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Abstract.

We study the in
uence of convection by periodic or cellular 
ows on the e�ective di�usivity of a
passive scalar transported by the 
uid when the molecular di�usivity is small. The 
ows are generated
by two-dimensional, steady, divergence-free, periodic velocity �elds.
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1. Introduction. The temperature T of a weakly conducting 
uid in RI 2 satis�es
the heat equation

@T

@t
= ��T + u � rT ;(1.1)

with T (0; x; y) = T0(x; y) given. Here u(x; y) =
�
u(x; y); v(x; y)

�
is the 
uid velocity

which we assume incompressible

r � u = 0

and � > 0 is the molecular di�usivity which we assume small. We are interested in
velocity �elds that represent convective 
ow, as for example in Benard convection.
Since u is incompressible there is a stream function H(x; y) such that

r?H = (�Hy ; Hx) = u(1.2)

A typical convective or cellular 
ow is the one given by

H(x; y) = sin x sin y(1.3)

Fig. 1.1 shows the stream lines of this periodic 
ow, which are given by H(x; y) =
constant. We are interested in the e�ective di�usivity of the 
uid and its behavior as
the molecular di�usivity � tends to zero.
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Fig. 1.1. Cellular 
ow

In Section 2 we review brie
y the de�nition and basic properties of the e�ective
di�usivity. In this introduction we may simply de�ne it as

�� = lim
t"1

1

t

Z Z
(x2 + y2) T (t; x; y) dx dy(1.4)

when the initial function T0 is the delta function at the origin. With this initial
function, T (t; x; y) is the probability density of a test particle di�using in the 
ow and
(1.4) says that when t is large the mean square displacement of the particle behaves
like ��t.

We are interested in the behavior of �� as � ! 0. In [1], Childress showed by a
boundary layer analysis that when H is given by (1.3) then

�� � c�
p
�(1.5)

as � tends to zero and he also characterized the constant c�. The same problem was
reconsidered in [2] and [3] and the constant c� was evaluated analytically by Soward [4].
The asymptotic relation (1.5) is the simplest example of convection enhanced di�usion
because the e�ective di�usivity �� is much larger than the molecular di�usivity �. The
enhancement is due to the convective 
ow with the stream function (1.3) (see Fig.
1.1). Flows with stream functions

H(x; y) = sin x sin y + � cos x cos y ;(1.6)

with 0 � � � 1 are considered in [5] along with discussion of the associated dynamo
problem (see Fig. 1.2). In [6] Soward and Childress study di�usion and dynamo action
in 
ows with nonzero mean motion.

Our aim in this paper is to study in detail the e�ective di�usivity of a passive
scalar in a convective 
ow by variational methods, avoiding thus direct boundary layer
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Fig. 1.2. Cat's-eye 
ow with � = 0:2.

analysis. This is important because boundary layer analysis becomes too complicated
to be useful when the 
ow u is more complex than simple cellular 
ow or cellular 
ow
with channels (Fig. 1.2).

In Section 2 we review the various de�nitions of e�ective di�usivity for periodic

ows. In Section 3 we introduce a Hilbert space formulation for the e�ective di�usivity.
With a simple symmetrization transformation we can get variational principles for the
e�ective di�usivity. The Hilbert space formulation follows the general framework
introduced in [7]. The variational principle suitable for upper bounds of the e�ective
di�usivity was noted by Avellaneda and Majda [8]. Another form of this variational
principle was given by Cherkaev and Gibiansky and is presented by Milton in [12].
The relations between the various variational principles are analyzed in Appendix A.
The variational principle for lower bounds is new and is one of the main contributions
in this paper. In Section 4 we show how to use the variational principles to prove
the result (1.5), including the characterization of the constant c�. In Section 5 we
use the variational principles to study the e�ective di�usivity for cellular 
ows in
point-contact, for which a corner layer theory is developed. In Section 6 we study
the e�ective di�usivity of cellular 
ows with open channels, in particular the cat's-
eye 
ow with stream function (1.6). In Section 7 we study general periodic 
ows
with zero mean drift. In these problems one sees clearly the power of the variational
methods. The only Section in which variational methods are not used in an essential
way is Section 8 where we study general periodic 
ows with non-zero mean drift. In
Appendix B we derive variational principles for time dependent 
ows.

We treat only periodic 
ows in this paper. Convection enhanced di�usion for
random 
ows is studied in [14,15,16] and in the second part of this work [17].

2. The e�ective di�usivity. We consider the periodic case [11] and for time
independent 
ows with mean zero. For d-dimensional 
ows u(x) that are incompress-
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ible and have mean zero there exists a skew-symmetric matrixH = (Hij(x)) such that
r �H = u. The 
ow u has the Fourier representation

up(x) =
X
k 6=0

eik�x ûp(k)(2.1)

and

Hpq(u) =
1

i

X
k6=0

eik�x
kpûq(k)� kqûp(k)

jkj2(2.2)

From the fact that r � u = 0 it follows that r �H = u. Equation (1.1) for T can now
be written in divergence form

@T

@t
= r � (�I +H)rT(2.3)

with initial conditions T (0;x) = T0(x). To recall the basic facts in homogenization
[11] we write (2.3) in the form

@T

@t
=

dX
i;j=1

@

@xi

�
aij(x)

@T

@xj

�
(2.4)

where

aij(x) = � �ij +Hij(x) :

Note that the di�usivity matrix (aij) is not symmetric but that for � > 0 the right
side of (2.4) is uniformly elliptic. In homogenization we look for the large time, long
distance behavior of solutions of (2.4). This is expressed in terms of a small parameter
� > 0 by replacing t by t=�2 and x by x=� in (2.4). We then have

@T

@t
=

dX
i;j=1

@

@xi

�
aij(

x

�
)
@T

@xj

�
(2.5)

and we assume now that the initial conditions do not depend on �,

T (0;x) = T0(x)(2.6)

This is equivalent to saying that the initial data for (2.4) are slowly varying.
For periodic di�usivity coe�cients in (2.5) that are uniformly elliptic but not nec-

essarily symmetric, it is not di�cult to show [11] that T (t;x) = T �(t;x), the solution
of (2.5), converges to T (t;x), the solution of an equation with constant coe�cients

@T

@t
=

dX
i;j=1

�aij
@2T

@xi@xj
;(2.7)

T (0;x) = T0(x) :

The convergence is in L2

sup
0�t�t0

Z
jT �(t;x)� T (t;x)j2 dx! 0(2.8)
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as � ! 0, for any t0 <1. The e�ective di�usivity matrix (�aij) is obtained by solving
a cell problem as follows. For each unit vector e let � = �(x; e) be the unique (up to
a constant) periodic solution of

dX
i;j=1

@

@xi

"
aij(x)

�@�(x)
@xj

+ ej
�#

= 0(2.9)

Then

�ae � e = ha(r�+ e) � (r�+ e)i(2.10)

where h i stands for normalized integration (averaging) over the torus.
The cell problem for the convection-di�usion equation (2.3) has the form

r �
h
(�I +H)(r�+ e)

i
= 0(2.11)

which, in view of the relation r �H = u, is equivalent to

���+ u � r� + u � e = 0(2.12)

The e�ective di�usivity matrix in this case is denoted by ��, as in Section 1, and (2.10)
becomes

��(e) = ��e � e = ��(e) = �h(r�+ e) � (r�+ e)i(2.13)

We see, therefore, that in the periodic case the small di�usion limit (� ! 0) of the
e�ective di�usivity �� reduces to the analysis of the singularly perturbed di�usion
equation (2.12) on the torus.

The fact that the cell problem (2.9), or (2.11), determines the e�ective di�usivity
can be understood physically from the following. Let fejg be a basis of orthogonal
unit vectors in Rd, let �j be the solution of the cell problem (2.11) and let

Ej = r�j + ej(2.14)

Then Ej is the concentration or heat intensity and

Dj = (�I +H)Ej(2.15)

is the 
ux. Since H is skew symemtric, the intensity-
ux relationship is similar to
that of a Hall medium [12,13]. From (2.11) and (2.14) we see that

r�Ej = 0 ; r �Dj = 0 ; hEji = ej(2.16)

and

��hEji = hDji(2.17)

Relation (2.15) is the linear constitutive law relating intensity and 
ux. Relations
(2.16) tell us that Ej is a gradient, there are no sources or sinks and the mean or
imposed intensity is a unit vector in the direction ej . The e�ective di�usivity ��,
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is de�ned by (2.17), which is the linear constitutive law relating mean intensity and
mean 
ux. It is in general a nonsymmetric matrix given by

��ei � ej = ��(ei; ej) = hDi � eji(2.18)

= h(�I +H)Ei �Eji

In this paper we will require the e�ective di�usivity matrix to be symmetric as this
will make it easier to apply the variational principles that we introduce in the next
section. It is shown in Appendix A.3 that if the e�ective di�usivity matrix is the same
when the stream function H is changed to �H then it is a symmetric matrix. The
same is true in any number of dimensions if u is changed to �u. If in particular, for
two-dimensional periodic 
ows, the stream functions have one of the following forms
of antisymmetry then the e�ective di�usivity tensors are symmetric.
a)Translational antisymmetry: H(x+ r) = �H(x), for all x and for some r.
b)Re
ectional antisymmetry with respect to an axis, for example the x-axis: H(x1; x2) =
�H(x1;�x2), for all x1; x2.
c)180o-rotational antisymmetry or re
ectional antisymmetry with respect to a point,
say the origin: H(x) = �H(�x) for all x.
There are 
ows that may not have any of these properties but have nonetheless sym-
metric e�ective di�usivity tensors, such as shear layer 
ows. It is not clear what are the
most general 
ows that have symmetric e�ective di�usivity tensors. All 
ows consid-
ered in this paper are either shear layer 
ows or have one of the above antisymmetries
so the e�ective di�usivity tensors are symmetric.

From the skew symmetry ofH and (2.16) we conclude that (2.18) reduces to (2.13)

��(ei � ei) = ��(ei) = h(�I +H)Ei � eii(2.19)

= h(�I +H)Ei �Eii
= �hEi �Eii

The full di�usivity matrix in the general nonsymmetric case is considered again
in Appendix A.

The
p
� behavior of the e�ective conductivity for the cellular 
ow (1.5) (Fig. 1.1)

can be understood by the following simple scaling argument. The concentration of the
di�using substance will be nonnegligible only in a small neighborhood of the separa-
trices of the 
ow. Let � be the width of this boundary layer around the separatrices.
Since the molecular di�usivity is �, the time to traverse di�usively the boundary layer
is tD � �2=�. The time to go around a 
ow cell by convection is tC � 1 since the 
ow
speed is of order one and the 
ow cell size is of order one. Convection and di�usion
balance to set up the boundary layer so tD � tC or � � p�, which determines the width
of the boundary layer. The e�ective di�usivity is now estimated by �� � � ��2 � =

p
�

since in (2.13) the concentration gradient is of order ��1 in the boundary layer and
negligible elsewhere.

This simple scaling argument does not take into account the stagnation points of
the 
ow near which it slows down. However, the analysis of section 4 shows that the
stagnation points do not alter the scaling behavior of ��. Only the proportionality
constant is a�ected. An interesting example where the stagnation of the 
ow a�ects
the scaling is the following [2]. Consider an one dimensional array of cellular 
ows
that stick to the lateral walls. Let � be again the width of the boundary layer near
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the walls. Here again tD � �2=� but since the speed vanishes on the lateral boundaries
and is smooth we have tC � 1=� where � is the speed near the walls. Thus tC � tD
gives � � �1=3 and hence �� � � ��2 � = �2=3. We will not treat this case in detail here
but we have given the scaling argument so that the in
uence of stgnation points and
surfaces can be appreciated. More applications of the scaling argument can be found
in [16].

3. Hilbert-space formulation and variational principles. In this section
we will set � = 1 and study the cell problem (2.15)-(2.17) that de�nes the e�ective
di�usivity �. We will give a variational formulation for this problem, which is partic-
ularly useful in the asymptotic analysis of �� as �! 0. Let H be the Hilbert space of
square integrable, periodic vector functions

H = fF(x) ; hjFj2i <1g(3.1)

where as before h i stands for integration over the unit period cell (the unit torus).
Let Hg be the subspace of irrotational (gradient) �elds. The orthogonal projection
onto Hg is denoted by �g and has an explicit expression in terms of Fourier series. If

F(x) =
X
k2ZZd

eik�x bF(k)(3.2)

then

�gF = r��1r � F
=
P
k 6=0

k(k�bF(k) )
jkj2 eik�x

(3.3)

Let H0 be the subspace of constants in H and �0 orthogonal projection onto it. Clearly

�0F = hFi = bF(0)(3.4)

Let also Hc be the subspace of divergence free vector functions, with �c its orthogonal
projection. Then

�cF = �r ���1r� F

=
P
k 6=0

k�(k�bF(k))
jkj2 eik�x

=
P
k 6=0

�
1� kk�

jkj2
� bF(k)eik�x(3.5)

from which we deduce that

�0 + �g + �c = 1(3.6)

or, equivalently, the well known fact that

H = H0 � Hg � Hc(3.7)

The cell problem (2.15)-(2.17) (with � = 1) can be expressed through �g in a very
convenient way

E = e� �gHE(3.8)
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with

�(e) = hE �Ei(3.9)

Here we have written the quadratic form �e�e as �(e). That E satisfying (3.8) satis�es
also r� E = 0 and hEi = e is clear. Taking divergence of both sides in (3.8) gives

r �E = �r �HE(3.10)

and hence (2.15) (with � = 1) is satis�ed. Note that in addition to being a convenient
way to de�ne E, (3.8) is also a good way to de�ne E mathematically since it is an
integral equation formulation.

3.1. Variational principle for the upper bound. We want to �nd a way to
express �(e) as the minimum of a functional. However, since H is skew symmetric,
equation (3.8) is not the Euler equation of a quadratic functional. To get a suitable
variational formulation we must �rst symmetrize (3.8).

Denote E by E+, that is, let E+ satisfy

E+ = e� �gHE
+(3.11)

and let E� satisfy

E� = e+ �gHE
�(3.12)

Let also

A =
E+ +E�

2
; B =

E+ �E�

2
(3.13)

Then

A = e� �gHB ; B = ��gHA(3.14)

and

�(e) = h(A+B) � (A +B)i
= h(A �A)i+ h(B �B)i(3.15)

Here we have noted that

hA �Bi = h(e� �gHB) �Bi
= �h�gHB �Bi
= �hB �H�gBi
= �hB � �gHBi
= �hB � (e� �gHB)i
= �hB �Ai

which makes the cross terms in (3.15) vanish. Substituting B = ��gHA into the �rst
equation in (3.14) and in (3.15) we get

A = e+ �gH�gHA(3.16)

9



�(e) = hA �Ai � hH�gHA �Ai
= h(I �H�gH)A �Ai(3.17)

Let

KH = �H�gH(3.18)

and note that it is a selfadjoint and positive operator

hKHF �Fi = h�gHF � �gHFi � 0

Thus, A satis�es

A = e� �gKHA(3.19)

and

�(e) = h(I +KH)A �Ai(3.20)

Since KH is selfadjoint and positive it is easy to see that

�(e) = inf
F2H

r�F=0

hFi=e

h(I +KH)F � Fi(3.21)

In fact, the Euler equation for this variational principle is

r � (I +KH)F = 0
r� F = 0 ; hFi = e

(3.22)

which is equivalent to (3.19). Note, however, that (3.22) is quite di�erent from the
cell problem (2.15)-(2.16) (with � = 1) because KH is not a matrix but an operator,
given by (3.18). Thus, (3.22) is a nonlocal, elliptic cell problem and the nonlocality
is a direct consequence of the symmetrization. The variational principle (3.21) was
derived before by a di�erent method in [8]. A more general discussion of variational
principles and symmetrization is givem in Appendix A.

When the dependence on � is restored in (3.21)-(3.22) we have that

K�
H = � 1

�2
H�gH(3.23)

and

��(e) = inf
F2H

r�F=0 ; hFi=e

�h(I +K�
H)F �Fi(3.24)

In two space dimensions, a 
ow u(x) that is divergence free can be expressed in terms
of a stream function H(x)

u(x) = r?H(x) = (�Hy(x); Hx(x));(3.25)

where x = (x; y) and then

H(x) =

 
0 H(x)

�H(x) 0

!
(3.26)
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The simplest bound one can get for ��(e), which is of course very bad as �! 0, comes
from (3.24) when we put F = e as trial �eld. Then

�� � � + h�gHe �Hei
= � + 1

� hu � e(��)�1(u � e)i(3.27)

Much better bounds and asymptotic limits are obtained in subsequent sections.
The variational principle (3.21) can provide upper bounds and careful choice of

test �elds in (3.24) can provide upper bounds for ��(e) that do not become trivial as
�! 0. But to get more precise information about ��(e) we need lower bounds as well.
We will describe next how to do this.

3.2. Variational principle for the lower bound. Let us return again to the
case � = 1 since this parameter does not play any role in the calculations that follow
and can be reinserted at the end. From general duality considerations we know from
(3.21) that

(�(e) )�1 = inf
G2H
r�G=0
hGi=e

h(I +KH)
�1G �Gi(3.28)

where (�(e))�1 is the inverse of the quadratic form �(e). This variational principle
is not useful, however, because KH is a nonlocal operator and when the �-scaling is
restored the operator (I +K�

H)
�1 is di�cult to handle.

