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IGNITION OF A RECTANGULAR SOLID 
B Y A N EXTERNAL HEAT FLUX* 

CARLOS VAZQUEZ-ESPft AND AMABLE LINANt 

Abstract . The influence of corners on the ignition of a solid exposed to a surface energy flux 
is analyzed with large activation energy asymptotics. We begin with the analysis of the ignition of 
semi-infinite wedges by a constant heat flux. Two stages and two spatial zones, reactive and inert, 
are found. The ignition stage can be described by a slowly convergent asymptotic expansion for the 
increment in temperature due to the chemical reaction or, more accurately, by a simplified nonlinear 
parabolic equation to be solved numerically. This analysis applies to the ignition of two-dimensional 
finite bodies with corners if the external heat flux is large enough for the size of the reaction zone to 
be much smaller than that of the solid. The ignition of bodies with rectangular shape for small heat 
fluxes, when the reaction zone extends to the whole solid, is also analyzed. 

K e y words, combustion, ignition, thermal runaway, hot spot, activation energy asymptotics, 
Arrhenius kinetics 

A M S subject classifications. 35C20, 35K57, 80A25 

1. Introduction. Due to the strong sensitivity of the chemical reactions with 
temperature, a body of finite size can remain in a nonreactive or nearly nonreactive 
state if its temperature is low enough, so that the characteristic time associated with 
the chemical reaction is much larger than the characteristic time of the heat conduction 
process that removes heat off the system. If we subject the body to an external heat 
flux its temperature may rise to values such that the chemical time becomes shorter or, 
at least, comparable to the cooling time. Then one can expect to find ignition events, 
characterized by a sudden rise in temperature or thermal runaway, taking place at a 
hot spot at a well-defined time that is called ignition time. 

In most studies on ignition of solids [l]-[7] the surface of the solid has been 
considered smooth. If the external flux is high enough the heating of the solid, when 
ignition occurs, will be confined to a thin surface layer, and the ignition delay will be 
independent of the body size and shape. However, it is reasonable to expect that the 
local heating of the solid will be accelerated, and the ignition time reduced, when the 
solid surface is rough, so that the heat from the external stimulus is concentrated in 
certain regions. A first study concerned with the influence of square corners on the 
ignition of solids, under an external heat flux, was given in [8], and extended to wedges 
in [9]; there, the ignition problem for a semi-infinite solid is treated from a numerical 
point of view. A formula correlating the ignition delay with the activation energy and 
the pre-exponential factor was obtained, as in [1], for a few values of the angle of the 
wedge. The ignition of wedges and cones was also analyzed in [10], highlighting the 
role of the inert distribution in determining the ignition time. An empirical ignition 
temperature was used and the ignition time, as a function of the angle of the wedge, 
was obtained by interpolation from the value corresponding to the half-space and 
from the numerical results of an approximate model for small values of the angle. 
These studies show a reduction of the ignition time due to the more rapid rise of the 
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temperature at the edge of the wedge as compared with the rise taking place at the 
surface of the solid far from the edge. 

The technique of large activation energy asymptotics has been widely used to 
describe the ignition process of one-dimensional solids [2]-[7] when the chemical re­
action is modeled by an overall reaction of Arrhenius type, whose reaction rate is 
given byBexp(—E/RT). Here B is the pre-exponential factor and E is the activation 
energy, much larger than the thermal energy RT. We have recently used [11] these 
techniques to analyze the ignition of rectangular bodies under a step rise in surface 
temperature. We will present in this paper a large activation energy analysis of the 
ignition of wedges by an external heat flux, the problem treated in [8]-[10]. We also 
include a description of the ignition process of rectangular two-dimensional adiabatic 
bodies of finite size. 

The rise in temperature in the solid is, at early times after application of the 
heat flux, given by the inert distribution, with negligible effects of the chemical reac­
tion. These effects become significant when the maximum temperature, at the corner, 
reaches values close to a critical value Tj. Then, due to the strong sensitivity with tem­
perature of the reaction rate, only a small increment in temperature, of order RT?/E, 
is required to change the order of magnitude of the reaction rate, and cause a thermal 
runaway at a well-defined ignition time. We shall define the "ignition" temperature Tj 
as the peak value of the inert temperature at the ignition time; for reasonable values 
of the reactivity of the solid, we may expect ignition to occur at values of Tj such that 
Tj — To ~ To, where To is the initial temperature. 

After the heat flux q is applied, the thermal wave heating the solid, of thermal 
conductivity A, will reach a distance 6C = XTo/q when the rise in surface temperature 
is of order TQ. When the solid size, a, is measured with 6C we obtain one of the main 
parameters, q = qa/\To, characterizing the ignition process. For values of q ^> 1, the 
ignition time is small compared with the heat conduction time across the solid, so 
that the thermal wave, with the higher temperature in its corners, is confined to a 
thin surface region of characteristic size fc < a . The chemical reaction is confined 
to even smaller corner regions of size 6c//3, where (3 = E/RTQ is the nondimension-
al activation energy. Therefore, the ignition process is determined by what happens 
very close to the corners, and the solid appears as semi-infinite when seen with the 
scale 6C. 

The problem for a square corner will be considered in §2; while §3 is devoted 
to the analysis of ignition of wedges with arbitrary values of the tip angle. We shall 
treat in §4 the cases in which the heat flux is a nonconstant function of time. In the 
asymptotic analysis of §2 we will find that the asymptotic expansions involve powers 
of l / ln /3 , so that they are not of practical interest because of their slow convergence. 
The occurrence of logarithmic terms is closely related to the cylindrical geometry; due 
to the stronger geometrical effects, they will not be encountered in the analysis, given 
in the Appendix B, of the three-dimensional square corner. 

