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AN EXACT SOLUTION OF STIKKER'S NONLINEAR HEAT 
EQUATION* 

ALLAN R. WILLMSt 

Abstract. Exact solutions are derived for a nonlinear heat equation where the conductivity is a 
linear fractional function of (i) the temperature gradient or (ii) the product of the radial distance and 
the radial component of the temperature gradient for problems expressed in cylindrical coordinates. 
It is shown that equations of this form satisfy the same maximum principle as the linear heat 
equation, and a uniqueness theorem for an associated boundary value problem is given. The exact 
solutions are additively separable, isolating the nonlinear component from the remaining independent 
variables. The asymptotic behaviour of these solutions is studied, and a boundary value problem 
that is satisfied by these solutions is presented. 

Key words. nonlinear heat conduction, exact solution, diffusion 

AMS subject classifications. 35C05, 80A20, 35K05 

1. Introduction. Considerable work has been done in the analysis of certain 
types of nonlinear heat conduction (diffusion) equations where the conductivity (dif- 
fusivity) is a function of the temperature (concentration) [2], [6]. The porous media 
equation, a nonlinear diffusion equation of this type, is an example [1], [9]. A review 
of some nonlinear equations that admit exact solutions has been completed recently 
by Rogers and Ames [10]. Some analysis has also been done for equations where the 
conductivity is a function of the temperature gradient or its magnitude [3]. 

In this paper we shall develop exact solutions for the following two nonlinear heat 
conduction equations in 1R3: 

(1) (C 
+ bu_, 

)s 
+ yy +U 

(2) 1 
(a +brurur + 1 

r c + drur r r 

where (x, y, z) and (r, 0, z) are Cartesian and cylindrical coordinates, respectively; 
subscripts denote partial differentiation; all variables are nondimensional; and the 
nonzero constants a, b, c, and d satisfy certain conditions given below. The constructed 
solution to (2) will be radially symmetric. An equation of type (2) was derived by 
Stikker for the problem of heat conduction in steel coils during the batch annealing 
process [11]. 

The remainder of this paper is organized as follows. In ? 2 we shall give Stikker's 
physical derivation of the nonlinear radial heat conductivity, consider some of the 
physical constraints on the constants, and simplify (1) and (2). Some properties of 
solutions to these equations are given in ? 3, exact solutions for both equations will 
be derived in ? 4, and ? 5 will discuss the types of boundary value problems that these 
solutions will satisfy. 

2. Derivation and simplification. Since Stikker's work is not generally avail- 
able, we shall summarize his derivation of the heat conduction equation in ? 2.1 below. 
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1060 A. R. WILLMS 

2.1. Stikker's derivation. Stikker was concerned with the heat conduction 
equation relevant to the tight-coil batch annealing process. Batch annealing is a 
stage in the production of steel whose purpose is to restore the steel's ductility after 
cold rolling. In this process, steel coils are heated to a temperature of about 7000 C 
and then, after some time, allowed to cool. 

To simplify the mathematics, the steel coil is viewed geometrically as a collection 
of concentric rings rather than a spiral, thus achieving axial symmetry. This type 
of approximation has also been employed in the numerical work by Harvey [5] and 
Jaluria [7], [8]. Forte [4] gives some discussion of how the conductivity in the radial 
direction for Stikker's model may be modified to account for its failure to reflect the 
direct connection between the coil windings. 

Since the gaps between the windings of the coil have only a very slight influence 
on the specific heat of the coils, for all practical purposes, the specific heat of the coils 
may be taken as that of the steel, c, which has been found experimentally to increase 
between 200 and 7000 C by a factor of 1.7. The heat conductivity in the axial direction, 
or z-direction, is the heat conductivity of the steel, A), which decreases between 200 
and 7000 C by a factor of 1.5. The heat conductivity of the coils in the radial direction 
is, however, highly dependent on the width of the gaps between the windings. The 
heat conduction equation then reads 

(3) pc at = ar Aeqr 
OT 

] + aAZ[s 
OT 

] at 10 Fr OT1 Oz OT1 

where pc is the specific heat of the steel per unit volume, A, is the heat conductivity of 
the steel, and Aeq is the equivalent heat conductivity of the coil in the radial direction. 