To avoid having an operator such as (I + KH)
�1 in the variational expression

for (�(e))�1 we proceed as follows. We will work in RI 3 or RI 2 in order to be able to
use simple vector analysis but there is no loss in generality1. Let fe1; e2; e3g be an
orthonormal basis in RI 3. We return to the cell problem (2.15)-(2.16), with � = 1, and
write it in the form

r � (I +H)Ek = 0
r�Ek = 0
hEki = ek ; k = 1; 2; 3 :

(3.29)

Let

(I +H)Ek =
X
`

D`�`k(3.30)

where �`k are the matrix elements of �(e) = �e � e given by (2.13) or (2.19) (with
� = 1). If for ` = 1; 2; 3,D` satis�es

r� (I +H)�1D` = 0
r �D` = 0
hD`i = e`

(3.31)

then Ek =
P

`(I +H)�1D`�`k satis�es (3.29) and

ek =
X
`

h(I +H)�1D`i�`k

1 In Appendix B we use di�erential forms for a similar computation in four dimensions.
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Dropping the superscripts this is equivalent to solving for D such that

r� (I +H)�1D = 0
r �D = 0
hDi = e

(3.32)

and then

(�(e))�1 = h(I +H)�1D � ei
= h(I +H)�1D �Di(3.33)

In two dimensions the matrix H has the form (3.26)

H =

 
0 H

�H 0

!

Therefore

(I +H)�1 =
1

1 +H2
(I �H)(3.34)

In three dimensions H has the form

H =

0B@ 0 �a3 a2
a3 0 �a1

�a2 a1 0

1CA(3.35)

De�ne the vector

a = (a1; a2; a3) :(3.36)

and let a = jaj be the length of a. Then

(1 +H)�1 =
1

1 + a2
(I + a 
 a �H)(3.37)

Returning to (3.33) we see that in two dimensions

(�(e) )�1 = h 1

1 +H2
D �Di(3.38)

while in three dimensions

(�(e) )�1 =
�

1

1 + a2
(I + a
 a)D �D

�
(3.39)

In both two and three dimensions problem (3.32) has the form

r� (S�U)D = 0
r �D = 0
hDi = e

(3.40)

where S is a symmetric, positive de�nite matrix and U is a skew symmetric matrix.
We will rewrite (3.40) as an integral equation as we did for the cell problem for E,
(2.15)-(2.17), with equation (3.8). As in (3.1), let

HS =
n
F(x) ; hjFj2iS <1

o
(3.41)

12



be the Hilbert space of square integrable, periodic vector functions with inner product

hF;GiS = hSF;Gi(3.42)

Let

�S = r� (Sr� �) :(3.43)

It is a second order elliptic operator with bounded inverse ��1
S , de�ned over all square

integrable, divergence free �elds F with hFi = 0. De�ne on HS the projection operator

�Sc = r���1
S r� (S�)(3.44)

This is indeed a projection operator:

h�Sc F;GiS = hSr���1
S r� (SF);Gi

= hSF;r���1
S r� (SG)i

= hF;�ScGiS
and

(�Sc )
2F = r���1

S r� (Sr���1
S r� (SF))

= r���1
S r� (SF) = �Sc F

Using �Sc we can now write (3.40) in the form

D = e� �Sc e+ �Sc S
�1UD(3.45)

Clearly D satis�es hDi = e and r �D = 0. We also verify that

r� (SD) = r� (Se)� r� (S�Sc e)
+r� S�Sc S

�1UD
= r� (UD)

so that

r� (S�U)D = 0

Thus, (3.45) is equivalent to (3.40).
The projection operator �Sc takes vector �elds F in HS into divergence free �elds

that have mean zero. It is therefore analogous to the projection operator �c on H
given by (3.5). It is interesting to look for a characterization of the operator I � �Sc
which projects into the orthogonal complement of divergence free �elds in HS . For
this purpose we let

F� �Sc F = G(3.46)

and note that

hGi = hFi ; r �G = r � F(3.47)

and

r� (SG) = 0(3.48)

13



From (3.48) we deduce that

G = S�1rh(3.49)

and from (3.47)

r � (S�1rh) � ~�Sh = r �F(3.50)

The elliptic operator ~�S has a bounded inverse on zero mean square integrable func-
tions. Thus

rh = r ~��1
S r � F+ S

h
hFi � hS�1r ~��1

S r �Fi
i

(3.51)

and if we set

�Sg = S�1r ~��1
S r�(3.52)

then

G = �SgF+ hFi � h�SgFi(3.53)

and

F = �Sc F+ �SgF+ hFi � h�SgFi(3.54)

The operator �Sg is selfadjoint in HS and (�Sg )
2 = �Sg so it is a projection operator. It

is, moreover, orthogonal to �Sc since �Sc �
S
g = 0. However, �Sg does not map vector �elds

to mean zero, curl free vector �elds but rather to �elds annihilated by the operator
r� (S� ). Since the mean of �SgF is not zero it must be subtracted o� on the right in
(3.54).

We now return to (3.45) and cary out its symmetrization, as we did for (3.8). Let

eS = e� �Sc e(3.55)

and rewrite (3.45) in the form

D = eS + �Sc S
�1UD(3.56)

With the notation of (3.40) both (3.38) and (3.39) become

(�(e))�1 = hSD �Di = hD �DiS(3.57)

For the symmetrization let D+ satisfy (3.56)

D+ = eS + �Sc S
�1UD+(3.58)

and D� satisfy

D� = eS � �Sc S
�1UD�1(3.59)

As in (3.13), let

A =
D+ +D�

2
; B =

D+ �D�

2
(3.60)
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Then

A = eS + �Sc S
�1UB ; B = �Sc S

�1UA(3.61)

and

(�(e))�1 = h(A+B) � (A+BiS
= hA �AiS + hB �BiS :

(3.62)

where the cross terms vanish as in (3.15). Substituting B = �ScUA into the �rst
equation in (3.61), and in (3.62) we get

A = eS + �Sc S
�1U�Sc S

�1UA(3.63)

(�(e))�1 = hA �AiS + h�Sc S�1UA � �Sc S�1UAiS
= h(I � S�1U�Sc S

�1U)A �AiS(3.64)

Put

KS
U = �S�1U�Sc S

�1U(3.65)

As with KH in (3.18), we note that it is selfadjoint and positive de�nite in HS

hKS
UF � FiS = �hU�Sc S

�1UF � F i
= h�Sc S�1UF � S�1UFiS
= h�Sc S�1UF � �Sc S�1UFi � 0

In terms of KS
U we can write equation (3.63) for A in di�erential form

r� [S(I +KS
U )A] = 0

r �A = 0 ; hAi = e
(3.66)

From the di�erential form of the equation for A and (3.64) we see that we have
the following variational principle for (�(e))�1

(�(e))�1 = inf
G2HS

r�G=0
hGi=e

h(I +KS
U )G �GiS(3.67)

3.3. Summary for the two-dimensional case. We are particularly interested
in the two-dimensional case where by (3.34) and (3.40)

S =
1

1+H2
I ; U =

1

1+H2
H(3.68)

Since the curl operator in two dimensions can be expressed in terms of the perpendic-
ular gradient

r? = (� @

@y
;
@

@x
)(3.69)
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we have that

�S = r? � ( 1

1 +H2
r? )

�Sc = r?��1
S r? � ( 1

1 +H2
)

KS
U = �H�ScH

(3.70)

and the equation (3.66) for A is

r? �
h

1
1+H2 (I �H�ScH)A

i
= 0

r �A = 0 ; hAi = e
(3.71)

In the two-dimensional case we also use the simpler notation

� = �g = r��1r� ; �? = �c = r?��1r? �(3.72)

�H = �S

�H = �Sg ; �?H = �Sc :

With this notation and the � dependence reinserted, the direct and inverse variational
principles become

��(e) = inf
hrfi=e

n
�hrf � rfi+ 1

�
h�Hrf � �Hrfi

o
(3.73)

and

(�)�1� (e) = inf
hr?gi=e

(
1

�
h 1

1 + 1
�2
H2

r?g � r?gi(3.74)

+
1

�3
h 1

1 + 1
�2
H2

�?1
�
H
Hr?g � �?1

�
H
Hr?gi

)

where

�?��1H = r?��1
��1Hr? �

� 1

1 + ��2H2

�
(3.75)

���1H = r? �
� 1

1 + ��2H2
r? �

(3.76)

In the following sections we will use the variational principles in the form (3.73)
and (3.74).

4. Convection enhanced di�usion for cellular 
ows. The cell problem

���+ u � r�+ u � e = 0(4.1)

determines, up to a constant, a periodic function �(x; y), �� � x � �, �� � y � �,
and the e�ective di�usivity is given by

��(e) = �h(r�+ e) � (r�+ e)i(4.2)
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Fig. 4.1. Quarter-cell

where h i is normalized integration over the period cell. The velocity �eld u is incom-
pressible, r � u = 0, and comes from a stream function H(x; y)

u = (�Hy; Hx) = r?H(4.3)

The stream function H(x; y) = sin x sin y gives rise to a cellular 
ow (Fig. 1.1) and
when e = (1; 0) is a unit vector in the x direction then � is odd in the x direction and
even in the y direction. Problem (4.1) can then be restricted to a quarter of the cell
(Fig. 4.1), 0 � x � �, 0 � y � �, and if we de�ne

� = � + x(4.4)

then

���+ u � r� = 0(4.5)

@�

@y
(x; 0) =

@�

@y
(x; �) = 0(4.6)

�(0; y) = 0 ; �(�; y) = �(4.7)

and

��(e) =
�

�2

Z �

0

Z �

0

"�
@�

@x

�2
+

�
@�

@y

�2#
dx dy(4.8)

We will consider general cellular 
ows, that is, 
ows with stream function H(x; y)
for which the lines x = 0 and y = 0 are separatrices, and level lines of H = 0.
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Furthermore, we will assume H is symmetric with respect to the x- and y-axes. Then
the quarter cell reduction (4.5){(4.8) is possible and we will work with it. First we
introduce a new coordinate system (x; y) ! (H; �) from the rectangle 0 � x � �,
0 � y � � to the region H � 0, �4 � � � 4 so that

rH � r� = 0(4.9)

near the boundary of the rectangle and

jr�j = jrH j(4.10)

on the boundary of the rectangle. There is a unique function �(x; y), the circulation or
angle variable, satisfying (4.9) and (4.10). It will not be de�ned in all of the rectangle,
in general, but only in a region including the boundary of the rectangle. The fact
that � runs over the interval �4 � � � 4 is a normalization condition on the stream
function H . We call the coordinates

(h; �) =
� Hp

�
; �)(4.11)

the boundary layer coordinates. In terms of the boundary layer coordinates the cell
problem (4.5){(4.7) becomes

jrH j2@
2�

@h2
+
p
��H

@�

@h
+ �jr�j2@

2�

@�2
+ ���

@�

@�
+ J

@�

@�
= 0(4.12)

where J = Hy�x � Hx�y = �r?H � r� is the Jacobian of the map (x; y) ! (H; �).
Because of (4.10), jrH j2 = jJ j at the boundary and hence the principal terms as
�! 0 in (4.12) are

@2�

@h2
+
@�

@�
= 0(4.13)

with

�(0; �) = 0 ; 0 < � < 2
@�

@h
(0; �) = 0 2 < � < 4

�(0; �) = � ; �4 < � < �2
@�

@h
(0; �) = 0 ; �2 < � < 0

(4.14)

From (4.8) we get that

��(e) �
p
�
1

�2

Z 1

0

Z 4

�4

�@�
@h

�2
dh d�(4.15)

The above analysis is essentially due to Childress [1]. In this section we will derive
(4.15) using the variational principles of Section 3. The main di�culty in attempting
to justify the asymptotic analysis of Childress is the lack of regularity of � at the
separatrices. This lack of regularity is an essential aspect of convection enhanced
di�usion and not only a technical di�culty. In the variational approach regularity is
no longer a problem.
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4.1. Upper bound for the e�ective di�usivity. As in (4.13){(4.14) we will
�x e = e1 = (1; 0) since the case e = e2 = (0; 1) is similar. Let

FBL =
n
f= f(h; �); h � 0; �4 � � � 4; f 2 C1;(4.16)

f � 0 for h � N; for some N > 0
o

and suppose that f 2 FBL satis�es also the boundary conditions

f(0; �) = 0 ; 0 < � < 2
@f

@h
(0; �) = 0 ; �2 < � < 0 ; 2 < � < 4

f(0; �) = � ; �4 < � < �2
(4.17)

and the matching conditions on the separatricesZ 1

0
dh

@f

@�
= 0 ; �2 < � < 0; 2 < � < 4Z 1

0
dh

Z h

1
@f

@�
= �=2 ; 0 < � < 2Z 1

0
dh

Z h

1
@f

@�
= ��=2 ; �4 < � < �2

(4.18)

The matching conditions (4.18) are also the solvability conditions in evaluating the
nonlocal term in the functional, as can be seen in the following estimates. Consider
now the variational principle (3.73). We may look for trial �elds F that have the
quarter cell symmetry of (4.5){(4.7). Then the averages in (3.73) can be restricted to
a quarter cell also, and if f 2 FBL then F = rf is an admissible trial �eld.

We now calculate rf and �Hrf for f 2 FBL and � small. We have that

fx =
Hxp
�

@f

@h
+ �x

@f

@�
; fy =

Hyp
�

@f

@h
+ �y

@f

@�
(4.19)

Then

�hF � Fi � �

�2

Z 1

0

Z 4

�4
1

�
jrH j2

p
�

J

�@f
@h

�2
dh d�

� p� 1
�2

Z 1

0

Z 4

�4

�@f
@h

�2
dh d�

(4.20)

since jrH j2 � jJ j near H = 0. Similarly , let 1
��Hrf = rf 0 for some periodic f 0,

then f 0 is the solution to the singular Poisson problem

��f 0 = u � rf(4.21)

and

1

�
h�Hrf � �Hrfi = �hrf 0 � rf 0i(4.22)

As far as the energy integral �hrf 0 �rf 0i is concerned, to leading order, it is su�cient to
solve f 0 from the dominant terms in equation (4.21) after the boundary layer rescaling

jrH j2 @
2

@h2
f 0 � J

@

@�
f(4.23)
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which becomes

@2

@h2
f 0 � @

@�
f(4.24)

since jrH j2 = J on the separatrices. Equation (4.24) is an ordinary di�erential
equation in h and can be solved by direct integration. The matching conditions (4.18)
guarantee that the existence of the solution f 0 to (4.24) in the function space FBL

satisfying the boundary conditions (4.17). From (4.21) we see that

1

�
h�Hrf � �Hrfi � p� 1

�2

Z 1

0

Z 4

�4

 Z h

1
@f

@�
dh0
!2

dh d�

� p� 1
�2

Z 1

0

Z 4

�4

�
@f 0

@h

�2
dh d�

(4.25)

Since f 2 FBL is identically zero for h large the h integrals are well de�ned. Using
(4.20) and (4.25) in (4.8) we have

��(e) � �hrf � rfi+ 1

�
h�Hrf � �Hrfi

and hence

lim
�#0

1p
�
��(e) � 1

�2

Z 1

0

Z 4

�4

n�@f
@h

�2
+
� Z h

1
@f

@�
dh0
�2o

dh d�(4.26)

Since the left hand side does not depend on f we also have

lim
�#0

1p
�
��(e) � inf

f2FBL
1

�2

Z 1

0

Z 4

�4

n�@f
@h

�2
+
�Z h

1
@f

@�
dh0
�2o

dh d�(4.27)

4.2. Lower bound for the e�ective di�usivity. To get a lower bound for
��(e) we use the variational principle (3.74).

(��(e))
�1 = inf

hr?gi=e
1

�

(D 1

1 + ��2H2
r?g � r?g

E
(4.28)

+
D 1

1 + ��2H2

1

�
�?��1HHr?g � 1

�
�?��1HHr?g

E)

where �?��1H and ���1H are given by (3.75) and (3.76), respectively. Boundary layer
trial functions can be constructed by noting that when e = e1 = (1; 0) they arise from
g = � � y when � is periodic so that r?g = r?� + (1; 0) and hr?gi = (1; 0). If the
space FBL in (4.16) is denoted more precisely by FBL(e1), then the boundary layer
functions for (4.28), with quarter cell symmetry, F?

BL(e1), are the same as �FBL(e2).
Thus F?

