SIAM J. ApPL. MATH. © 1994 Society for Industrial and Applied Mathematics
Vol. 54, No. 5, pp. 1203-1223, October 1994 002

RECONSTRUCTION OF A SPHERICALLY SYMMETRIC SPEED
OF SOUND*

JOYCE R. MCLAUGHLIN', PETER L. POLYAKOV¥, anD PAUL E. SACKS®

Abstract. Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity
of compact support that arises, among other places, in nondestructive testing. Define the corresponding
homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart.
J. Mech. Math., 41 (1988), pp. 97-125]. Here the authors study the subset of transmission eigenvalues
corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem.
It is shown in McLaughlin and Polyakov [J. Differential Equations, to appear] that these eigenvalues are the
zeros of an average of the scattering amplitude, and a uniqueness theorem for the inverse acoustic
scattering problem is presented where these eigenvalues are the given data. In the present paper an
algorithm for finding the solution of the inverse acoustic scattering problem from this subset of transmis-
sion eigenvalues is developed and implemented. The method given here completely determines the sound
speed when the size, measured by an integral, satisfies a particular bound. The algorithm is based on the
Gel'fand-Levitan integral equation method [I. M. Gelfand and B. M. Levitan, Amer. Math. Soc. Trans., 1
(1951), pp. 253-304], [W. Rundell and P. E. Sacks, Inverse Problems, 8 (1992), pp. 457-482].
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1. Introduction. We consider the inverse acoustic scattering problem for a
spherically symmetric inhomogeneous medium of compact support in a ball ), of a
radius b in R®. We seek to recover the local speed of sound c(7), supposed to have
the following properties:

c(7) =c(r),

c(r)=c,>0, for r>rg,

where r=17] and ¢y, r,<b are given constants. Denoting n(r)=[c0/c(r)]2, we
assume that n(r) —1=[c,/c(r)* — 1 € H}(R?) and that n(r) # 1. Letting o, a be
the frequency and direction of an incident planewave and letting k = w/c, be the
wavenumber, the scattered wave, w'(7, t), satisfiés

w(?,t) — e—iwt+ik(?~a) + Ws(?,t),
where

1
[e(nT

w,, = Aw,
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the acoustic wave equation. Assuming that w(7,¢) =e ' “'u(F),w*(7,t) = e "'u’(¥),
then the velocity potential u(7) satisfies

Au+k*n(P)u=0,
u(?) =e* o 4 ys (7)),

1
and the scattered field, u*(¥), satisfies the Sommerfeld (outgoing) radiation condition

u’
lim r(— - ikus) =0
oo ar

and the asymptotic form

ikr

u'(r)= F(#f,k,a)+0O

r

1
rz)'

Here F(7, k, ) is the scattering amplitude and 7 are the spherical coordinates on the
unit sphere 9 in R®. When c is allowed to be a function of all three variables, one is
interested in recovering c(7) from the five variable function, F(7, k; @). A uniqueness
result and further references can be found in [CK].

In this paper we are concerned with recovering ¢ = ¢() from the zeros of certain
integral averages of F that have been shown to be eigenvalues of a related boundary
value problem; for completeness we repeat that argument in this paper. We then
reconstruct c(r) from this data. In this paper we reconstruct c(r) when a=
b{f¢lcy/c(r)]dr}~! > 3; the reconstruction for the cases 0 <a <1 and 1 <a <3 will
be presented in a subsequent paper. The reconstruction presented here is then
applicable when the “size” of c(r), as measured by a = b{ [l[c,/c(r)ldr}~!, is suffi-
ciently large. We show that even for a small number, say 10, of the zeros of the
integral average, the reconstruction is reasonably good; for more eigenvalues, say 30,
the reconstruction can be quite accurate.

Our method is new. We have extracted functionals, that is the eigenvalues, from
the scattering amplitude; we use this data to determine a related overposed Goursat
problem (see also [RS1], [RS2]) leading to the recovery of n(r). Other known
numerical methods for recovering n from the scattering amplitude fall roughly into
two groups. In one type the problem is reformulated as a nonlinear optimization
problem subject to a priori constraints. See, for example, [JT1], [JT2], [KvdB], [T],
[WC], [W1], [W2]. In the second type, a dual space method is used. One simultane-
ously seeks n(r) and the solution of the Lippmann—Schwinger equation subject to a
carefully chosen constraint, see [CM2]. See also [CK, pp. 10-11] for a discussion
comparing the two types of numerical methods.