Figure 1 illustrates the situation in the coils. The resistance for the heat flow 
between the planes r1 and r2 is given by 

d1 d2 
As A' 

I :< : AT - : 

Gap 

As Ag As8 

Fr2 1 

FIG. 1. Coil cross section. 
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EXACT SOLUTION OF STIKKER'S HEAT EQUATION 1061 

where Ag is the heat conductivity of the gas surrounding the coils. The heat resistance 
per unit length is 

(di/As) + (d2/Ag) RL= 
di + d2 

and the equivalent heat conductivity is Aeq = 1/RL. The quantities d1 and d2 are 
functions of the temperature, which can be approximated by 

(4) d1 dio, d2 d2O +r2AAT, 

where A is the expansion coefficient of steel. Although Stikker does not elucidate the 
above claim, we shall provide some justification. 

The expansion coefficient of steel is of the order 10-5C-1. A temperature differ- 
ence of AT between two rings of the steel would be reflected by a somewhat smaller 
difference across the thickness of one ring since the gap would certainly account for a 
significant portion of the temperature gradient. Consequently, the change in thickness 
of the steel due to the (assumed linear) temperature difference would be less than 

f AAT IIdr = -AATd1o, Jo ( dio 2 

which would require an unphysically high value of AT (- 2000 C) to obtain even a 
0.1% increase in the steel thickness. The steel thickness is thus virtually unaffected 
by an inter-ring temperature gradient. 

In contrast, the width of the gap is significantly altered by a temperature differ- 
ence between two successive rings. Suppose the two rings are at the same temperature. 
We then have the relation 

(5) r2-r1 = dio + d20. 

If the temperature of the outer ring is subsequently increased by AT, then, due to 
thermal expansion of the steel in the circumferential direction, the new radius, r', of 
the outer ring is given by 

27rr' = 27rr2 + 27rr2AAT, 
(6)2 

X r2 = r2 + r2AAT. 

Thus the new gap thickness, d2, satisfies r' -r = d1o + d2, which from (5) and (6) 
gives 

d2 = -ri -dio = r2 + r2AAT - r,-do = d20 + r2AAT. 

Since the gap thickness is roughly 10-3 to 10-2 cm and the radius is three to four or- 
ders of magnitude larger, the correction term, r2AAT, represents a significant change 
(1%-10%) in the gap thickness when the temperature difference is of the order of 
unity (a physically realistic range). 

Absolute temperature, T, would also affect the values of d1, d2, and A, but over 
moderate temperature ranges these effects may be ignored and over the relatively large 
ranges of the annealing process may be approximated by using piecewise constant 
functions for d1o, d20, and A. 
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1062 A. R. WILLMS 

Substituting (4) into the expression for Aeq gives 

1 + (d2O/d1o) + r2A(AT/dio) 
Aeq = AS 1 + (As/Ag) ((d20/d1o) + r2A(/\T/ddo)) 

Since the dimensions of the gaps are small compared with the thickness of the steel, 
we write d1o \Ar, and 

(7) Aeq = As 1 + 
1 + (d2o/dio) + r2A(AT/Ar) 

(7) Aeq = AS 1 + (As/Ag) ((d20/d0o) +r2A(AT/Ar)) 

Note that as AT/Ar decreases from zero, since A. > Ag, the denominator of the 
expression on the right side of (7) reaches zero before the numerator does, hence 
Aeq -* +oo as r2AAT/Ar -- -(d2o/d1o + Ag/As)+. To avoid this situation Stikker 
imposes the physical constraint that the gap between the successive windings, d2, is 
bounded from below by a minimum distance, dmin, determined by the roughness of 
the steel (- 10' cm). Consequently, (7) holds for 

d2= d20 + rAAT > dmin 

or 

(8) + rA A dmin 
do Ar -do 

while for smaller values Aeq is given by 

9e=As 1 + (dmin/dio) 
Aeq- 

= 1 + (As/Ag)(dmin/dio) 

Note then that the domain of validity of (7) is exclusive of the singularity that occurs 
at 

d2_ AT Ag 
+rA = < 0 

do Ar As 

and includes points where AT/Ar = 0. Also, when Aeq is given by (9), (3) becomes 
linear for constant p, c, A., and Ag. 

Using the above expressions for Aeq, Stikker discretized (3) and solved it numer- 
ically to achieve his results. Harvey also utilized Stikker's derivation for the radial 
conductivity in a more complex model of the annealing process [5]. 