BL is the same as (4.16) but with the boundary conditions (4.17) replaced by

g(0; �) = 0 ; 2 < � < 4
@g

@h
(0; �) = 0 ; 0 < � < 2 ; �4 < � < �2
g(0; �) = � ; �2 < � < 0 :

(4.29)

20



and the matching conditions replaced by

h2
Z h

1
dh0

1

(h0)2
@g

@�
! 0 as h # 0 ; 0 < � < 2;�4 < � < �2Z 1

0
dh h2

Z h

1
dh0

1

(h0)2
@g

@�
= �=2 ; 0 < � < 2Z 1

0
dh h2

Z h

1
dh0

1

(h0)2
@g

@�
= ��=2 ; �4 < � < �2:

(4.30)

We can now use a trial function G = r?g, with g 2 F?
BL, in (4.28). Calculations very

similar to those for (4.20) and (4.25) yield now the bound

lim
�#0

(�(e))�1
p
� � inf

g2F?BL

1

�2

Z 1

0

Z 4

�4

n 1

h2

�@g
@h

�2
+ h2

�Z h

1
1

(h0)2
@g

@�
dh0
�2o

dh d�(4.31)

4.3. Equality of upper and lower bounds. We must now show that the upper
bound (4.27) is equal to the reciprocal of the lower bound (4.31) and that they coincide
with the constant in (4.15), obtained by solving (4.13){(4.14). This will prove

Theorem 4.1. The limit

lim
�#0

1p
�
��(e) =

1

�2

Z 1

0

Z 4

�4

�@�
@h

�2
dh d�(4.32)

exists and equals the right side.
Proof: We begin with (4.13) and write it in divergence form

@ � (I1 � h)@�� = 0(4.33)

where �+ = �, the solution of (4.13), and

@ =
� @

@h
;
@

@�

�
(4.34)

I1 =

 
1 0
0 0

!
; h =

 
0 h

�h 0

!
(4.35)

Both �+ and �� are to satisfy the boundary conditions (4.14). We de�ne

c�(e) =
1

�2

Z 1

0

Z 4

�4

�@�+
@h

�2
dh d�(4.36)

We proceed now to symmetrize this problem as we did in Section 3.
Let

A =
�+ + ��

2
; B =

�+ � ��

2
(4.37)

Then A and B satisfy

@2A

@h2
+
@B

@�
= 0 ;

@2B

@h2
+
@A

@�
= 0 ;(4.38)
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Formally for the moment, we note that

B = �
Z h

1

Z h

1
@A

@�
(4.39)

and hence A satis�es

@2A

@h2
�
Z h

1

Z h

1
@2A

@�2
= 0(4.40)

along with the boundary conditions (4.14). Since �+ = A + B, we note from (4.36)
that

c�(e) =
1

�2

Z 1

0

Z 4

�4

�@A
@h

+
@B

@h

�2
dh d�

=
1

�2

Z 1

0

Z 4

�4

n�@A
@h

�2
+
� Z h

1
@A

@�

�2o
dh d�

(4.41)

where the cross term vanishesZ 1

0

Z 4

�4
@A

@h

@B

@h
dh d� = �

Z 1

0

Z 4

�4
@A

@h
(
Z h

1
@A

@�
) dh d�

=
Z 1

0

Z 4

�4
A
@A

@�
dh d�

= 0

We now see that the right side of (4.41) is identical with the integral in (4.27) and
that (4.40) is the Euler equation for this functional. This identi�es the upper bound
(4.27) with the constant c� in (4.36) that comes from the boundary layer problem of
Childress, (4.13){(4.14). The sense in which (4.40) holds (plus the boundary conditions
(4.14)) is precisely as the Euler equation of the variational problem (4.27) in the
appropriate Hilbert space de�ned by the inner product derived from this quadratic
form and by the closure of FBL with this inner product.

To identify the lower bound (4.31) with (c�(e))�1 we proceed again as in Section 3.
From

@ � (I1 + h)@� = 0

we conclude that there is a function �(h; �) such that

c�(e1)@?� = c�(e1)
�
� @�

@�
;
@�

@h

�
= (I1 + h)@�(4.42)

Thus, since @ � @?� = 0 we have

@? � (I1 + h)�1 @?� = 0

which is equivalent to

@? � 1
h2

(I2 � h)@?� = 0(4.43)

with

I2 =

 
0 0
0 1

!
(4.44)
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We will show that � satis�es the dual boundary conditions (4.29) and that

(c�(e1))�1 =
1

�2

Z 1

0

Z 4

�4
1

h2

�@�
@h

�2
dh d�(4.45)

We prove (4.45) �rst. From (4.15) we have that

c�(e1) =
1

�2

Z 1

0

Z 4

�4

�@�
@h

�2
dh d�

=
1

�2

Z 1

0

Z 4

�4
@� � (I1 + h)@� dh d�

= (c�(e1))2
1

�2

Z 1

0

Z 4

�4
(I1 + h)�1 @?� � @?� dh d�

= (c�(e1))2
1

�2

Z 1

0

Z 4

�4
1

h2
(
@�

@h
)2 dh d�

which is the same as (4.45).
To prove that �, de�ned by (4.42), satis�es the boundary conditions (4.29) we

write (4.42) in component form

�c�@�
@�

=
@�

@h
+ h

@�

@�

c�
@�

@h
= �h@�

@h

(4.46)

From the second relation we get

c�� = c(�)�
Z h

1
h
@�

@h

= c(�)� h� +
Z h

1
�

where c(�) is a periodic function. Using the �rst relation in (4.46) we get

�c�@�
@�

= �c0(�) + h
@�

@�
+
Z h

1
@�

@�

= �c0(�) + h
@�

@�
�
Z h

1
@2�

@h2

= �c0(�) + h
@�

@�
+
@�

@h

from which we conclude that c0(�) = 0 and hence c(�) � c, a constant. Now on the
sides 2 < � < 4 and �2 < � < 0: we have that

@

@�

Z 0

1
� dh = �

Z 0

1
@2�

@h2
dh = �@�(0; �)

@h
= 0

by (4.14). Thus we may choose the constant c to equal

c = �
Z 0

1
� dh ; 2 < � < 4

and then

�(0; �) = 0 on 2 < � < 4

23



It remains to show that

�(0; �) = � on � 2 < � < 0 :(4.47)

For this purpose we note that on �2 < � < 0

�(0; �) = �(0; �)� �(0; � + 4)

= �
Z �+4

�

@�

@�
(0; �)

=
1

c�

Z �+4

�

@�

@h
(0; �)

=
1

c�

Z 2

0

@�

@h
(0; �)

� 1

c�

Z �2

�4
@�

@h
(0; �)

But

c� =
1

�2

Z 1

0

Z 4

�4

�@�
@h

�2
dh d�

= � 1

�2

Z 4

�4
�(0; �)

@�(0; �)

@h
(from (4.13))

= � 1

�

Z �2

�4
d�

@�(0; �)

@h
(from (4.14))

and hence (4.47) follows.
We now return to (4.43){(4.45) and symmetrize it so that (c�(e1))�1 is given by

a variational principle. We let � = �+ and de�ne �� by

@? � 1
h2

(I2 + h)@?�� = 0(4.48)

where both �+ and �� satisfy the boundary conditions (4.29). We de�ne again A and
B by

A =
1

2
(�+ + ��) ; B =

1

2
(�+ � ��) ;

and �nd that

h2
@

@h
(
1

h2
@A

@h
) +

@B

@�
= 0

h2
@

@h
(
1

h2
@B

@h
) +

@A

@�
= 0

Thus

B = �
Z h

1
h2
Z h

1
1

h2
@A

@�

and

h2
@

@h

� 1

h2
@A

@h

�
�
Z h

1
h2
Z h

1
1

h2
@2A

@�2
= 0(4.49)
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while from (4.45)

(c�(e1))�1 =
1

�2

Z 1

0

Z 4

�4
1

h2

�@A
@h

+
@B

@h

�2
dh d�

=
1

�2

Z 1

0

Z 4

�4
1

h2

h�@A
@h

�2
+
�@B
@h

�2i
dh d�

=
1

�2

Z 1

0

Z 4

�4

h 1
h2

�@A
@h

�2
+ h2

�Z h

1
1

h2
@A

@�

�2i
dh d�

(4.50)

This is precisely the right hand side of (4.31), since (4.49) is just the Euler equation
for that quadratic functional. This proves that the limit (4.32) exists and equals c�.

5. Corner layer theory: nonoverlapping eddies in point-contact. The
e�ective conductivity of a two-component conductor with checkerboard geometry is
equal to the square root of the product of the component conductivities. If for ex-
ample the conductivity of the black squares is one and the conductivity of the white
squares � then the e�ective conductivity is

p
�. Conductors with random checkerboard

geometries can also be studied. Now each square has conductivity � with probability p
and conductivity 1 with probability 1�p, independently of other squares. Kozlov [10]
studied this problem by variational methods and found that there are three regimes:
when 1 > p > pc , the poorly conducting material prevails and the e�ective conduc-
tivity is O(�); when 1� pc > p > 0, the normally conducting material prevails and the
e�ective conductivity is O(1); when pc > p > 1 � pc, the checkerboard con�guration
prevails and the e�ective conductivity for this intermediate regime is O(

p
�). The crit-

ical probability pc � 0:59 � � � is equal to the critical probability for the site percolation
problem.

In this section we study convection-di�usion problems for a two-dimensional pe-
riodic checkerboard con�guation which consists of eddies with stream function H =
sin x sin y, for example, and still 
uid, H = 0, alternatively from cell to cell as in
Fig. 5.1. The molecular di�usivity is �. Using variational methods we develop a
corner layer theory which includes the boundary layer theory treated in Section 4 as
a limiting case. We have also studied the random checkerboard con�guration for con-
vection di�usion problems. Our results are parallel to those of Kozlov [10] and will be
presented in a forthcoming paper.

Corner layers arise because eddies have in contact only a point instead of an edge
(i.e. a separatrix). For example, if we take away every other vortex in the cellular 
ow
H = sin x sin y and change the sign of every other remaining vortex. The resulting
periodic array of vortices are in contact only at the corners and have the 180o-rotational
antisymmetry with respect to the origin and consequently a symmetric e�ective 
ux
tensor. The contact angle is equal to �

2 (see Fig. 5.1). For these 
ows, the corners
rather than the separatrices control the e�ective di�usivity.

Before analyzing the problem with positive contact angle, let us modify the 
ow
near the corner as follows. Let us regularize the streamlines near the corner so that
they have well-de�ned tangent at contact point and therefore zero contact angle (see
Fig.5.2). Let t denote be the tangential coordinate and s the normal coordinate.
Now assume the streamlines near the contact point are asymptotically de�ned by
s � t1+
 = constant. Here 
 is the degree of the vanishing of the contact angle
approaching the contact point. When two separatrices collapse, 
 is in�nite and the
situation is back to cellular 
ows treated in Section 4. When 
 is zero, the contact
angle is positive.
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Fig. 5.1. Non-overlapping eddies in point-contact
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Fig. 5.2. Corner 
ow
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It turns out that the speci�c shape of the separatrices is not important. Only
their asymptotic form near the contact point matters. When su�ciently close to the
contact point we may assume, without loss of generality, that the boundaries of eddies
(that is, the separatrices) are de�ned exactly by s = �jtj1+
 and the stream function
has the form

H =

8><>:
u0(s� jtj1+
) when s � jtj1+

0 when jsj � jtj1+

u0(s+ jtj1+
) when s � �jtj1+


(5.1)

We will assume that the velocity at the separatrices u0 6= 0 in the following. This
assumption makes the 
ow discontinous and somewhat unrealistic. The case when
the velocity is zero at the separatrices can also be studied but will give rise to di�erent
scalings depending on how fast the velocity vanishes.

As with cellular 
ow, particles away from the boundary are nearly trapped in
stable closed orbits. But, unlike the cellular 
ow case, particles that stay near the
boundary and eventually exit are almost trapped again in the adjacent vacant cells,
except for those that exit from near the contact point. They can travel with the 
ow
near the boundary of the adjacent vortices and exit again. Note that the narrow gap
near the contact point creates a large concentration gradient and hence large di�usive

ux.

Let us de�ne scaled variables(
~t = t=�� ; ~s = s=��(1+
)

~� = �=�� ; h = H=��(1+
)
(5.2)

where � is the circulation variable de�ned as in Section 4. Here � = 1
1+2
 by the

following scaling argument. The velocity u0 at the contact point is not zero so we
let the time it takes to pass the corner be O(��). The time it takes to di�use across
the narrow gap between vortices is �2�(1+
)=�. These two time scales should be of the
same order and thus � = 1

1+2
 . The scaling of time should be the same as that of

the tangential coordinate t, thus � = � = 1
1+2
 . Since 
 > 0, the scale of the normal

coordinate is smaller than that of the tangential coordinate. Therefore concentration
gradients are O( 1

��(1+
)
) and �� is proportional to

� � the area of corner layer � the square of concentration gradient

� � � (�� � ��(1+
)) �
�

1
��(1+
)

�2
� �

1
2 (1+

1
1+2
 )

(5.3)
after substituting � = 1

1+2
 . The power of of � in �� ranges from 1=2 to 1 as 
 ranges
from in�nity to zero. Using the variational principles, we will justify this scaling
argument and prove the following

Theorem 5.1. For a checkerboard 
ow with stream function (5.1) near corners
the e�ective conductivity behaves like

�� � c��
1
2 (1+

1
1+2
 )

where c� is a constant that can be computed explicitly.
The proof of Theorem 5.1 is given in the following three subsections. We refer

to (~t; ~s), for jsj � jtj1+
 and (h; ~�), for jsj � jtj1+
 as the corner layer variables. The
period cell is [��; �]2.
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Fig. 5.3. Direct corner layer function

5.1. Upper bound for the e�ective di�usivity. For the upper bound we
again use the direct variational principle and choose trial functions according to our
scaling argument given above. The class of corner layer trial functions for the upper
bound is denoted by C and f belongs to it if it is piecewise smooth and
(a) For some N0 > 0 it satis�es the far �eld boundary conditions

f =

(
� ; for ~s � N1+


0 and ~s � j~tj1+

0 ; for ~s � �N1+


0 and � ~s � j~tj1+


Each f 2 C is associated with a corner region C, de�ned by f(~t; ~s) j j~tj � N0, j~sj �
N1+

0 g, an eddy region E excluding C and a vacant region V excluding C. The corner

region C = C(N0; �) depends on N0 which may di�er for di�erent f . The period
cell [��; �]2 is the union of the regions C, E and V . We split the region C into
Ce [ Cv where Ce and Cv are intersections of C with the eddies and the vacant cells,
i.e. Ce = fj~sj � j~tj1+
g and Cv = fj~sj � j~tj1+
g.
(b) f

���
C
is a function of the corner layer variables and is piecewise smooth in j~sj � j~tj1+


and j~sj � j~tj1+
 .
(c) The matching condition on the separatrices which will be speci�ed later. When �

is small we will choose N0 = N0(�) " 1 while ��N0 # 0 as � # 0, for some � > 0, to be
determined later, and de�ne the corner region C using this N0(�). We can then talk
about a common corner region C, eddy region E and vacant region V for all f 2 C
where C, E and V depend only on �. For every f 2 C, f

���
E
= � if H > 0, f

���
E
= 0

if H < 0 and the pro�le of f restricted to the vacant cells f
���
V[Cv

will be determined

later. The entire pro�le of f in the period cell is shown schematically in Fig. 5.3. The
functions f are normalized so that hrfi ! (1; 0), as � # 0.
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The functional in the direct variational principle (3.73) for the upper bound has
two terms, the local one �hF � Fi and the nonlocal one 1

� h�HF � �HFi. To estimate
them, we break the integral over the period cell h�i into the integrals over the regions
C, E and V and write h�i = h�iC + h�iE + h�iV .

Let us consider the local integral �hF � Fi. First, hF � FiE = 0 by the far �eld

boundary conditions (a). Second, F
���
V [Cv

can be chosen so that

�hF � FiV = o

�
���

��(1+
)

�
as N0 " 1 ; � # 0 while ��N0 # 0

To see this choose f
���
V [Cv

to be smooth so that f
���
V 0

for every V 0 � V is independent

of � and N0 if V 0 is. Then the principal contribution to hF � FiV comes from the
tiny region � > 0 �xed, where F = rf is most singular due to the merging of two
separatrices, jsj = �jtj1+
 , and the far �eld boundary conditions (a). Thus, hF � FiV
is of order

2�

�2

Z �

N0��

Z jtj1+


�jtj1+


�
�

t1+


�2
ds dt =

���

��(1+
)

Z ����

N0

1
~t1+


d~t

� ���

��(1+
)
1

N

0

as � # 0

= o

�
���

��(1+
)

�
as N0 " 1

if 
 > 0:

(5.4)

We note that the last identity in (5.4) does not hold for 
 = 0 and this limiting case

will be analyzed later, where a logarithmic factor log
1

�
appears. Third, for hF � FiC ,

a simple calculation gives

�hF � FiC � 1

�2
���

��(1+
)

Z 1

�1

Z 1

�1
d~t d~s

�
@

@~s
f

�2
as � # 0

(5.5)

since derivatives with respect to ~s and h dominate those with respect to ~t and ~� as
�! 0. In summary, we have

�hF �Fi � �hF �FiC
� �1��


�2

Z 1

�1

Z 1

�1
d~t d~s

�
@

@~s
f

�2
(5.6)

We consider next the nonlocal term 1
� h�HF � �HFi. Let 1

��HF = r ~f for some

periodic ~f . Then

�� ~f = u � rf(5.7)

and

1

�
h�HF � �HFi = �hr ~f � r ~fi(5.8)
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The right-hand side of (5.7) has zero mean

hu � rfi = hu � Fi
= hu � ei+ hu(F� e)i
= 0

by hu � ei = 0 and integrating the second term by parts. Hence (5.7) is solvable and
~f exists. As in the case of cellular 
ows, to leading order it is enough to solve the
following approximate equation for f 0 with the null far �eld boundary conditions8>><>>:

�

�2�(1+
)
@2

@~s2
f 0 = � 1

��
u2o

�
@

@~t
f + (1 + 
)~t


@

@~s
f

�
in Ce

�

�2�(1+
)
@2

@~s2
f 0 = 0 in Cv

(5.9)

With � =
1

1 + 2

, (5.9) becomes

�
@2

@~s2
f 0 = �u2o

�
@

@~t
f + (1 + 
)~t


@

@~s
f

�
@2

@~s2
f 0 = 0 in Cv(5.10)

with f 0 is continuous across the separatrices ~s = �j~tj1+
 . In (5.9) only the dominant
term of the Laplacian in the corner layer coordinates appears and � is chosen so
that the di�usive 
ux is balanced by the convective 
ux. In order that (5.9) be a
valid approximation to the leading order of the energy integral �hr ~f �r ~fi, it actually
requires that (5.9) can be solved by a solution f 0 with the �rst derivative continuous
across the separatrices. Thus, an additional matching condition needs to be imposed
on the trial function f , which is, in view of the second equation of (5.10),Z ~s=�j~tj1+


�1
u2o

�
@

@~t
f + (1 + 
)~t


@

@~s
f

�
=

1

j~tj1+

Z ~s=�j~tj1+


�1

Z ~s0

�1
u2o

�
@

@~t
f + (1 + 
)~t


@

@~s
f

�
(5.11)
With this, f 0 can be solved continuous up to the �rst derivative and it has two parts:

f 0 =
(

f 0e in Ce

f 0v in Cv

Here f 0e satis�es the �rst equation of (5.10) and the far �eld boundary conditions in
the de�nition of C, and

f 0v = f 0v(~s) is a linear function that matches
the values of f 0e on the separatrices

(5.12)

We then have

1

�
h�HF � �HFi(5.13)

= �hr ~f � r ~fi
� �hrf 0 � rf 0iC

� 1

�2
�1��


(Z 1

�1

Z 1

�1
d~t d~s

�
@

@~s
f

�2)
(5.14)
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From the upper bounds for both the local term and nonlocal term in the direct vari-
ational principle, we get the upper bound for the e�ective di�usivity ��.

lim�#0
1

�
1
2 (1+

1
1+2
 )

�� � 1

�2
inf
f2C

(Z 1

�1

Z 1

�1
d~t d~s

"�
@

@~s
f

�2
+

�
@

@~s
f 0
�2#)

(5.15)

with f 0 de�ned in (5.10). When f 0 = f = � in (5.10), equation (5.10) is called the
corner layer equation8>><>>:

@2

@~s2
� = �u2o

�
@

@~t
�+ (1 + 
)~t


@

@~s
�

�
in Ce

@2

@~s2
� = 0 in Cv

(5.16)

with � and its �rst derivative continuous across the separatrices ~s = �j~tj1+
 . Equation
(5.16) is complemented by the boundary conditions

� =

(
�; for h > 0; ~� = �1
0; for h < 0; ~� = �1:

(5.17)

and

� =

(
�; for h =1
0; for h = �1(5.18)

The correct weak form of (5.16) is given by (5.32).