The boundary value problem that we use for determining the eigenvalues is the
so-called homogeneous interior transmission problem. It was formulated in [CM1] and
consists of finding a solution to the system of equations and boundary conditions:

Av + k*n(r)v =0,
Aw +k*w =0,
) v(7)-w(F)=0 on 4Q,,

d
—@FE) ~wFN=0 on Q.
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The k? for which (2) has a solution are called transmission eigenvalues. We will
confine ourselves to a subset of the set of transmission eigenvalues, namely to the
eigenvalues of (2) with spherically symmetric eigenfunctions {v,w}. These eigenvalues
can be considered as the eigenvalues of an associated one-dimensional eigenvalue
problem with the eigenvalue parameter in the boundary condition. This will not be a
standard Sturm-Liouville problem; it will not be a self-adjoint boundary value
problem, nor will it have a well-defined adjoint problem. Still, we have adapted some
of the known techniques (see [PT], [MP], [RS1], [RS2]) to establish asymptotics of the
eigenvalues, uniqueness of the inverse eigenvalue problem, and the reconstruction
procedure. Please note that a new feature of this inverse eigenvalue problem will be
that the size of c(r), as measured by a = b{[{[c,/c(r)]dr}~", is exceptionally impor-
tant. The reduction is made as follows [CM1], [MP].

Because # is radially symmetric, the solution of (2) has the form:

1 i
v(7) = - Z a,,,,y,(r)Y,"'(? )

I|Mg ’TMEB

i
Z blm]l(kr)Yl (),

N

w(?
!

where y, is a solution of

l(l+ 1)

(kzn(r) -

y=0
with initial condition

llm( —y(r) — j,(kr))

for 7, spherical coordinates; Y,”, spherical harmonics; and j,, Bessel functions.
If we consider only radially symmetric solutions of (2), then we must have
I=m=0or

1
v(x) = 7a00y0(r),
w(x) = by jo(kr).

Relabeling y, as y, we can rewrite the problem (2) for radially symmetric solutions in
a form

y' +k*n(r)y=0, 0<r<b,
llm ( —y(r)—1|=0,

3) 1
7y(r) —jo(kr)
det d /1 d =0 forr=>s.
——(—y(r)) - —jo(kr)
r dr

dr
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Then, taking into account that n'(b) =0, n(b) = 1, j,(kr) = sin kr /kr and making the
change of variables:

1 .
I 1/2
x B]On () dt,

y(x) =y(r(x)),
i(x) = n(r(x)),

A=B%*>,
b

a=-—,
B

where B = [¢n!/?(¢) dt, we arrive at the following eigenvalue problem in impedance
form [CM1], [MP], [RS2]:

(A%-y), + Ai/?y=0 forO0<x<1,

0 y(0) =0,
sinVA a
y(1)-cosyAa —y (1) Y =0.

To characterize the same subset of transmission eigenvalues from the point of
view of F(Z, k, &), let us suppose that k2 is not an eigenvalue of (3). Then there exists
a solution {r~'ag, y(r), by j,(kr)} of the nonhomogeneous interior transmission problem
[CM1]: .

Av + k*n(r)v =0,
Aw + k*w =0,
ikr

v(F) —w(7) =‘r— on 9Q),,

a((”) ) A Q
Zvr — w\r _ET on d b

with
1 eikr
7)’(”) T
det
N a o) 4 eitr
5(7”) i
by =
7y(r) —Jjo(kr)
e (r) d'(k)
4] ~Lan]|

Using then the equality

[ e da (i) = dmjy(kIFD
a0
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we conclude that w is a Herglotz wave function [CM1], [HW]
w(?) = [ g(De kP 4o (§),
0

with Herglotz kernel g(f) = b, /4, where we note that g(7) and b, both depend on
k. Applying the equality from [CM1],

1= [ g®F( k a)do(
a0

and we obtain,

1 1 N .
b =1 /;QF(t,k, a)do(f).

Both sides of the last equation are meromorphic functions of k, and the zeros of
1/b, are the eigenvalues of (3). Thus, we obtain the characterization of the selected
subset of transmission eigenvalues as the set of zeros of averages of the scattering
amplitude.

Our method is as follows. We reconstruct 7(x) from the spectrum of (4). This
spectrum is almost the same as the spectrum of (3). The only difference is that each
eigenvalue of (4) is B? times an eigenvalue of (3). From the knowledge of 7i(x), where
x =B~ '[{n'/?(¢) dt, we can reconstruct r(x) as the unique solution of the differential
equation,

dr B
dx a(x)
with initial condition,
r(0) =0.

Using then the positivity of 7'/2(x), we can uniquely reconstruct the dependency x(r)
and consequently the function c(r) = c,a~'/2(x(r)) = con=1/%(r).

From the above arguments it follows that the reconstruction of c(r) can be
reduced to the problem of reconstruction of 7i(x) from the spectrum of (4).