In §5 we will give a description of the ignition process of cylindrical bodies, with 
adiabatic end surfaces so that the temperature field is two-dimensional. For the sake 
of brevity, we shall limit the analysis to bodies with rectangular cross-section and a 
constant heat flux. When q is of order unity, or smaller but larger than 1//?, the size of 
the conduction region is of order a, but the chemical reaction is still confined to a small 
region around the corner. Therefore, the results of §2 are applicable with only minor 
changes involving quantities related to the inert temperature distribution. Finally, we 
shall analyze, in §§5.3 and 5.4, the limiting cases q ~ 1/(3 and q <C 1/(3; in these 
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cases the reaction zone is no longer confined, during the ignition stage, to the corner 
region, but extends to the whole solid. When q <C 1 the duration of the inert heating 
stage, proportional to g_ 1 , is large compared with the conduction time, and the spatial 
variations of temperature are of order q; on the other hand, the duration of the reactive 
stage is comparable to the conduction time if q ~ 1/(3, or larger when q <C 1/(3. The 
case q ~ 1/(3 is a distinguished limiting case, for which, during the ignition stage, the 
chemical reaction effects must be taken into account together with the effects of the 
local heat accumulation and heat conduction; these last effects become dominant if 
q <C 1/(3, when we encounter a nearly homogeneous explosion. 

We shall consider, for simplicity in the presentation, that all the physical proper­
ties of the reactive solid, including its density ps and specific heat cs, are constant and 
independent of the temperature. The chemical reaction will be modeled by an overall 
Arrhenius-type reaction rate. The effect of the reactant consumption will be neglected 
during the ignition period. 

2. The semi-infinite square corner. 

2.1. Formulation. Let us consider a two-dimensional semi-infinite reactive solid 
defined in cartesian coordinates (x, y) by x > 0 and y > 0. Initially the temperature 
of the solid is To, and starting at the instant i = 0 a constant heat flux q, normal 
to the surface of the solid, is applied. We use 6C = XTo/q and ic = PSCSXTQ /q2 as 
characteristic length and time, respectively; and let <p = T/T0 — 1, B = psQBXT0/q

2 

and (3 = E/RTo be dimensionless temperature, pre-exponential factor, and activation 
energy. Q is the heat release per unit mass of fuel consumed in the reaction. The 
mathematical problem describing, for t > 0, the reaction and heat conduction inside 
the solid can then be written as 

(2.2) (py(x,0,t) + 1 = ^ ( 0 , y , t ) + 1 = ipy(x,oo,t) = ipx(oo,y,t) = (p(x,y,0) = 0. 

If we want to account for fuel consumption effects in the ignition process, we 
should include a factor Yn in the reaction term, where Y is the reactant mass fraction 
and n is the reaction order. Then, to describe the evolution of Y we should add the 
equation dY/dt = —j~1BYnexp(—(3/(l + </?)), together the initial condition Y = 1. 
Here 7 = Q/csTo is a nondimensional parameter characterizing the exothermicity of 
the reaction, typically large compared with unity. It is easy to see that the changes 
in Y during the ignition stage are of order I /7 , therefore small compared with one. 
Hence, if 7 ^> 1 the fuel consumption may be safely neglected during this period. 

In the applications the Zel'dovich number (3, or nondimensional activation energy, 
is large compared with unity, typically of order 20; so that the Arrhenius exponential 
factor is very small compared with 1. However, the Damkohler number B, or nondi­
mensional frequency factor, is also very large compared with unity; so that, even if 
at the initial temperature the reaction term is negligible, when the local temperature 
reaches values close to a certain characteristic value the contribution of the reaction 
term to the local temperature rise will become of the same order, unity, as the rise 
due to the external heat flux. 

In order to describe the structure of the solution for the typically large values of (3 
and B, we shall use the technique of large activation energy asymptotics, which implies 
the use of a double limit process. We begin by defining a value (pc of cp, typically of 
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order 1, for which the reaction term in (2.1) leads to rates of temperature rise of order 
unity. Namely, <pc will be defined by Bexp(—(3/(1 + <pc)) = /?; where the right-hand 
side takes into account the size, 1//3, of the reaction zone during the ignition stage, 
and the typical temperature changes, of order 1//3, in the same period. Equation (2.1) 
can be written in terms of cpc in the form 

(2.3) ^ = A ^ + /?exp P <P~<Pc 

l+(fc l+<f 

For large values of /?, the reaction term in (2.3) will be exponentially small if <p < <pc 

and exponentially large if <p > <pc. Thus, if in a given point <p rises above <pc the 
temperature will rise steeply with t towards infinity as a result of the infinite reaction 
rate. Therefore, in the limit (3 —> oo with cpc fixed, the solution of (2.2)-(2.3) blows 
up at a well-defined ignition time. The react ant consumption effects, not included in 
this analysis, introduce bounds to the maximum temperature, but they do not alter 
significantly either the time of thermal runaway or the temperature distribution when 
the peak value of <p — <pc is not large compared with 1/(3. 

