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1. INTRODUCTION

In this work we shall study the motion of an incompressible fluid at the interior of a closed
loop under the effect of convective forces arising from differences of temperature. We will
assume that the section of the pipe is constant and small, so that the motion of the fluid
can be supposed to be one-dimensional. Then the equations describing conservation of
mass and momentum are given respectively by

Op O
(1.1) 5o+ 5-(pu) =0
Ou 190 , 19p 90U  Aulu
(1.2) 3T+285u +pas ds 2D

where s is the length coordinate along the loop and 7 is the time coordinate: p(s, 7), p(s,7),
and u(s, 7) denote respectively the density, pressure and velocity of the fluid. U(s) repre-
sents the potential corresponding to gravitational forces, so that f,, = —%, fm(s) being
the component of gravitational forces along the loop by unit of mass. D stands for the
diameter of the pipe, whereas A is Darcy-Weissbach coefficient. Using standard thermo-
dynamical relations, we also obtain an equation for the enthropy S(s,7), namely

a5 oS Al 4q,

where 8 = 6(s,7) is the temperature of the fluid and ¢, is the heat transfer coeflicient at
the wall. As it is often done when dealing with convective motions in liquids, we shall
make use of the Boussinesq approximation here. We therefore will assume that density is
constant in the continuity equation (1.1) (which yields u = u(7)), and consider p in the
forms p = po(1l — (6 — 6p)) in (1.2), where pg is constant, 6y is some mean temperature,
and (8 — 6y) << 1, so that variations of temperature are assumed to be small. (Here
and henceforth we shall make use of the customary asymptotic notations 0,0, <<, etc.).
Furthermore, one then supposes that variations of pressure are very small when compared
with the hydrostatic pressure at equilibrium, p,. If we then write p = p, + p, where
P << ph, and notice that —pl—o %’3} + %—(sj = 0, it readily follows that, retaining only lower
order terms,
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We substitute this equation in (1.2), and assume that the loop geometry is described by a
function £ = %(s), so that f,, = —g d . Integrating then the resulting equation along
the loop, whose total length is denoted by L, we arrive at

(1.4) L—— :g/ (6 — 6) ”'(.fs)de:—ili lu|u

In the enthropy equation, we suppose that ¢, = Ag—”ce(ﬁw — 6) where c; is the specific
heat of the liquid and 6,, is the temperature at the wall (Reynolds analogy). Assuming
that u? << ce(6w — 6), we obtain, after setting S = c¢log 6 + s¢ for some constant s

a6 A u

(1.5) a_+ u(t ) 5D

(6w — 6)

We now turn our attention to the Darcy-Weissbach coefficient A, which is a function of the
Reynolds number

Re — vCD,

v

where v, is a characteristic velocity of the problem and v is the viscosity coefficient. Thus
= A(Re), where function A(€) is usually in the form

A

A6)

£
Figure 1: The dependence of A on the Reynolds number
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(cf. for instance [PT], Chapter III, Section B). More precisely, we shall assume that

A({)Rﬁ%as{lOforsomeAl >0

A(€) = Ao as € — oo for some Mg > 0

Additional requirements on A(¢) will be made explicit later when required. We now define

a new set of non-dimensional variables by setting

T S z 60— 90
t—g,w—f,v—;)-c-,Z——z,T— Gc
9.0\ /?
where 6. is some characteristic temperature, v, = {Z.q_gL} ,and tg = ;LC— Putting
€ = ﬁD—L and T, = 2“9:—9‘1 , we obtain that (1.4) and (1.5) give
(1.6a) d—v—/lT(mt)z'(a:)d —i|v|v
.6a €= i , T o ,
oT oT  A|v|
. — — = w— T
(1.6b) ot v Oz €Aoo (T )
We finally define
A€
(172) o(6) = 3

so that 214D — g (2D |4 ). Therefore, ¢ is such that
Ao V g v

(1.7b) g(&) =~ -? as £ | 0 for some A > 0,
(1.7¢) Jim g(¢) =1

(compare with Figure 1). We shall denote by Re the associated Reynolds number given

by
v.D
14

Re =



We shall refer henceforth to Re as the Reynolds number for short. If we now write
f(z) = 2'(z), we are thus led to the study of the following

Problem.- To find v(t) and T'(z,t) such that

(1.8a) e% = fT(:v,t)f(x)da: —g(Re|v]|)|v]|vfort>D0,
or oT
(1.80) FHE = 2R v ) o] (Tu() - T)

fort >0,and z € (0,1)

(1.8¢) v(0) = vy, T(z,0)=Ty(x)

(1.8d) T(0,t) =T(1,t) for any t > 0

where for £ > 0, f(£) is a continuous function which satisfies (1.7). Here f,Ty and T,
are periodic given functions with period one (cf. Section 2 below for precise functional
assumptions on them), and so will be T(z,t) with respect to the space coordinate z. To
call attention to this fact, we have replaced the integral symbol in (1.6a) by § in (1.8a)
above. This notation will be retained henceforth.

As to the precedings of this work, there is a large literature devoted to the asymptotics
of models alike to (1.8), which are usually referred to as thermosyphons. We should
first mention the pioneering papers by Keller [K] and Welander [W], and refer to Chen
[C], Hart [H], Sen, Ramos and Trevifio [SRT] and Lifidn [L] (among others) for recent
interesting work on this topic. Of course, this bibliographical relation is far from being
complete. In particular, further related work can be found in the references included in
the previous papers. We should point out that most of these works used formal methods
(basically, singular perturbation techniques) in their analysis, and quite often specialized
to particular geometries (mainly toroidal) of the circuit considered.

Recently, Herrero and Veldzquez considered in [HV] a simplified version of (1.8). Namely,
they replaced the right hand side in (1.8) by a prescribed heat flux ¢(z), and function
g(Re | v |) by a constant (which essentially amounts, to substitute g by its asymptotic
value as Re | v |— co). Moreover, they dropped the term ¢ 4% in the left hand side of (1.8a).
This last assumption was motivated by consideration of the intermediate asymptotics of the
model, a stage in which such hypothesis is suggested by formal analysis in [L].A somewhat
surprising result which was proved in [HV] is that stationary solutions of such system are
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generically linearly unstable under small perturbations of the geometry of the pipe or the
heating applied there. We refer to [HV] for details and related results.

The paper is concerned with the rigorous analysis of (1.8) for large values of the Reynolds
number Re. Our plan here is as follows. Global existence and uniqueness are briefly
discussed in a suitable functional frame in Section 2 below. Section 3 is then devoted to
the study and characterization of stationary solutions of (1.8) when Re >> 1. We introduce
there a meromorphic function L(z)(cf. (3.8)) which plays a central role in our analysis. In
particular, we shall show later in Section 4 that sharp asymptotic estimates on the zeroes
of L(z) provide the key to establish a linear stability analysis of the stationary solutions
for large Reynolds numbers. Such stability analysis makes the content of Section 4, which
is the last in the paper.

Acknowledgements. This work has been partially done while the author was visiting
the Institute for Mathematics and its Applications at the University of Minnesota as a
Fulbright scholar, during the year 1991-92. It has also been partially supported by CICYT
Grant PB90 — 0235. The author is very grateful to Professors M.A. Herrero and A. Lifian
for a number of interesting discussions during the preparation of the manuscript.

2. GLOBAL EXISTENCE AND UNIQUENESS.

Consider the following problem

(2.1) e% = fT(w,t)f(m)dw —g(Re|v|)|v|v fort>0,
(22) A oL = Lg(Relv]) v | (Tule) - T)

fort >0and z € (0,1)

(2.3) v(0) = vy, T(z,0) = To(=)

(2.4) T(0,t) = T(1,t) for any t > 0

where € > 0 and Re > 0. Define H'(0,1) = {h € L?(0,1) : k! € L?*(0,1)} and denote
by H, the set consisting on the periodic extension to the whole line of those functions

h € H'(0,1) such that h(0) = h(1). We shall assume that f,T, and Ty belong to H)

and f(z) is such that fol f(z)dz = 0. As to ¢g(£), in addition to (1.7) we shall require the
following



(2.5a) g(€) >n >0 for any ¢ € (0,00),

(2.5b) £g(€) € C! for € > 0.

These assumptions will be retained henceforth.
We shall say that a pair of functions (v(t),T(z,t)) is a solution of (2.1)-(2.4) in a time
interval I = [0,7) if:
i) v(t) € C'[0,7),
i) T(-,t) € C'([0,70) : H,),
iii) (2.1)—(2.4) are satisfied for t € [0, 7).

If these conditions hold true for any 7y > 0, the solution is said to be global. We now
proceed to prove the following result

THEOREM 2.1. Let f,Ty, T, and g be given functions satisfying our previous assump-
tions. Then there exists a unique global solution of (2.1)-(2.4).

