv
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Fia. 5.5. Limiting corner flow

More precisely, let us define scaled variables # and g in the corner layer by

In terms of # and g (5.65) becomes

<o e, .0
(5.67) Afmeto—f+ ya—:&f
Therefore
(5.68) e<Vfo>:e<@f@f2 Sce<@f@f2 = O(e)

where (-) = [ [o(-)dZ dg. and V, A are the gradient and Laplacian with respect to &,
g, respectively. From (5.64) and (5.68), we conclude that

1
(5.69) o, < cjelog —
€

for some constant c5.
Lower bound:

Let us construct trial functions ¢ in the following way. We define an arbitrary
outer layer whose scale, say /¢, is larger than that of the corner layer which is /e.
We denote the outer region by U, the complementary region in the vacant cells by V
and the complementary region in the eddies by E. In the outer region U, let ¢ satisfy
the same far field boundary conditions in the definition of Ct and
(5.70) g‘

T
¢ 2 g‘U:gE(t)
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In the eddies, ¢ is a boundary layer function. From this we know that the contribution
of the eddies to the inverse variational principle is O(ﬁ) . Now let us consider the
contribution of vacant cells to the local term. We have

1 1 1 1 _1 1 1
<1+(1/e2)H2V 9-Viglv=_Vig-Vogv

since H = 0 in the vacant cell. The right-hand side of (5.71) is, by the choice of g,

(5.71)

€

e
(5.72) = / (g2t dt
N

€

since Vg = 0 elsewhere and tdt is the area element. The minimum of (5.72) can be
achieved by g. that satisfies

(5.73) (¢/t)) =0  with the far field boundary conditions

The solution of (5.73) is

1 logt

271'(—<:>Og )—I—z, when e>1t> /e
574 _ 2 loge 2
(5.74) e = 1 loglt T

2r(=&——)+ =, when &Ve<t< /e

2  loge 2
The energy integral for (5.74) is O(m). Hence
1 1

5.75 Tl o
(5.75) (07 < ¢; elog(1l/e)

where ¢} is a constant and this along with (5.69) prove Theorem 5.3.

6. Periodic arrays of eddies and channels. In this section we study advection-
diffusion in the steady velocity field

(6.1) u:(@Hg,Hg), H® =sinasiny + 6cosz cosy, § > 0.

Here 6 cos x cos y is a small periodic perturbation that preserves the structure of critical
points of the stream function sin « sin y. The periodicity of the perturbation together
with the instability of the separatrices creates periodic open channels in the vincinity of
the separatrices of sin x sin y. The width of the channels is of order §. The streamlines
H? = constant form a periodic array of oblique cat’s-eyes separated by open channels
carrying finite fluid flux of order §. Transport takes place both in thin boundary layers
and within the channels and the parameter § /1/€ measures the relative influence of the

two. If § = 3y/e with 8 > 1 then advection in the channels dominates diffusion. This
el0

occurs when, for example, § = §(¢) = ae®, 0 < a < %, a < 1, so that 8 = ae®~1/2 7

00.
The streamline structure is like that of Fig.6.1 There are two types of streamlines:
Those in the channels

(6.2) S0< Hs <6
and those in the eddies

(6.3) § < |Hg <1
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They are separated by separatrices defined by Hs = +6. The flow structure is no longer
isotropic and has two eigen-directions: one parallel to the channel, e = %(1, 1), and
the other, e; = %(@1, 1), orthogonal to the channel. Because of symmetry, the cell
problem (4.1) can be reduced to 1/4-period enclosed by the dotted lines in Fig.6.1.

The behavior of the effective diffusivity (4.2) as € tends to zero was first analyzed
by Childress and Soward [5]. They obtained asymptotic solutions for 5 > 1 using the
Wiener-Hopf technique. Surprisingly, their asymptotic method gives reliable values
of the effective diffusivity down to 8 =~ 1.5. Here we recover their results by our
variational methods.

THEOREM 6.1 ( SPECIAL CAT’S-EYE ). For H® = sinasiny 46 cosz cosy, e <
0 € 1, we have

53
oc(er)~elé, oﬁ(e)NB— as €]0.
€
In particular, if § = ae®, 0 < a < 1/2, we have
1, a’ g,
ocer)~ Eel “ oc(e) ~ ?e?’a !

This theorem can be understood by a scaling argument in the following manner.
The channels provide a very efficient vehicle in which a diffusing particle can take
a long flight. The eddies are trapping regions, except in the /e-boundary layer. In
the e direction, the time the particle stays in one channel is O(3?%) since this time
is proportional to the reciprocal of the diffusion coefficient € multiplied by the width
of the channel squared, (y/¢3)?. The distance travelled in the direction e, during
this time is also O(3?). Therefore the effective diffusivity should be O(3?%) times the
proportion of the time the paticle spending in the channels, which is proportional to
channel’s width 3/epstlon. It ends with a O(33\/€) effective diffusivity. In the e
direction, the trapping of the eddies is active while the channels do not help. Since
B> 1, the boundary layers are essentially separated, the time scale involved is again
O(B?%) and the step size is O(1) due to the boundary layers. The effective diffusivity
is then O(1/3?) times the channel’s width 3+/€, which is O(y/€/3)

In the following analysis, We take the limit € | 0 first, keeping 3 fixed and then
consider the asymptotics of 3 T co. In addition:

(a) When passing to the limit € | 0, with 3 fixed, different boundary layers overlap
in the channel. The boundary layer type of trial functions used in the case of H =
sin x sin y are still appropriate, except that we have to patch them in the channel
region. This will eventually give o.(e), o.(el) = O(\/e).

(b) For the # T oo asymptotics we have to estimate the numerical constants ¢*, ¢’
multiplying /e. As 3 gets larger, the channel region becomes dominant and we will
be able to capture the dependence of ¢* and ¢’ on 3.

We now continue with the analysis that leads to Theorem 6.1.

6.1. The asymptotic behavior of o.(e; ). The upper bound for o.(e ) is ob-
tained as follows. The boundary layer theory of eddies in Section 4 tells us that the
trial functions f for the upper bound should be constant at least in the interior of
each eddy. To specify our ansatz in the channel, let us first define in the channel

[f]h(e) = f(<:>67 9) <:>f(67 9)

(6.4) [fle(h) = the difference of f along a streamline in half a period.
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We consider a trial function f such that

(6.5) [flh = —7, [flo =0 in the channel

and f assumes constant values in each eddy since we are concerned with the g > 1
limit. The condition (6.5) insures that f satisfies the mean field condition (Vf) = e
as € tends to zero. Thus,

(6:6) Lmoc(ey)/ve< —inf ﬂi/ ‘w/ " { (aahf)2 " (/: %f)z}

[flg=0

Since we are looking at the direction perpendicular to the channel, the diffusive energy
integral should dominate and the appropriate trial functions are f = f(h). Set b/ =
h/B, ©1 < h' < 1. Then we have

6.7 limo, < f —/ dH/ dh’ —
( ) Elflga (eJ_)/\/E i 1(11[/2)7r ﬁﬂ' 8h’f
afjo6=0

The minimum in (6.7) is achieved by a linear function of b/, f = %@ﬂ'h’, and the

12

1
X 4 = — after substitution.

right side of (6.7) becomes W(§ 771') 2

The Lower bound for o.(e_ ) is as follows. Let g be a boundary layer function and
satisfy
(6.8) [g]n=0 and [g]s=+V27 in the channel

Then (6.8) guarantees that g generates the correct mean field (V1g) = e as € tends
to zero. After substitution we have, to principal order as | oo,

-1
6.9 lim. Vel < inf ! 2d9 ﬁdh Loy
©9) (Epoden)/Ve) <t 5[ /_ﬁ ﬁ(%g)
[glg=V2T
in the channel

1o\’
R* — —
+ (ooh28eg)}

Consider g = ¢(6). The right side of (6.9) restricted to this particular class of

trial functions can then be minimized by ¢ = 5%9 in the channel; then it becomes

2 1 2
%/ d9/ dh/(%)2 = (3 after substitution. It does not matter how we choose ¢
T J 2 -1

in the boundary layer since it only affects the o(3) correction.
Combining the upper and lower bounds, we have

as [ Too.

lim

1
o e p
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6.2. The asymptotic behavior of o.(e). For the upper bound for o.(e) con-
sider trial functions f which are boundary layer functions in the eddies, that satisfy
the matching condition on the separatrices

o d
(6.10) /0 dh <of =0

or equivalently

(6.11) / dh f = constant independent of 4
0

and

(6.12) [fln=0, [flo=+v2r in the channel.