5.2. Lower bound for the e�ective di�usivity. To estimate �� from below,
we use the inverse variational principle (3.74). Let us de�ne a class of corner layer
trial functions for the lower bound, denoted by C? as follows. A function g 2 C? if it
satis�es
(a) Far �eld boundary conditions: There exists a positive number N0 > 0 such that

g =

(
� for ~t � N0

0 for ~t � �N0

As for the upper bound, we can associate with each g 2 C? a corner layer region
f(~t; ~s) j j~tj � N0, j~sj � N1+


0 g, an eddy region E and a vacant region V . The period
cell [��; �]2 is the union of C, E and V .

(b) g
���
C
is a function of the corner layer variables which is piecewise smooth in j~sj �

j~tj1+
 and j~sj < j~tj1+
 and continous everywhere.
(c) g = g(~t) for j~sj � j~tj1+


For every g 2 C?, g
���
V

= �, if t > 0 and g
���
V

= 0, if t < 0. The pro�le of g

restricted to region E, which is not covered by the de�nition of C?, is speci�ed later.
We note that the conditions on g are formulated so that hr?gi = e1. The overall
pro�le of g is shown schematically in Fig. 5.4.
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Fig. 5.4. Dual corner layer function

Let us consider the local term in the inverse variational principle 1
� h 1

1+(1=�2)H2G �
Gi. We break the integral into three parts

1

�
h 1

1 + (1=�2)H2
G �Gi =

1

�
h 1

1 + (1=�2)H2
G �GiC

+
1

�
h 1

1 + (1=�2)H2
G �GiE

+
1

�
h 1

1 + (1=�2)H2
G �GiV

First, 1
� h 1

1+(1=�2)H2G �GiV = 1
� hG �GiV = 0 by the far �eld boundary conditions (a).

Second, we can choose N0 = N0(�) " 1, � = N0�
� # 0 as � # 0 such that g

���
V
is a

boundary layer function for the lower bound and the boundary layer theory developed
in Section 4 applies. We have

1

�
h 1

1 + (1=�2)H2
G �GiV = O(

1p
�
)(5.19)

Third, we split the integral over region C into regions Ce and Cv ,

1

�
h 1

1 + (1=�2)H2
G �GiC =

1

�
h 1

1 + (1=�2)H2
G �GiCe +

1

�
h 1

1 + (1=�2)H2
G �GiCv

=
1

�
h 1

1 + (1=�2)H2
G �GiCe +

1

�
hG �GiCv

(5.20)
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Since g = g(~t) in Cv , for the second term we have

1

�
hG �GiCv � 1

�2
��(1+
)

� ��

Z N0

�N0

d~t

Z j~tj1+


�j~tj1+

d~s

�
@g

@~t

�2
� 1

�2
1

�(1=2)(1+(1=(1+2
))

Z 1

�1
d~t

Z j~tj1+


�j~tj1+

d~s

�
@g

@~t

�2(5.21)

Here we have used the far �eld boundary condition (a) and � = 1=(1 + 2
). For the
�rst term,

1

�
h 1

1 + (1=�2)H2
G �GiCe �

1

�2
� ��

�3�(1+
)

Z Z
j~sj�j~tj1+


d~t d~s
1

h2

�
@g

@~s

�2
(5.22)

With � = 1=(1 + 2
), the right-hand of (5.22) can be further reduced to

1

�2
1

�
1
2 (1+

1
(1+2
) )

Z Z
j~sj�j~tj1+


d~t d~s
1

h2

�
@g

@~s

�2
(5.23)

Since 1
�(1=2)(1+1=(1+2
)) � 1p

�
if 0 < 
 <1, we conclude that the integration over region

C gives the dominant contribution and we summarize the estimate on the local term
by combining (5.21) and (5.23)

1

�
h 1

1 + (1=�2)H2
G �Gi � 1

�
h 1

1 + (1=�2)H2
G �GiC

<�
1

�2
1

�(1=2)(1+1=(1+2
))

(Z Z
j~sj<j~tj1+


d~t d~s

�
@g

@~t

�2
+

Z Z
j~sj�j~tj1+


d~t d~s
1

h2

�
@g

@~s

�2 )(5.24)

We consider next the nonlocal term in the inverse variational principle, which is

1

�3
h 1

1 + (1=�2)H2
�?(1=�)HHG � �?(1=�)HHGi

To estimate it, we write 1
��

?
(1=�)HHr?g = r?~g for some periodic function ~g. Then

�r? � 1

1 + (1=�2)H2
r?~g = r? � H

1 + (1=�2)H2
r?g(5.25)

As before, to leading order it is su�cient to consider only the dominant terms in corner
layer coordinates

@

@~s

1

h2
@

@~s
g0 = �u

2
o

h2

�
@

@~t
g + (1 + 
)~t


@

@~s
g

�
in Ce(5.26)

Equation (5.26) is equivalent to

@g0

@~s
= �h2

Z ~s

�1
u2o
h2

�
@

@~t
g + (1 + 
)~t


@

@~s
g

�
in Ce(5.27)

where the di�erent signs are taken for h > 0 and h < 0, respectively. To insure that the
normal derivative of g0 is continuous across the separatrices, an additional matching
condition is needed which is

h2
Z ~s

�1
u2o
h2

�
@

@~t
g + (1 + 
)~t


@

@~s
g

�
= 0(5.28)
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on the separatrices. In summary, we have the lower bound

lim�#0(�)�1�(1=2)(1+1=(1+2
)) � 1

�2
inf
g2C?

(Z Z
j~sj�j~tj1+


d~t d~s

�
(
@g

@~t
)2 + (

@g0

@~t
)2
�

+
Z Z

j~sj�j~tj1+

d~t d~s

1

h2

�
(
@

@~s
g)2 + (

@

@~s
g0)2

�)(5.29)

with g0 and g related by (5.26).
When g0 = g = �, (5.26) is called the dual corner layer equation,

@

@~s

1

h2
@

@~s
� = �u

2
o

h2

�
@

@~t
�+ (1 + 
)~t


@

@~s
�

�
in Ce(5.30)

The dual boundary conditions are

� =

(
�; for ~� =1
0; for ~� = �1(5.31)

5.3. Equality of upper and lower bounds. We will show how to compute
the constant in Theorem 5.1 in terms of the solution of the corner layer problem.

Theorem 5.2. The limit of the e�ective di�usivity is given by

lim
�#0

1

�
1
2
(1+ 1

1+2

)
�� =

1

�2

Z 1

�1

Z 1

�1
d~t d~s

�
@

@~s
�

�2
where � is the solution of the corner layer problem (5.16).

We will use the saddle-point variational principle to establish the reciprocity of
the upper bound and lower bound. We follow closely Appendix A.2 which is di�erent
from the method we used for cellular 
ows in Section 2.

We begin with the forward and backward corner layer equation in divergence form

@ � (I2 � h) @�� = 0(5.32)

where �+ = �, the solution of the corner layer problem, and

@ = (@~t; @~s) =

�
@

@~t
;
@

@~s

�
(5.33)

I2 =

 
0 0
0 1

!
(5.34)

h =

 
0 h

�h 0

!
(5.35)

with

h =

8><>:
u0(~s� j~tj1+
) when ~s � j~tj1+

0 when j~sj � j~tj1+

u0(~s+ j~tj1+
) when ~s � �j~tj1+


(5.36)
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Set

E+ = @�+ ; E� = @��

D+ = (I2 + h) @�+ = (I2 + h)E+

D� = (I2 � h) @�� = (I2 � h)E�
(5.37)

Then, in terms of E� and D�, (5.32) is equivalent to

@ �D� = 0 ; @? �E� = 0 :(5.38)

and the boundary conditions (5.17), (5.18) play a similar role to the mean �eld con-
ditions .

Let us de�ne

E = 1
2(E

+ +E�)
E0 = 1

2(E
+ �E�)

D = 1
2(D

+ +D�)
D0 = 1

2(D
+ �D�)

(5.39)

They satisfy

@ �D0 = @ �D = 0
@? �E0 = @? �E = 0

(5.40)

and

D0 = I2E
0 + hE

D = I2E+ hE0(5.41)

or in matrix form  
�D0

D

!
=

 
�I2 �h
h I2

! 
E0

E

!
(5.42)

Let c� denote the quantity of interest

c� � 1

�2

Z Z �
I1@�

+�2
=

1

�2

Z 1

�1

Z 1

�1
d~t d~s

�
@

@~s
�+
�2

= hI2E+ �E+i
=

1

2
hI2E+ �E+i+ 1

2
hI2E� �E�i

=
1

2
hD+ �E+i+ 1

2
hD� �E�i

=
1

2
hD+ �E�i+ 1

2
hD� �E+i

(5.43)

where

hF �Gi = 1

�2

Z 1

�1

Z 1

�1
F �G d~t d~s(5.44)
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and E+, E� satisfy the same direct boundary conditions. The last equality in (5.43)
then follows from integration by parts, in view of (5.38). The representation (5.43) is
equivalent to

c� = �hD0 �E0i+ hD �Ei
=

* 
�I2 �h
h I2

! 
E0

E

!
�
 
E0

E

!+
(5.45)

which is a symmetric, inde�nite form. The constant c� is given by the saddle-point
variational principle

c� = inf
F=@f
f2C

sup
F0=@f 0
f 02C0

* 
�I2 �h
h I2

! 
F0

F

!
�
 
F0

F

!+
(5.46)

where C is the space of direct corner layer functions with the direct boundary conditions
and C0 is the space of direct corner layer functions which are di�erence of functions in
C and hence have null direct boundary conditions.

We eliminate the supremum by solving the corresponding Euler equation

@ � I2@f 0 + @ � h @f = 0(5.47)

With (5.47) holding, (5.46) is equivalent to

c� = inf
F=@f
f2C

�hI2F0 � F0i+ hI1F � Fi	(5.48)

More explicitly, (5.47) is equivalent to8>><>>:
@2

@~s2
f 0 = 0 , for j~sj � j~tj1+


@2

@~s2
f 0 = �u2o

�
@

@~t
f + (1 + 
)~t


@

@~s
f

�
, for j~sj � j~tj1+


with f 0 2 C0, which is (5.10). Thus, the right-hand side of (5.48) is identical to the
upper bound (5.15).

Now, let E� be scaled by a factor of c�, then in view of the quadratic nature of
(5.43), we have

(c�)�1 = hI2E+ �E+i
= 1

2hD+ �E�i+ 1
2hD� �E+i(5.49)

where D� are still related to E� via (5.37). The representation (5.49) is equivalent to

(c�)�1 = �hD0 �E0i+ hD �Ei
= �hD0 �E0ih6=0 + hD �Eih6=0
�hD0 �D0ih=0 + hD �Dih=0

(5.50)

from (5.41).
What boundary conditions do D0 and D, or equivalently, D� satisfy after the

contraction? From (5.37), it follows that for j~sj � j~tj1+


c�@~s�+ = �h @~s�+
c�@~t�

+ = �h @~t�+ + @~s�
+(5.51)
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and

c� @~s�� = h @~s�
�

c� @~t�
� = h @~t�

� + @~s�
�(5.52)

if �� satisfy the direct boundary conditions. The following equalities follow easily
from (5.51) and the boundary condition (5.17)

�
�+
�~�=1
~�=�1 =

Z
h=ho

(d~t @~t + d~s @~s )�
+

= � 1

c�
ho

Z 1

h=ho
(d~t @~t + d~s @~s )�

+ +
1

c�

Z
h=ho

d~t@~s �
+

=
1

c�

Z
h=ho

d~t@~s �
+

(5.53)

On the other hand, from equation (5.16), we have

0 = �
Z 1

�1
d~�
Z
ho

dh @~� �
+

= �
Z Z

h�ho
d~t d~su2o

�
@

@~t
�+ + (1 + 
)~t


@

@~s
�+
�

=

Z Z
h�ho

d~t d~s
@2

@~s2
�+

=

Z
h=ho

d~t
�
@~s �

+�1
ho

= c�� �
Z
h=ho

d~t @~s �
+

(5.54)

since
Z
h=1

d~t
@

@~s
�+ = �

�
1

�2

Z
h=1

d~t �+
@

@~s
�+
�
= c�� , following the de�nition of c�,

the boundary conditions and the energy identity of the direct corner layer problem.
Therefore �

�+
�~�=1
~�=�1 = �(5.55)

and the dual boundary conditions are sati�ed for

�
�+
�~s
~so

=

Z ~s

~so
d~s @~s �

+

= � 1

c�

Z ~s

~so
h@~s �

+

= � 1

c�
uo(~s� ~so)�

+ +
uo
c�

Z ~s

~so
d~s �+

(5.56)

which converges to zero as ~t approaches in�nity by the direct boundary conditions
(5.17). The boundary conditions of �+ for h < 0 can be similarly derived.

Let us invert the relation (5.42) and express E0 and E in terms of D0 and D

E0 =
1

h2
I1D

0 � 1

h2
hD

E =
1

h2
I1D� 1

h2
hD0

(5.57)
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Or, in matrix form  
�E0
E

!
=

 
� 1

h2
I1

1
h2
h

� 1
h2h

1
h2 I1

! 
D0

D

!
(5.58)

where I1 =

 
1 0
0 0

!
and it is understood that when j~sj � j~tj1+
 , h � 0 and

I2E
0 = D0 = I2D

0 ; I2E = D = I2D(5.59)

from (5.41). Again, (5.50) is a symmetric, inde�nite form in view of (5.58) and (5.59)
and admits a saddle-point variational formulation

(c�)�1 =
inf

G=@?g
g2C?

sup
G0=@?g0
g02C?0

8<:
* 

� 1
h2 I1

1
h2h

� 1
h2
h 1

h2
I2

! 
G0

G

!
�
 
G0

G

!+
h 6=0

+

* 
�I1 0

0 I2

! 
G0

G

!
�
 
G0

G

!+
h=0

)(5.60)

Here C? is the space of the dual corner layer functions with the dual boundary condi-
tions and C?0 is the space of the dual corner layer functions with null dual boundary
conditions. We eliminate the supremum by solving the corresponding Euler equation

@? � 1
h2
I1G

0 � @? � 1
h2
hG = 0 for j~sj � j~tj1+


@? � I1G0 = 0 for j~sj � j~tj1+

(5.61)

Using (5.61) in (5.60) we get

(c�)�1 = inf
G=r?g

g2C?

�hI2G0 �G0ih=0 + hI2G �Gih=0(5.62)

+ h 1
h2
I1G

0 �G0ih6=0 + h 1
h2
I1G �Gih6=0

�
which is exactly the right-hand side of (5.29).

We have therefore identi�ed c� with the constant in Theorem 5.1.

5.4. Limiting cases. There are two interesting limiting cases in the corner layer
problem. In one 
 # 0, and in the other 
 " 1. Notice that 1

2 <
1
2(1 +

1
1+2
 ) < 1 for


 > 0 and lim
!1 1
2(1+

1
1+2
 ) =

1
2 . The edge-contact situation of H = sin x sin y can

be thought of as point contact with in�nite degree of contact (i.e. 
 =1) and the
p
�

asymptotic behavior (but not the constant factor c�, since the boundary conditions
are di�erent) is recovered in the limit 
 " 1.