Proof. a) Local existence follows from a classical fixed point argument. By standard
results, any local solution of (2.1)-(2.4) will satisfy

(26)  T(z,t) = exp (—% /01 o(Re | v(s) ) | o(s) | ds) T, (:c _ /Ot v(s)ds) +

+2 e (<3 [ atRe 1o D 1) 13 oRe [o(6) ) o) 1 7 (- [ oA ds,
and
27 o®) = v~ 2 [ o(Re 12(6) D 1 0(9) ()it

+% Otexp —%/stg(ReM()\) |)|v(/\)|d)\) (/01 f(x)TOm—/Osv()\)d/\) deds

w2 [as / " exp (— A “g(Re | o(r) ) o(r) | dr) g(Re [ o(\) 1) | v(Y) |

° ([ stm. (e [ i) az) o

= Sv(t).
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whenever t lies in the existence interval of (v,T'). For a given constant M > 0, we now
consider the space X = X5 = {u € C[0,6] : | u(t) — vy |[< M for t < 6}, endowed
with the supremum norm. A straightforward computation reveals then that, for § > 0
small enough, S is a contractive operator from X into itself. This yields the existence of
a unique solution (v,T') of (2.1)-(2.4) for small times.

b) To obtain global existence we recall that, by our assumptions on g, there exist positive
constants 0, A and B such that

% < g(Re |v(t)]) | v(t) |< A+ B |o(t) |

as for as v(t) is well defined. For any h € L2, let us denote by ||A|| the L?-norm of h.
Substituting (2.6) into (2.1) and multiplying both sides there by (sgnv), we obtain

d|v
LVl < gmetoy 1o+ 1A I
ATl (2[5 gRe 1 o(6) 1 066 1 )
and, by (2.5a)
Tw
@8 <y ypmy + LT / 45 (4 + BRe | o(s) [)ds

A B _alt=e)
<0 Lo P+ IFANTol + 1Tl — + = i 7 | v(s) | ds

Suppose now that | v(s) |< C for s € [0,t] , where C > 2 | vy | will be precised later.
Then (2.8) yields

d|v| 9 9 il_ BRe
e—g— < Lo [P +IFAHTll + 1ANTull = + —
In particular, if | v(t) | = C, we would have ﬂ%l < 0 provided that C is selected

large enough. We have obtained a bound for | v(¢) | which is independent of its existence
interval. Using (2.6), we obtain a similar bound for T'(z,t), and we now conclude by means
of a standard continuation argument. []

3. STATIONARY SOLUTIONS FOR LARGE REYNOLDS NUMBERS.

In this Section we shall analyze the set of stationary solutions of (2.1)-(2.4) in the case
where Re >> 1. We will show that, according to their velocity, there can be classified as
fast solutions (when | v |~ 1) and slow solutions, which are such that | v |~ 3.
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To begin with, stationary solutions satisfy

(3.1) f f(2)T(2)dz = g(Re | v |) | v | v

(3.2) vl = g(Re|v])|v| (Tu~T)

(3.3) T(0) = T(1)

where f,T,, e and f are as in the previous Section. We shall often use Fourier expansions
for f,T, and T, which will be written as follows

o0 1
(3.4a) f(z) = Zake%“” where ag = 0 ( since / f(z)dz = 0)
= 0
(3.4b) To(z) = Y bpe? kX,
(3.4¢) T(z) = che2"ikx.

Furthermore, since all functions considered are real, one has that ax = a_ for any k, and
a similar result holds for by, cx. Clearly, one has that

(3.52) 1£13n =D _(1+k)af < o0
(3.5b) ITwll3n = (1+ k)b < +o0

The following quantity will play an important role in what follows

(3.6) / f(2)Tw(z)d Zakbk
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From (3.1) and (3.4), we obtain

v 1 !
(3.7 cy = ug(Re | v |)bk (Zg(Re [v])|v]| +27rkiv>

€

for any integer k, —00 < k < 400

Taking into account (3.7), it turns out that (3.1) can be recast as follows

d b
3.8 2 _ k0% _
(3.8a) €v 2 e L(z)
where
(3.8b) 2 = 2 sgn(vlg(Re | v )

Analysis of function L(z) in (3.8a) will be instrumental in deriving the main results in this
Section (cf. Theorem 3.2 below). One readily sees that L(z) is a meromorphic function
with poles at points Z; = 271y for which m # 0. To avoid a separate study of the cases
where a;b; = 0, we now introduce some definitions. We shall say that L(z) has generalized
poles at points Z; = 271y for j = =£1,42,...A point z will be said to be a generalized
zero of L(z) if either zq is a zero of L(z) or 29 = 2mij and ajb; = 0 for some j. Notice
that this last case can be viewed as a collapse of a zero and a pole, which takes place when
ajgj = 0. It is readily seen that the classical arguments principle in complex variable as
well as Rouche’s Theorem (which follows from it) still hold true when zeroes and poles are
replaced by generalized zeroes and generalized poles respectively. We shall keep to this
terminology from now on, although the term generalized will be dropped for convenience.

We thus shall refer henceforth to zeroes and poles without any further specification.

Some useful properties of function L(z) are gathered in the following

LEMMA 3.1. Assume that xo # 0 in (3.6). Then the zeroes of L(z) can be labelled as
a sequence {z;}:5 = 0,%£1,%2,... . Moreover, there holds

(3.9) |l|im | z; — 2mij |= 0.
jl—oo

Remark. It follows from (3.9) that L(z) has at most a finite number of real zeroes.

Proof of Lemma 3.1. It will follow from a suitable application of the argument prin-
ciple, a technique which will be repeatedly used in the sequel. Consider the contour

9



Y~ ={z € C:z= (2N + 1)re'® with § € [0,27]}, where N = 0,1,2,... For any

z € <N, we have that

X0 21 | k || axby | 27 | k || axby |
| L(z) - =< ) —+ ) Lk
z P | z || z — 2mik | < | z || z — 2mik |

ESI +52

Since | z — 2mik |> m whenever z € vy, it follows from (3.5) that

I/\

1/2 1/2
2
S B Zkzlak|2) Zk2|bk|2)

|k|>& [k|>&

1
o(—) as N — oo.
| 2 |

If | k|< % , then | z — 2mik |>| z | =27 | k |[> #N whenever z € vy, whence

2
Sy <
P=Nz|

for z € vn. We thus have that

1l [ Tl —o(lil) as N o oo

(3.10) | L(z )— = (ﬁ) whenever |z | = (2N + 1)«

and N — oo

It then follows from the argument principle that the number of zeroes of L(z) exceeds in
one to that to their poles at the interior of yx when N >> 1. Recalling (3.3a), we conclude
that zeroes of L(z) can be labelled as zg, z41,242,... Moreover, for large enough N, there
are exactly two such zeroes in the annulus Ay = { z2: 2N+ 1)7 <| z |[< (2N +3)n} . We

now proceed to derive (3.9). To this end, we notice that

b] X() . 1 .
(3.11) | L(z) — “or 2 |=o <| - |> as | j|— oo,

uniformly on sets | z — 27ij |< 75.
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The proof of (3.11) is similar to that of (3.10) and will therefore be omitted. Consider

now the contours C; = {z € C:|z—2nij |= 4—”%('03"-9’-} Recalling (3.5), one obtains after
a routine computation that

_ab X
z — 27y z

2|X0|

3.12
(3.12) 87|

forz € Cj,|j|>>1

z—2mij

From (3.11), (3.12) and the argument principle, we deduce that L(z) and L,(z) = (—al—z-’— + X;Q)

have the same number of zeroes within the discs B; = {z | 2 —2mij |< 4—”'%%—"‘-[} We

now conclude by observing that zeroes of L;(z) are located at points
=\ -1
B,
5 = (2mij) (1 + ‘li)
X0

so that, by Taylors expansion

| 2 —2mij |[<d4m | ]| ajbj || xo |71 if |5 [>>1,

and recalling (3.5), (3.9) follows. [

We now impose further conditions on the function g(£), namely
(3.13a) There exists xo and & with 0 < € < ;1 < 400 such that

g'(€) <0for 0 < €< &,g'(€) >0 for & < € <& and

g'(€) <0 for £ > &;. At &, & we have that g(€;) = M, g(€2) = m.

(3.13b) There exist B > 0 such that

g(ﬁ):1+§+o<l) as £ — 00,

q £
B 1
/9= L vo(L) weaon

In view of (3.13a), it is clear that if z and v are related by (3.8b), we should have | z > 2.
Consider now the set
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(3.14a) S ={z2 € C:L(z) = 0and |2 |> r_:z_}

For any z; € S, we define a set of complex numbers {{f},@ =1,...,7(2;) given by the
roots of the equation

1
(3.14b) zj = = sgn(€)g(¢;)
The main result of this Section is

THEOREM 3.2. Assume that hypotheses (3.18) hold, and

(3.15) Xo # 0, L(i%) + O,L(:t%) # O,L(i%) £ 0.

(3.15b) The roots z; € S are simple.

Then for large enough Reynolds numbers there exists a one-to-one correspondence between
the possible values of the velocity for solutions of (3.1)-(3.3) , and the elements of the
following set

I= {{{f} :€=1,...,5(2), where {f and z; are

related by (3.14) }U {z tz = :l:% and L(z) > 0} .