Like (6.8), (6.12) insures that f generates the correct mean field (V f) = e in the limit
€1 0. As with (6.6), we have

(613) Tmole)/ves inf %/:w/_i%{(;—hf)z-l- (/: %f)2}
[flg=v2m

We are looking at the direction parallel to the channel in the large £ limit so clearly
the convective energy integral will dominate. Therefore the appropriate trial functions
should be in the form f = f(6) which makes the the first term of (6.13), the diffusive
energy integral, vanish, and we have

(6.14) o (e)/ Ve < []}]I;fo —/ de/ dh (/ —9f)2
[flg=V2m

The right side of (6.14) is minimized by a linear function in 6: f = %\/571’9 in the
channel. Then

— 1 /2 p V2w 272
(6.15) 161%0—5((3)/\/2 ﬁ/_z de/_gdh(T) h

IN

to principal order as 8 T oco.
For the lower bound for o.(e) consider the trial functions g, satisfying

T
V2

so that (V1g) = e in the limit. Consider ¢ = g(h), since we are looking at the

(6.16) [9]n = [¢9]s =0 in the channel

perpendicular direction. The inverse variational principle becomes

1 f2 g 1.9
6.17 limo. < inf - de dh—(—q)?
(6.17) (1m0 (e )/\/_) - [g]i}i% 72 /_2 /_ﬁ h2(ah9)

) [glg=0
in the channel
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The right side of (6.17) is minimized by g = % 2% h3 and after substitution

lim = i ’ ’ i T L 2 232
oa O L G

to principal order as 3 T co. Combining the upper and lower bounds (6.15), (6.18),
we have

3
limoﬁ(e)/\/gwﬁ— as 3T oo .
el0 3

Clearly the above analysis also works when ¢ | 0 and # T oo simultaneously
such as § = ae®,0 < a < 1/2. The opposite asymptotic limit, 5 | 0, corresponds to a
channel perturbation of cellular boundary layers and can also be studied by variational
methods. The leading term of o, is O(y/€) and comes from the boundary layer theory.
The next correction term is a power of 4 and depends on the direction. This problem
has not been analyzed in detail.

7. General periodic flows with a zero mean drift. The stream function
H = sinxsiny is a Morse function (i.e. its critical points are not degenerate ) but is
not generic in the sense that it assumes the same value 0 at the four saddle points.
Generically, as a consequence of Morse’s lemma (see Milnor [18]), we have :

THEOREM 7.1 (EXISTENCE OF CHANNELS). Let H be a Morse function on the
torus T? and c1,cq,- -, ¢, its saddle point values. If ¢; # c;, for i # j, then 3 some
k's such that

H™ (e ©6,¢1) : the collection of streamlines defined by H = constant in (cj, <6, cy)
or
H™ (g, e + 8) : the collection of streamlines defined by H = constant in (cy, cx, + 6)

18 an open channel no matter how small § 1s. .

Theorem 7.1 is actually true for any compact two-surface without boundary except
the two-sphere. It implies the existence of open channels for stream functions that are
Morse functions and have distinct saddle point values. We call such stream functions
generic. In other words, channels always exist for generic stream functions. But
genericity is not a necessary condition for channels to exist. For example, the cat’s-
eye flow discussed in the previous section is not generic but nevertheless contains
channels.

If channels do not exist, then the flow consists only of eddies and separatrices.
Not every separatrix will enhance particle diffusion. The important set of separarices
are those that are not of the trivial homotopy type, equivalently, do not ”"separate”
the torus. Any closed curve of the trivial homotopy type will necessarily hit one of
those non-separating separatrices which form a web on the torus and induce boundary
layers near them. In this case, our boundary layer theory developed in Section 4 can
be applied to those non-separating separatrices and the effective diffusivity o, will be
of order /¢ and the constant factor can be calculated from the reduced variational
principles in which the boundary conditions should, due to lack of symmetry, be
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Fia. 7.1. Multi-channel flow

replaced by matching conditions across the separatrix . This is all for the non-generic
case of no-channel flows.

Generically, channels exist. The channels are all periodic and are of the same
homotopy type . In other words, all streamlines are periodic and have the same
asymptotic slope or rotation number. Without loss of generality, we can assume that
the rotation number is zero by making a linear change of coordinates:

P q

=1,
r s

(7.1) (z,y) = (pr + qy,rx + sy),

where p, q,r, s are integers and £ is the rotation number. After this transformation,
the periodic channel structure looks like the one in Fig. 7.1.

We know from the cat’s-eye flow analysis that in the direction e parallel to the
asymptotic slope, o.(e) is O(%), and in the perpendicular direction e, o.(e1 ) is O(e).
The constant factor can also determined as was done in Section 6. In the special cat’s-
eye flow (Fig.1.2), two identical channels appear in a period cell, going in opposite
directions making the mean flow flux zero, while the rotation number is 1. In general,
we have an even number 2n of channels, half of them going in one direction, say
(1,0), the others going in the opposite direction, (<1,0). Let us first state a general
two-channel result:

THEOREM 7.2 (TWO-CHANNEL CAT’S-EYE THEORY). Let § be the flow fluz, equal

to $[H]L with /e < § < 1. Then

1
oe)~c"—, ofel)~ e
€
where
& e [HL § a9 § a9
* = — i =2
CT9%a T 2 gag T s “TH],



Fia. 7.2. Two-channel shear layer flow

Here -] 1s the absolute difference of the function across the channel and cy,cq are
constants independent of the flow structure and ¢ df stands for flow circulation over
a cycle in the channel. .

The proof of this statement is a slight modification of the theorem for cat’s-eye
flow in section 6. The effect of the eddies can be seen by comparing this result with
that for shear layer flows (Fig. 7.2), which is considered next.

For shear layer flows the effective diffusivity in either direction can be computed
exactly using the inverse variational principle.
THEOREM 7.3 (SHEAR LAYER). If u= (u(y),0), then

and

Proof: From the inverse variational principle (3.74) for o.(e)

1 1

1 vig. vt
6<1—|—}2H2 g 9)

(7.2) (o) e) = _inf {

(V4ig)=e

1 1 Llgol,. L L
+€_3<@,HHV q-, %HHV g>}

We get the Euler equation

1 1
(7.3) vt (7 <=M, jHH) Vig=0



which can be solved exactly with a function ¢ = g(y) . Equation (7.3) reduces to

1
VJ_ VJ_ —

and the second term in (7.3) simply drops out. Equation (7.4) is easily solved by
taking

(7.5) Vig = (e¢,0) = (H%UM (1 + }252) ,0)

which satisfies the mean field condition (V1g) = e. Substituting (7.5) into (7.2), we
have

1N 1
(U)E (e) - €+ l<H2>
1 2
(7.6) ole) = e+ —(H?)

It is also easy to see that o.(ey) = e. In particular, for two-channel shear layer flow

(Fig. 7.2),

(7.7) oc(e)~e+ ?, oel)=c¢

Thus, in view of Theorem 7.2 and Theorem 7.3, we conclude that the effect of
eddies in open channel flows is to enhance o, in the perpendicular direction by a factor
67! and to diminished o in the parallel direction by a factor §. Let us also state a
general multi-channel cat’s-eye result:

THEOREM 7.4 (MULTI-CHANNEL CAT’S-EYE THEORY). If 2n periodic channels
exist and their contributions to oc, as in the two-channel theory, are ¢*(i),c%(1),1 =
1,---,2n, then

oe)~—, olel)~cle
€

where ¢* is the arithmatic mean of ¢*(i) and ¢’ s the harmonic mean of ¢} (i),1 =
1,-++,2n.