Due to the initial condition, (p = 0, it is clear that at early times, when <p < <pc, 
(2.3) simplifies to the heat conduction equation, which when solved with the initial 
and boundary conditions (2.2) leads to the inert temperature distribution 

(2.4) & = 2yft/^ (e~x2/4t + e~y2/4t) - (xerfc (x/2y/t\ + yeric {y/2y/t\\ , 

obtained by superposition of one-dimensional solutions. This expression shows that 
<Pi is a monotonically increasing function of t with its maximum value, Ay/t/tr, at the 
edge (x = y = 0). The inert stage ends when cpi approaches <pc, and the reaction term 
ceases to be exponentially small to become of order unity in the small parameter 1//3. 
This will occur first at the edge, at a time close to 7n#?/16, which can be considered as 
a first approximation to the ignition time. In order to show this, and to obtain a more 
precise value of the ignition time, we shall carry out in the following an asymptotic 
analysis of the problem (2.1)-(2.2) for large values of /?. We begin, as in [2], by posing 
the problem of finding the value of B that, for (3 ^> 1, leads to a thermal runaway, or 
exponentially large rate of temperature rise, at a given ignition time. 

We select the ignition time to be t = tj = 0(1) and then we define <pj as the 
maximum inert temperature at t = tj, i.e., cpj = ^ ( 0 , 0 , tj) = Ay/ti/ir. For shortness 
in the notation, we also define a new parameter e as 

(2.5) e = (l + <pI)
2/(3V^h, 

which is e = 0(1/(3) <̂C 1, since both tj and cpj are of order unity. We anticipate that 
for ignition to occur at t = ti = 7r<pj/16, when e < l , B must be given by 

with 

(2.6b) v(e) = l/lne""1 . 

We shall replace, using (2.6), the unknown Damkohler number B in (2.1) by the 
unknown factor e6, so that (2.1) takes the form 

(2.7) % = Av + ^-JL-2<!xp 
f3 <p-<pi 

l + <pi 1 + <p 
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The inert stage ends when the value of <pi at the edge of the corner differs from 
<pi by an amount of order e. Then, during the short ignition stage due to the large 
activation energy, the effects of the chemical reaction become significant, even though 
the departures of (p from </?/, resulting from the reaction term and from the inert 
solution, are small. Expanding cpi about t — ti and x = y = 0 we obtain 

2(t - tj) 
(fi(x, y, t) = (p! + —Tj=~ ~(x + y)+° ( \ A 2 + 2 / 2 , t-ti), (2.8) 

which dictates the appropriate time and space variables to describe the reaction zone 
in the ignition stage: a = 2(t — ti)/3/(l + <pi)2y/7Fbi and (£, rj) = (x, y)/3/(l + </?/)2. In 
the variables a, £, 77, and ij) = (ip — <pi)(3/(l + </?/)2, (2.7) takes the form 

(2.9) 2e Atj) + z/(e)e6exp [l + l^ty + a-Z-q + ew) 

where cpi is of order unity in the reaction region, in which the values of £ and rj are of 
order unity. Notice that the reduced Damkohler number v(s)eh is to be obtained by 
requiring the thermal runaway to occur at a = 0. 

2.2. The asymptotic analysis of the ignition stage. We shall carry out 
here an asymptotic analysis of the ignition stage for a ~ 1 and large values of the 
activation energy, i.e., (3 ^> 1 or, equivalently, e «C 1. If the nonlinear effects of the 
heating due to the chemical reaction are to be important, if) must be of order unity 
during the ignition stage. Then, in first approximation, the transient term in (2.9) can 
be neglected, leading to the reactive-diffusive equation 

(2.10) Ai/> + v{e) exp(?/; + a + b- f - 77) = 0 . 

Although the reaction is confined to a region where p 
the heat generated 

^/£2 + rj2 is of order unity, 

(2.11) LU(G) = v(e)u(a) 
/»oo /»o 

"(e) / / 
JO JO 

exp(^ + a + b — £ — r])dt;dr} 

at a ~ 1 has to be conducted to a much larger inert region, where p is of order 
1/y/s, to produce these values of I/J of order unity. The spatial changes in temperature 
within the reaction zone required to generate this heat flux are, due to the cylindrical 
geometry, only moderately small compared with unity of order v = — 1/lne; and this 
is then the order of the nondimensional reaction term. 

After these scaling considerations, we can now take into account the fact that 
£ < 1 to look for an asymptotic description of the solution of (2.9), together with 
the appropriate boundary and initial conditions, using an inner expansion for i/> in 
the form ij) = ^0(^5 V> G-> u) + e^\ (£> Vi(Ji1') -] and an analogous outer expansion, in 
terms of a and the spatial variables y/e^ and \[er)\ we shall also expand b as bo(v) + 
^^i(z/) H • Notice that, due to the matching conditions, the variables ^0, ^ 1 , and 60, 
b\ in these expansions are, as it will be shown in the following, weakly dependent on 
£, through v(e), which will be considered of order unity. The leading term of the inner 
expansion verifies (2.10), the initial condition I/JO(£,VI —00,1/) = 0, obtained from the 
matching condition with the inert stage, and the boundary conditions ?/>o,£(0,77, a, v) = 
^0,77(^0,0", v) = 0, together with a boundary condition at p —> 00, which must be 
deduced by matching with the inert region. 
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For large values of p the reaction term is exponentially small and, due to the 
absence of heat losses towards the walls, I/J becomes independent of the angular coor­
dinate 0. Therefore, the nonzero heat flux &(a) at p —> oo, given by (2.11) with ij) and b 
replaced by I/JO and bo, leads to ^o ~ — (2/7T)U)((T) lnp + C(cr) as p —> oo, where C(a) is 
a function of order unity satisfying C(—oo) = 0. As ipo does not satisfy the condition 
%/jo(oo,0,a,i/) = 0, we need to consider an outer transient-heat conduction zone in 
which the heat flux Co(a) is accumulated. Using r = V2ep as an outer space variable, 
(2.9) simplifies to a radial heat equation with a heat source of intensity 4u(a) located 
at the origin; the solution is given by i/; = 7r_1 f^oQuj(s)(a — s)~1 exp(—r2/4(a — s))ds. 
This has, for r -> 0, the behavior ip ~ -(2/7r)i/(e)u(a)(\nr+j-\ri2)-i/(e)I(a)+0(r2), 
where 7 is the Euler's constant and 