Moreover, the dependence of the velocity values on Reynolds numbers in such case is de-
scribed by the following formulae

4
; 1
(3.16) vf = E]; +o (E) as Re — oo

fore=1,...,5(z;)

(3.17a) vy = (lL {1}>1/2 +o(1) as Re — oo

€ €

ifLG) >0
€
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(3.17b) v =— (11: {~1})1/2 +o(1) as Re — oo

€ €

if L (—1) > 0.
€

Finally, solutions satisfying (8.16) actually ezxist.

Remark. Theorem 3.2 states that, under suitable transversality conditions, stationary
solutions corresponding to large Reynolds numbers may be of two types: slow solutions,
for which velocities are of order ﬁ, and fast solutions, for which velocities are of order
unity. Notice that assumptions (3.14), (3.15) are generic, in the sense of being preserved
under small perturbations of f,T,, € and g.

Proof of Theorem 3.2. We shall consider separately equation (3.8a) in the cases where
|v| > (Re)™/? and | v | that | v | > (Re)™'/2. Then g(Re |v|) = 14 o(1), uniformly

as Re — oo. This in turns implies that

sgnv

o= B L) = L(

€

) +0o(1)

uniformly as Re — oo where z and v are related through (3.8b). Since L (£1) # 0 by
assumption, we deduce that for such solutions to exist it is necessary to have L (%) >0

€

or L (—%) > 0, in which cases (3.17a) or (3.17b) respectively hold. To show uniqueness of
such solutions, we argue as follows. Let us define

(3.18) Ho) = L (%sgn(v)) g(Re | v )

Recalling condition (3.13b), we see that for | v | > (Re)~!/? and large enough (Re)

(3.19) | H'(v) |< C(Re)™!/?

where here and henceforth C will denote a generic constant, depending possibly on || f||, || Tw||,
e and g. Suppose now that there exist two different solutions with velocity values v; and
vq, and that (3.17a) holds. Then v; > p > 0 (¢ = 1,2) for some p and Re >> 1. By (3.8a),
one then has

H(v1) — H(vz)

Uy — U2

(3.20a) = e(vy + vy) > 2pe

whereas on the other hand, by (3.19)

13



H(vl)—H(vg) _ 1

V1 — V2 V1 — V2

(3.20b) / ) H'(s)ds < C(Re)™/?

From (3.20) one derives a contradiction when Re >> 1. The case where (3.17b) holds is

similar.

Assume now that | v |< (Re)™1/2. By (3.18) and (3.8a), it then follows that | H(v) | < ¢(Re)~1/2.
If Re >> 1, this can only happen if one of the following cases holds

1
(3.21a) - sgn(v)g(Re | v |) = z;, where z; € S (cf. (3.13a))
or
(3.21b) Re|v|— 0as Re — o0

We next proceed to rule out the second alternative above. Indeed, if (3.21b) occurs, by

(3.13b), we should have

A < g(¢) < 34 if € is small enough

2 - 2¢
(independently of Re)
so that, by (3.8b)
A 34
— <]z |< for Re >>1
2¢Re|v] slz s 2¢Relv| or e

We then can use (3.10) and (3.13b), to obtain that for Re >> 1,

ew? =] L(z)| > %ﬁolRelvi

whence

(3.22a) v =0

or

14



|X0|Re

3.29b >
(8:22b) lvl2 =5y

If (3.22b) holds, we get at once a contradiction with the assumption | v |< (Re)™/2. If on
the other hand v = 0, we deduce from (3.2) that T(z) = T\, (), in which case (3.1) yields
xo = 0, which contradicts (3.14). Then (3.21a) must be satisfied. Taking into account
(3.13b), it follows that such solutions (if any) should verify (3.16). It remains yet to prove
existence and uniqueness for this last type of solutions. To this end, we use the fact that

L (i%) £0,L (:I:A—j-> £0,L (:t%) £0.

(cf. (3.15a)). Together wit (3.15b), this implies that g'(£5) # 0 for any j and £ as before.
Using Taylor’s expansion, we then obtain that

sgn(v)g(&s ¢ ¢
H(v) = w lL' (M) g'(€Y) (v - R_]e> +o0 (v— R?]e>

¢
forv—%’— = 0( ! ), uniformly as Re — oo.

e Re

¢ ¢
It is then readily seen that, for ¥ > 0 small enough , H (%E - %) and H T%E + TI;E)
have opposite signs, whence existence follows. Uniqueness is obtained by noting that
_di(H(r) _ 67‘2) — Re Sgn(r) LI (sgn(r)g(Re l r I)) — Der
T

€ €

4 ¢ .
so that -+ (H (v) — ev?) has a definite sign for v € (75212 - £, %; + %) when 6 > 0 is

small enough. []

4. LINEAR STABILITY OF STATIONARY SOLUTIONS FOR LARGE
REYNOLDS NUMBERS.

4.1. Preliminaries. Linear stability of fast solutions.

In this Section we shall perform a linear stability analysis of the stationary solutions
considered in Section 3. To this end, it will be useful to introduce a new velocity related
variable ® and a new time s, defined as follows
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(4.1a) ¢ = [v ]

1
(4.1b) ds = -e-g(Re [v])|v]|dt

It is then readily seen that (2.1), (2.2) can be rewritten in the form

1
(4.2) T +2% = W(Relo]) j{f(a:)T(m,s)ds,

oT esgn ® OT _ (To(z) — T(z, s))

(4.3) s T Relo]) Bm -

Classical linear stability theory proceeds by setting

d = P, +6D =D, +ce M+...,
T = T,+6T = Ty+e *p+...,

where it 1s assumed that §® << 1,6T << 1, as s — o00,®, and T, being stationary
solutions of (4.2), (4.3). Retaining only first order terms, standard computations yield
then

(4.4a) 2-Ne=-Q / F(2)Tu(2)dz + (g(Re | 28, [)/2)7! / f(2)b(z)dz
0 0

!

(4.4b) -\ + % —ecsgn Q,QTs = —¢

where

_ ¢'(Re| 2%, |'/*)Re sgn(%s)
(4.4c) Q= (Re |23, )2 | 3, )2

and z is given in (3.8b). If we now write
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(4.5) ¥(z) = deezwikx.

Then, recalling (3.4) and (3.7), we see that (4.4) can be written in the form

(4.6a) (2-Ne = —Q(>_arer)c+ g(Re | 28, [V/2)~ > ardy,
2mik .

(4.6b) (1=X)+ . Ydr = cQe sgn(vs)2mikex 1 k = £1,42,...

Set now

(4.7) p o= (1-X)z

Then straightforward (but tedious) calculations show that there exists nontrivial solutions

of (4.6) if and only if

(4.8) p#2mki: and S(p) = 14 EL —Q—&L(z) —L(p) =
z p—z
Ug - L(:u) = 07
or p = 2wki and axby = 0, where k& = +1,42 ... v, is a stationary velocity value

(related to ®, via (4.1b)), and @, L are respectively given in (4.4c) and (3.8a). Notice that
without loss of generality, the eigenvalues u in (4.7) are given by the roots of

(4.9) (1-¢e")S(u) = 0

Consider now S as a function of the complex variable u. Then the poles of S(u) are located
at p = 2mk,k = £1,£2,... In particular, 4 = =z is not a pole for the meromorphic
function S. By means of a slight modification of the arguments leading to the proof of
Lemma 3.1, we then see that

S(,u)%ﬁasNHooif | pl= 2N+ )r
z
and
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(4.10) The set of generalized zeroes of S(u) can be labelled

as a sequence {u;} where j = 0,+1,+2, 43, ..

Furthermore

Cljl-Dr<lpjl<(2]j]|+)r for j =41,42,43,...
We next set out to estimate the roots of (1 — e#)S(u). As a first result, we shall prove:

LEMMA 4.1. Assume that the hypotheses in Theorem 3.2 are satisfied and v, behaves
as in (3.17). Then there holds

1

(4.11) Q=0 (E) as Re — 0o

Moreover, there ezists a constant C independent of Re and j, such that
(4.12a) There is one root pg of S(p) satisfying

lpo+2|<C| Q| as Re — o0

(4.12b)  For j = +1,42,43,... there is a unique root of (1 —e")S(u) satisfying

Cl@l 1 a;b; |
1J ]

Proof. Estimate (4.11) follows at once from (4.4c) and (3.13b). Furthermore, under
our current assumptions z — j:% as Re — oo. If we now fix 6 > 0, we have that

| pj —2miy |< as Re — o0

s - (1+8) 1=1@u 2= <k (g

z

for some K > 0, provided that | p + 2 |< 6.