This result is analagous to what happens in conductivity problems. The proof of
Theorem 7.4 is an extension of the argument given in the theorem for cat’s-eye flows.

For shear layer flows, o.(e,) = € and {(H?) in formula (7.6) for o.(e) accounts for
its enhancement , which increases with the correlation of flow directions in adjacent
channels since particles can take bigger flights. However, the flow direction has to
alternate from channel to adjacent channel in order to sandwich eddies between them
while maintain the consistency of the flow structure. The total effect of multi-channels
cat’s-eye flows on o.(e) is simply the sum of that of individual channel contribution.
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8. Periodic flows with a non-zero mean drift. What happens if the mean
drift is not zero? In this section we consider particle dispersion in periodic flows with
nonzero mean drifts. Such problems arise in the diffusion of contaminants in saturated
porous media (e.g. see [9]) and in the diffusion of particles sedmentating in convective
flows, which is treated in [6] for small mean drifts using boundary layer techniques.
Bhattacharya et al [9] analyze the case with mean drifts that are not small. They make
several observations, which are essentially Lemma 8.2 and Lemma 8.3 below and then
apply them to a class of simple flows to obtain extremal diffusivity, that is, o, = O(¢)
or O(%) We will reformulate their observations and apply them to general periodic
flows with nonzero mean drifts. Variational methods for flows with a nonzero mean
drift are a special case of the variational principles for time dependent flows which are
discussed in Appendix B. Hou et al [19] and Weinan E [20] study the homogenization
of the advective transport equations without diffusion under the hyperbolic scaling
and obtain various effective equations depending on the rotation number, ergodicity
and the stagnation points of the flows. It is interesting to compare their results to the
ones we obtain in this Section under the diffusive scaling with vanishing diffusion.

We write the flows in the form ¢ + u, where ¢ is a constant vector and (u) = 0.

As before, u is an incompressible, V - u = 0, periodic vector field of period 27 in two
dimensions and we assume that it is smooth: u € C"(T?), » > 0. According to a
generalization of the classical theorem of Poincare by Weinan E and Moser [20], when
stagnation points occur, we have that
(i) The asymptotic direction of the streamlines is parallel to c.
(ii) When considered on the plane R?, if we call the set of closed streamlines the eddies
and the rest the channels, then ¢; and ¢3, the components of ¢, are commensurate if
and only if the flow has a periodic streamline in the channels, when embedded in the
torus T?. When ¢; and ¢y are incommensurate, any single streamline starting from
inside the channels is dense in the channels.

It follows that the rotation number is defined in the channels and is independent
of the streamlines. The behavior of the streamlines in the channels is completely
characterized by c, as long as we know the structure of the channels or equivalently the
structure of the eddies. Furthermore, we can decompose T? into the sum of invariant

N

sets: T2 = ZU“ (N might be 0o0) such that ¢+ urestricted to U; is either completely
=1

integrable or ergodic, for all : = 1,..., N. An invariant region U; is a ergodic region

ounly when it is a channel and the rotation number is irrational. Complete integrability
means that the circulation variable 6 exists and that (H,#) form a coordinate system.
The cell problem is

(8.1) eAx+(c+u)-Vy+u-e=0
and the effective diffusivity is given by

(8.2) o(e)=e+e(Vyx-Vyx)

We rewrite the cell problem (8.1) in the form

(8.3) Vi(e+H+A e - V)Vy+u-e=0
where

0 H
H_((:)H 0)
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and H is the stream function with (H) = 0, and V1 H = u. In terms of the projection
operator , and with E = Vy, we have

(8.4) cE+ H.E+,A'¢c.VE+ ., H-e=0
and
(8.5) o.(e) = 6—|—€<E'E>

8.1. A decomposition of the Hilbert space and its applications. Let
G=,H, +, A c.V

and denote by H, the Hilbert space of mean-zero curl-free fields with (-) as inner
product. Then G: H, — H,, is boundned and skew-adjoint. Furthermore, we have

LeMMA 8.1. G is a compact, skew-adjoint operator.
Proof: For F € H,,

GF =,H,F+,A 'c-VF

(8.6) ~VAlu-F+,A e - VF

Since one derivative is gained by applying G, it is compact.
Denote the null space of G in H, by N. Then the Hilbert space H, has the

decomposition

Hy =N o Nt
where N+ = (Range G). The effective diffusivity o.(e) can now be expressed as
(8.7) oe(e) = e+ e{(VX)w - (VX)) + e((VX)art - (VX)are)

LEMMA 8.2 (BHATTACHARYA et al [9]).
If , H - e has a nonzero component in N, then

9]
~

C//
<ol(e)<— as €]0
€

o |

for some positive numbers ¢’ and .
Proof: Equation (8.4) can be decomposed into components in A" and N

(8:8) eEy+(CH-e)y=0

{ GENJ_—I—GENJ_—I—(,H-e)NJ_ZO
If (H-e)y #0 then <EN . E/\/> ~ }2, and o.(e) > %/, for some ¢’ > 0. But from the
variational principle, we know that o.(e) < C?”, for some ¢” > 0. This completes the
proof.

The following lemma tells us when singular perturbations do not arise.

LEMMA 8.3 (BHATTACHARYA et al [9]). If, H-e € Range G, that is, there exists
F in H, such that GF =, H - e, then
e<oe)<ce as €0
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for some ¢ > 1.
Proof: The direct variational principle for o, is a special case of that for time
dependent flows with % replaced by ©c -V (cf. Appendix B), that is,

1
(8.9) oi(e)= inf {«(F-F)+>( H'F- HF)}
VXF:O €
(Fy=e
where
(8.10) H=H+A'c-V.

We first show that , H -e € RangeG is equivalent to the existence of F such that
(,H'F -, H'F) = 0, which is equivalent to

V. ,HF =V.-,(H+A '¢c-V)F
(8‘11) ? 7( —|_~ Y )
=u-F+ec¢ - F=0
Wheref‘:F@e, or
(8.12) (c+u) - F+u-e=0.

But, , H-e € RangeG < IF € H, such that

(8.13) &, H-e=VA™u-F+, A7lc.VF
or
(8.14) su-e=u-F+c-F=(c+u)-F

which is (8.12). Therefore the nonlocal term in (8.9) vanishes and
(8.15) o(e)<ce, forsome ¢>0, as €|0

Since o.(e) > €, (8.15) leads to the conclusion of the lemma.
The converses of Lemmas 8.2 and 8.3 also hold.
LEMMA 8.4. If , H - e does not have a component in N, then

o.(e)=o(1/e).

Proof: By the assumption, , H-e € N+ = RangeG and there exists F, with
VxF=0,(F)=e, (F-F) < oo, such that, for arbitrarily small §, the nonlocal term
in in (8.9)

1 ! !
LCHF. HE) <6
€

and hence the conclusion.
LeMMa 8.5. If, H - e s not in Range G, then

o.(e)> ¢, ase | 0.
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Proof: Let us assume that , H - e does not have a component in A/, otherwise

Lemma 8.2 applies and the conclusion is obviously true. From Lemma 8.4, it follows
that, in order to avoid 1/e behavior, in (8.8),

GENJ_ —I-(, H-e)NJ_ 10,

as € | 0. By the assumption of the lemma and the compactuness of G, (E - E) is not
bounded as € | 0 and hence the conclusion of the lemma.

The gap between Lemma 8.4 and 8.5 is when , H - e € Range G but not in Range
G. In this case, € € o.(e) < 1/e. If this occurs when ¢ = 0, then various boundary
layers and corner layers arise and their effects on the effective diffusivity have been
discussed in previous sections. It will be shown in the following sections that the flow
is rarely in this gap when ¢ is not zero.