(2.12) 1(a) = (1/TT) / (u(a)e-a - u(s)e~s)es(a - s^ds. 
J—00 

Matching between the inner and outer solutions leads to v(e) = 1 / lne - 1 , as 
anticipated in (2.6b), and C(a) = u(a)/ir — i/(e)((2j — \n2)u(a)/7r + I(<J)). Then we 
can formulate the problem for %/JQ, as 

(2.13) A^ 0 + y{e) exp(^0 + a + b0 - £ - rj) = 0, 

V>o(f, r), -00 , v) = ^o,^(0,77, a, v) = il>0lfl(€, 0, a, v) = 0, 

ipo = —CJ((J) — i/(e) I —a;(a)(lnp + 7 — ln\/2) + 1(a) ) as p —> 00, 
7T \7T J 

with the functions uo(a) and 1(a) given by (2.11) and (2.12). 
This nonlinear problem is to be solved numerically, for given values of i/(s), march­

ing in time since, even though (2.13) is not parabolic, the solution at a given instant 
is determined by the previous history through the function 1(a). 

When obtaining the problem (2.13)-(2.14) we have considered i/(e) to be of order 
unity. Since v(e) —> 0 when e —» 0, we can seek the solution of (2.13)-(2.14) in this 
limit in the form of Poincare type expansions in powers of i/(e) for ipo(£,r],a,i/) = 
^0(^5^5^) + vfiiiZiVi*7) + • • • and bo(1/) = bo + vb\ + • • •. The leading term of ^0 
is found to be ipo = ^0(0") > so that the temperature in the reaction zone is spatially 
uniform in first approximation, and the boundary condition at p —> 00 leads to the 
relation iripo = exp(V>o + a + bo), giving ^0 as a function of a. The derivative of 
ô> ^0,0- = ^o / ( l ~~ ^0)5 becomes unbounded at ^0 = 1? so that the existence of a 

thermal runaway at a = 0 requires bo = ln(7r/e). Therefore, the asymptotic analysis 
provides, for 1/ = 1 / l ne - 1 <C 1, the following relation between the ignition time and 
the pre-exponential factor 

(2.15) 5 = ^ = ^ ( £ l n e - ) - 1 e x p ( r A 7 - l ) > 

which must be seen as the first term of an expansion of B(tj,e) in powers of i/(s). 
Notice that both cpj and e depend on £/. 

2.3. The numerical analysis of the ignition stage. The perturbation scheme 
of the last paragraph in §2.2 involves powers of i/(e) = 1 / lne - 1 . Since, for the usual 
values of e, i/(e) is only moderately small, the asymptotic expansions for ^0 and bo in 
powers of 1/ can only be useful for unreasonably small values of e. In addition, in the 
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asymptotic description of §2.2 the increment in temperature evolves in a quasi-steady 
way; the analysis fails, obviously, for those values of a < 0 such that ô,<r — ̂ ( V e ) -
Therefore, the ignition period includes the initial stage, described above, which ends 
with ^O,<T growing to infinity with IJ)Q finite, and a shorter unsteady stage, in which 
the transient term should be retained in (2.13) and where the real runaway will be 
encountered. The analysis of the unsteady stage, requiring numerical computations, 
would provide a small correction to the value of bo. 

These considerations suggest that when solving (2.9) for small values of e, with 
the aim of describing the ignition stage up to the time of the real thermal runaway, 
there is not great advantage in taking into account the existence of an inner reactive-
diffusive zone and an outer inert zone because the inner problem must be solved for 
various values of v(e), and the evaluation of 1(a) forces us to use a time marching 
technique. Instead, we shall solve a simplified form of (2.9), where because e C l we 
neglect the 0(e) terms appearing in the Arrhenius exponent, but we shall retain the 
unsteady term in spite of the factor e to describe with a single equation the two region, 
two stage structure of the ignition period. We shall thus replace (2.9) by the nonlinear 
parabolic equation 

(2.16) 2e 0̂,<7 = A^ 0 + v{e) exp(^0 + <r + b0 - £ - *?), 

whose solution for various small values of e, with proper boundary and initial condi­
tions, will provide the first term of a uniformly valid asymptotic expansion of ij) in 
powers of e. This is valid during the whole ignition stage and in the inner and outer 
zones. The solution of this problem must end in a thermal runaway at £ = rj = a = 0, 
and this condition determines the value 6(e), with an error of order e due to the 
approximations made in the Arrhenius exponent. 