The preceding analysis breaks down when 
 # 0 as was pointed out before. The
case 
 = 0 is the one in which two separatrices meet at the contact point, which is
a stagnation point at a positive angle. Therefore it requires a separate treatment.
For simplicity, we assume that the separatrices meet at a positive angle = �=2 and
the 
ow near the corner is similar to that of cellular 
ows. As we will see in the
following analysis, in addition to �, a log 1

� factor appears. Contrary to what one
might guess from previous analysis, the corner layer scaling involved here is

p
� and
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not � = lim
#0 �
1

1+2
 . This is because of the presence of the stagnation point at the
corner. As a result it always takes order one time for a particle to pass around the
corner no matter how short the traveling distance is. The small molecular di�usivity
� then builds up a

p
� corner layer , which will give an order � contribution to the

e�ective di�usivity while the region outside of the corner layer gives contribution of
order � log 1

� . These facts will follow from the construction of suitable trial functions
and the estimate of the variational principles. A similar argument handles also the
case that the contact point is not a stagnation point provided that we work with the
corner layer of order � and the result is similar to

Theorem 5.3. If 
 = 0, then there exist positive constants c�1 and c�2 such that

c�1� log
1

�
� �� � c�2� log

1

�

We have not been able to show that c�1 = c�2 and determine this constant. The ac-
tual value of the angle is not important since it will a�ect the constants only. Although
the tangent at the corner is no longer well de�ned, we will still use t as the \tangential"
coordinate whose axis is parallel to (1;�1) and s as the \normal" coordinate whose
axis is parallel to (1; 1) (Fig. 5.5). We now turn to the proof of Theorem 5.3.
Upper bound

Consider trial functions f de�ned as in the direct corner layer functions C except
that the corner layer scaling �� � ��(1+
) is replaced by

p
� �p�. We decompose the

period cell into the regions C, E and V as before. For the local term �hrf � rfi in
the direct quadratic functional , it is easy to see that the corner layer region C gives
a contribution only of order � while

�hrf � rfiV = O(�
Z p

�

1
(
1

t
)2t dt) = O(� log

1

�
)(5.63)

since rf = O(1t ) and the area element is t dt. Thus

�hrf � rfi � �hrf � rfiV = O(� log
1

�
)(5.64)

Next, we can estimate the nonlocal term 1
� h�Hrf ��Hrfi in the following way.

Let 1
��Hrf = r ~f for some periodic function ~f , or equivalently

�� ~f = u � rf(5.65)

so that

1

�
h�Hrf � �Hrfi = �hr ~f � r ~fi(5.66)

We claim is that the right-hand side of (5.66) is of order �. The is because of the
scale invariance of the energy integral

�hrh � rhi

where h is a arbitrary nice function, and the convection operator

u � r
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t

s

Fig. 5.5. Limiting corner 
ow

More precisely, let us de�ne scaled variables ~x and ~y in the corner layer by

x = ~x
p
� ; y = ~y

p
�

In terms of ~x and ~y (5.65) becomes

~� ~f � �~x @

@~x
f + ~y

@

@~y
f(5.67)

Therefore

�hr ~f � r ~fi = �h ~r ~f � ~r ~fi� � c�h ~rf � ~rfi� = O(�)(5.68)

where h�i� =
R R

C(�)d~xd~y. and ~r, ~� are the gradient and Laplacian with respect to ~x,
~y, respectively. From (5.64) and (5.68), we conclude that

�� � c�2� log
1

�
(5.69)

for some constant c�2.

Lower bound:

Let us construct trial functions g in the following way. We de�ne an arbitrary
outer layer whose scale, say 4

p
�, is larger than that of the corner layer which is

p
�.

We denote the outer region by U , the complementary region in the vacant cells by V
and the complementary region in the eddies by E. In the outer region U , let g satisfy
the same far �eld boundary conditions in the de�nition of C? and

g
���
C
=

�

2
; g

���
U
= g�(t)(5.70)
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In the eddies, g is a boundary layer function. From this we know that the contribution
of the eddies to the inverse variational principle is O( 1p

�
) . Now let us consider the

contribution of vacant cells to the local term. We have

1

�
h 1

1 + (1=�2)H2
r?g � r?giV =

1

�
hr?g � r?giV(5.71)

since H = 0 in the vacant cell. The right-hand side of (5.71) is, by the choice of g,

1

�

Z 4p�
p
�
(g0�)

2 t dt(5.72)

since rg = 0 elsewhere and t dt is the area element. The minimum of (5.72) can be
achieved by g� that satis�es

(g0�t)
0 = 0 with the far �eld boundary conditions(5.73)

The solution of (5.73) is

g� =

8>><>>:
2�(

1

2
� log t

log �
) +

�

2
; when 4

p
� > t >

p
�

�2�(1
2
� log jtj

log �
) +

�

2
; when � 4

p
� < t < �p�

(5.74)

The energy integral for (5.74) is O( 1
� log(1=�)). Hence

(��)
�1 � 1

c�1
� 1

� log(1=�)
(5.75)

where c�1 is a constant and this along with (5.69) prove Theorem 5.3.

6. Periodic arrays of eddies and channels. In this section we study advection-
di�usion in the steady velocity �eld

u = (�H�
y ; H

�
x); H

� = sin x sin y + � cosx cos y; � > 0:(6.1)

Here � cosx cos y is a small periodic perturbation that preserves the structure of critical
points of the stream function sin x sin y. The periodicity of the perturbation together
with the instability of the separatrices creates periodic open channels in the vincinity of
the separatrices of sin x sin y. The width of the channels is of order �. The streamlines
H� = constant form a periodic array of oblique cat's-eyes separated by open channels
carrying �nite 
uid 
ux of order �. Transport takes place both in thin boundary layers
and within the channels and the parameter �=

p
� measures the relative in
uence of the

two. If � = �
p
� with � � 1 then advection in the channels dominates di�usion. This

occurs when, for example, � = �(�) = a��, 0 � � < 1
2 , a < 1, so that � = a���1=2

�#0
"

1.
The streamline structure is like that of Fig.6.1 There are two types of streamlines:

Those in the channels

� � < H� < �(6.2)

and those in the eddies

� < jH�j � 1(6.3)
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They are separated by separatrices de�ned byH� = ��. The 
ow structure is no longer
isotropic and has two eigen-directions: one parallel to the channel, e = 1p

2
(1; 1), and

the other, e? = 1p
2
(�1; 1), orthogonal to the channel. Because of symmetry, the cell

problem (4.1) can be reduced to 1/4-period enclosed by the dotted lines in Fig.6.1.
The behavior of the e�ective di�usivity (4.2) as � tends to zero was �rst analyzed

by Childress and Soward [5]. They obtained asymptotic solutions for � � 1 using the
Wiener-Hopf technique. Surprisingly, their asymptotic method gives reliable values
of the e�ective di�usivity down to � � 1:5. Here we recover their results by our
variational methods.

Theorem 6.1 ( Special cat's-eye ). For H� = sin x sin y+ � cos x cos y,
p
� �

� � 1, we have

��(e?) � �=� ; ��(e) � �3

3�
as � # 0 :

In particular, if � = a��, 0 � � < 1=2, we have

��(e?) � 1

a
�1�� ; ��(e) � a3

3
�3��1

This theorem can be understood by a scaling argument in the following manner.
The channels provide a very e�cient vehicle in which a di�using particle can take
a long 
ight. The eddies are trapping regions, except in the

p
�-boundary layer. In

the e direction, the time the particle stays in one channel is O(�2) since this time
is proportional to the reciprocal of the di�usion coe�cient � multiplied by the width
of the channel squared, (

p
��)2. The distance travelled in the direction e? during

this time is also O(�2). Therefore the e�ective di�usivity should be O(�2) times the
proportion of the time the paticle spending in the channels, which is proportional to
channel's width �

p
epsilon. It ends with a O(�3

p
�) e�ective di�usivity. In the e?

direction, the trapping of the eddies is active while the channels do not help. Since
� � 1, the boundary layers are essentially separated, the time scale involved is again
O(�2) and the step size is O(1) due to the boundary layers. The e�ective di�usivity
is then O(1=�2) times the channel's width �

p
�, which is O(

p
�=�)

In the following analysis, We take the limit � # 0 �rst, keeping � �xed and then
consider the asymptotics of � " 1. In addition:
(a) When passing to the limit � # 0, with � �xed, di�erent boundary layers overlap
in the channel. The boundary layer type of trial functions used in the case of H =
sin x sin y are still appropriate, except that we have to patch them in the channel
region. This will eventually give ��(e); ��(e?) = O(

p
�).

(b) For the � " 1 asymptotics we have to estimate the numerical constants c�; c�?
multiplying

p
�. As � gets larger, the channel region becomes dominant and we will

be able to capture the dependence of c� and c�? on �.
We now continue with the analysis that leads to Theorem 6.1.

6.1. The asymptotic behavior of ��(e?). The upper bound for ��(e?) is ob-
tained as follows. The boundary layer theory of eddies in Section 4 tells us that the
trial functions f for the upper bound should be constant at least in the interior of
each eddy. To specify our ansatz in the channel, let us �rst de�ne in the channel

[f ]h(�) = f(��; �)� f(�; �)
[f ]�(h) = the di�erence of f along a streamline in half a period.

(6.4)
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We consider a trial function f such that

[f ]h =

p
2

2
� ; [f ]� = 0 in the channel(6.5)

and f assumes constant values in each eddy since we are concerned with the � � 1
limit. The condition (6.5) insures that f satis�es the mean �eld condition hrfi = e

as � tends to zero. Thus,

lim
�#0

��(e?)=
p
� � inf

[f ]h=(
p
2=2)�

[f ]�=0

1

�2

Z 2

�2
d�

Z �

��
dh

8<:
�
@

@h
f

�2
+

 Z h

1
@

@�
f

!2
9=;(6.6)

Since we are looking at the direction perpendicular to the channel, the di�usive energy
integral should dominate and the appropriate trial functions are f = f(h). Set h0 =
h=�, �1 � h0 � 1. Then we have

lim
�#0

��(e?)=
p
� � inf

[f ]h=(
p
2=2)�

@f=@��0

1

��2

Z 2

�2
d�

Z 1

�1
dh0
� @

@h0
f
�2

(6.7)

The minimum in (6.7) is achieved by a linear function of h0, f = 1
2

p
2
2 �h

0, and the

right side of (6.7) becomes
1

��2
(
1

2

p
2

2
�)22� 4 =

1

�
after substitution.

The Lower bound for ��(e?) is as follows. Let g be a boundary layer function and
satisfy

[g]h = 0 and [g]� =
p
2 � in the channel(6.8)

Then (6.8) guarantees that g generates the correct mean �eld hr?gi = e? as � tends
to zero. After substitution we have, to principal order as � # 1, 

lim
�#0

��(e?)=
p
�

!�1
� inf

[g]h=0

[g]�=
p
2�

in the channel

1

�2

Z 2

�2
d�

Z �

��
dh

(
1

h2

�
@

@h
g

�2
(6.9)

+h2
 Z h

1
1

h2
@

@�
g

!2
9=;

Consider g = g(�). The right side of (6.9) restricted to this particular class of

trial functions can then be minimized by g =
p
2�
4 � in the channel; then it becomes

�

�2

Z 2

�2
d�

Z 1

�1
dh0(

p
2�

4
)2 = � after substitution. It does not matter how we choose g

in the boundary layer since it only a�ects the o(�) correction.
Combining the upper and lower bounds, we have

lim
�#0

��(e?)p
�

� 1

�
as � " 1 :
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6.2. The asymptotic behavior of ��(e). For the upper bound for ��(e) con-
sider trial functions f which are boundary layer functions in the eddies, that satisfy
the matching condition on the separatricesZ 1

0
dh

@

@�
f = 0(6.10)

or equivalently Z 1

0
dh f = constant independent of �(6.11)

and

[f ]h = 0 ; [f ]� =
p
2 � in the channel.(6.12)

Like (6.8), (6.12) insures that f generates the correct mean �eld hrfi = e in the limit
� # 0. As with (6.6), we have

lim
�#0

��(e)=
p
� � inf

[f ]h=0

[f ]�=
p
2�

1

�2

Z 2

�2
d�

Z �

��
dh

8<:
�
@

@h
f

�2
+

 Z h

1
@

@�
f

!2
9=;(6.13)

We are looking at the direction parallel to the channel in the large � limit so clearly
the convective energy integral will dominate. Therefore the appropriate trial functions
should be in the form f = f(�) which makes the the �rst term of (6.13), the di�usive
energy integral, vanish, and we have

lim
�#0

��(e)=
p
� � inf

[f ]h=0

[f ]�=
p
2�

1

�2

Z 2

�2
d�

Z �

��
dh

 Z h

1
@

@�
f

!2

(6.14)

The right side of (6.14) is minimized by a linear function in �: f = 1
4

p
2�� in the

channel. Then

lim
�#0

��(e)=
p
� � 1

�2

Z 2

�2
d�

Z �

��
dh(

p
2�

4
)2h2

=
1

3
�3

(6.15)

to principal order as � " 1.
For the lower bound for ��(e) consider the trial functions g, satisfying

[g]h =
�p
2
; [g]� = 0 in the channel(6.16)

so that hr?gi = e in the limit. Consider g = g(h), since we are looking at the
perpendicular direction. The inverse variational principle becomes 

lim
�#0

��(e)=
p
�

!�1
� inf

[g]h=
�p
2

[g]�=0

in the channel

1

�2

Z 2

�2
d�

Z �

��
dh

1

h2
(
@

@h
g)2(6.17)
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The right side of (6.17) is minimized by g = �p
2

1
2�3 h

3 and after substitution

lim
�#0

��(e)=
p
� =

1

�2

Z 2

�2
d�

Z �

��
dh

1

h2
(
�p
2

1

2�3
)2(3h2)2

=
3

�3

(6.18)

to principal order as � " 1. Combining the upper and lower bounds (6.15), (6.18),
we have

lim
�#0

��(e)=
p
� � �3

3
as � " 1 :

Clearly the above analysis also works when � # 0 and � " 1 simultaneously
such as � = a��; 0 � � < 1=2. The opposite asymptotic limit, � # 0, corresponds to a
channel perturbation of cellular boundary layers and can also be studied by variational
methods. The leading term of �� is O(

p
�) and comes from the boundary layer theory.

The next correction term is a power of � and depends on the direction. This problem
has not been analyzed in detail.

7. General periodic 
ows with a zero mean drift. The stream function
H = sin x sin y is a Morse function (i.e. its critical points are not degenerate ) but is
not generic in the sense that it assumes the same value 0 at the four saddle points.
Generically, as a consequence of Morse's lemma (see Milnor [18]), we have :

Theorem 7.1 (Existence of channels). Let H be a Morse function on the
torus T 2 and c1; c2; � � � ; cn its saddle point values. If ci 6= cj, for i 6= j, then 9 some
k0s such that

H�1(ck � �; ck) : the collection of streamlines de�ned by H = constant in (ck � �; ck)

or

H�1(ck; ck + �) : the collection of streamlines de�ned by H = constant in (ck; ck + �)

is an open channel no matter how small � is. .
Theorem 7.1 is actually true for any compact two-surface without boundary except

the two-sphere. It implies the existence of open channels for stream functions that are
Morse functions and have distinct saddle point values. We call such stream functions
generic. In other words, channels always exist for generic stream functions. But
genericity is not a necessary condition for channels to exist. For example, the cat's-
eye 
ow discussed in the previous section is not generic but nevertheless contains
channels.

If channels do not exist, then the 
ow consists only of eddies and separatrices.
Not every separatrix will enhance particle di�usion. The important set of separarices
are those that are not of the trivial homotopy type, equivalently, do not "separate"
the torus. Any closed curve of the trivial homotopy type will necessarily hit one of
those non-separating separatrices which form a web on the torus and induce boundary
layers near them. In this case, our boundary layer theory developed in Section 4 can
be applied to those non-separating separatrices and the e�ective di�usivity �� will be
of order

p
� and the constant factor can be calculated from the reduced variational

principles in which the boundary conditions should, due to lack of symmetry, be
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Fig. 7.1. Multi-channel 
ow

replaced by matching conditions across the separatrix . This is all for the non-generic
case of no-channel 
ows.

Generically, channels exist. The channels are all periodic and are of the same
homotopy type . In other words, all streamlines are periodic and have the same
asymptotic slope or rotation number. Without loss of generality, we can assume that
the rotation number is zero by making a linear change of coordinates:

(x; y)! (px+ qy; rx+ sy);

����� p q
r s

����� = 1;(7.1)

where p; q; r; s are integers and q
p is the rotation number. After this transformation,

the periodic channel structure looks like the one in Fig. 7.1.

We know from the cat's-eye 
ow analysis that in the direction e parallel to the
asymptotic slope, ��(e) is O(

1
� ), and in the perpendicular direction e?, ��(e?) is O(�).

The constant factor can also determined as was done in Section 6. In the special cat's-
eye 
ow (Fig.1.2), two identical channels appear in a period cell, going in opposite
directions making the mean 
ow 
ux zero, while the rotation number is 1. In general,
we have an even number 2n of channels, half of them going in one direction, say
(1; 0), the others going in the opposite direction, (�1; 0). Let us �rst state a general
two-channel result:

Theorem 7.2 (two-channel cat's-eye theory). Let � be the 
ow 
ux, equal
to 1

2 [H ]? with
p
�� � � 1. Then

��(e) � c�
1

�
; ��(e?) � c�?�

where

c� = c1
�3H
d�

=
c1
2

[H3]?H
d�

; c�? = c2

H
d�

�
= 2c2

H
d�

[H ]?
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Fig. 7.2. Two-channel shear layer 
ow

Here [�]? is the absolute di�erence of the function across the channel and c1; c2 are
constants independent of the 
ow structure and

H
d� stands for 
ow circulation over

a cycle in the channel. .
The proof of this statement is a slight modi�cation of the theorem for cat's-eye


ow in section 6. The e�ect of the eddies can be seen by comparing this result with
that for shear layer 
ows (Fig. 7.2), which is considered next.

For shear layer 
ows the e�ective di�usivity in either direction can be computed
exactly using the inverse variational principle.