8.2. A characterization of A and N1. Each F € H, can be written as
F = Vf for some periodic function or the limit of a sequence of such gradients.
Furthermore,
FcN < HVf+, A - VVf=0
< (u+c¢)-Vf=0

or, equivalently, f is constant along every streamline of ¢ + u and A is the closure of

(8.16)

the set of fields which are the gradient of such functions. Let us state this as a lemma.
LEMMA 8.6.

N = {Vf|f is constant along every streamline of ¢ + u}

The main result of this section is a characterization of N1 :
LEMMA 8.7.

Nt ={Vyg] / Agdt =0, for every non-ergodic streamline v in every regionU,;.}
¥

where t 15 the time associated with the streamline v under the flow ¢ + u.
Proof: It suffices to consider E € N, F € A of the form E = Vg, F = V¥, for

some smooth g and f. Then,

0=(E-F) ://2dxdny-Vg
(8.17) :<:>/T/r2da:dyng

If v is a nonergodic streamline, then consider a sequence of f,, = f,(J), where J is
an action variable (i.e. V.J € N') that is defined in a neighborhood of v, such that

nloo

fn = 63,(J), the Dirac delta function concentrated on Jy, and Jo = J defines v. We
have

(8.18) @// de dy f, Ag "5 <:>c/thg
T2 o

where ¢ equals %(%)l , which is constant on streamlines since both dx dy and d.J dt
y
are invariant for the flow. Thus,
(8.19) / dtAg=0.
y
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Fig. 8.1. Cellular flow with drift ¢ = (0, .2)

On the other hand, if v € U; in which ¢ + u is ergodic, then it does not matter what

we choose for g‘U . This completes the proof.

7

Actually, /dt Ag = 0 for every Vg in the range of G and every non-ergodic
y

streamline ~ since

(8.20) /dtV-,H, v

-
dt(c+u)-Vf
-

0
ds—
/7 Sasf
0

(8.21)

8.3. Flows with stagnation points. We will analyze the behavior of the effec-
tive diffusivity when ¢ + u has stagnation points (see Fig. 8.1, 8.2 and 8.3).

First we establish the following general result:

THEOREM 8.8. If the flow ¢ 4+ u has periodic orbits of the trivial homotopic type,
then

C/ C//
—<o(e)<— as €|0, when e fLc.
€ €

for some positive numbers ¢’ and .
Proof: In view of Lemma 8.2, it suffices to prove , H-e g N't. Let v be one of
the periodic orbits of the trivial homotopic type. Obviously, fw dt(c + u) = 0, since
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this integral is the displacement after a cycle. Now consider

/WA(A_lv-H-e) :AA(A—l(u-e))

(8.22) - /W €
= <:>/ dic-e
y
# 0.
if ¢ is not periodicular to e. Thus,
(8.23) VAT'V . H.-e=,H-e¢g Nt

by Lemma 8.7. This completes the proof.

The condition in Theorem 8.8 seems to be generic whenever ¢ + u has stagnation
points (see Fig. 8.1, 8.2 and 8.3). For example, if some of those stagnation points are
elliptic points, then there are always periodic orbits of trivial homotopic type around
those elliptic stagnation points. Theorem 8.8 can be generalized to higher dimensional
spaces.

THEOREM 8.9. Let c+u € C(T"). If there exist a bounded domain D invariant
under ¢ + u viewed as dynamical system on R™, then

~

c//

Saﬁ(e)g? as €0, ife Lc

9]

o |

for some positive numbers ¢’ and .
Proof: Let M = / d"x be the “mass” of the fluid volume D. It is finite, since
D
D is bounded. Define the center of mass for D by

(8.24) an(t) = /D d"x X(t,x)/M |

where X(¢,x) is the flow generated by ¢ + u and X(0,x) = x. The invariance of D
and incompressibility of ¢ 4+ u tells us that

d

(8.25) %qp(t) =0, Vt,
But

S antt) == [ axte+ut)

— = — x(c+ u(x
(8.26) at|_1° M Jp

=0

and thus
(8.27) /Ddxu-e :<:>(/Ddx)c-e

asMe e .

On the other hand / d"xu-e = 0 is a necessary condition for , H-e € N1, if D

D
is invariant. Therefore, , H - e has a nonzero component in A. With the help of
Lemma 8.2, the theorem is proved.
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Fig. 8.2. Cellular flow with drift c = 0.2(1, 2)

What about o.(ey ), e) Lc? In view of the results for cat’s-eye flows, the following
theorem is intuitively clear:
THEOREM 8.10. If the slope of ¢ s rational, then

e<oel)<ce as €]0.

for some ¢ > 1.

Proof: By the result of Weinan E and Moser [20], mentioned in the begining of
this section, rationality of ¢ implies rationality of the rotation number of the channels
and the streamlines in the channels, which implies the periodicity of the streamlines.
Without loss of generality, we can assume that the rotation number is zero by consid-
ering a linear change of coordinates (7.1) on T?. Then, we can simply assume that
c=(1,0).

By Lemma 8.3, it is sufficient to prove that , H-e € Range G which is equivalent
to the existence of F € H, such that (see equation (8.14))

(8.28) (c+u)-F=u-e
But since eLc, (8.28) is equivalent to the existence of F, (F) = e such that
(8.29) (c+u) - F=0

The existence of F satisfying (8.29) is clear for flows with periodic channels.

When the rotation number is irrational, we have the following upper bound.
THEOREM 8.11. If the slope of ¢ is irrational, then

o(er)=o(l/e).
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Fig. 8.3. Cellular flow with drift c = 0.2(1,7/2)

Proof: Since the rotation number p is irrational , the subspaces A" and Nt
are completely determined by eddies in view of Lemma 8.6 and 8.7, and the only
non-ergodic streamlines are in eddies. It is easy to see that

(8.30) /dtV-,H’-e:/dt(c—l—u)-e:O
y y
for every closed streamline v, every e.. Let e = e and, since cle ., we have
(8.31) /dtu-eL:/dtV-,H-eJ_:0
7y y

By the characterization of Nt in Lemma 8.7, , H-e; € At and Lemma 8.4 implies
the theorem.

The precise asymptotic behavior of the effective diffusivity for flows with eddies
and an ergodic channel is not clear and will be the subject of a future study.

8.4. Flows with no stagnation points. Now, we come to the case where c+u
does not have any stagnation points (see Fig. 8.5 and 8.4).

The following theorem is known in the theory of dynamical systems on the torus
T2

THEOREM 8.12 (KoLMOGOROV-DENJOY). There exists a coordinate transforma-
tion in C"(T?)such that the trajectories in the new coordinate system are straight lines
and the system has the form

dg dn

(8.32) =AY, ikl

where (c1,¢3) = ¢ and v is some positive C"~! function.
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Here p = ¢3/cy is the rotation number of the dynamical system generated by
¢ + u. Instead of the original system we may study the transformed one and assume
that (v) = 1 for simplicity, so that

(s.33) wz (ool

Notice that the transformed flow can not be incompressible in the new coordinates
unless it is a shear layer flow in the new coordinates system v = v(s), s = c17) < 2.
But this does not hinder us from using Lemma 8.3 since solvability of equation (8.12)
in one set of coordinates implies solvability in another.

For rational rotation numbers, we have the following theorem
THEOREM 8.13. Let p be a rational number. Then we have

C/ c//

— <ofe)<— as €l0, for e /f(l,p)

€ €

e <olel)<ce as €|l0, for e;l(l,p)
for some positive ¢, ¢’ and ", unless

/ dt = constant independent of v
-

i which case the system can be transformed to

dx dy
— = = =c
at U
and o.(e) = 0(e) as €] 0,Ve.
Proof: We want to show that
(8.34) / u-edt#0 for some 7,
¥

and then apply Lemmas 8.2 and 8.7 to show ¢’/e < o.(e) < ¢’ /e. Since all orbits are
periodic with rational rotation number p, we have

(8.35) /(c—l—u)-edt:c-e
v
and

/u-edt =c-es | c-edt
-
(8.36)

unless
(i)e=e,lc

(i) /dt = constant independent of v
y
If (ii) is true, then the system can be further transformed to

dx dy
8.37 — = —= =
( ) dt ¢, dt €2
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Fig. 8.4. Shear layer flow with drift ¢ = (0,.3)

which obviously will not enhance the diffusion process, and we have
(8.38) o(e)=0(e) as €]0 forall e.