Set now | u+z2| = 2K | z || Q|. By (4.11), we see that | u+ z |< § if Re >> 1. One then
has that

1S - (1+5) ISKIQI<2K Q=1+ |

18



Then by Rouche’s Theorem we obtain the existence of a root of S (1) at the interior of the
ball By = (u:|p+2|<2K | Q|| 2 |) if Re >> 1, whence (4. 12a) follows. As to (4.12b)
it suffices to consider the case a;b; # 0, since otherwise the result holds in view of (4.8)

and (4.9). A first estimate on the location of the zeroes {y;} is then provided by (4.10).
Assume now that

| 22 D
(4.13) | 1= 2mij |= 2L QT 12 [ab; |
127mij — z||27i) + 2|

Standard calculations yield then

2 .. ._.
(4.142) S~ 14+ 2Ly _QHE il
z 2Ty — 2z p— 2wy

—2m) z b
<l J|+IQIIuII| {1 )|+|Z agbi

- || lp — = 27rzk
<ClQ|
where C' depends on ||f|| , ||Tw|| and z, but not on | 7 |. In a similar way, we obtain that,
if (4.13) holds
271y Quz a;b; 1 27y
4.14b 1 - . o >—|1
( ) 1+ z 2my —z  p— 2mig |_2| + z |

Taking into account (4.14), the conclusion follows by Rouche’s Theorem, since there are
only a finite number of such roots in | j | is bounded. []

An immediate consequence of Lemma 4.1, is the following

COROLLARY 4.2. Assume that the hypotheses in Theorem 8.2 hold. Then stationary
solutions whose velocities satisfy (8.17) are linearly stable for large Reynolds numbers.

Proof. Recalling (4.7) and (4.12), we readily see that as Re — oo, the eigenvalues of

the linearized problem satisfy

1
(4.152) Ao=2+0 (Ez"e')
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2mk  _ C N axby | arbi |
4.15b Ak —1+

for k = £1,42,.
where C depends on z, f and T),. ]

4.2. Linear stability of slow solutions. Statement of the main result. Re-
fined estimates on L(z).

We shall now consider the case where (3.16) holds. Then the function @ given in (4.4c) is
such that

g'(Re | v, |)Re N g'(ﬁf)Re2
(e oo DE ™ g(Eiet

(4.16) Q=

as Re — o

where vy and {f are related as explained in the statement of Theorem 3.2. Notice that

g'(€%) # 0 since L (+2) # 0, L (1) # 0 and L (+%) # 0. In what follows, we shall

require that

Mo g(€5)?

(4.17) -I— AGE + # 0, where

My = Y% 2mikagby, xo is given in (3.6), z; is one of the zeroes of L(z) and z;, ff are
related through (3.14b) (cf. also (3.16)).

Let us consider now a stationary solution whose velocity v = v, satisfies (3.16). Our goal
consists in proving.

THEOREM 4.3. Assume that the hypotheses in Theorem 3.2 are fulfilled. Suppose also
that (3.16) and (4.17) hold. Then the roots of (1 —e#)S(u) can be labelled as a sequence

{pr} 1 £ =0,£2,£3,... whose elements have the following asymptotic behaviours.

(4.18) | pk — zk |= o(1) as Re — oo for k = £2,4£3,..
and k # 7,
(4.19) Po = 0(1) as Re — oo,

2 £\2
(4.20) par = £(Q7"x0)'/? + (5 4

2 L+ o(1),

as Re — oo , where ¢ = hm (R 2 (cf. (4.16))
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Remark. Notice that all the assumptions in Theorem 4.3 are generic in the sense of
being preserved under small perturbations on f,T,,g and e. Notice also that u; = 2wk
is one root of (1 — €*)S(u) if arby = 0.

For convenience, the proof of Theorem 4.3 will be divided into several steps. We first need
a number of refined estimates on L(z), and its sequence of zeroes {zx}. We begin by

LEMMA 4.4. Under the assumptions of Lemma 8.1, there holds

|z = 2mik(l —agbexg ) |
k| —oo % | axbe |

(4.21) 0

Proof. Tt follows from a suitable application of Rouche’s Theorem. Take o > 0 fixed,
and consider the disks

“"b"> o | k| arbi | €?,0 € [0,2%]}
0

Bj:{z € C:z = 27rik(1—

Since for § > 0 small enough we have that (1+6)™! = 1—§+0(6?), standard calculations
show that, if | k |>> 1 and o > 0 is sufficiently small,

Xo akgk _
(4.22) z z —2mik|
. Xo akzk _L‘ak5k|k|6m 0 Z 2\ _
| 27k <1+ X0 271 k +Of axby |
_ X0 1 — iUXO . I ak_l;k“i?_' eié’ + 0(02)>
271'2](7 27[' kakbk
2
g Xo
>
= 8n2|k|

Putting together (4.22) and (3.11), we deduce that L(z) and (Xf + -z—fgi;fz—k) have the same

number of zeroes at the interior of By, whence

b _
““)|<o|knakbk|
0

| zp — 2wk (1 -
and since ¢ > 0 can be taken arbitrarily small, (4.21) follows. ]

We next show

LEMMA 4.5. Assume that L(z) has no multiple roots. Then
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2 1
4.23a L'(z) = —X0 _
( ) (2x) T2k (o) +o (k2(akbk)) as | k|— o
in particular

C
(4.23b) | L'(2k) |> ———=— fork = 42,43, +4,..
k2 | akbk |

and some C > 0.
Furthermore, there holds

2ak5k 1
4.24 L" = —— Ty
(424 0 = G +o () wr o

uniformly on sets | p — 2wik |< ﬁ

Proof. Tt follows from (3.8a) that

, o ahe agby
D'z) = (2x — 2mik)? Z(Zg 2mil)?

=L+ L,

We now claim that

(4.25) Z(z_a;l:w 2 ;a‘ ‘ :0<l |2)

ke
as | k |— oo uniformly on sets |z — 2wik |< T
In order to derive (4.25), we observe that
a[bg 1 > -
— = b
Z (z —2mil)? 22 Zal ¢
k#¢L —o0
| aiby | = 1 1&
-z z—2m Tz aebe
EER ,;Z“"" Gozr) T E L
| akbk | (4r | £ || 2 | +47262 -
< P |2 > amgyadde!
k#L
| abx |
= S
E



Therefore , if | z — 271k |< Tlﬁ and | k |— oo, we can bound the last term as follows

| aebe | ok
S<C Ik ”“Hz)lk o <cy k—€||€|+£2)l|kiz|l2
k#eL Py,

for some C' > 0 independent of k. Recalling (4.21), we then have that, as | k |- oo

b
)7 — 9Kk § :
(Zk) (zk — 27rik)2 albl Zk |2

- —2mik | akzk ‘ - - Xo 1
= —azb k|| axd - -
“kk( o relk e T - Gl o P%P))

Xo 1
— Y 1 —
= ke, o)t o 2k2 to (|k|2)

2
_ X0 _ +0( 1 _ )
47r2k2akbk kQakbk

where use has been made of the fact that k% | axby |= o(1) as | k |—» oo (since
3202 | agby |< +00). This yields (4.23a) whence (4.23b) follows. To derive (4.24), we

argue in a similar way. We start with

, B Qak—bk 2(1ng
L7(z) = (2 — 2mik)3 + ; (z — 2mil)3

Instead of (4.25), we now obtain

asby 1
(4.26) Yo — T (7?) as | k|- oo

kL

uniformly on sets | z — 2rik |< 15 which in turn gives at once (4.24). We shall deduce
(4.26) after some algebra. Namely, we notice that, as | k [— oo,

oo

agbg 1 =
HETL
(4.27) Z (z —2mit)® 23 Zae ¢
k#e —0
| akbk 1
+ Z | ache ‘ 27rz€)3 z3
k#e
(k2|€|+£2|k|+|£|3)|aebe| (_1_>
<€ ERI— #P FolRr

1
_S“+O(|P>
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for some generic constant C > 0. To proceed further, we split S; as follows

Si1 = S]+SE+ 83

where in S] (resp. in S?,S}) summation is extended to indexes £ with | £ |> 2 | k | (resp.
J%l <l elc2|k|,|L]< %l) A careful analysis of these terms reveals that

(4.28) Si=o (?12-) as | k|— oo

Indeed, consider S?, and denote by ¢ the corresponding summation therein. We then
have that

s (KIEL+ 21K+ 16) | acbe |
S =CL T R

C - 1
SWE |k‘|€2|agbg|20(ﬁ> as | k|- oo
k£

Putting together (4.27) and (4.28), (4.26) follows and the proof is concluded. ]
We next observe that, by (4.21)

(4.29) There exists 6 > 0 such that, if zx # 27ik,
| zx — 2mik |> 6 | k|| agby | for k = 0,£1,%2,...

Suppose now that

9 -
(4.30) |#_2k|§§ | k|| axby |

Then | p — 27wik |> —g | k || arbg |, and (4.24) yields at once.

COROLLARY 4.6. If (4.30) holds, then

C 1
4.31 L" <———_——l—o<—) as | k|—
( 3 ) S‘/‘;p | (y‘) I——- |k|3 l akbk |2 k2 l |

for some C > 0, where A = {p # 2nik :| p — 2 [< Sk aby |,0 being as in (3.29)}
Our next step 1s
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LEMMA 4.7. Assume that L(0) # 0 and L(z) has no multiple roots. Suppose also that
zg # 2mik , and define

2 | 2k — z | 2k
4.32 — ‘ 2k
(4.32) Pk IL’(zk)||szz|(1+z‘+A)

where A i3 a fized positive constant. Then there exists C > 0 (independent of Re,k) such
that

(4.33) | (i) — L' (2) (s — ) |< ‘fgjf

provided that | p— zx | = px and |k |< CRe

for k = £1,42,...