In order to numerically solve (2.16) it is convenient to use polar coordinates and 
a translation in the time variable a to r = a + bo + lnz/(e); thus e is the only pa­
rameter left in (2.16). The initial and boundary conditions to be added to (2.16) are 
ipo(p,0, -oo) = VO,0(P,O,T) = ipo,e{Pi'K/^T) = ^ O ( ° O , 0 , T ) = 0; in addition, I/J0 must 
satisfy the regularity condition pi/)otP = 0 at p — 0. The resulting nonlinear prob­
lem was solved with the Newton-Kantorovich method, and a spatial discretization 
via a finite volume method. The Crank-Nicholson method was used, taking special 
care with the time steps to obtain quickly convergent solutions. Starting at — r ^> 1, 
the function ^o is computed for increasing values of r , until ^o and di/jo/dr be­
come sufficiently large. Then, the value 77 of r at ignition is obtained by insuring 
the behavior I/JQ(O,0,T) = — ln(eT7(r/ — r)/2e) for small TJ — r [13]. Ignition will 
take place at t = ti, i.e., a = 0, only if 60, characterizing the pre-exponential factor, 
takes the value rj(e) — lnv(e). Then, recalling (2.6), B as a function of tj and e is 
given by 

(2.17) B = (Tr t j ) - 1 ' ^ - 1 exp (rj(e) + -JL-) . 

If Ba is the asymptotic value obtained in (2.15), it is easy to see that the ratio 
B/Ba depends only on e; so that (2.17) can be written in the form 

(2.18) B(e,tI) = f(e)Ba(e,tI), 

where f(e) = 7r_1 l n e - 1 exp(l + 77(e)) is a function of order unity. The functions f(e) 
and 77(e) are shown in Fig. 1. 
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FIG . 1 

There is perfect agreement of the results given by (2.17) with those found by 
Vorsteveld and Hermance [8], by numerical integration of the problem (2.1)-(2.2), 
including the reactant consumption. They did not previously perform any asymptotic 
analysis and, as a consequence, their equation for the temperature (p contains two 
parameters: the activation energy and the pre-exponential factor, in addition to the 
fuel consumption parameter, I /7 , which does not play a role in the time of thermal 
runaway because it is small compared with 1. 

3. The semi-infinite wedge. After analyzing the ignition of semi-infinite 
square corners, it is a simple matter to extend this analysis to other geometries. 
We have shown that, due to the large activation energy, the chemical reaction 
can be neglected during most of the ignition delay period, and then the tem­
perature is given by the inert distribution. Only during a very short interval of 
time, proportional to the inverse of the activation energy, significant departures 
from the inert temperature occur. Therefore, the analysis of the ignition problem 
must begin by solving the inert nonsteady heat conduction equation for the given 
geometry under the external stimulus; from the inert solution we only need to 
look for the information required for the solution of the reactive stage. In this 
section we shall consider in some detail the problem of the ignition of a semi-
infinite wedge with an angle 2a smaller than n. The ignition of wedges with angles 
larger than n occurs away from the edge first, at the ignition time of the planar 
case. 

By using polar coordinates and the notation of the beginning of §2.1, we obtain the 
equation (2.1), to be solved in the domain [0, oo[x[0, a] with the initial and boundary 
conditions </?(r, #,0) = (fo(r, 0, t) = ipo(r, Oi,t) —r = <pr (00, 0, t) = 0. If ignition occurs 
at t = ti = O(l) , an expansion of the inert solution, </?;, for t — tj <C 1 and r <C 1 
is required. For small distances from the origin compared with the depth of the layer 
heated by the thermal wave during the ignition period, i.e., for small values of r/y/t], 
the following expansion of ipi is found (see Appendix A for details): 

(3.1) ipi(r,0,t) = 
fWi y/ir(t t,) 

a 2ay/rT 

cos 9 
r- +o(t-

sin a 
•ti,r), 
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a generalization of (2.8) for arbitrary values of a < TT/2. Notice that </?/(£/) — yjistija, 
d(pi(ti)/dt = y/7r/2ay/tj and —d(pi(0,9,ti)/dr = cos 9/ sin a increase with decreasing 
values of a. 

The reaction zone variables are defined as 

\3-2) a - <-» / i , ^ \<2\/7"> Pz=z~^~- 77~. ^ ' VJ = 

2 a ( l + < p 7 ) 2 V * j ' P ^ s i n a ( l + ^ / ) 2 ' (1 + ^ / ) 2 ' 

so that order unity changes in a or p imply a change of order unity in ij). In these 
variables, and with e defined as in (2.5), the problem for the leading term of an 
expansion of ijj in powers of e is found to be 

sin2 a dtb A , / , /- \ 
(3.3) TT€ -^- = A ^ + exp U + r - V2pcos<9 , 

a or V / 

(3.4) ^(p, 0, -oo) = ^ ( p , 0, r) - ^ ( p , a, r) = ^(oo, 0, r) = 0, 

where 

(3.5) r = a + ln Usin2«^^Bexp ( " j ^ ) ) • 

The numerical solution shows a thermal runaway at a time r = 77 (e, a) . Therefore, 
the value of B, resulting in ignition of a wedge of angle 2a at t — £/, is given by 

(3-6) B= 0 J 2 . n f.„ N 2 e x P ( r ^ + ^ 2sin2a(l + <p/)2 V 1 + W, 

where <pj = y/irti/a. Figure 2 shows 77 (e, a) as a function of e sin2 a/a for several 
values of a. 