The spectra of (4) was investigated in [MP]. Making the change of variables

z(x) =a"*(x) -y(x),
we transform (4) into a canonical form of the Sturm-Liouville problem:

z,+A—q(x))z=0 for0<x<1,

(5) Z(O) = O’
sinV/A a
z(DcosVA a _Zx(l)T =0,
where
(#/4(x))
q(x) = W ELZ[O, 1]

The following theorems were established in [MP].

THEOREM 1. Let q =(7"/*) a~'/* € L%[0,1], be a real valued function. There
exists an integer i, that has the properties:

(1) the number N(i) of all such eigenvalues A of (4) such that |A < (i + 1)*w?/
(a — 1)? satisfies the condition N(i) > i for i > i;
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(2) there are infinitely many real eigenvalues of (4), satisfying the condition u >
i2m?/(a — 1), all of them are isolated and have the following form:

) @) w2i? 1 1()d 1 1() 2arit d C
(q) — - t)dt — —— t)- H<—
wD = T Tk 1) °°S(a—1) i
for
25Ala — 1]
i > max 1,A,——2 s
o
A= max{e”q",(llqll o l)ellqll % 1}’
C=16A4+——1+Axla—1])
la — 1]

Il ||(15A 2.4 4 0.51 ! 1.2 4 )
+ SA+24——+0. +1. 3
d la —1] la — 1] la — 1/

] 1/2
lqll = (/Oqz(x)dx) .

THEOREM 2. Let q, =(a}/*),, a7 "4, q, = (YY", A5 '/* € L}[0,1] be real valued
functions. Let a > 3 and let there exist a common sequence of eigenvalues A (j=1,...,%)
of (4), for i, and f, satisfying the following properties:

(1) there exists ig€Z* such that |\ <@+ 3)°m?/(a—1)* for j=1,...,i and
i>iy,;

(2) all A; such that |\| > (i + 5)*m?/(a — 1) are real.

Then ny = fi,.
Note that the asymptotic form (6) holds because A; = u(q,) for

1 2
o> (io + E) 7 /(a - 1)

and q;=(aV/*) A7V4i=1,2.

Theorem 2 makes it reasonable to try to find a procedure of reconstruction of an
A(x), with g(x) = (7"/*),,A~"/* € L4[0,1] and a > 3, from the spectrum of (4). In this
paper we discuss such a procedure.

The paper is organized as follows. In §1 we consider the Goursat problem [GL],
[RS2] associated with the boundary value problem (4). Then an intermediate problem
of finding the boundary values for this Goursat problem is formulated. This problem
is formulated in terms of a certain infinite dimensional system of linear equations.
The main theorem on the solvability of the infinite dimensional system is stated. In §2
the proof of this theorem is given. We then have the required theory to implement
the numerical method. Section 3 contains the description of this numerical method
and the computed results.

1. Derivation of the reconstruction procedure. Following [RS1], [RS2] we con-
sider for g =(a'/*), a~'/* € L4[0,1] the Gelfand—Levitan kernel K(x,t;q) defined
on the triangle 0 < [¢| <x <1 and satisfying the following conditions [GL]:

K,—K, +q(x)-K=0 for0<lt|<x<1,

7 K(x,00=0 for0<x<l,

1 .x
K(x,+x)= J_r—fq(u)du forO<x<1.
27
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Defining
1+ [fK(x,u) du
ﬁ1/4(x) ’

we conclude from (7) that M(x, t) satisfies the conditions

® M(x,t) =

A% (x) M, — (a"*(x)-M,), =0 forO0<t<x<l,

) M,(x,00=0 forO<x<l,

M(x,x)= for0<x<1.

1
a4 (x)
The boundary values M,(1,¢) and M ,(1,¢) for ¢ €[0,1] together with (9) provide the
overdetermined boundary Goursat problem for M from which 7(x) can be recon-
structed. The method of the reconstruction of 7(x) from this overdetermined problem
was developed in [RS2]. The method consists of two parts:

(i) reconstruction of the boundary values {M,(1,¢), M (1, t)} from the spectral data,

and
(i) reconstruction of 7(x) as a fixed point of a nonlinear mapping defined by (9)
and boundary values {M,(1, 1), M, (1,1)}.
We deal in this and the next section only with part (i) of the reconstruction. Namely,
we discuss the numerical procedure of the reconstruction of M/(1,¢) and M,(1,¢)
from the spectral data for (4) with a large enough.
The possibility of such a reconstruction arises from the integral equation [GL]:

inyA x invA
(10) 2, A, q) = Sm/x_x +]01<(x,t;q)~811‘/_‘i——1 d@,

where z(x, A, g) is the solution of the differential equation (1) with initial conditions
z(0) =0, z'(0) = 1. Using (10) in the boundary condition at x = 1, we get

si

nvAa
['K.(1, 0sinVXede
A 0

cosﬁaflK(l,t)sin\/_/\—tdt— Yy
0

(11)
K(1,1)

N

=sinVA(a—1) + -sinyA -sinVA a
for A=2(q) (j=1,...,).