If (i) occurs, we want to show that

(8.39) (c+u)-Vi+u-e =0

is solvable. Actually, u-e; = (v <1l)c-e; = 0. Therefore f = 0 is a solution. It
follows from Lemma 8.3 that

(8.40) o(el)=0(e) as €0

Shear layer flows with a non-zero perpendicular drift are examples where the
condition

/dt = constant independent of ~
-

in Theorem 8.13 holds and therefore no enhancement occurs (Fig.8.4). To see this, let
us counsider the flow with u = (cos27y,0) and ¢ = ¢(0,1), ¢ > 0.

The cell problem (8.1) becomes

17, 17,
(8.41) eAx +u(y)=—x+c—x+u-e=0
ox Ay

For e = e; = (0,1), u-e = 0, thus y = 0 is the solution of (8.41) and we have
o.(ez) = €. Fore =e; = (1,0), (8.41) can be solved by a function xy = x(y) whose
derivative is

(8.42) ! { L ginory o 2 }
. S 27 ——F—F COS 4T
14+ —4;2252 2me Y 4n2e Y
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Fig. 8.5. Cellular flow with drift c = 1.1(1,7/2)

and

(8.43) o(er) = e+ ‘

2(4m2€? + ¢?)

which is of order € when ¢ is not zero. To see the enormous effect of the drift ¢ = ¢(0,1)
on the effective diffusivity for shear layer flows, one can campare (8.43) with formula
(7.6).

If the rotation number p is an irrational number, then the flow is ergodic, the space
N is trivial and we have o, = o(1/€). Actually, there is almost surely no enhancement,

as can be seen from the following
THEOREM 8.14. Assume that (1) 3¢, 6 > 0, such that

. & R
min [p <p/q| > = YV integer p,q

and (2) r >3+ 6. Then
o(e)=0(e) as €0, foralle.

Proof: Consider the transformed system:

(8.44) d—x:clv, d—y:cw, v>0,

dt dt
as before. We claim that ve-Vg 4+ f =0, for any f € C?~!, is always solvable if the
rotation number satisfies the Diophantine inequality. Dividing the equation by v, we

have ¢ - Vg + f/v = 0 Writing ¢g and f in terms of Fourier series, we have
9= gme™*, gm=0 if m=(my,my)=(0,0)

8.45 m .
( ) f/?] — Zcmezmx c CT—l
m
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Then,

(8.46) gm = em/(m1 + pmz)

But by assumption (1)

c

mq ‘m 1416
8.47 = — > = < —
( ) |m1+Pm2| |7n2||7n2 -|-P| - m%+5 |gm| = ¢ my

and we know that >, (em|m|"™1)? < co. Therefore >, (gm|m|)? < oo if r > 3 + 6.
This completes the proof of the theorem.

It is easy to see that a coordinate transformation affects only the constant coefhi-
cient but not the asymptotics, therefore, if the transformed flow is constant streaming,
which obviously does not enhance the effective diffusivity, then the effective diffusivity
for the original flow is order e. The Diophantine condition in Theorem 8.14 is also a
sufficient condition under which a flow can be transformed to constant streaming.

A number p is “normally approximated ” by rational numbers if it satisfies the
Diophantine inequality

. C
(8.48) min [p p/q| > sy

The set of normally approximated numbers has full measure as can be shown in the
following manner. Consider

. p &
8.49 A, = {p: o< —
(8.49) ¢ = {p: min|p ql < q2+5}

Then measure(A4,) < %7 which implies that > measure(A;) < co, and the asser-
tion follows from the Borel-Cantelli lemma (see [21]).

The exeptional cases where enormous enhancement might occur, not covered by
Theorem 8.14 , are discontinous flows or flows with nearly rational rotation numbers,
which include rational rotation numbers as a special, trivial case.

8.5. A theorem concerning general time-dependent, non-ballistic flows.
If, instead of , H, +, A7lc -V, let

9
G=_H AT —
b 7+7 8t

, then, as in Section 8.1, the Hilbert space H, of time-dependent, mean-zero, curl-free
fields can be decomposed

Hy =N o Nt

with A the null space of G and A+ the complementary space of A in H, , which is
also equal to (RangeG). As for Lemma 8.4, it is also easy to deduce the following

LemMmA 8.15. , H - e does not have a component in N (i.e. ,H-e € Nt), if
and only if
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Before applying Lemma 8.15, let us define the notion of “ballistic” and “non-

ballistic” motions. An orbit x(?), d?gt) = u(x,t) is called "ballistic ” in the direction
e, if
) -
(8.50) lim sup [x(t) -] > ¢
tToo

for some positive ¢, otherwise, it is called "non-ballistic” in the direction e. A flow is
called "non-ballistic” in the direction e, if almost all orbits are non-ballistic in that
direction. The following theorem is a direct application of Lemma 8.15.

THEOREM 8.16. If the flow generated by wu(x,t) is non-ballistic in the direction
e, then

Proof : It is sufficient to show that

/01 dt/ dxe- fu(x,t)=0

for every F = Vf € . Since both f and u are time-periodic, we have

/01 dt/ dxe- fu(x,t)

(8.51) = lim i/N dt/ dxe- fu(x,t)
0

Nioco N
1 N
= ]%%ON/O dt/ dx'e - fu(X(x',t),t)
where X (x’,t) is the flow
dX(x',t
(8.52) % = u(X(x,1),1), X(x',0)=x.

The last equality of (8.51) is due to the incompressibility of u. It is easy to see that a
characterization of the space A similar to that in Lemma 8.8 holds for time-dependent
flows and f is constant along every streamline if Vf € N, ie. f(X(x,t),t) = f(x',0).
Thus, after interchange of spatial and temporal integrals, (8.51) becomes

e-X(x’,N)‘

1 N
(8.53) ‘]lvi%go/dx’fﬁ/o dte-u‘g/dx’|f|1ir]\r71ngip ‘T —0

by the definition of non-ballistic flows.

Orbits in an open channel are clearly ballistic and they result in O(1/€) effective
diffusivity, as stated in theorems of Section 7. Together with previous results on flows
with open channels, Theorem 8.16 indicates that ballistic flows are the only ones that
lead to O(%) asymptotic behaviour of the effective diffusivity. Theorem 8.16 also holds
for non-ballistic flows that are temporally random. As a comparison, ballistic motion
in flows with nonzero mean drifts may not enhance the effective diffusivity as shown
in Theorem 8.14. Zhikov [23] makes an observation similar to Theorem 8.16 for 2-
dimensional steady flows which do not have non-trivial contours. According to the
results in Section 7, the effective diffusivity for these flows is of order /e, in general.
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A. Relations between different variational principles for nonsymmetric
diffusivities. Homogenization theory as described in Section 2 is valid quite generally,
even when the conductivity or diffusivity matrix (a;;) (cf.(2.4)) is complex valued.
The complex effective conductivity can be characterized by a saddle-point variational
principle. A key observation of Gibiansky and Cherkaev (see [12]) is that the saddle-
point variational principle can be converted, via Legendre transforms, into a Dirichlet-
type variational principle. Milton [12] generalized their formulation to non-self-adjoint
problems such as the conductivity problem when a magnetic field is present, including
the Hall effect. Milton’s extension procedure is equivalent to our symmetrization
procedure. In this section, we employ their idea to derive a variational principle
similar to that of Gibiansky-Cherkaev-Milton, except the variation is under different
constraints. Then we use the duality relation to derive a dual variational principle
under a dual constraint, and study the connection between these variational principles
and the variational principles developed in Section 3. In Section A.2, we show how to
derive our general variational principles for the full flux tensor directly from a pair of
saddle-point variational principles.