Theorem 7.3 (Shear layer). If u = (u(y); 0), then

��(e) = �+
1

�
hH2i; e = (1; 0):

and

��(e?) = �; e? = (0; 1):

Proof: From the inverse variational principle (3.74) for ��(e)

(�)�1� (e) = inf
hr?gi=e

n1
�
h 1

1 + 1
�2
H2

r?g � r?gi(7.2)

+
1

�3
h 1

1 + 1
�2
H2

�?HHr?g � �?1
�
H
Hr?gi

o
We get the Euler equation

r? �
 

1

1 + 1
�2H

2
� 1

�2
H�?1

�
H
H

!
r?g = 0(7.3)
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which can be solved exactly with a function g = g(y) . Equation (7.3) reduces to

r? �
 

1

1 + 1
�2H

2

!
r?g = 0(7.4)

and the second term in (7.3) simply drops out. Equation (7.4) is easily solved by
taking

r?g = (�g0; 0) =
 

1

1 + 1
�2
hH2i

�
1 +

1

�2
H2
�
; 0

!
(7.5)

which satis�es the mean �eld condition hr?gi = e. Substituting (7.5) into (7.2), we
have

(�)�1� (e) =
1

�+ 1
� hH2i

or

��(e) = � +
1

�
hH2i(7.6)

It is also easy to see that ��(e?) = �. In particular, for two-channel shear layer 
ow
(Fig. 7.2),

��(e) � �+
�2

�
; ��(e?) = �(7.7)

Thus, in view of Theorem 7.2 and Theorem 7.3, we conclude that the e�ect of
eddies in open channel 
ows is to enhance �� in the perpendicular direction by a factor
��1 and to diminished �� in the parallel direction by a factor �. Let us also state a
general multi-channel cat's-eye result:

Theorem 7.4 (Multi-channel cat's-eye theory). If 2n periodic channels
exist and their contributions to ��, as in the two-channel theory, are c�(i); c�?(i); i =
1; � � � ; 2n, then

��(e) � c�

�
; ��(e?) � c�?�

where c� is the arithmatic mean of c�(i) and c�? is the harmonic mean of c�?(i); i =
1; � � � ; 2n.

This result is analagous to what happens in conductivity problems. The proof of
Theorem 7.4 is an extension of the argument given in the theorem for cat's-eye 
ows.

For shear layer 
ows, ��(e?) = � and hH2i in formula (7.6) for ��(e) accounts for
its enhancement , which increases with the correlation of 
ow directions in adjacent
channels since particles can take bigger 
ights. However, the 
ow direction has to
alternate from channel to adjacent channel in order to sandwich eddies between them
while maintain the consistency of the 
ow structure. The total e�ect of multi-channels
cat's-eye 
ows on ��(e) is simply the sum of that of individual channel contribution.
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8. Periodic 
ows with a non-zero mean drift. What happens if the mean
drift is not zero? In this section we consider particle dispersion in periodic 
ows with
nonzero mean drifts. Such problems arise in the di�usion of contaminants in saturated
porous media (e.g. see [9]) and in the di�usion of particles sedmentating in convective

ows, which is treated in [6] for small mean drifts using boundary layer techniques.
Bhattacharya et al [9] analyze the case with mean drifts that are not small. They make
several observations, which are essentially Lemma 8.2 and Lemma 8.3 below and then
apply them to a class of simple 
ows to obtain extremal di�usivity, that is, �� = O(�)
or O(1� ). We will reformulate their observations and apply them to general periodic

ows with nonzero mean drifts. Variational methods for 
ows with a nonzero mean
drift are a special case of the variational principles for time dependent 
ows which are
discussed in Appendix B. Hou et al [19] and Weinan E [20] study the homogenization
of the advective transport equations without di�usion under the hyperbolic scaling
and obtain various e�ective equations depending on the rotation number, ergodicity
and the stagnation points of the 
ows. It is interesting to compare their results to the
ones we obtain in this Section under the di�usive scaling with vanishing di�usion.

We write the 
ows in the form c + u, where c is a constant vector and hui = 0.
As before, u is an incompressible, r � u = 0, periodic vector �eld of period 2� in two
dimensions and we assume that it is smooth: u 2 Cr(T2), r � 0. According to a
generalization of the classical theorem of Poincare by Weinan E and Moser [20], when
stagnation points occur, we have that
(i) The asymptotic direction of the streamlines is parallel to c.
(ii) When considered on the plane R2, if we call the set of closed streamlines the eddies
and the rest the channels, then c1 and c2, the components of c, are commensurate if
and only if the 
ow has a periodic streamline in the channels, when embedded in the
torus T2. When c1 and c2 are incommensurate, any single streamline starting from
inside the channels is dense in the channels.

It follows that the rotation number is de�ned in the channels and is independent
of the streamlines. The behavior of the streamlines in the channels is completely
characterized by c, as long as we know the structure of the channels or equivalently the
structure of the eddies. Furthermore, we can decompose T2 into the sum of invariant

sets: T2 =
NX
i=1

Ui, (N might be 1) such that c+u restricted to Ui is either completely

integrable or ergodic, for all i = 1; . . . ; N . An invariant region Ui is a ergodic region
only when it is a channel and the rotation number is irrational. Complete integrability
means that the circulation variable � exists and that (H; �) form a coordinate system.

The cell problem is

��� + (c+ u) � r�+ u � e = 0(8.1)

and the e�ective di�usivity is given by

��(e) = � + �hr� � r�i(8.2)

We rewrite the cell problem (8.1) in the form

r � (�+H+��1c � r)r�+ u � e = 0(8.3)

where

H =

 
0 H
�H 0

!
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and H is the stream function with hHi = 0, and r?H = u. In terms of the projection
operator � and with ~E = r�, we have

�~E + �H�~E + ���1c � r~E+ �H � e = 0(8.4)

and

��(e) = � + �h~E � ~Ei(8.5)

8.1. A decomposition of the Hilbert space and its applications. Let

G = �H� + ���1c � r
and denote by Hg the Hilbert space of mean-zero curl-free �elds with h�i as inner
product. Then G: Hg ! Hg, is boundned and skew-adjoint. Furthermore, we have

Lemma 8.1. G is a compact, skew-adjoint operator.
Proof: For F 2 Hg ,

GF = �H�F + ���1c � rF
= r��1u � F+ ���1c � rF(8.6)

Since one derivative is gained by applying G, it is compact.
Denote the null space of G in Hg by N . Then the Hilbert space Hg has the

decomposition

Hg = N � N?

where N? = (RangeG). The e�ective di�usivity ��(e) can now be expressed as

��(e) = �+ �h(r�)N � (r�)N i+ �h(r�)N? � (r�)N?i(8.7)

Lemma 8.2 (Bhattacharya et al [9]).
If �H � e has a nonzero component in N , then

c0

�
� ��(e) � c00

�
as � # 0

for some positive numbers c0 and c00.
Proof: Equation (8.4) can be decomposed into components in N and N?:(

�~EN? + G~EN? + (�H � e)N? = 0

�~EN + (�H � e)N = 0
(8.8)

If (�H � e)N 6= 0 then h~EN � ~EN i � 1
�2 , and ��(e) � c0

� , for some c0 > 0. But from the

variational principle, we know that ��(e) � c00
� , for some c00 > 0. This completes the

proof.
The following lemma tells us when singular perturbations do not arise.
Lemma 8.3 (Bhattacharya et al [9]). If �H �e 2 RangeG, that is, there exists

~F in Hg such that G~F = �H � e, then
� � ��(e) � c� as � # 0
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for some c > 1.
Proof: The direct variational principle for �� is a special case of that for time

dependent 
ows with @
@t replaced by �c � r (cf. Appendix B), that is,

��(e) = inf
r�F=0

hFi=e

n
�hF �Fi+ 1

�
h�H0F � �H0Fi

o
(8.9)

where

H0 = H+��1c � r:(8.10)

We �rst show that �H � e 2 RangeG is equivalent to the existence of F such that
h�H0F � �H0Fi = 0, which is equivalent to

r � �H0F = r � �(H+ ��1c � r)F
= u �F+ c � ~F = 0

(8.11)

where ~F = F� e, or

(c+ u) � ~F+ u � e = 0 :(8.12)

But, �H � e 2 RangeG, 9 ~F 2 Hg such that

� �H � e = r��1u � ~F+ ���1c � r~F(8.13)

or

� u � e = u � ~F+ c � ~F = (c+ u) � ~F(8.14)

which is (8.12). Therefore the nonlocal term in (8.9) vanishes and

��(e) � c�; for some c > 0; as � # 0(8.15)

Since ��(e) � �, (8.15) leads to the conclusion of the lemma.
The converses of Lemmas 8.2 and 8.3 also hold.
Lemma 8.4. If �H � e does not have a component in N , then

��(e) = o(1=�) :

Proof: By the assumption, �H � e 2 N? = RangeG and there exists F, with
r�F = 0, hFi = e, hF �Fi <1, such that, for arbitrarily small �, the nonlocal term
in in (8.9)

1

�
h�H0F � �H0Fi � �

and hence the conclusion.
Lemma 8.5. If �H � e is not in Range G, then

��(e)� �; as� # 0 :
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Proof: Let us assume that �H � e does not have a component in N , otherwise
Lemma 8.2 applies and the conclusion is obviously true. From Lemma 8.4, it follows
that, in order to avoid 1=� behavior, in (8.8),

G~EN? + (�H � e)N? # 0;
as � # 0. By the assumption of the lemma and the compactness of G, h~E � ~Ei is not
bounded as � # 0 and hence the conclusion of the lemma.

The gap between Lemma 8.4 and 8.5 is when �H � e 2 RangeG but not in Range
G. In this case, � � ��(e) � 1=�. If this occurs when c = 0, then various boundary
layers and corner layers arise and their e�ects on the e�ective di�usivity have been
discussed in previous sections. It will be shown in the following sections that the 
ow
is rarely in this gap when c is not zero.

8.2. A characterization of N and N?. Each F 2 Hg can be written as
F = rf for some periodic function or the limit of a sequence of such gradients.
Furthermore,

F 2 N , �Hrf + ���1c � rrf = 0
, (u+ c) � rf = 0

(8.16)

or, equivalently, f is constant along every streamline of c+ u and N is the closure of
the set of �elds which are the gradient of such functions. Let us state this as a lemma.

Lemma 8.6.

N = frf j f is constant along every streamline of c+ ug
The main result of this section is a characterization of N? :
Lemma 8.7.

N? = frg j
Z


�g dt = 0 ; for every non-ergodic streamline 
 in every regionUi :g

where t is the time associated with the streamline 
 under the 
ow c+ u.
Proof: It su�ces to consider E 2 N?, F 2 N of the form E = rg, F = rf , for

some smooth g and f . Then,

0 = hE �Fi =
Z Z

T2
dx dyrf � rg

= �
Z Z

T2
dx dy f �g

(8.17)

If 
 is a nonergodic streamline, then consider a sequence of fn = fn(J), where J is
an action variable (i.e. rJ 2 N ) that is de�ned in a neighborhood of 
, such that

fn
n"1! �J0(J), the Dirac delta function concentrated on J0, and J0 = J de�nes 
. We

have

�
Z Z

T2
dx dy fn�g

n"1! �c
Z


dt�g(8.18)

where c equals @(x;y)
@(J;t)

������



, which is constant on streamlines since both dx dy and dJ dt

are invariant for the 
ow. Thus, Z


dt�g = 0 :(8.19)
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Fig. 8.1. Cellular 
ow with drift c = (0; :2)

On the other hand, if 
 2 Ui in which c+ u is ergodic, then it does not matter what

we choose for g
���
Ui
. This completes the proof.

Actually,
Z


dt�g = 0 for every rg in the range of G and every non-ergodic

streamline 
 since Z


dtr � �H�rf(8.20)

=

Z


dt (c+ u) � rf

=

Z


ds

@

@s
f

= 0

(8.21)

8.3. Flows with stagnation points. We will analyze the behavior of the e�ec-
tive di�usivity when c + u has stagnation points (see Fig. 8.1, 8.2 and 8.3).

First we establish the following general result:
Theorem 8.8. If the 
ow c+ u has periodic orbits of the trivial homotopic type,

then

c0

�
� ��(e) � c00

�
as � # 0; when e 6?c :

for some positive numbers c0 and c00.
Proof: In view of Lemma 8.2, it su�ces to prove �H � e 62 N?. Let 
 be one of

the periodic orbits of the trivial homotopic type. Obviously,
R

 dt(c + u) = 0, since
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this integral is the displacement after a cycle. Now considerZ


�(��1r �H � e) =

Z


�(��1(u � e) )

=
Z


u � e

= �
Z


dt c � e

6= 0:

(8.22)

if c is not periodicular to e. Thus,

r��1r �H � e = �H � e 62 N?(8.23)

by Lemma 8.7. This completes the proof.
The condition in Theorem 8.8 seems to be generic whenever c+ u has stagnation

points (see Fig. 8.1, 8.2 and 8.3). For example, if some of those stagnation points are
elliptic points, then there are always periodic orbits of trivial homotopic type around
those elliptic stagnation points. Theorem 8.8 can be generalized to higher dimensional
spaces.

Theorem 8.9. Let c+u 2 C1(Tn). If there exist a bounded domain D invariant
under c+ u viewed as dynamical system on RI n, then

c0

�
� ��(e) � c00

�
as � # 0 ; if e 6?c

for some positive numbers c0 and c00.
Proof: Let M =

Z
D
dnx be the \mass" of the 
uid volume D. It is �nite, since

D is bounded. De�ne the center of mass for D by

qD(t) =
Z
D
dnxX(t;x)=M ;(8.24)

where X(t;x) is the 
ow generated by c + u and X(0;x) = x. The invariance of D
and incompressibility of c + u tells us that

d

dt
qD(t) = 0 ; 8 t ;(8.25)

But

d

dt

�����
t=0

qD(t) =
1

M

Z
D
dnx(c+ u(x))

= 0

(8.26)

and thus Z
D
dnxu � e = �(

Z
D
dnx)c � e

= �Mc � e :
(8.27)

On the other hand

Z
D
dnxu � e = 0 is a necessary condition for �H � e 2 N?, if D

is invariant. Therefore, �H � e has a nonzero component in N . With the help of
Lemma 8.2, the theorem is proved.
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Fig. 8.2. Cellular 
ow with drift c = 0:2(1; 2)

What about ��(e?), e??c? In view of the results for cat's-eye 
ows, the following
theorem is intuitively clear:

Theorem 8.10. If the slope of c is rational, then

� < ��(e?) < c� as � # 0 :

for some c > 1.
Proof: By the result of Weinan E and Moser [20], mentioned in the begining of

this section, rationality of c implies rationality of the rotation number of the channels
and the streamlines in the channels, which implies the periodicity of the streamlines.
Without loss of generality, we can assume that the rotation number is zero by consid-
ering a linear change of coordinates (7.1) on T2. Then, we can simply assume that
c = (1; 0).

By Lemma 8.3, it is su�cient to prove that �H � e 2 Range G which is equivalent
to the existence of ~F 2 Hg such that (see equation (8.14))

(c+ u) � ~F = u � e(8.28)

But since e?c, (8.28) is equivalent to the existence of F; hFi = e such that

(c+ u) � F = 0(8.29)

The existence of F satisfying (8.29) is clear for 
ows with periodic channels.

When the rotation number is irrational, we have the following upper bound.
Theorem 8.11. If the slope of c is irrational, then

��(e?) = o(1=�) :

55



-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Fig. 8.3. Cellular 
ow with drift c = 0:2(1; �=2)

Proof: Since the rotation number � is irrational , the subspaces N and N?

are completely determined by eddies in view of Lemma 8.6 and 8.7, and the only
non-ergodic streamlines are in eddies. It is easy to see thatZ



dtr � �H0 � e =

Z


dt (c+ u) � e = 0(8.30)

for every closed streamline 
, every e.. Let e = e? and, since c?e?, we haveZ


dtu � e? =

Z


dtr � �H � e? = 0(8.31)

By the characterization of N? in Lemma 8.7, �H � e? 2 N? and Lemma 8.4 implies
the theorem.

The precise asymptotic behavior of the e�ective di�usivity for 
ows with eddies
and an ergodic channel is not clear and will be the subject of a future study.

8.4. Flows with no stagnation points. Now, we come to the case where c+u
does not have any stagnation points (see Fig. 8.5 and 8.4).

The following theorem is known in the theory of dynamical systems on the torus
T2.

Theorem 8.12 (Kolmogorov-Denjoy). There exists a coordinate transforma-
tion in Cr(T2)such that the trajectories in the new coordinate system are straight lines
and the system has the form

d�

dt
= c1v ;

d�

dt
= c2v(8.32)

where (c1; c2) = c and v is some positive Cr�1 function.
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Here � = c2=c1 is the rotation number of the dynamical system generated by
c + u. Instead of the original system we may study the transformed one and assume
that hvi = 1 for simplicity, so that

u = (v � 1)c(8.33)

Notice that the transformed 
ow can not be incompressible in the new coordinates
unless it is a shear layer 
ow in the new coordinates system v = v(s); s = c1� � c2�.
But this does not hinder us from using Lemma 8.3 since solvability of equation (8.12)
in one set of coordinates implies solvability in another.

For rational rotation numbers, we have the following theorem
Theorem 8.13. Let � be a rational number. Then we have

c0

�
� ��(e) � c00

�
as � # 0 ; for e 6?(1; �)

� � ��(e?) � c� as � # 0 ; for e??(1; �)
for some positive c, c0 and c00, unlessZ



dt = constant independent of 


in which case the system can be transformed to

dx

dt
= c1;

dy

dt
= c2

and ��(e) = O(�) as � # 0; 8 e:
Proof: We want to show thatZ



u � e dt 6= 0 for some 
 ;(8.34)

and then apply Lemmas 8.2 and 8.7 to show c0=� � ��(e) � c00=�. Since all orbits are
periodic with rational rotation number �, we haveZ



(c+ u) � e dt = c � e(8.35)

and Z


u � e dt = c � e�

Z


c � e dt

= c � e(1�
Z


dt)

6= 0

(8.36)

unless
(i) e = e??c
(ii)

Z


dt = constant independent of 


If (ii) is true, then the system can be further transformed to

dx

dt
= c1 ;

dy

dt
= c2(8.37)
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Fig. 8.4. Shear layer 
ow with drift c = (0; :3)

which obviously will not enhance the di�usion process, and we have

��(e) = O(�) as � # 0 for all e :(8.38)

If (i) occurs, we want to show that

(c+ u) � rf + u � e? = 0(8.39)

is solvable. Actually, u � e? = (v � 1)c � e? � 0. Therefore f � 0 is a solution. It
follows from Lemma 8.3 that

��(e?) = O(�) as � # 0(8.40)

Shear layer 
ows with a non-zero perpendicular drift are examples where the
condition Z



dt = constant independent of 


in Theorem 8.13 holds and therefore no enhancement occurs (Fig.8.4). To see this, let
us consider the 
ow with u = (cos 2�y; 0) and c = c(0; 1), c > 0.