Substituting then into (11) K(1,¢) = —M,(1,¢) and K (1,7) = —M, (1, ¢), integrat-
ing by parts in the second integral, and using M, (1,1) = K(1,1) we get

(12) cosf):aflM,(l,t)sim/Xtdt + sin\/XaflMx(l, cosVA tdt =sinyA (1 — a)
0 0

for A=A(q) (j=1,...,).

We want to consider (12) as the system of equations for the coefficients of
Fourier series for M,(1,¢) and M,(1,¢). To do this we construct special bases in
L%[0,1] and show the procedure of the reconstruction of K(1,1) = M,(1,1).

The latter is a consequence of Theorem 1 and of (7), because from (7) we have

1
K(1,1) = Efoq(t)dt,
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and using this in (6) we obtain
ML =) - e 2 kel
- (1,1) = w,(q) — + D el,,
(a-1° a-1 K o a1 ’
which makes it possible to reconstruct M, (1,1) from the real spectrum of (4), or
K(1,1) from the real spectrum of (5).
We consider then two bases in L[0, 1],

13) a-—

=)

- 1
{sinimt}i=1 and {cos(i—z)wt} s

i=1

and Fourier series in these two bases,

(14) M,1,t) = —tM (1,1) + ) x,; sin i,
i=1

® 1
(15) M, (1,0)=M,(1,1) + sz,._lcos(i—z)ﬂ-t.
i=1
Let us denote j(s)=[((a —1)/2)s] = (integer part of ((a —1)/2)s) for s€Z*.
We assume further on that 7(x) has the additional property; namely, that there exists
s, such that for s > s, we have

(16) N(j(25)) > 2,

where Ng(i) is the number of real eigenvalues of (5) satisfying the condition
A<+ D272 /(a — 12

Together with the asymptotics (6) the property (16) allows us to choose a special
sequence of real eigenvalues of (5). Assuming that s, from (16) is such that j(2s,) is
bigger than i, from (6), we choose any 2s, real eigenvalues from the eigenvalues
satisfying |A| < (j2s, + 3))*m2/(a — 1)?, and then we choose eigenvalues A, for
s > 25,. We denote this sequence by {A;)}.

Substituting now (14) and (15) into (12) evaluated at A;,(q) we obtain the
infinite system of linear equations:

i 1
Yy xz,--(cosx/x,-(s)a)f sin iart-siny/A jo)tdt
i=1 0

e} 1 1
17) + Y xz,»_l(sim/xj(s)a)f cos(i = E)Wt'COS\/Xj(s)tdt
i=1 0

. cosyA jioa-sinV/A o) cosVA jis)(1 — a)
= sinVA jo(1 — ) + M.(1,1) =M, D
Ajcsy \/Xj(s)

fors=1,...,0.

Let I} be the Hilbert space of real sequences {x]°_; with the norm x|,z =
(T2, 52212,

Our main goal is to prove the following theorem.

THEOREM 3. Let us denote by «, the minimal positive solution of the equation

(1 — cos a + sin ma)” + (2 — cos wa + sin wa )’ - (tan 7o)’ = 1,

and let us denote ay = (1 + o)/ ay) ~ 9.4.
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If a > ay, then the system (17) is a Fredholm type system in 17, namely it is equivalent
to a system

(I+N+K)x=y,

where I is the identity operator, N is bounded operator with ||N||;2 <1, K is a finite-di-
mensional operator, and y € I7.

2. Proof of Theorem 3. Before proving Theorem 3 we will prove several lemmas.
LEMMA 1. Fora>3 and s> (1/a —1)-max{1, 4,25A4(a — 1)/ 7%}

(18) VA em+o|s (2T 5 1 -
i2s)d — + -l - +
j@2s)a m 2‘ > -1 . g
and
T T B 2
(19) I\/xj(2s+l)a—m'7T|2 —_— 1+ ,
2 a-—1 K a—2

for any m € Z*, where B =2||q||/ 7+ C(a — 1) /7, and C from (6).

Proof. Let us start with the proof of (18).