2.2. Constraints and simplification. If we now employ the approximation 
AT/Ar 3OT/IOr, we obtain what we shall designate as Stikker's heat conduction 
differential equation: 

OT_10 F 1 +d2o/dio+rAOT OT1 0(As-T) 
(10) PC- -- rA5 O9r + SOz 

At r r 1 + (As/Ag)(d2o/dio +rA9T) Or oz 

Taking A., Ag, A, and pc as constants (which is valid over moderate temperature 
ranges) and introducing the nondimensional variables 

Ast r z U =AT, pcR 2 Ir=Ro , and2=Ro 1 
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EXACT SOLUTION OF STIKKER'S HEAT EQUATION 1063 

where Ro is some suitable reference length (such as (As/p) A/c3 or some other length 
that may arise from the problem geometry), (10) becomes 

(11)= K + (As/Ag)(d2o/dio+ uA)rurip +U 

which is of the form (2) with a = 1 + d20/d1o, b = 1, c = 1 + (A,/Ag)(d20/dio), 
d = As/Ag) and radial symmetry imposed. 

We now shift our attention to the general form of Stikker's differential equation, 
namely (2), and a similar equation, (1), in Cartesian coordinates. It is likely that 
(1) will be applicable for a problem in one spatial dimension (uyy = Uzz = 0) rather 
than three; however, we shall consider the three-dimensional case in the following 
discussion. 

Set a = ux or rur corresponding to equations (1) and (2), respectively, and let 

k a + by 
c + d7y 

Note that the outward flux, f = -ky, has zeros at -y = 0, -a/b, and that at -y = -c/d 
a singularity occurs. Both an infinite flux and a simultaneous occurrence of a zero 
flux and a nonzero temperature gradient are nonphysical situations; therefore, we shall 
restrict the domain of validity of (1) and (2) by applying the following two physical 
conditions. 

First, since the domain of physical interest includes the region where the temper- 
ature gradient, and hence y, is close to zero, near y = 0 we shall require that the flux 
behave like the linear flux, -ko-y, ko > 0, i.e., 

(12) df (0) a <0. 
d7 c 

Second, we impose the restriction 

__ < _ < 7if - -KG, 
(13) b d if-d< 

tY'-d <-b if-d 
The above condition says that the region of interest is located on the same side of 
the singularity as the origin and that the position where a zero flux and a nonzero 
gradient occur simultaneously is located on the opposite side of the singularity, hence 
outside the region of interest. Conditions (12) and (13) are equivalent to 

(14) ~~~ad 11b 
(14) bc d 

We remark that Stikker's differential equation, (11), satisfies (14) while the lim- 
itation on the domain of validity of (11) is given by (8) and can be expressed in the 
form 

c _ A9 d20 d20 dmin 
d As dio d1o d1o 

With the restrictions (14), we may write 
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1064 A. R. WILLMS 

and hence, with the respective rescalings 

ddd add db 
u=- -u, -=Xx, und ii=-u, -= r, 0= -0, 

c b b c b d 

equations (1) and (2) become, after dropping the hats, 

(15) ut=[( 1+2 ux +uyy+uzz 

and 

(16) Ut = r [(? +l rur) rur]+ + 

where 3 = ad/bc - 1 > 0, by (14). For Stikker's equation, (11), the parameter 3 is 
given by (As/Ag - 1)/(1 + (As/Ag)(d2O/dio))- 

Owing to the particular form of the nonlinearity, the first term of (15) may be 
written as 

[(1+ 1 )uxUx- (1+Ux) 2Ux + (1Ux)2) 

hence (15) becomes 

Ut = 1+ (1 +u)2) U + Uyy + Uzz 

(17) A-(1 2+ ux 

= Au- ( d A 
1 + UX x 

Similarly, (16) is equivalent to 

11(3\ 
Ut( + (I + u)2 (rur)r + 2 uOO + uzz 

(18)\( + U) 

=AU - f dA 
r (i+ rurjr 

Note from (17) and (18) that the effect of the nonlinearity is the introduction of a 
"perturbation" term that vanishes as 3 -* 0. 

The translation into our new variables of condition (13) with regard to the domain 
of validity of -y is given by 

(19) - 1 < ux, -1 < ru,v 

for equations (17) and (18), respectively. 