The cell problem (8.1) becomes

��� + u(y)
@

@x
� + c

@

@y
�+ u � e = 0(8.41)

For e = e2 = (0; 1), u � e = 0, thus � = 0 is the solution of (8.41) and we have
��(e2) = �. For e = e1 = (1; 0), (8.41) can be solved by a function � = �(y) whose
derivative is

1

1 + c2

4�2�2

�
� 1

2��
sin 2�y � c

4�2�2
cos 2�y

�
(8.42)
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Fig. 8.5. Cellular 
ow with drift c = 1:1(1; �=2)

and

��(e1) = � +
�

2(4�2�2 + c2)
(8.43)

which is of order � when c is not zero. To see the enormous e�ect of the drift c = c(0; 1)
on the e�ective di�usivity for shear layer 
ows, one can campare (8.43) with formula
(7.6).

If the rotation number � is an irrational number, then the 
ow is ergodic, the space
N is trivial and we have �� = o(1=�). Actually, there is almost surely no enhancement,
as can be seen from the following

Theorem 8.14. Assume that (1) 9c, � > 0, such that

min
p
j�� p=qj � c

q2+�
8 integer p; q

and (2) r � 3 + �. Then

��(e) = O(�) as � # 0; for all e :

Proof: Consider the transformed system:

dx

dt
= c1v ;

dy

dt
= c2v ; v > 0 ;(8.44)

as before. We claim that vc � rg + f = 0, for any f 2 C
�1, is always solvable if the
rotation number satis�es the Diophantine inequality. Dividing the equation by v, we
have c � rg + f=v = 0 Writing g and f in terms of Fourier series, we have

g =
X
m

gmeim�x ; gm = 0 if m = (m1; m2) = (0; 0)

f=v =
X
m

cmeim�x 2 Cr�1(8.45)
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Then,

gm = cm=(m1 + �m2)(8.46)

But by assumption (1)

jm1 + �m2j = jm2j jm1

m2
+ �j � c

m1+�
2

) jgmj � cm
c
m1+�

2(8.47)

and we know that
P
m(cmjmjr�1)2 < 1. Therefore

P
m(gmjmj)2 < 1 if r > 3 + �.

This completes the proof of the theorem.
It is easy to see that a coordinate transformation a�ects only the constant coe�-

cient but not the asymptotics, therefore, if the transformed 
ow is constant streaming,
which obviously does not enhance the e�ective di�usivity, then the e�ective di�usivity
for the original 
ow is order �. The Diophantine condition in Theorem 8.14 is also a
su�cient condition under which a 
ow can be transformed to constant streaming.

A number � is \normally approximated " by rational numbers if it satis�es the
Diophantine inequality

min
p
j� � p=qj � c

q2+�
(8.48)

The set of normally approximated numbers has full measure as can be shown in the
following manner. Consider

Aq = f�: min
P
j� � p

q
j < c

q2+�
g(8.49)

Then measure(Aq) � 2c
q1+�

, which implies that
P

q measure(Aq) < 1, and the asser-

tion follows from the Borel-Cantelli lemma (see [21]).
The exeptional cases where enormous enhancement might occur, not covered by

Theorem 8.14 , are discontinous 
ows or 
ows with nearly rational rotation numbers,
which include rational rotation numbers as a special, trivial case.

8.5. A theorem concerning general time-dependent, non-ballistic 
ows.

If, instead of �H� + ���1c � r, let

G = �H� + ���1 @

@t

, then, as in Section 8.1, the Hilbert space Hg of time-dependent, mean-zero, curl-free
�elds can be decomposed

Hg = N � N?

with N the null space of G and N? the complementary space of N in Hg , which is
also equal to (RangeG). As for Lemma 8.4, it is also easy to deduce the following

Lemma 8.15. �H � e does not have a component in N (i.e. �H � e 2 N?), if
and only if

��(e) = o(
1

�
); as � # 0:

60



Before applying Lemma 8.15, let us de�ne the notion of \ballistic" and \non-
ballistic" motions. An orbit x(t);

dx(t)
d t = u(x; t) is called "ballistic " in the direction

e, if

lim sup
t"1

jx(t) � ej
t

� c(8.50)

for some positive c, otherwise, it is called "non-ballistic" in the direction e. A 
ow is
called "non-ballistic" in the direction e, if almost all orbits are non-ballistic in that
direction. The following theorem is a direct application of Lemma 8.15.

Theorem 8.16. If the 
ow generated by u(x; t) is non-ballistic in the direction
e, then

��(e) = o(
1

�
); as � # 0:

Proof : It is su�cient to show thatZ 1

0
dt

Z
dx e � fu(x; t) = 0

for every F = rf 2 N . Since both f and u are time-periodic, we have

Z 1

0
dt

Z
dx e � fu(x; t)

= lim
N"1

1

N

Z N

0
dt

Z
dx e � fu(x; t)

= lim
N"1

1

N

Z N

0
dt

Z
dx0 e � fu(X(x0; t); t)

(8.51)

where X(x0; t) is the 
ow

dX(x0; t)
d t

= u(X(x0; t); t); X(x0; 0) = x0:(8.52)

The last equality of (8.51) is due to the incompressibility of u. It is easy to see that a
characterization of the space N similar to that in Lemma 8.8 holds for time-dependent

ows and f is constant along every streamline if rf 2 N , i.e. f(X(x0; t); t) = f(x0; 0).
Thus, after interchange of spatial and temporal integrals, (8.51) becomes

��� lim
N"1

Z
dx0 f

1

N

Z N

0
dt e � u

��� � Z dx0 jf j lim sup
N"1

0@���e �X(x0; N)
���

N

1A = 0(8.53)

by the de�nition of non-ballistic 
ows.
Orbits in an open channel are clearly ballistic and they result in O(1=�) e�ective

di�usivity, as stated in theorems of Section 7. Together with previous results on 
ows
with open channels, Theorem 8.16 indicates that ballistic 
ows are the only ones that
lead to O(1� ) asymptotic behaviour of the e�ective di�usivity. Theorem 8.16 also holds
for non-ballistic 
ows that are temporally random. As a comparison, ballistic motion
in 
ows with nonzero mean drifts may not enhance the e�ective di�usivity as shown
in Theorem 8.14. Zhikov [23] makes an observation similar to Theorem 8.16 for 2-
dimensional steady 
ows which do not have non-trivial contours. According to the
results in Section 7, the e�ective di�usivity for these 
ows is of order

p
�, in general.
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A. Relations between di�erent variational principles for nonsymmetric

di�usivities. Homogenization theory as described in Section 2 is valid quite generally,
even when the conductivity or di�usivity matrix (aij) (cf.(2.4)) is complex valued.
The complex e�ective conductivity can be characterized by a saddle-point variational
principle. A key observation of Gibiansky and Cherkaev (see [12]) is that the saddle-
point variational principle can be converted, via Legendre transforms, into a Dirichlet-
type variational principle. Milton [12] generalized their formulation to non-self-adjoint
problems such as the conductivity problem when a magnetic �eld is present, including
the Hall e�ect. Milton's extension procedure is equivalent to our symmetrization
procedure. In this section, we employ their idea to derive a variational principle
similar to that of Gibiansky-Cherkaev-Milton, except the variation is under di�erent
constraints. Then we use the duality relation to derive a dual variational principle
under a dual constraint, and study the connection between these variational principles
and the variational principles developed in Section 3. In Section A.2, we show how to
derive our general variational principles for the full 
ux tensor directly from a pair of
saddle-point variational principles.

A.1. Derivation of the variational principles of Section 3 by a par-

tial Legendre transformation. Consider the forward and backward cell problems
((2.11) in Section 2), with � = 1,

r � (I+H)E+ = 0 ; r�E+ = 0 ; hE+i = e(A.1)

r � (I�H)E� = 0 ; r�E� = 0 ; hE�i = e(A.2)

Let D+ = (I +H)E+, D� = (I�H)E� be the 
uxes for the forward and backward
problems, respectively, and de�ne

D0 =
1

2
(D+ �D�) ; D =

1

2
(D+ +D�)(A.3)

E0 =
1

2
(E+ � E�) ; E =

1

2
(E+ +E�)(A.4)

Then E0, E and D0, D are related by

D0 = E0 +HE(A.5)

D = E+HE0(A.6)

or, in the matrix form,  
D0

D

!
=

 
I H

H I

!  
E0

E

!
(A.7)

The cell problems (A.1) and (A.2) are equivalent to (A.7) with

r �D0 = r �D = 0(A.8)

r �E0 = r �E = 0(A.9)
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under the constraints

hE0i = 0(A.10)

hEi = e(A.11)

Notice that the matrix  
I H

H I

!
is not symmetric. Following Gibiansky and Cherkaev's idea of performing a partial
Legendre transform, let us rewrite (A.5)

E0 = D0 �HE :(A.12)

Then (A.6) becomes

D = HD0 + (I�H2)E(A.13)

and in matrix form, (A.12) and (A.13) are equivalent to 
E0

D

!
=

 
I �H
H I�H2

!  
D0

E

!
(A.14)

Now the matrix is symmetric and positive de�nite as a result of this transformation.
The e�ective di�usivity is given by

�(e) = hE+ �E+i
= hD+ � ei
=

1

2
hD+ � ei+ 1

2
hD� � ei

=
1

2
hD+ �E+i+ 1

2
hD� �E�i

= hD0 �E0i+ hD �Ei
=

* 
I �H
H I�H2

!  
D0

E

!
�
 
D0

E

!+
(A.15)

Since  
I �H
H I�H2

!

is symmetric and positive de�nite, we have a variational formulation for �(e):

�(e) = inf
r�F=0

hFi=e

inf
r�G0=0

hG0i=hHFi

* 
I �H
H I�H2

! 
G0

F

!
�
 
G0

F

!+
(A.16)

The constraint hG0i = hHFi comes from (A.5) and hE0i = 0 for the original problems.
More explicitly, we have

�(e) = inf
r�F=0

hFi=e

inf
r�G0=0

hG0i=hHFi

n
hG0 �G0i � 2hHF �G0i(A.17)

+hF � Fi+ hHF �HFi
o
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Let us �x F and perform the minimization on G0. The resulting Euler equation
is

r� (G0 �HF) = 0(A.18)

Equation (A.18) can be solved using the projection operator �? = r?��1r?�, de-
noted by �c in Section 3 (cf. 3.72),

G0 = hHFi+ �?HF(A.19)

Substituting (A.19) into (A.17) and observing that � = r��1r� = I � �? � h�i, we
obtain,

�(e) = inf
r�F=0

hFi=e

n
hF � Fi+ h�HF � �HFi

o
(A.20)

which is the direct variational principle, (3.73), with � = 1.
To derive our inverse variational principle, let us consider the dual forward and

backward cell problems, with � = 1 again,

r� (I+H)�1D+ = 0 ; r �D+ = 0 ; hD+i = e(A.21)

r� (I�H)�1D� = 0 ; r �D� = 0 ; hD�i = e(A.22)

Set E+ = (I+H)�1D+, E� = (I�H)�1D� and de�ne D0, D and E0, E as before and
are related as in (A.5) and (A.6). The dual cell problems (A.21), (A.22) are equivalent
to (A.7) with (A.8) and (A.9) under the constraints

hD0i = 0(A.23)

hDi = e(A.24)

We again do the partial Legendre transform to (A.6)

E = D �HE0 :(A.25)

Then (A.5) becomes

D0 = E0 +H(D�HE0)
= HD + (I�H2)E0(A.26)

and in matrix form (A.25) and (A.26) are equivalent to 
D0

E

!
=

 
I�H2 H

�H I

!  
E0

D

!
(A.27)

in which the matrix is symmetric and positive de�nite. The inverse e�ective di�usivity
is given by

(�)�1(e) = hD0 �E0i+ hD �Ei
=

* 
I�H2 H

�H I

! 
E0

D

!
�
 
E0

D

!+
(A.28)
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Since this quadratic functional (A.28) is symmetric and positive de�nite, we have a
variational formulation for (�)�1(e):

(�)�1(e) = inf
r�G=0
hGi=e

inf
r�F0=0

h(1+H2)F0i=�hHGi

* 
I�H2 H

�H I

! 
F0

G

!
�
 
F0

G

!+
(A.29)

where the constraint for F0 comes from (A.26), hHDi+ h(I�H2)E0i = 0, by (A.23).
More explicitly, we have

(�)�1(e) = inf
r�G=0
hGi=e

inf
r�F0=0

h(1+H2)F0i=�hHGi

n
hF0 � F0i+ hH2F0 � F0i(A.30)

+2hHG � F0i+ hG �Gi
o

Let G be �xed and perform the minimization on F0. The Euler equation is

r � (1 +H2)F0 +r �HG = 0(A.31)

We can solve (A.31) in the following way. Write (1 +H2)F0 = �HG+r?� where �
is a periodic function. This will satisfy the constraint and � has to solve

0 = r� F0 = r? � F0 = �r? � H

1 +H2
G+r? � 1

1 +H2
r?�(A.32)

or

r?� = �?HHG(A.33)

where �?H = r?��1
H r? � ( 1

1+H2 �), (cf. (3.70) and (3.71) with � = 1) and

F0 = � H

1 +H2
G+

1

1+H2
�?HHG(A.34)

We now substitute (A.34) into (A.30) and consider each term separately. For the
�rst term we have

hF0 � F0i = h 1

1 +H2
(I� �?H)HG � 1

1 +H2
(I� �?H)HGi

for the second term

hH2F0 � F0i = h H2

1 +H2
(I� �?H)HG � 1

1 +H2
(I� �?H)HGi

= h 1

1 +H2
(I� �?H)HG � (I� �?H)HGi

�h 1

1 +H2
(I� �?H)HG � 1

1 +H2
(I� �?H)HGi

and for the third term

2hHG � F0i = �2hHG � 1

H2
(I� �?H)HGi

= �2h(I� �?H)HG � 1

1 +H2
(I� �?H)HGi
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where we use the fact that �?H is a projection operator which is self-adjoint with
respect to the inner product weighted with (1 +H2)�1. For the forth term we have

hG �Gi = h 1
1+H2G �Gi+ h H2

1+H2G �Gi
= h 1

1+H2G �Gi+ h 1
1+H2HG �HGi

When we add these terms we get

(�)�1(e) = inf
r�G=0
hGi=e

n
h 1

1 +H2
G �Gi+ h 1

1 +H2
�?HHG � �?HHGi

o
(A.35)

which is our inverse variational principle.

A.2. Derivation of the variational principles of Section 3 from a sad-

dle point variational principle. Our variatinal principles can be derived directly
from a pair of saddle-point variational principles. This is actually closer in spirit to
our original approach in Section 3. At the end of Section 2 we noted that the full
e�ective 
ux tensor, de�ned by (2.17), is not symmetric. We will now give variational
formlations for the full e�ective 
ux tensor

�(e1; e2) = hD+
e1 � e2i ; 8 e1; e2

where e1; e2 are unit vectors,

D+
e1 = (I+H)E+

e1(A.36)

and E+
e1 is the solution to the forward cell problem in the direction e1

r � (I+H)E+
e1 = 0 ; r�E+

e1 = 0 ; hE+
e1i = e1(A.37)

The e�ective di�usivity

�(e) = �(e1; e2) for e1 = e2 = e

is the symmetric part of the e�ective 
ux tensor. De�ne the backward cell problem in
the direction e2 by

r � (I�H)E�e2 = 0 ; r�E�e2 = 0 ; hE�e2i = e2(A.38)

and let

D�
e2 = (I�H)E�e2(A.39)

De�ne also

E012 =
1

2
(E+

e1 �E�e2)(A.40)

E12 =
1

2
(E+

e1 +E�e2)

D0
12 =

1

2
(D+

e1 �D�
e2)

D12 =
1

2
(D+

e1
+D�

e2
)
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Then from (A.36) and (A.39)

D0
12 = E012 +HE12

D12 = E12 +HE012
(A.41)

and the cell problems (A.37) and (A.38) are equivalent to

r�E012 = r�E12 = 0(A.42)

r �D0
12 = r �D12 = 0(A.43)

along with (A.41) and subject to the mean �eld constraints:

hE012i =
e1 � e2

2
; hE12i = e1 + e2

2
;

The e�ective 
ux tensor is given by

�(e1; e2) = hD+
e1 � e2i

=
1

2
hD+

e1 � e2i+
1

2
hD�

e2 � e1i
=

1

2
hD+

e1 �E�e2i+
1

2
hD�

e2 �E+
e1i

=
1

4
h(D+

e1
+D�

e2
)(E+

e1
+ E�e2)i

�1

4
h(D+

e1 �D�
e2)(E

+
e1 �E�e2)i

= hD12 �E12i � hD0
12 �E012i

=

* 
�I �H
H I

!  
E012
E12

!
�
 
E012
E12

!+
(A.44)

We note that the last expression in (A.44) is a symmetric, inde�nite functional whose
Euler equations are (A.43) via (A.41). Therefore,

�(e1; e2) = inf
hFi=(e1+e2)=2

r�F=0

sup
r�F0=0

hF0i=(e1�e2)=2

* 
�I �H
H I

!  
F0

F

!
�
 
F0

F

!+
(A.45)

The Euler equation for the supremum is

r � F0 +r �HF = 0(A.46)

and hence

F0 =
e1 � e2

2
� �HF(A.47)

When (A.47) is substituted into (A.45) we get our general variational principle

�(e1; e2) = inf
r�F=0

hFi=(e1+e2)=2

n
hF � Fi+ h�HF � �HFi(A.48)

� hHFi � (e1 � e2)� je1 � e2

2
j2
o

(A.49)

(A.50)
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When e1 = e2 = e, (A.48) is identical to the direct variational principle (A.20) of the
previous section and of Section 3.