Denote p =j(2s) =[s(a — 1)]. Then from the asymptotic estimate (6) we con-
clude that

pT B
‘\/xj(ZS) = ——"l <—,
a—1| p
and subsequently

pra

< <
st(a—1)—-1 s

Ba B 2
(20) "/Xj(h)a — (1 = a—“_‘—z—) §

a—1

It follows from (20) that to prove (18) it suffices to prove that

1) LR N
e -emeglz(z )

for any m =1,...,. To prove (21) we represent (pma/(a —1)) = Cm + 1)(7/2) +
a. Then

2m+ 142«
T Am-p)+1+2a
and
2
(22) a— P

1= ]
2m—p)+1+2a

From the equality [s(a — 1)] =p we deduce that

2s
Pom—p)+1+2a|

p

and subsequently

2s 1
1< <14+ -,
2m—p)+1+2a p
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or

1 1 2m+1+2a
23) (m-p)+=+ass<(m—p)+—-—+a—1+——"—.
2 2 2p

From (22) we get
2ma —2pa+a+2aa=2m+1+2«

and subsequently

24) 2m+1+2a«a a . 1
= =1+ :
2p a—1 a—1
Applying now (24) in (23) we obtain
1 1 1
(25) m-p)+-+a<s<(m—-p)+-+a+——.
2 2 a—1

From (25) we conclude that if || < 3 —(1/a — 1), then there is no s € Z* satisfying
(25). This proves (21) and (18).

To prove (19) we use the same approach. Denoting p =j(2s + 1) =[(s + 3)(a — 1)]
and using the asymptotic estimate (6) we conclude that to prove (19) it suffices to

prove that
pma ( 1 1 )
—mal> (3=

26
(26) a—1 2 a-1

for any m =1,...,%. Representing (pma/(a — 1)) =mm+ am we obtain from the
equality [(s + )@ — D] =p that
2(m+ a)
(X)) 2(m—p)+2a32s+1<2(m—p)+2a—2+——p—.
Using then in (27) the equality
2(m+ a) 2a 2

=2+ :
p a—1 a—1

we conclude that (27) has no solutions s for |a|< 1 —(1/(a — 1)). This proves (26)
and (19). 0

LEMMA 2. For a>3 and s >

1
] max{1, 4,25A4(a — 1)/ 7?} the following esti-

mates are valid:

T B 2
(28) |\/Xj(2s)_7TSIS——+—‘“(1+ ),
a—1 sa a—?2
1 T B 2
(29) ‘/-Xj(2s+1)*ﬂ s+ -1 + —1{1+ .
2 a—1 sa a—?2

Proof. From the estimate (20) we conclude that to prove (28) it suffices to prove

the following estimate:
aa

[sCa—1)]a

a—1

<

(30)

—SsT

a—1"
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Representing for any s

I+«
a—1= 5
s
with / € Z and 0 < a < 1, we deduce that
[s(a —1)] l-s sa «
a—1 _l+a_s—l+a_s_a—1

and subsequently the inequality (30). The estimate (29) follows analogously from the
inequality

2s+1)

1 3 (a——l)]ﬂ' 1 -
@31 | P —(s+-2—)7r<a_1. O

In the next lemma we prove that the righthand side of (17) belongs to /7.
LEMMA 3. Let

M.(1,1)
u, = sinVA ji(1 —a) — —=———-cosvVA j»)(1 — a)
! \/Xj(s) !
M. (1,1)
+ — " COS\/X'(s)a -SINV A j(s).
\/Xj(s) ( ! ) !

Then (uy,...,u,,...) €%
Proof. From the asymptotic estimate (6) we have:

w22(s)  2M,(1,1)

32 o = + "

(32) () G — 1)2 a—1 2
where {a,} € 1,.

Then from (32) we estimate
w?j2(s)  2M,(1,1)
\/X'(s) = \/ = i + o
! (a — 1)2 a—1
o  m(s) \/1 2a-DMAD | (a=1 e,
a-1 w22 (s) w22 (s)

mj(s) (1 _(a-DM.A,D) . B, )
a—1 w2%j2(s) jis) )’
where { B,} €1,. From (33) we have the following estimates:
(a-DMQ1,1) 7B,
) s )
(a—1DM.(1,1) Y
O OX

sin\/x,(s)(l —aq)= —sin(wj(s) —
34)
- (_l)j(s)+1
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where {y,} €1,, and

(a—-DM,(1,1) 7B, )

cosVAjis(l —a) = cos(ﬂ'j(s) - i(s) + )

(35)
= (_ 1)I(S) + 8s,

where {8} € /,. Substituting now the estimates (33), (34), and (35) into the formula for
u, and noting that

A

{ M,(1,1)
P s e el
J(s)

'cos(\/x,-(x)a) -sim/xj(s)} el?
we obtain
(a-1DM,(1,1) v,  M/(1,1)
+ _—
- j(s) j(s) Vs

This concludes the proof of Lemma 3. |
Proof of Theorem 3. Let us denote

{us = (- (=D +8) + ax} =3

1. . .
asi=/ sin imrt-sinVA jestdt,
0

1
b, = flcos(i — E)Wt'COS\/Xj(Zx—l)tdta
(36) | i
Cyi = f]cos(i = —)’JTt‘COS\/Xj(Zs)tdt,
0 2

1. . s
dx,.=/ sin i7rt-sinv A jes—-ntdt,
0

and by 4 ={a,}, B=1{b,}, C ={c,}, D ={d,;} the corresponding matrices. Then the
system (17) becomes

)y asi(COS‘/Xf(ZsW)xzi = ¥ Cst(Sin\/Xf(Zs)a) Xoi1 = Uy,

1 i=1

o) 5}
i=

37

W

dgi(cosVA jos-na)xy — Y by(sinVAjos-na) Xy =y, .
1 i=1

i

To make further transformation of the system (37) we will use the estimates (18) and
(19) from Lemma 1.