3. Properties of solutions. Solutions to (17) and (18) satisfy the same maxi- 
mum principle as the standard linear heat equation. Let Q be an open set in R3, and 
define the sets D, DT, and CT (the parabolic boundary of DT) by 

D = Q x (, O)), DT=Q x (0,T), T > O, CT = ODT \ {(x,T) I x E Q}. 
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EXACT SOLUTION OF STIKKER'S HEAT EQUATION 1065 

THEOREM 3.1. If u E C(D) nC 2(D) and satisfies (17) or (18), then 

u(x, t) < maxu, V (x, t) E DT, T > . 
CT 

Proof. Note that if a maximum occurs at a point p on the interior of DT or on 
{(x,T) I x E Q}, then we have ur(p) = ux(p) = 0, and (17) and (18) evaluated at p 
are given by 

Ut = (1 + 3)u,, + uSy + Uzz 

and 

1 1 
Ut = -(1 + 3) (rur)r + 2 Uoo + Uzz 

respectively. The result then follows in the same manner as it does for the linear heat 
equation. 0 

A uniqueness result may also be given. 
THEOREM 3.2. For a bounded region D in 1R3, arnd constant 3> 0, there exists 

at most one solution u E C(D) n c2(D) to each of the problems { u satisfies (17) or (18) in D x R+, 
u(x,O) =f(x) in D, 
u(x, t) = g(x, t) on OD x R+, 
Y > >-1, or y < -1 in D x R+, 

where y = ux or rur corresponding to u satisfying (17) or (18). 
Proof. Set 

a = 1, (c,nl, ) = (X, Y, z) if u satisfies (17) or 
a = r, (C r7, ) = (r, 0, z) if u satisfies (18). 

Suppose there are two solutions ul, u2. Set v = - u2 and -yi = i = 1, 2; then 
v satisfies 

|Vt = A\v+ aE(1 1)1+ 2) in D x R+, 

V(c,71, (I ?) = ? in D, 
t V(C, 71, (I t) = O on OD x R+. 

Consider the function 

(20) I(t)= 2Jv2dV. 

D 

Clearly, I(t) > 0 and I(0) = 0. Differentiating (20) yields 

(21) I'(t) vvt dV J vAv dV + v ((a? ? ) dV. 

Using Green's first identity, 

J (fAg + Vf Vg) dV-Jf 49 ds, 
D aD 
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1066 A. R. WILLMS 

and noting that dV = ce df dr1 d(, (21) becomes 

I'(t) =-|IVVI2 dV + v ? ds 
D AD 

+0 [A v , (( + 71) (1 + 72,) e~ d] d 
(22) 

=- -IVVI2 dV + Iv n ds 
D AD 

+ IJ[(1 + _/1)(1 + 72) |6( 4j (n( (1 +-Yl)(l +-2) 

Since v 0 on oD, and therefore zero on (j(7r, () and 6(q, 0), (22) collapses to 

I'(t) - (1V2 ?(1 + 71) + 72) ) 

Finally, by the theorem assumptions, since 3> 0 and both 1 +-yi and 1 + Y2 have 
the same sign, it follows that I'(t) < 0, implying that I(t) 0_ and therefore v =_ 0, 
hence 1l= U2- ? 

Remark. The Dirichlet boundary condition in Theorem 3.2 may be replaced by a 
Neumann condition provided that n = ?f at all points (6j (71, (), 7I, ( 2 (r, 0), m (), 
that is, if the boundary of D is composed of surfaces ( = constant and surfaces tangent 
to the (-direction. 

4. Exact solutions. In this section we shall construct analytical solutions of 
(17) and radially symmetric analytical solutions of (18) by assuming separability of 
the x / r dependence from the remaining independent variables. 

4.1. Solutions of (17). Suppose u(x, y, z, t) = X(x)V(y, z, t); then substitution 
into equation (17) yields 

xvt = x VX( + (1 +V') + X (Vyy + VZZ) 

vt-V -V% _ X// _ A A 

V Xt (1 +VX/)2y 

Note that the V, X dependence does not completely separate, but one possible solu- 
tion is 

(23) X" = O = Vt-Vyy-Vzz, 

implying 

X(x) = Ax + B. 