For small values of a, the time we have to wait to obtain <pj = 0(1) is £/ ~ 
a 2 < 1, so that the parameter e in (3.3) can become of order unity, but then the 
factor e sin2 a/a ~ ea is still of order 1/(3. In these cases the transverse conduction 
is so efficient that the inert temperature in the reaction zone becomes independent 
of 0. Then, the heat production term is, in first approximation, independent of 6. 
This fact, together the conditions ^(p, 0, —00) = ^ ( p , 0 , r ) = t /^p , a , f ) — 0, implies 
tjj = ^(p, r ) , given by the one-dimensional problem 

(3.7) ,eafT = I | ( p ^ ) + exp (f + r - rfp) , 

(3.8) f*l>P(p, r)\p=0 = ^ ( p , - 0 0 ) = ^ ( 0 0 , r ) - 0, 

obtained from (3.3)-(3.4) when the term d2^/d02 is left out as result of the dominant 
role of the transverse conduction. This problem, containing ea as the only parameter, 
is solved numerically for given small values of ea to provide the function 77 (e, a) = 
Tj(ea), shown in Fig. 2. In terms of Tj{ea) the value of B, such that ignition occurs 
at t — ti, is given by the relation 

The problem (3.3)-(3.4) describes also the planar case for a = TT/2. The corre­
sponding function, 77 (e, 7r/2), is also shown in Fig. 2. We have also plotted the value 
T'J (e,7r/2) = ln(2-y/£) — 0.431, resulting from the asymptotic analysis of Liiian and 
Williams [2] for the planar case. 
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4. The ignition of a wedge subjected to an arbitrary heat flux. 

4.1. Equivalence with the constant heat flux case. The analysis of §§2 
and 3, where a constant heat flux was considered, has shown that, when the nondi-
mensional ignition time is tj = (5(1), the chemical reaction produces significant de­
partures from the inert temperature, and then a thermal runaway, only during a short 
stage at the end of the ignition delay tj. We can also expect the two stage charac-

v ter of the ignition process to be applicable to nonexotic cases of variable heat flux, 
q(t). The first inert stage will end only when the peak temperature is very close 
to an ignition temperature, determined by the kinetics of the reaction. For the de­
scription of the ignition processes, we must begin by analyzing the inert tempera­
ture history under the variable external input. The nondimensional peak tempera­
ture <pi(i) — (v/7r/2aTov//)scsA) JQ q(r)(i — r ) _ 1 / 2 dr , found at the edge of the wedge, 
will grow continuously in time if the derivative of the external heat flux q(i) stays 
always positive, but it will have a maximum at a certain time, i — imy if only a 
finite amount of energy is available for the heat flux. In this case if the reactivity 
of the solid, i.e., J5, is sufficiently large ignition will occur before the peak temper­
ature reaches its maximum value, at decreasing times for increasing values of the 
reactivity On the other hand, if the reactivity is sufficiently small, i.e., for values 
of B smaller than a certain critical value, ignition with a thermal runaway will not 
occur. 

As in §2 the problem of describing the ignition under a variable heat flux involves 
finding the solution structure and the frequency factor of the reaction that, when the 
activation energy is large, leads to a thermal runaway at a given ignition time. We shall 
begin by defining a new characteristic time, fc, as the time required by the heat flux 
to produce increments in surface temperature of order To, and a new characteristic 
length Sc = (Xtc/psCs)1/2, as the depth, at i = ic, of theJayer heated by the heat 
flux. We can also use the additional order of magnitude relation \TQ/8C ~ q(ic) — qc 

to determine fc, 6C, and qc. We use qc to define the nondimensional pre-exponential 
factor and heat flux as B = psQBXTo/q(ic)

2 and q = q/q(ic). 
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Let us assume that the ignition time is chosen to be tj = 0(1), and such that the 
inert temperature during the ignition stage can be represented by 

cos 0 
(4.1) (pi(r, 0, t) = <pj(*» + £/(*/)(* - ti) - qir-^— + • • • , 

sin a 

where 

(4.2) 
" < * > - £ f ^ VI r q(r) 

2a J0 y/tr=-

V^ \q(0) , /*' A/(r) • ,, x v ^ \q(0) , f 
V ^ 

9/ = £(*/)• 

Since we want the chemical reaction to be frozen during the inert stage, and also far 
away from the reaction zone, the conditions (pi(ti) > 0 and qi > 0 must be fulfilled. 
Notice that ipi(ti) > 0 does not necessarily imply dq(ti)/dt > 0; so that the ignition 
can occur when the heat flux is decreasing. We can now use the analysis of §3 to 
calculate the increment in temperature due to the reaction during the ignition stage. 
Defining e as 

(4.3) £=2aMl+ip,r 
nqj(3 ' 

the numerical results of §3 allow us to obtain the following relation between the pre-
exponential factor and the ignition time 

(4.4) psQXT0B = n
 q \ M f w exp (r7(g, a) + P 

2 s i n 2 a ( l + ^ / ) 2 " V 1 + Vi 

valid if <pi(ti) > 0 and qi > 0. 

4.2. Critical conditions for ignition by a heat flux with a finite amount 
of energy. The previous analysis applies in particular when the conditions q(t) > 0 
and dq(t)/dt > 0 hold for all values of t, obviously leading to a thermal runaway when 
the reactant consumption is neglected. However, ignition can take place under more 
general heat fluxes, for example, a short pulse with a finite amount of energy, i.e., 
q(t) > 0 but J0°° q(t)dt < oo. We can expect in this case that the inert temperature 
at the edge will reach a maximum value (pm at a time tm. For large enough solid 
reactivities ignition will occur at times smaller than tm given by (4.4). However, for 
values of the frequency factor around a critical value, ignition will occur at times close 
to tm or it will not occur at all, as shown by Olmstead [5] and Lasseigne and Olmst'ead 
[7] in their analysis of the planar case. Similar critical conditions for ignition are found 
when analyzing the ignition of a gaseous reacting mixture with an instantaneous energy 
source [15], [16]. 