From the definition of a, we have a, > 7. Therefore, there exists s; such that for
s > s, we will have from (18) and (19), respectively,

T V3

|cos1/xj(2s)a| > cosE = >

and

V3
(38) ISil’l\/Xj(Zs— nal > -
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Thus, making the change of variables

Y=y 1<1<2sy,
-1
Y2, = ty,(cosVA jena) r>s,,
s -1
Yar-1 =u2r—1(SIn )‘j(2r—1)a) r>sq,

and grouping even and odd coordinates of x and y we transform (37) into a system,
which up to a finite dimensional transformation is equivalent to

A E\(x¢\_|[¥*
39 (F B)(xO)_(y”)’
where y €17, matrices A and B are defined in (36) and
(40) e =cy(tanVdjena),  fy;=d(cotVAjes-na).

Let us consider the operator corresponding to the matrix A', transpose of the
matrix A, in the Hilbert space L?[0,1]—the space of functions on [0,1] with the
scalar product

1 1 1
41 = 2 (1) .o .
(41 (f.g) (fof(t)dt) (/Og(t)dt)+f0f(t) g (t)dt

At first let us notice that in the basis {sin s7¢} in L2[0,1]4’ can be interpreted as
a matrix of the linear transformation

& {sin smt} > {sin\/xj(zs)t}.

Using then the canonical isomorphism 7: L2[0,1] > C & L?[0,1] defined by the
formulas

7(f) = fo e,

i (cog) =f0xg(t)dt+c —foldxfoxg(t)dt

and a diagram

12[0,1] ————12[0,1]

T Pt
Ies'
Ce L0,1]———C o L[0,1]
we can interpret A’ as a matrix of the linear transformation

{ Ccos st } { cosx/xj(zs)t }
A »>{—

s \/xj(Zs)

in L2[0,1].
From the estimate (28) and from the inequality a,> 7, we conclude that there
exists s, such that for s > s,

o
(42) VX ias —sml< T
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Therefore, we can apply the “Kadec 3-Theorem” [Y] and obtain
(43) A=I+M+¥,
where S’ is a-finite dimensional operator, and

(44) Mz <1~ coswpB + sin 7B

with B=(1/m)sup,. Szl\/—)\_j(Z:) — sl
The same arguments apply to B’. That is, B’ is the matrix that represents the
operator &':{cos(s — D)t} — {cosVAjes-nt} in L*[0,1], and it can be shown that

(45) B =I+P +R,
where R’ is a finite dimensional operator, and

(46) IP'llz <1 —cos wd+ sin wd

with 8 =(1/7)sup, SZI\/X,'(zsf n—(s— Pl

To estimate the norm of the operator £ we note that C’ is the matrix that
represents the operator &”:{cos(s — )mt} — {cosVAjest} in L0,1] and that &' is a
composition of two operators

@,:{cos(s — 3)mt} > {cos s7t},
&,: {cos smt} — {cosVA jant}.

%, and the corresponding matrix C,; are unitary operators. The norm of &,, or

equivalently C,, can be estimated with the use of the Kadec +-Theorem

47 IC,llz <1+ (1 — cos wB + sin 7B),
with B from (44). Therefore we have the following estimate for E
(48) IEllz < (2 —cosmB+sinmp)- vy,

where y = sup, ., sZItan\/x jesal.
Analogous arguments lead to the following estimate for F

(49) IFllz<(2—cosmwd+sinmd)- o,

where o = sup; Szlcot\/)Tj(zs— val. From (39), (43), and (45) we conclude now that the
system (17) is equivalent to a system

(UI+T+V)x=y,
where [ is the identity operator, V is a finite dimensional operator, and
_(M E
r=(¥ £).
Using the estimates (44), (46), (48), and (49) we obtain

17l < \/”M”IZ,Z + Pl + IEI% + I FII7

(50) < ((1 — cos w3 + sin wﬁ)2+ (1 — cos 78 + sin 78)°

+(2—cosmB +sinmB)’ +y? + (2 — cos wd + sin w8) - 2) .
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We modify now the operator T by a finite dimensional operator to make its norm
small.