Proof. Since L(0) # 0, one has that z; # 0 for any k. By (4.23Db)

4.34 < CK? | ayb -I-f“—f-z—" Z—’“‘ =
( a) pk_C\ |akk| |Q2k2| (1-!—2 +A) By

where here and henceforth C' will denote a generic constant which is independent of Re
and k. We want to have

0 -
(4.34b) By < 3 | k|| arby |
where 6 is the constant in (4.29). This last inequality holds provided that
20 |z —z|[k] (jr+ 2
6 QI 22| z

Taking into account (4.16) as well as the fact that z = O(1) for Re >> 1, (4.34b) will
hold if | k |< o Re for some o > 0 and Re is large enough. Then, if | 4 — zx |< pi and A is

+4) <1

the set defined in Corollary 4.6, we will have that, as | j |[— oo

1
| L(p) = L'(26)(p = 21) < 5] sup L") | p— 2z |?
2
Pk ¢ 1 >>
P . — —
=79 (|k|3 | ayby |2 +O<k2

21.4 T2 |2 1
Sl C*k* | arby |*| z1 — 2 | |1+Z_k|2) (——C—-—_——+o(—2-))
> [0z [ =)\ Tanbe 2 O \R

Clk|? <k4|ak'5k |2)
S———+4o|—5—7— .
Q2|2 |Q|?|=|?
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so that (4.33) follows. ]

4.3. The proof of Theorem 4.3.
Lemmata 4.4-4.7 have proved the ground to tackle the proof of our result on the stability
of slow solutions. To begin with, we are now in a position to show a particular case of
(4.18), (4.19), namely

LEMMA 4.8. Assume that the hypotheses in Theorem 3.2 hold. Suppose also that (3.16)

and (4.17) are satisfied. Then the roots {ux} of (1 — e*)S(u) with k = £1, 42,43, ..k # j,
are such that

(4.35a) | px — zi |= 0(1) for |k |< (Re)'/® as Re — oo

On the other hand, there 13 one root py such that

(4.35b) | po |= o(1), as Re — oo

Proof. It clearly suffices to consider the case where arby # 0. Assume first that
L(0) # 0, and let px be as in (4.32). Then (4.35a) will follow as soon as we prove that

(4.36) If | u— 2k |= pr, then
509 - (S22 ) B Ceu)e -

To derive (4.36), we just observe that , if | u — zx |= px,

<2(’1+—‘+A)

|5(#) - (= ) L) — =2)

mr |QHZ||k|
NE lu T —z2[1QP

2k
LG ln—zllQllzl| =~

EI]+12+13+I4

+e|Q2|

for some C > 0. Taking into account that | v | % Re as Re — oo we readily see that
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zz <1+ 1l g CLRE | IL'G) QU | 4= 2|
l |Q| |,U'—Z||z—zkl

We now relate k£ and Re as follows

(4.37) | k |< (Re)'/?

Notice that this relation is compatible with the one in (4.33). Since p; — 0 as Re — oo,
one then has

4
Z SM+1+1|’;|| if Re >> 1

for some M > 0 large enough. Taking then A = 2M, (4.36) follows. As a matter of fact,
by our previous estimates we have shown that

< Ck? M ﬂ

Cl(l+ | & ®) | axby | <c (1 + k%) | akbk | Rel/3
Q| - Q|
< Ci(1+k?) | agby | (Re)™*/®

for some C; depending on A and z. Hence

(4.38) | pk — 2 |< C(1 4 k?) | arby | (Re)™5/3, whenever

| k|< (Re)'/?, k=41,+2,43,... and Re is large enough.
To derive (4.35b) when L(0) # 0, we modify our previous argument as follows. We consider

the curves T = : |p| = m}, and obtain after standard computations that

| S(1) — (1 = QL(0)p) |<| 1 = QL(0)u | on

whereupon we conclude as before. Finally, if L(0) = 0, there is a root zy = 0 of L(z) which
cannot be dealt with as before. For those roots approaching zy with k # 0, the previous
argument still yields the result. The roots ¢ = o(1) are kept track of just by replacing
(1 - QL(0)r) by (1 — QL'(0)u?) above. ]

We now proceed to remove the assumption | k |< (Re)!/3 in (4.35a). To this end, we prove
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LEMMA 4.9. Let Dy ={peC:2n (k|- 3) < |p| <2r (k| +3)}. Then there holds

(4.39) sup p?|L(y) — _arbe  xo Mo -0

where My and xo are as in the statement of Theorem 4.3.

Proof. We start from

akzk aﬁg
L = —_— _
(1) u— 2mik +kzﬂp—27ri€
and compute
Z agzg _ X0 = Z 27ri£ak5k _ akEk
eyl 2mil Pige k™ 2mil T
Z 27!'26;;;5; _ % < 47T|k| |kakbk I y Z 02 |ag$(: | ,
Zu—omil g R | & Tu—2nit

since | p — 2mil |> 6 > 0 for some 6 whenever € {C:2n(| k| —3) <|p|<2n(| k| +3)}
we also have that

2 62 | aeb[ I -0
|k| | p—2mil | '

k#£

Putting all these estimates together (4.39) follows. []

We are now prepared to show

LEMMA 4.10. Under the assumptions of Lemma 4.8, there holds

(4.40) | pr — 2k | = o(1) as Re = o0 for k = 0,+1,£2,...

Proof. It involves a number of tedious (but otherwise routine) computations. We shall
therefore sketch the main lines in the argument and leave most of the details to the reader.
Clearly, it suffices to examine the case where | k |> (Re)'/?. Consider the function
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(4.41) Gr(p) = £ - Qzxo Q2 (evz _ %) _ Qzagby
z

Using (4.39), we then have that

(442) 560 - Ga(l < (14 LB 4y @2
|p — 2mik] |2
@
(T)“S 1o,

uniformly for | g — 27ik |< %0

Set now

(443)  pe=2] Quily | ( Q-

M, (27k  Qzxo
(“’ i 2k2)+z(7+ 27rk)

=2 Qzagby | H!
Notice that
27rk sz 1
4.44 - > -
(4.44a) If . oy 2thn|H|
(4.44b) i |27k %”20 < =, then C1 k2 <| Q |< Cyk?
z s

for some constants C;, Cy independent of Re and k

On the other hand, we readily see that

|H| 2

9z ( ¥ 4]{1@)
> |Qz (v + Mo(Q="xo + 477k — Qz*x0) ™" |
> |QZ€1)2 + .MO(Qz2xg)_1|
Qe (@50 + 4728 — Qsx) ! — (@27) )|
My My | k|
xoz|  1QIZ

> |Qev?z +
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for some C > 0. Since the second term above behaves asymptotically as | k |~! for large
| k |, we obtain that

(4.45) | H|> Cy >0 as Re — oo, where C is

independent of k.

We next claim that

(4.46) pr < C | k|| arbi | for some C > 0, so that
pr — 0if | k|> Re'/® and Re — co.

Estimate (4.46) is obtained by arguments alike to those in (4.44). Our next goal is to show
that

(4.47) |Gr(p)| >> |S(p) — Gi(p)| as Re — oo, uniformly for

| p— 2mik | = pi with |k |> Re'/?
To derive (4.47), we set £ = p — 2mik, so that
94‘9 = %ﬁf ( ESJ +.. ) in the region under consideration. We have there that

|Gr(p)| =

27rzk QZXO f | Qzxo0l|¢ |
z omik + * O( k? )

QM leMo I |> Qe
Famzie T O ”O( BE ¢
M, 27k Qzxo Qza, by
2_Mo _ Qzay
Z'Qz(e” 4w2k2>“<z +2wk> a

|Q2X0|
-1l (o ()
1 M, ok Q
ZZQz<ev T ke 2k2)+ (: + 2‘3:)

>>| S(p) — Gr(p) |

where we have used (4.42) to derive the last statement above. By the argument principle,
we then deduce that
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(4.48)
As Re — oo, the difference between the number of zeroes and poles in the region

| p — 2mik |< pi (| k |< Re'/?), is the same for functions S(u) and G(g).

As a further step, we now consider function G(u) given by

X _ 27k Qzxo 2, Mo Qza, by
Geln) = z 2mik +Qz (ev + 47r2k2) pu2wik

It is readily seen that

Ge(w)] 2

M, 27k Qzx
2, 70 utii 0
Q= (ev + 47r2k2) e ( z + 2rk )

whereas, if { = u— 2wk,

| Gulu) — Galw) |<c(| |

for some C > 0. We then deduce that, if | u — 2mik | with Re >> 1, | Gx(p) — Gi(p) |<<
| Ge(p) | whence

M
rlgi + 850 ) 1)

(4.49)
As Re — oo, the difference between the number of zeroes and poles in the region

| p—2mik |< pi (] k |> Re'/3) is the same for functions G(u) and G(p).