We shall consider here values of the frequency factor around the critical, such 
that the chemical reaction, although confined for large activation energies to the edge 
region of the wedge^and times close to tm, may lead to ignition for supercritical values 
of the frequency factor. For our ignition analysis the inert temperature distribution 
can be adequately described by 

1 cos 0 
(4-5) <Pi(r,0,t) =(Pm + -<Pm{t-tm)2 ~ ^ T ~ ^ ~ + " ' " ' 
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where <pm = <Pi(0,0,tm), <pm = d2(pi(0,6,tm)/dt2~ < 0, and qm = q(tm) > 0 are of 
order unity. 

Using the expansion (4.5) for the inert temperature, it is a simple task to obtain, 
for the evolution of the increment in temperature due to the chemical reaction, the 
following problem: 

(4.6) 7reSm -^- = Atp + Aexp (rj) - a2 - \/2pcoso) , 
a da \ / 

(4.7) tf){p, 6, -oo) = ipe(p, 0, a) = ip0(p,«, <r) = ^(oo, 0, a) = 0, 

where 

(4.8) 

/5pr-Ttt(l + ¥>m)3
 2 (1 + <pm)2 _Tj_psQB\T0 

e=V2\(Pm\ 2 a m , A = 2sin a e ^ ^ , 

2 (l + y>m)' K v ^ s i n a ( l + ^m)2 

and ^ is defined as in (3.2). 
The results of the numerical solution of (4.6)-(4.7) show blow up at an ignition 

time ai = oj(A,£, a) , only if A > A*(e, a) . Figure 3 shows the function A*(e, a) as a 
function of e sin2 a/a, and Fig. 4 shows the ignition time 07 as a function of A and 
several values of e. Hence for given values of A, a and e, with A > A*(e, a) , ignition 
takes place at tj = tm+(Tiy/2(l -f (pm)2/|<£m|/3- Notice that, since the function A*(e, a) 
is monotonically increasing with e, for each value of A there exists a maximum value of 
£, £*(A,a), such that ignition will occur only if e < e*(A, a) . For ft«l and a = TT/2 
the problem (4.6)-(4.7) becomes, as in §3, one-dimensional. The numerical solution 
for the limiting case a = TT/2 can be compared with the result, A*(e) ~ 0.9-v/e, from 
the asymptotic analysis of Lasseigne and Olmstead [7] for the one-dimensional case, 
also shown in Fig. 3. 

5. Ignition of cylindrical rectangular solids. 

5.1. Formulation. We have analyzed in §2 the ignition process in a semi-infinite 
square corner, and now we shall consider the ignition of cylindrical solids of rectangular 
cross-section. We assume that their length is infinite, or finite with adiabatic end cross-
sections, so that the temperature field is two-dimensional. The following analysis will 
show the existence of three different regimes, depending on the order of magnitude of 
the external heat flux. 

Let us consider a reactive body of rectangular shape with dimensions 2a and 2b 
(b > a). Starting at t = 0 a constant external heat flux, g, is applied. The nondi-
mensional problem that describes the evolution of the nondimensional temperature, 
ip = (T — TQ)/TQ, in terms of the spatial coordinates, measured with the shorter 
dimension a, and the time, measured with the conduction time, ic = pscsa

2/A, is 

(5.1) ^ = A ( p + Bexp P in Q = [0,1] x [0,/], 
1 + ^J 

(5.2) (px(0, y, t) = (py(x, 0, t) = (px(l, y,t)-q = (py(x, l,t)-q = (p(x, y, 0) = 0. 
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Here, q — qa/\To and B = psQBa2/\To are the nondimensional heat flux and pre-
exponential factor, and / = b/a > 1 is the slenderness of the cross-section. 

We shall deal with cases for which at early times JBexp(—/3/(l + ip)) is exponen­
tially small, so that the chemical reaction is frozen. The temperature is then given by 
the inert distribution, which can be written as ipi = qF(x,y,t), where F is the inert 
solution corresponding to q = 1. The function F is well described for t <C 1 by 

(5.3) F ( l , „ , 0 = 2 V i ( i e r f c ( ^ ) + i e r f c ( ^ f ) ) , 

where ierfc(z) = J^° eric(t)dt = e z /y/n — zerfc(z). Whereas for t = 0(1) we shall 
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use 

(5.4) 

F(x,y,t) = t(l + ])+Ux2 + \y2\ -\{± + l) 

4 f ^ (e~nVt cosnirx + l e ' ^ ^ cosnrr?) . 
7T2 *-^ n2 \ IJ 

n=l 

Notice that the maximum value of the inert temperature is attained at the corners 
and grows as Aq^/t/n for t <C 1, and as qt(l + / _ 1 ) + q(l + /)/3 for t ~ 1. 

The chemical reaction comes into play after a time £/, such that the corresponding 
maximum temperature, (/?/, is such that the factor Bexp(— (3/(1 + </?/)) is at least of 
algebraic order in the small parameter / J - 1 . As in the previous sections, the reaction 
term must only be taken into account where ip — (pi ~ (1 + (pi)2/P, and then it is 
convenient to use as dependent variable ^ = (tp — <^)/3/(l + (^j)2, of order unity during 
the ignition transient; the reaction zone is located where cp — cpi = 0(1/(3). Next we 
have to determine the time and space scales associates with the ignition stage, and we 
shall find that they depend on the order of magnitude of q. 