From the definition of B and from (28) using the inequality a > a,, we conclude
that there exists s; such that for s > s,

o

51 I\/Xj(Zs) — sl <

ag—1"
Thus, if we change s, to s; in the definition of B, then we will have

1

ao_l'

(52) B<

Analogous consideration shows that after another possible change of s; to s, we
will have

1

ao"‘l.

(53) 5<

From the inequalities (18) and (19) we conclude that there exists s5 such that for
s > ss we will have

in 25)@ — +1D)—=|> = - 3
5> 55 2o " 2 2 ag — 1
{mEZ}
o o
inf ‘\/Xj(zs—l)a —-m7T| > = — R
5> 585 2 aO —1
{meZ}
and thus
aw
v= sup ltan\/x,'(zs)a} < tan ,
5> 85 ay — 1
(54)

o = sup lcotyA jos- nal < tan

5> 85

ay—1°

Using now the inequalities (52), (53), and (54), we choose s; = sup{s;, 55, 53, 54, 55}
and come to the decomposition
(55) T=N+U,

where U is a finite dimensional operator and the norm of N can be estimated as
follows:

N2 < ((1 —cos B+ sin mB)* + (1 — cos w8 + sin w8)°

+Q2—cosmB+sinmB) -y + (2—00571-6~I—sin7r8)2-cr2)1/2

T T 2
(56) < (2(1 - cos( ) + sin( ))
a,—1 a,—1
5 1/2
+ sin T -tan? il
ap—1 ap—1 '
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Applying now in (56) the definition of @, and «, and monotonicity of the
functions

. 2 . 2
¢(a) =1 —cosma+sinma)” + (2 —cos ma + sin wa)” - tan® wa,

(a) !
ala) = —,

we obtain
N2 < 1.

This concludes the proof of Theorem 3. O

We state again that the theorem proved here shows that up to a finite dimen-
sional subspace in I/} functions M,(1,¢) and M,(1,¢) can be uniquely reconstructed
from the spectrum of the boundary value problem (4) in the case a > a.

3. Numerical results. In this section we discuss a numerical solution procedure
that is suggested by the earlier analysis. As was mentioned in the introduction, we can
obtain the unknown index of refraction 7i(x) by the iteration procedure of [RS2]
provided that the functions M,(1,¢), M,(1,¢) may be found from the spectral data,
where M(x,t) is the kernel defined in (8). Using the expansions (14)-(15), we may
expect to determine these functions by solving the system (17), which we write, with
the obvious notation as

Y Agyxy +Byxy = U,.
i=1
The given data for the inversion procedure consists of the sequence {ka}, the real

positive eigenvalues of (3) (equivalently the zeros of the integral averages of the
scattering amplitude F(7, k, a)), together with the values of b and ¢,. To evaluate the
constants A;, B;, and U, we need also the values of B (equivalently a) and M,(1,1).
In principle both of these numbers are determined by the asymptotics (6) of the
eigenvalues:

(57) i
(m) b—-B’
(arj) 1 1 2
2 _ — SR
(58) k3 ((b_B)) B(B_b)foq(s)ds 55 -pMLD,

at least if 7 € H*(0,1). If 7 has less regularity, then (58) may still hold in the sense of
Cesaro (C, 1) convergence [RS2].

There are various strategies one might use to numerically estimate the two
constants M,(1,1) and B based on (57)—(58) and a finite number of eigenvalues
{k?},. Because (6) implies that

P>+ Q =k} +o0(1)

with P =[m/(b—B)J* and Q =2M,(1,1)/B(B — b), we used a least-square approach
as follows. For m = 1,...,n — 2 solve the overdetermined linear system,

(59) Pj2+Q=kj2 j=m,...,n

in the least-square sense, to get approximate values P, Q™ and hence correspond-
ing approximate values M, (1,1)"™, B, QOur estimate for B is the average of the
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B™’s, We could of course estimate M,(1,1) as the average of the M,(1,1)"’s, and
that works well enough for smooth 7(x), but in general we got a better result by using
the approximation to the Cesaro (C,1) limit of (58), namely

2M(1,1) 1 mi \?
60 BB-b) ;j‘_z_zl (kj - (b—_‘,;‘) )

substituting the value for B just obtained.

At this point we may regard the numbers A, =(Bk;))?,1<j<n, a=b/B, and
M (1,1) as (approximately) known so that A, B,;, U, are known for j(s) <n.