A.1. Derivation of the variational principles of Section 3 by a par-
tial Legendre transformation. Consider the forward and backward cell problems
((2.11) in Section 2), with e =1,

(A.1) V-I+HEt=0, VxEt=0, (Et)=e

(A.2) V-IsHE =0, VxE =0, (E)=e

Let DT = (I+ H)Et, D™ = (I &H)E™ be the fluxes for the forward and backward

problems, respectively, and define

(A.3) D'= (D* ©D"), D= _(D*+D")

1 1
(A.4) E:§m+@Ej, E:§m++Ej
Then E’, E and D/, D are related by

(A.5) D' = E' + HE

(A.6) D =E + HE'
or, in the matrix form,
D’ I H E’
The cell problems (A.1) and (A.2) are equivalent to (A.7) with
(A.8) V-D'=V:-D=0

(A.9) V-E=V.-E=0
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under the constraints

(A.10) (Ey =0

(A.11) (E)=e

(i 7)

is not symmetric. Following Gibiansky and Cherkaev’s idea of performing a partial

Notice that the matrix

Legendre transform, let us rewrite (A.5)

(A.12) E' =D’ <HE .
Then (A.6) becomes

(A.13) D =HD' + (I1sH*)E

and in matrix form, (A.12) and (A.13) are equivalent to

19 (5)- (ot ()

Now the matrix is symmetric and positive definite as a result of this transformation.
The effective diffusivity is given by

o(e) = (ET-ET)
= (D* )
~Lipt.e) %(D‘ &)
(A.15) = (D" EF) + %(D‘ ‘E7)
= (D' -E') + (D 'E)

_ 1 <H D’ ‘ D’
N H IsH? E E
I <H
H I<H?
is symmetric and positive definite, we have a variational formulation for o(e):

. . I <H G’ G/
(A.16)  ole)= iy = df <( H 1oH? ) (F) ' (F )>
(Fy=e (G")=(HF)

The constraint (G') = (HF) comes from (A.5) and (E') = 0 for the original problems.
More explicitly, we have

Since

(A.17) cle)= inf  if {(G'-G) £2AHF -G
vxF=0 v.G’'=o
(Fy=e (G"H=(HF)

+(F-F) + (HF - HF) }
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Let us fix F and perform the minimization on G’. The resulting Euler equation
is
(A.18) Vx(G'<HF)=0

Equation (A.18) can be solved using the projection operator , + = VIATIVL. de-
noted by , . in Section 3 (cf. 3.72),

(A.19) G' = (HF) +, THF

Substituting (A.19) into (A.17) and observing that , = VATIV. =T &, L & (.), we
obtain,

(A.20) o(e)= inf {(F-F)+( HF, HF)}
(F):e0

which is the direct variational principle, (3.73), with e = 1.
To derive our inverse variational principle, let us consider the dual forward and
backward cell problems, with € = 1 again,

(A.21) Vx(I+H)'Dt=0, V.-Dt=0, (DT)=e

(A.22) Vx(IeH)'D" =0, V-D =0, (D )=e

Set Et = (I+H)™'DT, E~ = (I<H)"!D~ and define D’, D and E’, E as before and
are related as in (A.5) and (A.6). The dual cell problems (A.21), (A.22) are equivalent
to (A.7) with (A.8) and (A.9) under the constraints

(A.23) (D) =0

(A.24) (Dy=-e

We again do the partial Legendre transform to (A.6)
(A.25) E=D <HE' .
Then (A.5) becomes

D’ =E +H(D <HE)

(4.26) = HD + (I 5H?)E'

and in matrix form (A.25) and (A.26) are equivalent to

D’ I<H? H E’
(4.27) (E) N ( <H 1 D
in which the matrix is symmetric and positive definite. The inverse effective diffusivity
is given by
(0)"'(e) =(D'-E')+(D-E)
(A.28) I<H?> H E’ E’
<H 1 D D
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Since this quadratic functional (A.28) is symmetric and positive definite, we have a
variational formulation for (o)~!(e):

I<H? H F’ F’
A.29 “le)= inf inf .
(4.29) (0)7(e)= inf ot <( oH 1)(@,) (G)>
(Gy=e (1+82)FH=—(HG)

where the constraint for comes from .26 + & =0 23).
h h int for F’ 1 (A ), <HD> <(I HZ)E’> , by (A )

More explicitly, we have

(A.30) (o) e) = inf inf {(F - F) + (H'F - F)
V~G:O VXFIZO
(Gy=e (1+82)F)=—(HG)

+2(HG - F) + (G- G)}
Let G be fixed and perform the minimization on F’. The Euler equation is
(A.31) V-1+HH)F +V-HG =0

We can solve (A.31) in the following way. Write (1 + H%)F' = ¢HG + V1 y where x
is a periodic function. This will satisfy the constraint and y has to solve

(A.32) ozvXF’:VL-F':c»vl-1+H2G+Vl-1+1ﬂ2le
or

(A.33) Viy =, #HG

where , 7 = VIAZI VL. (ﬁ), (cf. (3.70) and (3.71) with e = 1) and
(A.34) F = H ¢ 1t 4HG

1+ H? 1+ H?’

We now substitute (A.34) into (A.30) and consider each term separately. For the
first term we have

(F'-F') = <1 _|_1H2(I &, 7)HG. - - _|_1H2(I &, 1) HG)
for the second term
(H*F -F) = <H72(I¢> 7 HG ! (I, ;) HG)
1+1H2 ’ 1+ H? ’
= <1 = HZ(I &, 1) HG - (1<, 5)HG)
H (e, HHG (I, §HG)

and for the third term

2(HG -F') = <2(HG - — (1<, ;) HG)

I
&
0
o
o
Q



where we use the fact that ,f{l is a projection operator which is self-adjoint with
respect to the inner product weighted with (1 + H?)™!. For the forth term we have

(G-G) =(1.G-G)+ (-Z,G -G)

1_|_1]_I2 1_|_1]_I2

When we add these terms we get

1 1

-1 _ X . oL

(A35) (o) '(e) = vé?:f:o (7@ G+ (o #HG , HHG)}
(Gy=e

which is our inverse variational principle.

A.2. Derivation of the variational principles of Section 3 from a sad-
dle point variational principle. Our variatinal principles can be derived directly
from a pair of saddle-point variational principles. This is actually closer in spirit to
our original approach in Section 3. At the end of Section 2 we noted that the full
effective flux tensor, defined by (2.17), is not symmetric. We will now give variational
formlations for the full effective flux tensor

o(e1,ez) = <D(‘|;1 e, Ve, ey
where e, e; are unit vectors,
(A.36) D{ = I+ H)E]
and EJ is the solution to the forward cell problem in the direction e;
(A.37) V-(I+HE{ =0, VxE} =0, (Ef)=e
The effective diffusivity

ole)=oc(ej,e;) for e =ey=e

is the symmetric part of the effective flux tensor. Define the backward cell problem in
the direction e, by

(A.38) V(I <:>H)Eg2 =0, V x E;Z =0, <Eg2> = ey
and let
(A.39) Dg2 = (I <:>H)Eg2

Define also

(A.40) E}, = =(Ef ©E)

1

2
1

Ei; = S(ES, +Eg,)

1 _

= §(D(—I3—1 <:>De2)
1 _

D12 = §(D(—I3—1 —I_ De2)
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Then from (A.36) and (A.39)

D!, =E|,+HE
A4l 12 12 b
( ) D; =E;;+HE],

and the cell problems (A.37) and (A.38) are equivalent to

(A.42) VXxEj,=VxE;;=0

(A.43) V-Dj,=V-Dj3=0
along with (A.41) and subject to the mean field constraints:

e &oe
(Ej,) = — 5 2, (E12) =

e + ey
2 ?