Solutions of (23) are, however, not very interesting, since they are also. solutions of 
the linear heat equation, 3 = 0. 
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EXACT SOLUTION OF STIKKER'S HEAT EQUATION 1067 

Solutions to (17) that are not also solutions to the linear heat equation may be 
found by assuming an additive separability of the form u(x, y, z, t) = X(x) +V(y, z, t). 
In this case, substitution into (17) yields 

vt=XI + VY + vzz(? ?) 

which may be written as 

(24) vt-vyy-Vzz = d +I X'- 1 X) 

achieving complete separation of the x dependence. Setting both sides of (24) equal 
to a constant, 4A, and integrating the X equation once gives 

(25) Vt-Vyy-Vzz = 4A, 

(26) 1 + X'I = ,-4(Ax + A), 

where A is a constant. 
Equation (25) is an inhomogeneous linear heat equation in two spatial dimensions, 

for which there are standard methods of solving, given a set of boundary and initial 
conditions. 

We now turn our attention to solving the first-order nonlinear ordinary differential 
equation (ODE) (26). Multiplying by 1 + X' gives 

(1 + X')2 - 4(Ax + A)(1 + X')- = 0; 

hence, 

(27) 1+Xi =2Ax+2A? 4(Ax?A)2?+3. 

Integration yields 

(28) X?(x) = Ax2?+ (2A-1)x 4(Ax?A)2?+3dx + B, 

where B is a constant. Note from (27) that since 3 > 0, 1 + X' is either always 
positive or always negative so that there are no singularities of (17). Furthermore, 
regarding the domain of validity of our equation, given by (19), we see that X+ is 
the valid solution while X_ is a nonphysical solution. Note also that if A = 0, then 
equations (25) and (27) collapse to the linear equation (23); we shall therefore assume 
that A 74 0. 

Completing the integral in (28) gives 

X?(x) = Ax2 + (2A-1)x + B [(Ax + A) 4(AxA)2 
(29) 1 

? n+ In2(Ax + A) + 
2 

Two classes of exact solutions to (17) are therefore given by 

(30) UE? (X, y, z, t) = X?(x) + V(y, z, t), 

where V(y, z, t) is any solution to (25). 
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1068 A. R. WILLMS 

4.2. Solutions of (18). We shall restrict ourselves to radially symmetric solu- 
tions of (18); hence, the uoo term vanishes. As in the previous section, a multiplicative 
solution of the form u(r, z, t) = R(r)V(z, t) does not completely separate, yielding 

RVt = V + ) (1 ? (1 + VrR)2) ?RVzz, 

Vt-%zz-R (R" +r ) 1+(1 + VrR/)2) 
V Rk\rJk\(1?VrR')2J 

which admits solutions to 

(31) R" zz, 
r 

implying 

R(r) = Alnr +B. 

Again, these solutions are also solutions to the linear problem. 
Assuming an additive separability of the form u(r, z, t) = R(r) + V(z, t) gives, on 

substitution into (18) and manipulation identical to that in the previous section, the 
equation 

(32) Vt-Vzz= - 1+ rR'-- _ R) 

Setting both sides of (32) equal to 4A and integrating the R equation once yields 

(33) Vt-Vvzz =4A, 

(34) 1 + rR' - = 2(Ar 2 + A). 
l?+rR,2ArA 

As before, (33) is an inhomogeneous linear heat equation. Multiplying (34) by 1 + rR' 
gives 

(1 +?rR')2 -2(Ar2 + A)(1 +?rR') -' =0; 

hence, 

(35) 1 + rR = Ar2+ A (r2A)2?+ 

and therefore 

A -i 1 
(36) R' =Ar? + ?- (Ar2+A)2 +/. Ir Ir 

Integration yields 

(37) R?(r) = (A-1)lnr+ r2J (Ar2 ? A)2?+ 3dr + B. 

Again, (35) shows that since a > 0, 1 +rR' is either always positive or always negative; 
hence, there are no singularities of (18). From (19) we see that R+ represents the 
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EXACT SOLUTION OF STIKKER'S HEAT EQUATION 1069 

valid solution while R_ is a nonphysical solution. Also, as before, A = 0 yields only 
solutions of the linear problem (31) so that we assume A 78 0. 

Using the transformation y = Ar2, the integral in (37) becomes 

1=]- (r2?+A)2+?Adr= ] X y2?+2Ay?+A2?+ dy. 

The above integral can be found in most published tables of indefinite integrals, from 
which, after transforming back to r, we get 

R?(r)= r2 +A 2 nr +B(r2 ?A)2?+ 2 2 21 

(38) - A2?3In Ar2 (A + + AAr? +/(A2?+3)((Ar2?A)2?!3)) 

+Aln[A+Ar2 + V(Ar2 +AA)2 +]} 

Two classes of exact radially symmetric solutions to (18) are therefore given by 

(39) uE?(r, z, t) - R?(r) + V(z, t), 

where V(z, t) is any solution to (33). 