Next, we must choose the subsequence of eigenvalues A, appearing in (17), and
the statement of Theorem 3 allows us considerable freedom in doing this. We recall
that for some sufficiently large s, we are to choose any 2s, eigenvalues A satisfying
VA <(j(2s) + 3)m/(a — 1) and then use A = A, for s > 25,, with j(s) = integer part
of 2(a — 1)s. Because s, could always be increased, and because computationally we
only work with a finite number of eigenvalues, we have in effect complete freedom to
choose which eigenvalues we use, as long as the “spacing” of them is correct. Now of
course Theorem 3 doesn’t guarantee uniqueness (or say anything at all when a <a,)
so it is still up to us to select the subset of eigenvalues to use in an “intelligent”
manner, namely to obtain a system that is as well conditioned as possible. It seems
clear that to achieve this one should have the eigenvalues as evenly distributed as
possible in the interval [0, j(25s, + 3)%*7%/(a — 1)*]. With a set of eigenvalues in hand,
such a selection could always be made. The automatic choice j(s) =[3(a — 1s] will
generally tend to achieve this goal. One can also imagine carrying out the reconstruc-
tion using several different choices of subsets of the eigenvalues, and then averaging
the results in some manner.

Let us now summarize the complete procedure for numerical solution of the
inverse eigenvalue problem. Assume that we are given ka, j=1,...,n real, nonnega-
tive eigenvalues of (4), and the value of b.

(i) Estimate the values of M, (1,1) and a =b/B as described above.

(i) Select a suitable subset of the eigenvalues for use in the system (17). We used
{kZ,)22, with j(s) = integer part of 3(a — 1)s, and 2N the largest even integer less or
equal to 2n/(a — 1).

(iii) Solve the approximate system

N
(61) Y (A;x,;+Bxy;_)=U,  s=1,...,2N
i=1
for {2
(iv) Obtain the approximate Cauchy data

N
M,1,t) = —tM,(1,1) + ¥ x,;sin imt
(62) i=1

- N 1
M,0 =MD+ ¥ x, COS(,-_ 5),,”

i=1
(v) Use the iterative procedure from [RS2] to obtain the impedance A(x)
= Va(x) : For a given A(x) let u =u(x,t; A) solve the “sideways” Cauchy problem

Axu, — (A(x)u,), =0 0<lt<x<1

(63) - .
u,(1,t)=M(,1) u (1,0)=M,/1,t) -1<t<1
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with M,, M, defined for ¢ < 0 by odd and even extension, respectively. Let Ay,=1and
for m=1,2,..., set

1

A = —.
m+1(x) MZ(X,X)
See [RS2] for details about convergence of this iteration scheme.
The impedance A(x) could also be found by so-called layer-stripping methods
(see, for example, [BB]).
(vi) Recover c¢(r) from 7i(x). We have the pair of equations

1
=%

(64) VG (2) =A(x), fo "VnCw) du,

where A(x) is the function determined in step (v) and B = b /a is known from step ().
We thus obtain

and hence x(r) and subsequently

Co

¢ _
Vn(r)  Ax(r))

may be found. Computationally, this may be done by straightforward interpolation
and quadrature techniques.

In Fig. 1 a sample velocity c(r) is shown, for which we may take b = 1, along with
its corresponding impedance. The exact value of a =1/B = 3.366. We have carried
out the above reconstruction procedure using n =10 eigenvalues and then with
n =30 eigenvalues. The spectral data was generated numerically using the NAG
subroutine DO2HBF.

For the reconstruction using n = 10 eigenvalues we obtained estimated constants
a=3.371 and M, (1,1) = 1.230, whereas for n = 30 the numbers were a = 3.366 and
M (1,1) = 2.327. Although the a values are consistent with each other and quite
accurate, the values for M, (1,1) evidently were not. The n =30 value is naturally
more accurate, and most of the error in the n = 10 estimate is attributable to the
poorer estimate for a. That is to say, if the exact value of a happened to be available,
a much better estimate for M (1,1) would have resulted. We remark, however, that in
[RS2] the effect of error in M, (1,1) was discussed, and found not to be so crucial. It
tends to affect the reconstruction only for x very close to 0.

A subset of the eigenvalues was selected as described in step (ii) above, leaving us
with 2N =8 and 2N =24 for the cases n = 10,30 respectively. Reconstruction of
A(x) = Vi(x) was carried out as in steps (iii)—(v) above, and the results are shown
along with the exact A(x) in Fig. 2. The condition number for the linear system
solved in step iii is about 11 in either case. The iteration process for n = 30 is shown
in Fig. 3; effective convergence has taken place after three iterations. Finally the
inversion of the x — r transformation leads to the final reconstructions of c(r) shown
in Fig. 4.

c(r)=
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FIG. 2. Reconstructions of A(x) for n =10 and n = 30.
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A(x)

c(r)

12 ™71 I T T T | 1 T T T L ‘ T T
i 1
1= Exact A(x)
. Iteration #1 7
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------ Iteration #3 4
4
6 —
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FIG. 4. Reconstructions of ¢(r) for n =10 and n = 30.
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We remark that the velocity c(r) in this example belongs to H?%(0, b), but we
have obtained reconstructions nearly as accurate for c¢’s that are only Lipschitz
continuous.
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