The effective flux tensor is given by

—~

D, - e)

D, -e2) + 5 (Dg, e}
D¢ -Ee,) + %<Dg2 ‘E&)
(D¢, + Dg, (B, + Eg,))

1 _ —
<:>Z<(D(—I3—1 <:>D62 )(E(-; <:>E62 )>

= (D12 - E12) &(Dj, - Ejy)
B <1 <H E}, E},
(0% T (e ) ()

We note that the last expression in (A.44) is a symmetric, indefinite functional whose
Euler equations are (A.43) via (A.41). Therefore,

<1 <H F’ F’
A45) o(er,ez) = inf su .
( ) olere) (F):(e%‘+e2)/2 vxFI/):o <( H I )(F) (F)>
VxEB=0

(Fry=(e;-ey)/2

0'(61762) =

—~

I
BN | N |
——

(A.44)

The Euler equation for the supremum is

(A.46) V-F+V-HF =0
and hence
(A.A47) F=27% . gr

When (A.47) is substituted into (A.45) we get our general variational principle

(A.48) olere)) = _inf {(F-F)+(, HF - HF)
VxEB=0
(Fy=(e1+ez)/2
e; &~e
(A.49) & (HF) - (e; ey) @%P}
(A.50)
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When e; = e; = e, (A.48) is identical to the direct variational principle (A.20) of the
previous section and of Section 3.
To get an inverse variational principle, we note that

(A.51) (o) '(e1,e2) = (D12 - Eqz) (D), - El,)

provided that E/,, E12, D}, and Dy; satisfy (A.41), (A.42) and (A.43), subject to the
mean field conditions

e e e +e
(Di,) = 2, (D12) = 1=
2 2
Let us invert (A.41):
El; = ——5(D}; ©HDyy)
(A.52) 1+ H*
E12 - m(DlQ <:>HD/12)

As before, we have the saddle point variational principle

(A.53) (o) !(er, )

L 1 o H) (G (G
- Je Jan. 1+ H2\ <H I G) \G

(Gy=(e1+€2)/2 (Gry=(e,—e,)/2

Eliminating the supremum by solving the corresponding Euler equation we get

1 1
Vv G <V HG =0
% 1+ H? % 1+ H?
and hence
(A.54) G = elzﬂ . (el jez) +,5HG

where , 3 is defined by (3.70) and (3.72). Using (A.54) in (A.53) we can get our
general inverse variational principle

(A.55) (o) (e1,e2)
= _inf {< ! G-G>—|—<71 LHG -, FHG)
v-G=o0 1+ H? 1_|_H27H » H

(Gy=(ej+ey)/2

1 e <&ey n (el <:>e2) )
2(——HG - &
(o HG (BT (2202
1 €] <€y n (el <:>e2) )2
©<1—|-H2< 5 TrH\ T )

When e; = e; = e, (A.55) is identical to (A.35) of the previous Section.
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A.3. The symmetry of the full effective flux tensor. Let ¢~ be the effective
flux tensor associated with the flow ©H, instead of H. In view of (A.45) and (A.48),
o~ admits also variational formulations

<:>I H F/ F/
A56)0  (eq,e3) = inf su .
A0 e = B <( S I)(F) (F)>
VxEB=0

(Fry=(e;-ey)/2

and
(A.57) o(ene) = _inf {(F-F)+(, HF -, HF)
VxEP=0
(Fy=(e1+e5)/2
€| <€y
+ (HF) - (1 &ey) | =}
Clearly
(A58) 0_(e1,e2) = 0(62,61)

The symmetry of o, that is, o(e1,ez) = o(eq, ez) is equivalent to the statement that
the effective flux tensor is independent of the sign of the stream matrix H. Several sit-
uations lead to the symmetry of the effective flux tensor for two-dimensional, periodic
flows:
a) Translational antisymmetry of H in the sense that there is a vector r such that
H(x+r)=<H(x) for all x € R?.

The symmetry of the effective flux tensor follows easily from this translational
antisymmetry of H in view of the transformation x — x+r, F(x) — G(x) = F(x+r).
This will bring (A.48) to

(A.59) inf {<G .G)+(, HG -, HG)
VXG:O
(Gy=(e1+e,)/2
e <e
+(HG) - (e1 wes) & =7}

which is equivalent to (A.57).
b) Reflectional antisymmetry of H with respect to an axis, say x-axis in the sense that
H(z,sy)= <H(z,y) for all x = (z,y) € R~

Write the the trial fields F and F’ in (A.45) as the gradient of periodic functions
f and f’ plus the mean fields (e; + €3)/2 and (e; < 23)/2 respectively and consider
the transformation

F—-G=V(g+ > )

)7 F/ _ G_/ — V(g/_l_
where

g(z,y) = flz,ay), ¢'(z,y) = of (z, ay).

This transformation maps (A.45) into

o f <l H G’ G’
m su .
(G):(el_e2)/2 VXGI’):O <:>H I G G

vxG=o (Gh=(-€1-€y)/2
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which is equal to 0~ (<eg,e1). Using the relation (A.58), we have
0(61,62) = 0_(<:>e2,e1) = 0(e1,<:>e2) = @0’(61,62)

, that is, o(e1,ez) = 0. Similarly, we have o(ez,e;) = 0. In other words, the antisym-
metry of H with respect to the x-axis leads not only to the symmetry of the effective
flux tensor but also the statement that e; and e, are the eigenvectors of the tensor.
The same conclusion holds for any H that is reflectionally antisymmetric with respect
to the y-axis. In general, if the stream function H has the reflectional antisymmetry
with respect to a vector e then the effective flux tensor is symmetric ,and e and its
perpendicular direction are the eigen-directions of the tensor.
¢) 180°-Rotational antisymmetry of H with respect to a point, say the origin in the
sense that H(ex,,<y) = <H(z,y) for all x = (z,y) € R%.

Counsider the transformation
T =Y

F—-G=V(g+ > )

)7 F/_>Glzv(g/_|_

Tty
2
where
9(z,y) = ef(er,ey), g'(z,y) = <f (e, <y).
Note that G(x) = F(¢x). This transformation maps (A.45) into
f <1 H G’ G’
in su .
Gi=ertenss  wnG sH 1)\G G
vxG=0 (Ghy=(e;—ey)/2

which is 07 (e, e3) and the symmetry of the effective flux follows immediately.

A special class of flows that have symmetric effective flux tensor are shear layer
flows for which the cell problems can be solved exactly as follows. The cell problem
for u(x) = (u(y),0) in the direction e; is

13,
(A.60) Axi + uly)z—xa +u(y) =0
which reduces to
82
(A.61) 3—y2X1 +u(y)=0

when the ansatz y1 = x1(y) is chosen. Thus

Y
x1(y) :/0 dy" H(y'").
The effective flux

olersea) = (I + H)Txa-e2) = (54 = 0.

On the other hand, the solution Y3 to the cell problem in the direction e, is trivially
zero and

0(62,61) = <(I—|— H)VXQ . e1> =0.
Thus we have
0'(61762) = 0ep e = 0.

Therefore, for the shear layer flows in the x- or y- directions, the effective flux tensors
are symmetric and e;, ey are the eigenvectors of the tensors.
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B. Variational principles for time dependent flows. In this Section, we
derive various variational principles for the effective diffusivity in time dependent
flows by two different methods. Let us consider 2-dimensional space-time periodic
flows u = wu(z,y,t) that are incompressible, i.e. V -u = 0. The space-time cell
problem is

17,
(B.1) EXZGAX—I—U'VX—I—U'E

and the effective diffusivity is given by
(B.2) oe) = e+ ejéwx V)

where ¢ stands for temporal average over a time period and (-) for spatial average
over a spatial period. In the derivation of the variational principles, we shall set € = 1.

B.1. Variational principles from a nonlocal space-time cell formulation.
Equation (B.1) can be put into divergence form

(B.3) V- I+H&A'9,)Vy+ V- -He=0

or

(B.4) V- I+H&A'9)ET =0, VxEt=0, (Ef)=e
with

o(e) = 7é<E+ B

Here

(0 H L
H_(QHO) and V- H=u.