4.3. Asymptotic behaviour of X? and R?. It is immediately clear that X? 
given by (29) is well behaved as x -* 0. By expressing (29) in the form 

X+ (z) = (A A2 _ 
-x- AX + B + (Ax +A) (Ax+A)2 + 

A A - - ? ? FA A) 

+ (xn 2 Ax+A+ \ [?Ax(A)A2?+? 

with some analysis it can be shown that the solutions X? diverge to infinity as x 
?00. 

From (27) we may also establish the asymptotic behaviour of 1 + X. 

lim(1 +X) = 2A? 4A2? 

lim (1 +X = 0 if{ A K>O, 
X-4+00 ifA<0 

lim (1 + X' 0 ifA > 0, 
X--+0 / -ooif A <O, 

lim (1 + X) = 0 if A > 0, 
X-4+O -00 iA< 

lim ( 
_ f 

X 
-00 if A > 0, 

X-+00( ?x)= 0 if A <0. 

Analysis of the asymptotic behaviour of R?, (38), as r - 0 and as r 00, is 
slightly more complex. 

As r - 0, the solutions R? approach 

A-4 1 1 2 } 
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1070 A. R. WILLMS 

where K = A2 + f. The first and last terms of (40) are unbounded as r -O 0 and 
must be combined to cancel each other out. For this we require 

(41) A-1=?(- A2?/), 

A 2-_ 2A + 1 = A 2 + 31, 

(42) A = 

Substitution of (42) in (41) shows that (42) is valid only for the "plus" solution, since 
A-1 < NA2 +?O, VA, and V,B > 0. Hence, R_ - ?oo as r- 0, while for A given 
by (42) we have 

2 2 ) + 
A ?I+ (1f2 and A+ VA2+13=1 

so that 

lim R+ 1( /3 1( ?flln2(1+/3 ) B 
o + 2 (2 ) 2 (2 A 2)| 

=1 +,31-n (1 +$ 13)2 + A-In) +B. 

To control the behaviour of R? as r -? ox, we must control both the logarithmic 
terms and the algebraic terms separately. For the algebraic terms of (38) we have 

r 1 +00 for R+ if A>0, 
Ar2 1 (Ar2A)2?I -* ?r00 for R_ if A < 0, 2 2 -A/2 otherwise. 

For the logarithmic terms of (38) we have 

In A r2 ( A? +d+AA \ (A + ) ((Ar2 +A) 3)) ln [A + ],vA 

while the remaining two terms, 

(43) A 
l1nr2 ? 

A In [A + Ar2? + Ar2+A2+ 
l 

2 ~~2 L 
are ill behaved. If A < 0, then the argument of the logarithm of the second term 
of (43) approaches zero, and it can be shown that 

A + Ar2 + (r2 +A)2 +?,3 
rb 

approaches either oo or 0 for any b; hence, the case A < 0 is unbounded as r -- oo. If 
A > 0, then we need b = 2 to control these terms; i.e., we require 

(44) -(A-1) = ?A. 
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For R+ then we need A = 1/2, while for R_, equation (44) cannot be satisfied. We 
see, therefore, that it is impossible to control both the algebraic and the logarithmic 
terms simultaneously; the former are bounded for R+ when A < 0 and for R_ when 
A > 0, while the latter are bounded only for R+ with A > 0 and A = 1/2. Hence, R? 
can be bounded as r -* 0 but are unbounded as r -* 00. 

The asymptotic behaviour of 1 + rR' is easily determined from (35). 

lim(1?+rR') -A? Ai?,3, 

lim (1? = 1 0o if A > KO, 
r-+oo_ / 0 if A ><0, 
lim (1+ rR' )-{ ifA > <O 

5. Boundary conditions. We shall now analyze the types of boundary and ini- 
tial conditions that can be satisfied by the exact solution (39). The following obser- 
vations, with straightforward modification from cylindrical to Cartesian coordinates 
and removal of the radial symmetry requirement, also apply to (30). 