From (4.48) and (4.49), we deduce that S(ux) has one zero uj, such that | uy — 27ik |< pi.
From this and (3.9), (4.40) follows. []

The last result in this Section is
LEMMA 4.11. There exists two roots pyq of S(p) such that

(4.50) par = £(Q2x0) - G

+0(1) as Re — oo,
where
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= lim —.
q Re—o0 R62

Proof. Let us define

G = i(Qz2X0)1/2

Clearly, G =~ CRe as Re — oo for some C > 0. Consider now the region
z Mo

— du_l= |2 (2 2 i
Z—{,u.“t G| 2(X0z+esz)+pe }

where p > 0 will be selected presently. Once again, we shall make use of Rouche’s Theorem
to derive the result. To this end, we consider the auxiliary function

Flu) = 2= 6)- (22 - Qv

Arguing as in Lemma 4.9, we readily see that

(4.51) Lw) =X+ Jf— T g(u), where g(u) = o u |?)

as | p|— oo.

We now claim that

(4.52) | S(u) = F(p) I<| F(u) | in Y

whereupon (4.50) follows. The above inequality is obtained much in the same way as many
of our previous estimates. We shall therefore omit most of the details involved. We merely
point out that in view of (4.51), we have that

22 g
)~ P = @z (X2 4 204 ) - 221

1 2G M
+0(—>+1—ﬁ+—+——°
| 1 z z X0z

as Re — oo, whence

1S(u) = F(u) <1 Q |1 = || g(u) | +0 (ﬁﬂ) on Y
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as Re — oo, whereas on the other hand

[P | = Zpon 3

so that selecting now p = Cy max {| p | g(u), | p |7}/%} for some suitable C; > 0, (4.52)
follow. []

Putting together Lemmata 4.8-4.11, the proof of Theorem 4.3 is now complete.

4.4. On the existence of linearly stable slow solutions

We have already shown that fast solutions (if any) are always linearly stable (cf. Corol-
lary 4.2). On the other hand, Theorem 4.3 provides a description of the asymptotics
of the eigenvalues corresponding to linearizing around a given stationary solution. It is
remarkable that, for most of such eigenvalues, their asymptotic behaviour is encoded in
the zeroes of the function L(z)(cf. (4.18)). A question which naturally arises is whether
functions f and T, can be selected so that linearly stable solutions satisfying (3.16) exist.
An affirmative answer is provided by the following result

THEOREM 4.12. There exists a set of functions f and Ty, for which there are some
linearly stable slow solutions and two stable fast solutions.

For convenience, we shall deduce Theorem 4.12 from two technical results. Set 'y = axbs,
where aj and by, are given in (3.4). We then have

LEMMA 4.13. Let L(z) be the function given in (3.8) and let Z;; 5 = 0,£2,+3, 44, ... the
sequence of 1ts zeroes. Fix k = 0,4+2,43,14,... and a set of autoconjugate numbers Z;
j=0,42,+3 +4,...4k. Then there exists a function L(z) such that L(z) = 2 z—_g’;r-m,

where T, =T _g, . _k? | T} |< 400 , and the set of zeroes of L(z) is given by
S={z;j = 0,£2,..., 2k} J{z: 5 =k +1,...}

Proof. Set

(4.53) L(z) = jﬁk (‘: — 2) L(z) = f%“jﬁk (i - Z) 2 —F;wie

j=—k t=—oc0 j=—k

Clearly, L(z) is a meromorphic function having poles at most at points z = 2mif. Define
now

33



i=+k .. o
S . ) 2miy — Zj
P = tim (L) —2mi0)) = ] (—) Iy

z—2m 27T'i ) — Z:
j=—k NI T

It then follows that R(z) = L(2)—-3.>, -z—:l-};;? is an entire function, and since R(z) = o(1)

when | z | = (2N 4 1)m and N — oo, we then deduce that R(z) =0. [

We deduce from Lemma 4.13 that, for any given pair of functions f and T, we can modify

their Fourier coefficients (thus changing the geometry of the pipe and the temperature at
the wall) so that

i) For the new data f and T,,, the corresponding function L(z) has exactly 2J + 1
Z€r0€s {Z_J,Z— J41,-+- ,20,--- ,2J—1,2J} lying on the real axis.

ii) When linearization is performed around velocity values satisfying (3.16) with 7 = J,
the eigenvalues corresponding to (4.18) and (4.19) are positive.

i) L (+1) > 0and |z|+J € 2, ¥].
To discuss the situation corresponding to eigenvalues satisfying (4.20), we need yet to
evaluate how parameters xo and M, change under transformations of type (4.53). The

information required is contained in the following result.

LEMMA 4.14. Let N be a positive integer, a > 1,v > 0, and let {r;}, —oo < j < 400,

be a sequence of real numbers such thatr; = —r_; for any j. For any integer k, we set
8 orilk — 1) — €
(4.542) A | ( 7”2( — 1) - 6’) Tk = Ry - T
N<jSan N ST A

where 'y as in our previous Lemma, and

(4.54b) € = —
Assume now that xo # 0, and define XY, MY as follows

o0 o0
= Y V. MY = ) 2mikly
(o ] o0

We then have that

(4.55) lim %' = xo,
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(4.56) lim MY = M, — xovloga.

n—oo

Proof. We shall prove first (4.55). To this end, we set §; = zj — 2wij. By (4.25), we
then have that

271y .
o = — XF+0(|JII il)as |j|—o0

We now split X¥{¥ as follows

(4.57) ERN WLk = Z Ry Tk + Z Ry kT
k|<N N<|k|<aN
+ Z RyiTe=IN + 7Y + IV
aN<|k|

—j|1>% and |k—j|>C|j | where
here and henceforth C will denote a generic constant (changing possibly from line to line),
which is independent of k and 7. We then have that

é‘. — €,
— 1 1 J J
log Rwx = D °g( * 2m’(k—j)—6j)

N<|jl<aN
<cl S &1+ Y '|€?'|'
N<[jI<aN N<lji<en 17

Recalling the well known formula

!
E ~=logn+vy+o0(l)asn — oo
=17

where v is Euler’s constant, we obtain

(4.58) log Ry x < 2loga +o(1) as N — oo

uniformly when | k |[< & or | k [> 2aN.
Suppose now that % <| k |< N. Arguing as before, we obtain
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log Ry x < Cé(log(aN — N 4+ 1) —v) + o(1)

as N — oo, where § > 0 can be taken so small that,

say, Cé < %

A similar argument applies to the case N <| k |< 2aN. We thus arrive at

(4.59) | Ry i |SC | k|'® as N — oo, uniformly

when -—12\—7 <|k|<2aN

Define now unyx = Ry if |k |< N or | k|> aN, un x = 0 otherwise. Clearly,

oo
IV + I = ZﬂN,ka
— 00

Taking into account (4.58) and (4.59), it follows from Lebesgue’s Theorem that

A}i_r’noo(J{V +JN) = _Z:(nli_{go pn k)T = _Z(nli_{r;o Ry )Tk

where limits within the summation terms above are to be considered for fixed k. We now
claim that

(4.60) For any fixed k , lim R, =1

To check (4.59), we notice that if we set 30, = 3 N« |jj<an » for fixed k and large enough
N there holds o

_ b5 — € (6; —e)*
log Ry x = Z <2m'(k —7)—6; 0 (W ))

1
S + | €; 62-
= ZO (%'”—J'-F (5]2--5-'6]' || 65 | +;]§)>
1

=o(l) asn — oo

whence (4.60). We have therefore proved that
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(4.61) lim JN +JN = Zl‘k = Xo

n—oo
— 00

The next step consists in showing that

(4.62) lim JY =0.

n—oo

As soon as this had been done, (4.55) will follow from (4.57), (4.61) and (4.62). To prove
(4.62), let us write

_ &k 2mi(k —7) — € €k
By = 6r ( L omi(k — 5)j6; 5k SNk

where the symbol [] denotes that the product there is extended to indexes j such that
2
J# kN <|j|<aN . Clearly, Ry = Ry i hence

Iy = ZRN,ka + (Z RN,ka) =Ln+Ln
1 1

Let us define ), in a similar way to ), above. Then, for fixed k¥ > 0 and large N,

0; — €
log(Sn,k) = ) _log <1 + o )
; 2mi(k —3) — 6,
€
=) log{1l4+—"=~L— 1
2 o0 (14 5=y + o
Let us denote by [o] the entire part of the real positive number o, and assume that
k # N,k # [aN]. We now split ), in the form 3 , = 37, 4+, + ), ,, where

summation in 3, ; (resp. ) ,,, 2., 3) is extended to the indexes N <| j [< k — 1 (resp.
k+1<j<[aN],—[aN] < j < N). This yields

k—N [aN]—k

(4.63) og(swa) = 3 tos (1- 555) 32 10w (14 525)
[aN]—k

+ Z 1og(1+——)+ o(1)

= K{V + KN + KN +0(1)
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It is readily seen that, as N — oo

aow w= 3 (o ((59)
=o(1) (Z%L: (% + L,%)) = o(1)1 + log (%Z—k)

In a similar way, we obtain that, as N — oo
k—N - [aN]— Ic6
KV+ kY = Y (-2 i
1t 21: zm'e>+21:2 o)

If we now suppose that k —1 # N,k + 1 # [0 N], and set Sy = min {k — N, [aN] — k},
YN,k = max {k — N,[aN] — k}, we see that as N — oo

BN,k
(4.64b) KN+ kN = Z > E(ew- €x_t)+
E—N 1 [aN]—k
+o(1) Z 7 7 + o(1)
BN, k+1 Bn,k+1
BN,k BN,k

Z |k+€||k T Zl’”k+€|+|7‘kz|

+o(1) {1+ log (W) + log (%VH))

uniformly for k > 0, N < k < [aN]—1,as N — oo. In view of (4.63) and (4.64), for §; > 0
arbitrarily small and N large enough, we have that

k=N \" ([aN] = k)" 25
. ’ < Byr+1 < 1
(4.65) | Sn.K |—C<3N,k+1) (ﬂN,k+1> = CIk

whereupon | Ly |= o(1) as N — oo. Finally, minor modifications of the previous argument
enable us to remove the assumptions made on the relations between k and N, and (4.62)
follows.