To get an inverse variational principle, we note that

(�)�1(e1; e2) = hD12 �E12i � hD0
12 �E012i(A.51)

provided that E012, E12, D
0
12 and D12 satisfy (A.41), (A.42) and (A.43), subject to the

mean �eld conditions

hD0
12i =

e1 � e2

2
; hD12i = e1 + e2

2

Let us invert (A.41):

E012 =
1

1+H2
(D0

12 �HD12)

E12 =
1

1+H2
(D12 �HD0

12)
(A.52)

As before, we have the saddle point variational principle

(�)�1(e1; e2)(A.53)

= inf
r�G=0

hGi=(e1+e2)=2

sup
r�G0=0

hG0i=(e1�e2)=2

*
1

1 +H2

 
�I H

�H I

!  
G0

G

!
�
 
G0

G

!+

Eliminating the supremum by solving the corresponding Euler equation we get

r� 1

1 +H2
G0 �r� 1

1 +H2
HG = 0

and hence

G0 =
e1 � e2

2
� �?H

�
e1 � e2

2

�
+ �?HHG(A.54)

where �?H is de�ned by (3.70) and (3.72). Using (A.54) in (A.53) we can get our
general inverse variational principle

(�)�1(e1; e2)(A.55)

= inf
r�G=0

hGi=(e1+e2)=2

�D 1

1 +H2
G �G

E
+ h 1

1 +H2
�?HHG � �?HHGi

+2h 1

1 +H2
HG �

�
e1 � e2

2
� �?H

�
e1 � e2

2

��
i

�h 1

1 +H2

�
e1 � e2

2
� �?H

�
e1 � e2

2

��2
i
)

When e1 = e2 = e, (A.55) is identical to (A.35) of the previous Section.
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A.3. The symmetry of the full e�ective 
ux tensor. Let �� be the e�ective

ux tensor associated with the 
ow �H, instead of H. In view of (A.45) and (A.48),
�� admits also variational formulations

��(e1; e2) = inf
hFi=(e1+e2)=2

r�F=0

sup
r�F0=0

hF0i=(e1�e2)=2

* 
�I H

�H I

!  
F0

F

!
�
 
F0

F

!+
(A.56)

and

��(e1; e2) = inf
r�F=0

hFi=(e1+e2)=2

n
hF �Fi+ h�HF � �HFi(A.57)

+ hHFi � (e1 � e2)� je1 � e2

2
j2
o

Clearly

��(e1; e2) = �(e2; e1)(A.58)

The symmetry of �, that is, �(e1; e2) = �(e1; e2) is equivalent to the statement that
the e�ective 
ux tensor is independent of the sign of the stream matrix H. Several sit-
uations lead to the symmetry of the e�ective 
ux tensor for two-dimensional, periodic

ows:
a) Translational antisymmetry of H in the sense that there is a vector r such that
H(x+ r) = �H(x) for all x 2 R2.

The symmetry of the e�ective 
ux tensor follows easily from this translational
antisymmetry ofH in view of the transformation x ! x+r; F(x)! G(x) = F(x+r).
This will bring (A.48) to

inf
r�G=0

hGi=(e1+e2)=2

n
hG �Gi+ h�HG � �HGi(A.59)

+ hHGi � (e1 � e2)� je1 � e2

2
j2
o

which is equivalent to (A.57).
b) Re
ectional antisymmetry of H with respect to an axis, say x-axis in the sense that
H(x;�y) = �H(x; y) for all x = (x; y) 2 R2.

Write the the trial �elds F and F0 in (A.45) as the gradient of periodic functions
f and f 0 plus the mean �elds (e1 + e2)=2 and (e1 � 22)=2 respectively and consider
the transformation

F! G = r(g + x� y

2
); F0 ! G0 = r(g0 + �x � y

2
)

where

g(x; y) = f(x;�y); g0(x; y) = �f 0(x;�y):
This transformation maps (A.45) into

inf
hGi=(e1�e2)=2

r�G=0

sup
r�G0=0

hG0i=(�e1�e2)=2

* 
�I H

�H I

!  
G0

G

!
�
 
G0

G

!+
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which is equal to ��(�e2; e1). Using the relation (A.58), we have

�(e1; e2) = ��(�e2; e1) = �(e1;�e2) = ��(e1; e2)
, that is, �(e1; e2) = 0. Similarly, we have �(e2; e1) = 0. In other words, the antisym-
metry of H with respect to the x-axis leads not only to the symmetry of the e�ective

ux tensor but also the statement that e1 and e2 are the eigenvectors of the tensor.
The same conclusion holds for any H that is re
ectionally antisymmetric with respect
to the y-axis. In general, if the stream function H has the re
ectional antisymmetry
with respect to a vector e then the e�ective 
ux tensor is symmetric ,and e and its
perpendicular direction are the eigen-directions of the tensor.
c) 180o-Rotational antisymmetry of H with respect to a point, say the origin in the
sense that H(�x; ;�y) = �H(x; y) for all x = (x; y) 2 R2.

Consider the transformation

F! G = r(g + x+ y

2
); F0 ! G0 = r(g0+ x� y

2
)

where

g(x; y) = �f(�x;�y); g0(x; y) = �f 0(�x;�y):
Note that G(x) = F(�x). This transformation maps (A.45) into

inf
hGi=(e1+e2)=2

r�G=0

sup
r�G0=0

hG0i=(e1�e2)=2

* 
�I H

�H I

!  
G0

G

!
�
 
G0

G

!+

which is ��(e1; e2) and the symmetry of the e�ective 
ux follows immediately.
A special class of 
ows that have symmetric e�ective 
ux tensor are shear layer


ows for which the cell problems can be solved exactly as follows. The cell problem
for u(x) = (u(y); 0) in the direction e1 is

��1 + u(y)
@

@x
�1 + u(y) = 0(A.60)

which reduces to

@2

@y2
�1 + u(y) = 0(A.61)

when the ansatz �1 = �1(y) is chosen. Thus

�1(y) =
Z y

0
dy0 H(y0):

The e�ective 
ux

�(e1; e2) = h(I +H)r�1 � e2i = h@�1
@y

i = 0:

On the other hand, the solution �2 to the cell problem in the direction e2 is trivially
zero and

�(e2; e1) = h(I +H)r�2 � e1i = 0:

Thus we have

�(e1; e2) = �e2 � e1 = 0:

Therefore, for the shear layer 
ows in the x- or y- directions, the e�ective 
ux tensors
are symmetric and e1; e2 are the eigenvectors of the tensors.
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B. Variational principles for time dependent 
ows. In this Section, we
derive various variational principles for the e�ective di�usivity in time dependent

ows by two di�erent methods. Let us consider 2-dimensional space-time periodic

ows u = u(x; y; t) that are incompressible, i.e. r � u = 0. The space-time cell
problem is

@

@t
� = ��� + u � r� + u � e(B.1)

and the e�ective di�usivity is given by

��(e) = � + ��
Z
hr� � r�i(B.2)

where �R stands for temporal average over a time period and h�i for spatial average
over a spatial period. In the derivation of the variational principles, we shall set � = 1.

B.1. Variational principles from a nonlocal space-time cell formulation.

Equation (B.1) can be put into divergence form

r � (I+H���1@t)r�+r �He = 0(B.3)

or

r � (I+H���1@t)E+ = 0 ; r� E+ = 0 ; hE+i = e(B.4)

with

�(e) = �
Z
hE+ �E+i

Here

H =

 
0 H

�H 0

!
and r?H = u :

Consider the forward and backward cell problems

r � (I+H���1@t)E+ = 0 ; r� E+ = 0 ; hE+i = e

r � (I�H+ ��1@t)E� = 0 ; r� E� = 0 ; hE�i = e

De�ne the (nonlocal) 
uxes by

D+ = (I+H���1@t)E+

D� = (I�H+��1@t)E�

and set

E0 = 1
2(E

+ �E�)
E = 1

2(E
+ +E�)

D0 = 1
2(D

+ �D�)
D = 1

2(D
+ +D�)
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Then we have

D0 = E0 +H0E
D = E +H0E0(B.5)

where

H0 = H���1@t

is a skew symmetric operator with respect to the space-time inner product. The
original cell problem (B.4) is now transformed into

r� E0 = r� E = 0(B.6)

r �D0 = r �D = 0(B.7)

along with the relations (B.5) and the mean �eld conditions hE0i = 0, hEi = e.
The e�ective di�usivity can be expressed in terms of E0, E, D0, and D as follows

�(e) =
1

2
�
Z
hD+ � ei+ 1

2
�
Z
hD� � ei

=
1

2
�
Z
hD+ �E�i+ 1

2
�
Z
hD� �E+i

= �
Z
hD �Ei � �

Z
hD0 �E0i

(B.8)

Using (B.5), we can write (B.8) in the form

�(e) = �
Z * 

�I �H0

H0 I

!  
E0

E

!
�
 
E0

E

!+
(B.9)

which is a symmetric, inde�nite functional whose Euler equations are (B.7) via (B.5).
Therefore, �(e) comes from a saddle point variational principle which is

�(e) = inf
r�F=0

hFi=e

sup
r�F0=0

hF0i=0

�
Z * 

�I �H0

H0 I

!  
F0

F

!
�
 
F0

F

!+
(B.10)

We can eliminate the supremum by solving the corresponding Euler equation

r � F0 +r �H0F = 0

Using projection operator the solution has the form

F0 = ��H0F :(B.11)

and substituting (B.11) into (B.10), we have

�(e) = inf
r�F=0

hFi=e

�
Z
fhF � Fi+ h�H0F � �H0Fig ;(B.12)
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which is the (direct) variational principle for the upper bound.
To get a reciprocal variational principle, we note that

(�)�1(e) = �
Z
hD �Ei � �

Z
hD0 �E0i(B.13)

if D0, D, E0 and E satisfy (B.5), (B.6) and (B.7), subject to the mean �eld constraints
hD0i = 0, hDi = e. Inverting the relation (B.5), we have

E0 = (I� (H0)2)�1(D0 �H0D)
E = (I� (H0)2)�1(D�H0D0)(B.14)

Note that �(H0)2 is nonnegetive. In terms of D0 and D via (B.14), (B.13) is a
symmetric, inde�nite functional whose Euler equations are (B.6). Therefore,

(�)�1(e) = inf
r�G=0
hGi=e

sup
r�G0=0
hG0i=0

�
Z
h(I� (H0)2)�1

 
�I H0

�H0 I

!  
G0

G

!
�
 
G0

G

!
i(B.15)

We can eliminate the supremum by solving the corresponding Euler equations to
establish the inverse variational principle for the lower bound of �(e). However, this
variational principle does not seem to be of much use because the operator (I�(H0)2)�1

is di�cult to work with.
We derive in the next section di�erent variational principles which are easier to

use.

B.2. Variational principles from a local, augmented, space-time cell

formulation. This approach is based on the following simple observation. If, intead
of (B.1), we consider

� @

@t
�0 = ��0 + u � r�0 + u � e(B.16)

with �0 = �0(x; y; t) space-time periodic then the e�ective di�usivity is again given by

�(e) = 1 + �
Z
hr�0 � r�0i(B.17)

This can be readily seen since the right-hand side of (B.17) has a variational formula-
tion similar to (B.12) with H0 replaced by H+��1@t. The infema are the same since
both trial �elds F(x; y; t) and F(x; y;�t) are admissible.

Consider now an extended coordinate space (x; y; t; w) and an extended cell prob-
lem: (

@
@t ~� = �~� + u � r~�+ u � e ; when 0 < w � 1

2
� @

@t ~� = �~� + u � r~�+ u � e ; when � 1
2 < w � 0

(B.18)

where (B.18) is periodized in w with period 1. The function ~� = ~�(x; y; t; w) is simply(
� de�ned by (B:1) ; when 0 < w � 1

2
�0 de�ned by (B:16) ; when � 1

2 < w � 0

Let us introduce the following notation:
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a) the extended gradient: ~r = (r; @t; @w)
b) the extended intensity: eE = ~r~�+ ~e with ~e = (e; 0; 0)
c)the extended velocity: u(x; y; w; t) = (u;�1; 0) depending on the sign of w, mod 1.

d)the extended average: hh�ii =
Z 1

0
dw�
Z
h�i

Note that ~u is incompressible in the extended space (x; y; t; w) and has zero mean.
Thus, there exists a periodic skew symmetric matrix eH such that ~r � eH = ~u. In fact,

eH =

 
H 0
0 L

!
where

H =

 
0 H

�H 0

!
and

L =

 
0 L

�L 0

!

whereL = L(w) is a piecewise linear sawtooth function de�nded by

L(w) =

(
1
2w ; when 0 < w � 1

2
�1

2w ; when �1
2 < w � 0 :

With this notation, (B.18) can be put into divergence former � (I+ eH)eE+ = 0 ; eE+ = er~� + ~e(B.19)

where

I =

0BBB@
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1CCCA
Let

I0 =

0BBB@
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

1CCCA
so that I+ I0 is the identity matrix in the extended space, which is denoted by eI, i.e.eI = I+ I0.

The e�ective di�usivity is given by

�(e) = hhIeE+ � eE+ii
Since the extended space is 4-dimensional, it is not convenient to use gradient and
curl, and we shall use di�erential forms to interpret (B.19) . The �eld eE+ is a 1-form
such that deE+ = 0, hheE+ii = ~e and

d�(I+ eH)eE+ = 0 ;(B.20)
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where d is the exterior derivative and � is the Hodge star operator on the 4-dimensional
torus (see [24]).

Next, we carry out the symmetrization proceudre as before by considering forward
and backward problems:

d�(I+ eH)eE+ = 0 ; deE+ = 0 ; hheE+ii = ~e

d�(I� eH)eE� = 0 ; deE� = 0 ; hheE�ii = ~e
(B.21)

Let eD+ = �(I+ eH)eE+eD� = �(I� eH)eE�(B.22)

and eE0 = 1
2(
eE+ � eE�)eE = 1

2(
eE+ + eE�)eD0 = 1

2(
eD+ � eD�)eD = 1

2(
eD+ + eD�)

(B.23)

Note that (B.22) are local relations in the extended space. The relations between eE0,eE, eD0 and eD are:

eD0 = �(IeE0 + eHeE)eD = �(IeE+ eHeE0)(B.24)

or in matrix form  
� eD0eD

!
= �

 
�I � eHeH I

! eE0eE
!

(B.25)

which is a symmetric, inde�nite form. We have that

�(e) =
1

2
hh(��) eD+ � ~eii+ 1

2
hh(��) eD� � ~eii

=
1

2
hh(��) eD+ � ~E�ii+ 1

2
hh(��) eD� � eE+ii

= hh(��) eD � eEii � hh(��) eD0 � eE0ii
The minus sign is due to the identity ��E = �E for 1-forms in 4 dimensions. As
before, we have a saddle point variational principle in view of (B.25)

�(e) = inf
deF=0

hheFii=~e

sup
deF=0

hheFii=0

** 
�I � eHeH I

! eF0eF
!
�
 eF0eF

!++
(B.26)

We can eliminate the supremum by solving the corresponding Euler equation

d�IeF0 + d� eHeF = 0(B.27)

in the following manner. Set eF0 = df with f is a periodic function in the extended
space since hheF0ii = 0. Then f satis�es

(d�Id)f = �d� eHeF(B.28)

75



The left-hand side of (B.28) is nothing but the spatial Laplacian � over the spatial
period which is invertible. Thus,

f = �(d�Id)�1d� eHeF(B.29)

When (B.29) is substituted into (B.26), we have

�(e) = inf
deF=0

hheFii=~e

hhIeF0 � eF0ii+ hhIeF � eFii
= inf

deF=0

hheFii=~e

hhIeF � eFii+ hh(d�Id)�1d� eHeF � d� eHeFii(B.30)

It is not hard to see that, after some algebra, (B.30) is the same as (B.12).
To get an inverse variational principle, we note that

(�)�1(e) = hh(��) eD � eEii � hh(��) eD0 � eE0ii(B.31)

with hh eD0ii = 0 and hh eDii = �~e. We now invert (B.25), which is a local operation, and
we have

eE0 = � 1

1 +H2
I� eD0 +

�
1

1 +H2
H+

1

L
J0
�
� eD

eE = � 1

1 +H2
I� eD+

�
1

1 +H2
H+

1

L
J0
�
� eD0

(B.32)

where

J0 =

0BBB@
0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

1CCCA
As before, we have a saddle point variational principle for (B.31):

(�)�1(e)(B.33)

= inf
deG=0

hheGii=�~e

sup
deG0=0

hheG0ii=0

** 
� I

1+H2
1

1+H2H+ 1
LJ

0

� 1
1+H2H� 1

LJ
0 I

1+H2

! 
� eG0

� eG
!
�
 
� eG0

� eG
!++

The Euler equation for the supremum is

d
1

1 +H2
I� eG0 � d

�
1

1 +H2
H+

1

L
J0
�
� eG = 0 ;(B.34)

and when (B.34) holds, (B.33) can be simpli�ed to

(�)�1(e) = inf
deG=0

hheGii=�~e

��
1

1 +H2
I� eG � � eG�� +

��
1

1 +H2
I� eG0 � � eG0

��
(B.35)
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