Consider the following initial boundary value problem (with a general mixed-type 
boundary condition) for radially symmetric u on a bounded radially symmetric region 
D in Ri3. 

ut = Au- (1 ? ) in D x R+, 

(P1) U(r, z, 0) = f(r, z) in D, 

Ku(r, z, t) + L 
au 

(r, z, t) = g(r, z, t) on OD x R+, 

where f and g are arbitrary continuous functions and K and L are constants. The 
additive form of the solution uE?, (39), places restrictions on the type of boundary 
and initial conditions that it can satisfy. In particular, the separation of the radial 
dependence implies that the initial r profile persists, up to a translation with time; 
i.e., for a fixed height zo, we have 

uE? (r, zo, t) = uE (r, zo, 0) + hzo (t), 

where 

hzo (t) = V(zo, t) - V(zo, ?0) 

It follows that for uE? to satisfy (P1), the initial condition must be of the form 

(45) f (r, z) = uE? (r, z, 0) = R? (r) + fi (z), 
where fi (z) is an arbitrary function. 

Whereas it is necessary that the initial condition, f , coincide with R? through (45) 
for uE? to satisfy (P1), the boundary condition, g, may take on a more standard form 
when K = 0, i.e., when a Neumann boundary condition is imposed. Suppose D is the 
region between two concentric cylinders and consider the problem 

Ut = Au- ( ), rE(rl,r2), ZE(Zl,Z2), t>0, 

u (r,z,0)=R?(r)+fi(z), rE(rl,r2), zE(Z1,Z2), 

(P2) uz (r,z , t) = gi (t), r E (rl,r2), t > 0, 
u 1(r, Z2, t) = g2(t), r E (rl, r2), t > 0, 
U Or(rl,z,t) = cl, z E (Z1,Z2), t > 0, 

ur(r2, z,t) = C2, z E (Zl, Z2), t > O, 
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where c1 and c2 are constants, and fi, gl, and 92 are arbitrary continuous functions. 
The exact solution UE? will satisfy (P2) provided that 

(46) R' (ri) = c1, R' (r2) = C2, 

and V satisfies 

t V- Vz= 4A, z E (Zl, Z2), t > 0, 
V (Z,0) = fi(z), z E (Zl,Z2), 

Vz(z1,t) =gi(t), t >0, 
Vz (z2, t) = g2(t), t > 0. 

It can be shown that (46) completely determines the constants A and A through 
equation (36), provided that c1r1, c2r2 $ -1, i.e., provided that the boundary is not 
a singularity of (18). The constant B in R? is completely arbitrary and may be 
absorbed into the function fi. It remains then to solve the above initial boundary 
value problem for V. Having completed this, the function UE? will be a solution of 
(P2). 

If we consider a solid cylinder, ri = 0, and replace the condition ur(rl, z, t) = cl 
in problem (P2) with u bounded at the origin, then by the asymptotic analysis of ? 4.3 
we must use UE+ and choose A according to (42). The second condition of (46) then 
serves to establish the value of A, and we may proceed as in the previous case. 

Unfortunately, the additive nature of our exact solution, (39), precludes it from 
satisfying the boundary conditions relevant to Stikker's problem. The boundary con- 
ditions on the outer surface of the steel coil for the annealing process are of the form 

AR - aR(Tg -Tc,(R)) + cl(T4 -T4l(R)) + c2(Tg - T (R)), 

involving a conduction term with the surrounding gas and radiation terms between the 
coil and gas and between the coil and the cover separating the steel from the furnace. 
Consequently the boundary conditions are highly temperature- and therefore time- 
dependent, whereas 9UE?/9r is independent of time. 

6. Conclusion. We have considered two nonlinear heat conduction equations 
where the conductivity was a function of the temperature gradient. An equation of 
this type was derived by Stikker for the problem of heat conduction inside a steel coil 
during the batch annealing process, but, to our knowledge, such equations have not re- 
ceived much attention in the literature. After the physical implications of these equa- 
tions were discussed and the domain of validity for them was established, a uniqueness 
theorem and a maximum principle were given. Exact solutions to both of these equa- 
tions were derived by assuming an additive separability of the nonlinear component 
from the remaining variables. Some asymptotic analysis of these solutions was per- 
formed, and the types of boundary value problems that these solutions could satisfy 
was discussed. Although these solutions do not satisfy the boundary conditions of 
Stikker's problem, it was shown that a problem with a constant Neumann boundary 
condition could be satisfied by these solutions. It is possible that these equations 
will also have application in the realm of diffusion research, where a constant flux 
condition at the boundary is a common requirement. 
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