We next set out to derive (4.56). To this end we notice that, keeping to our previous
notation
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(4.66) MY = Y 2mikpniTe+ Y 2mikRyulx = BY + BY
o0 N<|k|<aN

Arguing as in the previous case, we readily see that

(4.67a) Jim_ BN = M,

Therefore the proof will be finished as soon as can show that

(4.67b) lim BY = —xovloga

N—oo

To derive (4.67b), we write BY in the form

[a,N] [a,N]
(4.682) BY = (Z 27TikRN,ka) + (Z QWikRN,ka)
N N

=Qn +Qn
We know have that, as N — oo,
[aN]-1
(4.68b) QN = —Xo Z €xdnk + o(1)
N+1
[aN]=1 [aN]-1
=—Xov Y, —Zi ~Xo Y, TkSNk+o0(1)
N+1 N+1

= —xovS1 +o(1).

On the other hand, for 1 < 0; < 6, < a with 6;,6; close enough to 1 and a respectively,
we see that

[61N]—-1 [92N]

S
(4.69) ENEDY | N"|+Z N’“'
N+1 N+1
[aN]-1
| SNy |
+ Z —— =
N+1 k

=511+ 512+ 513
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Recalling (4.65), it follows at once that, for some C' > 0

(6 -1 -6
c 2 k 1
4. << * L
(4.70a) Siusy D (N) (N 1) =
[’}

In a similar way, we obtain that

T dr
4.70b < _—
( ) S12 C/ r(r — 1)
82

Finally, one readily checks that Sy = 14+0(1) as N — oo, uniformly for k € (6, N,0;N).
Hence

[02’N]

(4.70¢) Si3 = Z E(l + 0(1)) = log (z—z) +0o(1) as N — oo.
[61,N] ‘

Therefore, letting 6; — 1 and 63 — oo in (4.70), we deduce that S; — log a as N — oo.
From this and (4.68), (4.67), follows. []

End of the proof of Theorem 4.12.

By Lemma 4.13 we can select f ant T, so that an arbitrary (but finite) number of zeroes
of the corresponding function L(z) is prescribed at will. Let Sg = { 21,..,2n} be the real
roots of L(z) and assume that Zy > % and Zy >| Z; | for any Z; € Sg with h #N. Let fﬁ,
be one of the roots of (3.14b) with z; replaced by Zy there. Clearly, we may assume that
¢4 > 0 and ¢'(£%) < 0. Furthermore, it may also be supposed that L (£1) > 0 if roots Z;
are located in a suitable way.

It is easy to see that we can have that xo # 0 and M, # 0, after possibly a slight
perturbation in the location of the zeroes above. Indeed, suppose that we change the
coefficient T'x,T_ in L(z), where Ty = aibi, into T'x 4+ AT, T'_x + AT_x. Then xo
would go into o = xo + Axo = xo + 2Re(Tk), and M, would be transformed into M, =
My — 4wkIm(T't), whence the result. Indeed this change can be done so that it also yields
(4.17). On the other hand, by (4.16) we see that, as Re — oo
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2. A~ 2’ Re’ ) ) g'(€x)xo
WX R (g(ﬁfv)"’ 3%

Therefore, by selecting coefficients so that xo > 0, the first term in the right of (4.20)
yields purely imaginary values, whereas the second one there behaves as

1 (e6hd'(E) | Mo
( (9(Ex))? +X0)

which by (4.55), (4.56) can approach any arbitrary real value if coefficients 'y with
N <|k|<aN (a>1, and N large enough) are suitably selected.

5. STABILITY OF LINEARLY STABLE SOLUTIONS
In this Section we analyze the local stability of the stationary solutions for the com-

plete nonlinear problem (4.2), (4.3). Assume that (®,,T;) is a stationary solution as in
Section 4. We then define

(5.1) w = ®(s) — P,
(5.2) p(z,s) = T(z,s) — Ts(z)

Assume &, # 0 that is generically true. By (4.2), (4.3) we obtain that as long as |w| is
small enough,

0 csan(@,) 0%

(53) o5 T g(Relo oz~ VY
T, 1 !
Fesen(2) 5 (@) {gmewsn ) g(Relv(s)I)} *
1 1 3_¢ z,8
+€sgn(q’*’){g(ae|us|) ) g(Re|v(s)|>} 5 ")
- 9 4o L | = f F(2)b(e, 5)do+

’ <g(Re|1v<s)|) Relvsl ) ]{ f(2)Ts(z)do+
* (g(Rellv(s)D g(Re|v3| ) ff(x)lf) z,s)dz

where by (4.1a) v, = sgn(®,)(2|®,])'/2, v(s) = sgn(®(s))(2|@(s)|)!/2. By (5.3) we have
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that

— 8 8 esgn(és)d/\
(5.5) P(z,8) = ety (‘”‘O/g(Rew(A)l)) *

8

' / O Nesn @) | S SO
% (x _ [ %d{) )
Plugging (5.5) into (5.4) we obtain the differential equation
@ W= sy S (‘/%dk)
[t i (oo [ )

+ (g(Rellv(s)D - g(Re|vO|)) ff(m)To(:v)dm

We make the change at variables w(s) = e7*g(s). Then g(s) satisfies the equation
dg 1 o [ esga(®,)
59 30~ S § ( f glRelm(A)D‘“)
oA _esgn(®e) B f € sgn(®.) .
+0/ SRRV (f o ( / g|Re|v(5)|)d€) ’ ) “

e (gIRellv(e)) - g(Re|1v<s>|>) § ST @)

We now define a new time scale as:

Z(n)

/ g(RelvaD d), Z(U) —

(1) 1= | SR

I

It is readily seen that n — oo as s — oo.

On the other hand, (5.6) may be written as
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dg | g(Refv(s)])
68 @t R -

- g(Rilvsl) ?{ f@)o ( - fﬁ%&) dot

esgn(®,) [ g(Relv(s)|) neZ(v) y -
T (Relo) ( 9(Relv,|) )/0 Qw|Z(Y)|K(n - v)dy

esgn(®,) (g(Rel [" o[ 1 1
" 9(Relv,)) ( g(Relv,) )/ {g<Re|vs|> g(Refo(N)
Qw(Z(v))}ﬁ’(n — y)dy+
ez L — ! z)Ts(x)dx
* <g(Re|va|> g(Re|s(s>|>)?{ fe)Ti(z)d
where

~ T,
(5.9) k©) = § 1215, ( - g(RflvsI)> o
and ) has been defined in (4.16).

Set
(5.10) = —-fo(a:)Ts(a:)da:

We can transform (5.8) in

da NS S (PP UL C O PN
an T D= TR § o ( g(Re|vs|>’7) dot

Qe sgn(®,) f .
g(Relv,|) /I‘(ﬂ —1a(Z(7))dv+

esgn(@s) (9B [of_ 1 1
Sty st )/ {guzewvsn J(Relo(Z(r))D

—Qw(Z('r))}ﬁf(n — v)dy+

Qe sgn(®,) [ g(Relv(s)]) — g(Relvs))\ [ o
" g(Relol)) < g(Relvy]) )O/‘I(Z('r))f (n —~)dy

o(Relo(s))) — g(Relv.)
- ( J(Relo,) )q“)*

eZ(0) 1 _ 1  Owls T (2\da
’ {g(Relvol) R~ @t )}j{f( )Ts(z)d
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Define

(5.11a) Q&) = e "9(Z(n))
(5.11b) K(§) = e *K(¢)
Then, we have
(5.12)
@ . _ Esen(®) 1\ 4
i+ = s e (= - S )

Qesgn(®,) [,
+ 2 [ K- i

csgn(@,) (9Bl [" Ly 1 1
* 9(Re|vs]) ( g(Relv,|) >/o {g(R6|vs|) g(Relv(v)])
—Qw(Z(v))}fi’(n — y)dvy+
1 QB (RN oFe) [y oty

g(Re(vy)) g(Relvs))
_ ( 9(Re[v(s)]) — g(Relvs|)
( o(Relo.) )Q(")+

e~ ez 1 _ 1  Ow(s i N
* {g(Relvsl) (Relo(s)) 9 )}]{f( )Ts(z)d

Our goal is to analyze equation (5.10) for |Q(0)| [|%o( )||m1(c) small. To this end, we first
study the linear integrodifferential equation