Consider the forward and backward cell problems

V- I+H&A'9)ET =0, VxEt=0, (Ef)=e

V- IeH+A'9)E =0, VxE =0, (E)=e
Define the (nonlocal) fluxes by

Dt = (I+H A 9)ET

D™ =(I<H+A'9)E”

and set
E =LE"<E")
E =LET+E")
D' = (Dt D)
D =1D"+D")



Then we have

D' =E +HE
where

H=-H<A'9

is a skew symmetric operator with respect to the space-time inner product. The
original cell problem (B.4) is now transformed into

(B.6) VXE =VxE=0

(B.7) V.-D'=V-D=0

along with the relations (B.5) and the mean field conditions (E') = 0, (E) = e.
The effective diffusivity can be expressed in terms of E/, E, D’, and D as follows

ole) = 57£><D+ o) + 5jém— &)

1

(B.8) _ 5jé<1)+.1a—> + %jém— EY)

:jé<D-E> @jé(D’-E’>

Using (B.5), we can write (B.8) in the form

9) o<e>=%<( " @IH/) (i)(fn»

which is a symmetric, indefinite functional whose Euler equations are (B.7) via (B.5).
Therefore, o(e) comes from a saddle point variational principle which is

’ ' ’
B10) oo i sw <( o e ) (‘;) . (§)>
(Fy=e (Fry—o
We can eliminate the supremum by solving the corresponding FEuler equation
V-F+V-HF=0
Using projection operator the solution has the form
(B.11) F'=« HF.

and substituting (B.11) into (B.10), we have

(B.12) ole)= inf jé{(F-F> 4 (,H'F-, HF)),

vxF=o0
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which is the (direct) variational principle for the upper bound.
To get a reciprocal variational principle, we note that

(B.13) ()" (e) = jé<D 'E) @jém’ E')

it D', D, E’ and E satisfy (B.5), (B.6) and (B.7), subject to the mean field constraints
B.

(D) = 0, (D) = e. Inverting the relation (B.5), we have

E ={I<(H)*) YD <HD)
(B14) 2y—1 m/

E =(I1<(H))"(D<HD)
Note that <(H’)? is nonnegetive. In terms of D’ and D via (B.14), (B.13) is a
symmetric, indefinite functional whose Euler equations are (B.6). Therefore,

-1 . ronq [ I H G/ G/’
(B135)(0) ()= inf sy f(LeH) (@}H, . )(G)-(G)>

(Gy=e (Gny=o

We can eliminate the supremum by solving the corresponding Fuler equations to
establish the inverse variational principle for the lower bound of o(e). However, this
variational principle does not seem to be of much use because the operator (I<(H’)?)™!
is difficult to work with.

We derive in the next section different variational principles which are easier to
use.

B.2. Variational principles from a local, augmented, space-time cell
formulation. This approach is based on the following simple observation. If, intead
of (B.1), we consider

17,
(B.16) @aX/:AX/—I—u-VX/—I—u-e

with Y = \/(#,y,1) space-time periodic then the effective diffusivity is again given by

(B.17) ole) =1+ jéwxf V)

This can be readily seen since the right-hand side of (B.17) has a variational formula-
tion similar to (B.12) with H’ replaced by H + A719,. The infema are the same since
both trial fields F(x,y,t) and F(z,y, <t) are admissible.

Consider now an extended coordinate space («,y,, w) and an extended cell prob-

lem:
d o ~ . ~ ] 1
(B.18) @)ﬁ —A>~<—|-u V)f—l-u e, when 0<1w§ 5
<5X —Ax+u-Vy+u-e, when &5 <w<0

where (B.18) is periodized in w with period 1. The function xy = \(«,y,t,w) is simply

X defined by (B.1) , when 0<w < %
X' defined by (B.16) , when <:>% <w<0

Let us introduce the following notation:
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a) the extended gradient: ? = (V, 9, 0y)

b) the extended intensity: E=Vy 4 e With e=(e0,0)

¢)the extended velocity: u( z,y,w,t) = (u,£1,0) depending on the sign of w, mod 1.
d)the extended average: ((- / dwjé

Note that u is incompressible in the extended space ( ,¥,t,w) and has zero mean.
Thus, there exists a periodic skew symmetric matrix H such that V - H=u In fact,

(1)
= )
()

whereL = L(w) is a piecewise linear sawtooth function definded by

where

and

L(w) = %w, when 0<w§%
N <:>%w, when <:>%<w§0.

With this notation, (B.18) can be put into divergence form
(B.19) V-I+HE'=0, Ef=Vy+eé

where

oo O =
oo = O
o O o O
o O o O

Let

I'=

o O o O
o O o O
o= O O
= o o O

so that I+ I’ is the identity matrix in the extended space, which is denoted by i, i.e.
I=1I+T.
The effective diffusivity is given by
ole) = (TE* - E)

Since the extended space is 4-dimensional, it is not convenient to use gradient and
curl, and we shall use differential forms to interpret (B.19) . The field ET is a 1-form
such that dET = 0, (ET)) = e and

(B.20) d«(I+H)ET =0,
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where d is the exterior derivative and * is the Hodge star operator on the 4-dimensional
torus (see [24]).

Next, we carry out the symmetrization proceudre as before by considering forward
and backward problems:

d«(I+HEt =0, dET=0, (Et)=¢é

B.21 e =
(B.21) x(I<HE =0, dJdE =0, (E-)=é&
Let
(B.22) D = +(I+H)E*

‘ D~ =x«IsH)E-
and

E =LEt<E")

(B.23) E =;(E"+E7)

' D' =i(D* D)

D =4D"+D")

Note that (5.22) are local relations in the extended space. The relations between E’,
E, D’ and D are:

]5/
B.24 ~
(B.24) 4

*(If}’ + ﬁﬁ)
+(IE + HE’)

or in matrix form

B.25 «D\ [ el eH )\ (E
(B.25) p )=\ a 1)\&

which is a symmetric, indefinite form. We have that

ole) = %«(@*)ﬁ &)+ 5((&)D" &)
= 2{()D* BT + LoD BY)

= {((#)D - E)) &((++)D’ - E')

The minus sign is due to the identity #*+xE = ©FE for 1-forms in 4 dimensions. As
before, we have a saddle point variational principle in view of (B.25)

5 fw/ fw/
(B.26) o(e)= inf sup <<(<:,>VI QH)(~)(~)>>
Foo  Foo H 1 F F
(Fy=e (Fy=o
We can eliminate the supremum by solving the corresponding FEuler equation
(B.27) d+IF + d+HF = 0

in the following manner. Set F = df with f is a periodic function in the extended
space since (F')) = 0. Then f satisfies

(B.28) (d+1d)f = <d+HF
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The left-hand side of (B.28) is nothing but the spatial Laplacian A over the spatial
period which is invertible. Thus,

(B.29) f = <(d+1d)"*d«HF
When (B.29) is substituted into (B.26), we have
dle) = (IFF)+ (1F )
(Fyee
(B.30) = inf (IF - F) + ((d+1d)" d+HF - &+ HF)

d/_;/F:O
(Fy=6

It is not hard to see that, after some algebra, (B.30) is the same as (B.12).
To get an inverse variational principle, we note that

(B.31) (0)7}(e) = ((#4)D-E)) & (=)D’ - E')

with <<]3’>> =0 and <<]3>> = x€. We now invert (B.25), which is a local operation, and
we have

1
H+ =Y

<, ~, .
E _ﬁTI*D—I—(l—I—H? 7 )*D

(B.32) i L+ HE 1 / i
E ZWI*D—I_(WH—I—EJ/) *D’
where
0 0 0 0
Y150 02
0 0 &1 0

As before, we have a saddle point variational principle for (B.31):

(B.33) (o) !(e)

I 1 17/ 7 7
= inf  sup <<( o T+ LIJ ) (*(i) . (*(5)>>
0G0 Gy crpmH e e *G *G
(Gy=+€ (Gry=o

The Euler equation for the supremum is

(B.34) d

I*é’@d( H+1J’) «G =0,

1 1
1+ H? 1+ H? L

and when (B.34) holds, (B.33) can be simplified to

B5) (o) Me)= it <<1ﬁ71*é*é>>+<<1ﬁ71*é/*é’>>

(Gy=+e
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