(5.13) @ F 4T = Q(Tgl(‘%) / " K(n— 1)y

Suppose that the roots of the linearized problem, that have been analyzed in Section 4,
are placed at J = {ux € C: k =0,+1,4+2...}. Then

LEMMA 5.1. Assume that —1 < 7 < 0, Re{ur} < 7 for p € J. The problem (5.13)
with the initial condition Q(0) = Qo has a unique solution Q(t) € C[0 + 0o) N C*(0 + o0).
This solution satisfies

(5.14) 19(n)] < C(Q)e™
where C > 0 is some constant depending only on Re, || f| u;,[|Twll a1, 9-

Proof. Local existence and uniqueness of solutions for the problem (5.12), Q(0) = Qo
follows from a standard fixed point argument. On the other hand by the variation of
constants formula

3
Q(n) = Qoe~ D 4 Q_e_;gr;_(q)'_ / dee= D=6 _ / K (€ — 7)Q(7)dy
elvs|)
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whence taking into account (3.9), (5.11)

U] 3
1Q(n)| < |QO|6—(2+I‘)17 +C’/ dfe_(2+r)(”_£)/ e"(f_")m(y)ldfy
0 0
where C' > 0 depends on f, T, Re, and g. A straightforward calculation gives
n o
Q)] < 1Qle™ 07+ C / L TI0(y) | dy
0

where L > 0 and C > 0 may change from line to line. A continuation argument implies
that for L > 0 large enough

(5.15) Q(n)| < Ceb?

and global existence follows.

By (5.13) we can apply Laplace’s transform to (5.13). Set
for= [ e
0

to obtain z0(2) — Qg + (2+)Q(2) = Qg?—;g%}%lf((z)ﬁ(z). Notice that {}(z) is analytic for
Re(z) > L. Then

$2o
(Z +(2+0) - gi;el;v?la) i{’(z))

By the inversion’s formula for the Laplace transform

(5.16) Qz2) =

Ri42L

1 Qoe?"
(5.17) Qn) = — lim / — dz
2 R—o0 Qesgn(®,)
i —Rit+2L (z +(2+10) - g(Re(v,)) K(z))

On the other hand, it is readily seen that the zeroes of z + (2 +T') — %R(z) are
placed at the same points that the zeroes of (1 — e*)S(z) (cf. (4.9)).

Notice that

+

oo

K(z) = [ dte™**K(t)dt =

oo

e 0T, esgn(®,)
zt t _ —
dte™*"e e (:1: g(Re|vsl)t) f(z)dz

Il

o+ O

el

= orkidgck

esgn(,)
keTeo 2+ 1+ 2mki Ty
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where ¢ is given in (3.7).

It is readily seen that uniformly in

esgn(®,)| _ 1 €
2414 27ki——=——=| > = |1k|————
s(Relou))| = 2™ lgRelonD]
(5.18) k=00
Z 2nkiagcy
R(z) ~ piEm as |z| — oo

We now define a sequence of contours C,, as in the figure

A

€
2n(n+ 1)t—s———<
- 2TV S Relo)
27rni——€— C
9(Relv,|) R
Figure 2:
Then it may be easily seen from (5.16), (5.17) that:
Qo e
Q(n) = — lim / dz
27T n—oo _ Qesgn(®,) 7>
inmo) (24 (2+7) - LEEAR(2))

and by residue theorem we finally arrive to the representation formula

(5.19) Q) = lim 3> Re{Q(=)e™, e}
le|<N
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where u, are the zeroes of (1 — €#)S(z) that have been analyzed in Section 4.

In order to obtain bounds of (1) we need precise estimates on the zeroes of

Notice that

k=+oc0 .
Qe sgn(®s) 2rkiakck
W(iz)=2+24+T)+ ——7—
(=) ( ) g(Re(vy)) kzoo (z + 1+ 27ki —u—l;(sR’;‘(Z)))

Arguing as in previous sections, we can obtain an asymptotic formula for the roots of W.
Notice that the equation W(z) = 0 may be approximated as:

_ Qesgn(®,) 2mjia c;
R s esgn(P,
g(Relvs|) (z+1+27r]z-z—1%€4|1—}—|%)
Then,
,LLj’:—l—Qﬂ'] ( s) as [j| — oo
( g(Relv,|)
whence:
esgn(®y)  Qesgn(Py) 2njiac;
24+T1)—1—-2mg: ~ - -
(2+1) Relon)) = aRel) (351 Himpeete
Then:

. (1 N 2 jie Sgn(@s)) _ Qesgn(®r) 2mjiajc;
o g(Refos)) ) " g(Relv]) 2mjicem@)
as |j| = oo. Then

2mjie sgn(@s)) _ .
i~ — (14 —————2 ) —ajcj, aslj|— oo
& ( g(Relv.]) 9

Generically we can assume that the roots of W(z) are simple.
Then

e“lr

W' (pe)

(5.20) Res {ﬁ(z)ez",,ug} ~
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Notice that

WI =1 Q‘E Sgn(q)s) iy QWkidkck
() =1+ Reloa) TR
ke (z 14 et )
Qe sgn(®, orjiac;
Wi 1+ S e \E =
’ (nj 1+ Zmiicamn(t) )

Qe sgn(®,) 2mjiajc;
9(Relvs]) (ajc;)*
_ Qesgn(®,) 2mji
— g(Relvy|) ajc;

~1+

as |j| — o0

Then, by (5.20)

3 Qog(Re(vy)) arcy
z7 . ~ et
(5.21) Res{Q(z)e*" : 1} ~ csgn(d,) 2 7€

Then, if we use (5.18) we obtain that (2(n)) < Ce™|Qq|, where C depends on f, Ty(z),
and —1 < 7 < 0. Notice that similar bounds may be obtained if a;c; = 0, because
T>-1.0

Set T(n) = Q(n) the solution of (5.13) with 2(0) =

We now consider the problem

(5.22a) Z—Q ++T)0 = & ;genvs)) / K(n —7)Q(y)dy + M(n)
(5.22b) Q(0) =

where M(n) is a continuous function for n > 0. Then, we have

LEMMA 5.2. The problem (5.22) has a unique solution Q(n) € C[0,+o0) that admits
the representation formula

(5.23) Q) = T(n)% + / T(n — ) M(n)dy

Proof. Local existence and uniqueness follows from a standard fixed point argument.
By Lemma 5.1 we have that T(-) € C[0 4+ c0) N C'(0 + o0). Then, a straightforward
calculation shows that Q(n) solves (5.22a) and (5.22b). ]

Finally we can state the main result of this section.
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THEOREM 5.3. Assume that there exists —1 < 7 < 0 such that Re{ur} < 7 for
pr € J. There exists 6 > 0 such that for [Qo] + [|%ol|:(c) < 6 the solution of (5.12)
(2(n), ¥(n)) satisfies

(5.24) 12(m) + 1% Ml gy < CUL |+ [|bollay(c))e™
where C' > 0 depends on f,T,, g, Re, T

Proof. Problem (4.2)-(4.3) is equivalent to (5.5)-(5.12) if |€2(n)| is small enough. Then
global existence and uniqueness of (5.12) follows from Theorem 2.1 and estimate (5.24) if
6 > 0 is small enough.

Assume that |Q(n)| < &6, where § is small enough. Then, by (5.7) we have that
(1-08)n < Z(n) < (14 B)n, where B > 0 is arbitrarily small. We apply the representation
formula (5.23) in (5.17) to obtain

() = T(n)So+

Y sy 0/ AT =) § f(e (x - ;(f{‘—ﬂv) d,

g(Relv(Z(v))|)>
g(Relv|)

e sgn(®,) r
a(Relv) 4

dvT(n—v)(

_ [ em72® 1 3 1 - Ow -
/ {g(Relvsl) g(Relv(€)]) @ (Z(ﬁ))}K(v §)d¢

=

P G [, (ARMZON) - i)

g(Re Vs)) J g(Re(vy))

- / K(y — £)0(€)dé—

0
Ul

- oo (At

0

n
+ /dvT(n — y)e 2™ {

0

1 1
9(Re(vs))  g(Relo(Z(7))])

- Qu(z(0)}

f f(2)Ty(2)da
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Standard estimates that use Lemma 5.1 imply that
(n)] < C(Q0)e™ + CllvhollL2(cre ™"+

n Y
1 ¢ [arerme=r [ ca+0g0(z(6))y
/ /

0

e / dye™ =N (9(Z(7))) / e~ (-9 (Q(¢))de +

n

Lc / dyeT D (Q(Z())(QU))+

+C/dfyer(’"”e“’e(”'ﬂ)'y(Q(Z('y))).

0

Then, if we take into account that as long as (5.24) holds Z(n) < (1 + 8)n, we can use a
standard continuation argument to obtain that if 3 is small enough

1(n)| < C (1] + 1%ollL2cc)) €7

We now can use (5.5) to obtain

(.Ml < € (9] + Iollgcy) €™

This concludes the proof of (5.24). [
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