5.1.1. Case A: q ^> 1. For very large values of g, the time we must wait to 
obtain (pi = 0(1) is given by ti ~ 1/q2 <C 1, with the thickness of the conduction 
layer 6C ~ 1/q <^ 1. The time scale associated with the ignition stage is ~ 1/ (3q2, 
determined by (fi — (fj ~ q(t — ti)/\ft~i ~ 1//3; the heat of the reaction is conducted 
to a zone of thickness 8r ~ 1/qVP <^ 8C- Hence, for q ^> 1 both the layer heated by 
the external heat flux and the sublayer heated by the effect of the chemical reaction 
are very thin; so that the solid appears as a semi-infinite one, and the results of §§2 
and 3 are directly applicable. 

5.1.2. Case B: q ^ 1. When order unity values of q are considered, the time tj 
becomes also of order unity and is given by tj ~ 1/q = 0(1), which implies Sc = 0(1). 
The time scale for the reaction stage is l/q(3 <^ 1, and the spatial scale for the heated 
sublayer is 8r ~ l/yjqfi <^ 1. This means that, although the thermal wave due to 
the external flux has reached the core of the solid, the reaction layer and the layer 
receiving the heat of the reaction are thin compared with the size of the solid; so that 
with these scales the solid appears as semi-infinite. Therefore, we must only modify 
the inert distribution, which is no longer that corresponding to the infinite solid, to 
take into account the effect of the finite size. 

5.1.3. Case C: q <C 1. Finally, for small values of q we obtain tj ~ 1/q > 1, 
while the spatial variations of cpi are of order q. The duration of the ignition stage is 
~ 1/^/3, so that we encounter a distinguished regime (Case C.2) when q(3 ~ 1, with 
the reaction zone extending to the whole solid, with two subregimes for 1 ^> q ^> 1//3 
(Case C.l) and q < 1/(3 (Case C.3). 

Notice that for these small values of g, the ignition delay time, or the time required 
for (fi to grow up to values of order unity, is larger than the conduction time; so that 
the temperature becomes spatially nearly uniform with variations of order q. When 
q <^ 1, the inert temperature during the ignition period is given by 

(5.5) ipfa y, t) = qt(l + r 1 ) + | (x2 + T V ) - ! ( 1 + /) + e.s.t. 

5.2. Analysis of the limiting cases q 3> 1//3 (Cases A, B y C. l ) . For all 
values of q such that q(3 ^> 1, i.e., Cases A, B y C.l, both the thickness of the reaction 

file:///ft~i
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zone and that of the layer receiving the heat of the reaction during the ignition period 
are small compared with the body size. In Cases B and C.l the thermal wave reaches 
the core of the solid before ignition takes place, while in Case A the conduction layer 
is still thin. Therefore, in these three cases the solid appears as semi-infinite when 
seen from the reaction zone during the ignition stage; then, the description of the igni­
tion process for these cases is the same, with simplifications in the inert temperature 
distribution for the extreme cases. 

Because the reaction zone will be located near the point (1,1) and the ignition 
event will take place around t = tj, the inert temperature may be approximated by 

(5.6) (fi(x, y, t) = ipi + (fi(t - ti) - q(l -x)- q(l - y) + o(t - tu 1 - x, I - y), 

where (fj = (pi(l,l,ti) and (pj = d(fi(lj,tj)/dt must be computed from the inert 
solution (5.4) or the asymptotics forms (5.3) or (5.5). Notice that for tj Ĉ 1 (case 
A), the expressions for (pj and (pi are those obtained in §2, when considering the 
semi-infinite square corner. 

The expansion (5.6) dictates the following variables for the reaction zone 

( 5 7 ) (i + w)2 V ; V fa2 * V I + <PI 

Introducing (5.6), (5.7) and the definition of ?/>, in (5.1)-(5.2), we obtain, as in §2.3, 
the following problem for ip: 

(5.8) 2e^ = A<i/j + exp(<i/j + T-Z-r)), 
or 

(5.9) ^(£,77, -oo) = ^(0,ry,r) = ^ ( £ , 0 , r ) = ^ 2
 + r]

2^oo,r)= 0, 

where e = (pI(l + (pI)
2/2q2p < 1. For a = TT/2 this problem is identical to (3.3)-(3.4). 

The solution blows up at the time r = rj(e) obtained in §2.3. Therefore, if we want 
the ignition time to be £/, the frequency factor B is given by 

(5-10) -xfT = (TT^Fexp l T / ( e ) + OTW) 
valid for all values of q such that q/3 ^> 1. Notice that the slenderness, /, appears only 
in the definition of (fi and (pi in the Cases B and C.l, but not in the reaction zone 
problem (5.8)-(5.9). 

5.3. Analysis of the distinguished limit q ~ 1//3 (Case C.2). When q ~ 
1/(3 we can divide the ignition process into two stages: an inert heating stage, of 
duration proportional to /?, and a reacting stage, with a duration of order unity, the 
order of the conduction time across the body. During the first stage the temperature 
becomes spatially nearly uniform, with spatial variations of order g, which are of 
the order, 1//3, of the variations in temperature encountered in the ignition stage. 
Therefore, the reaction zone extends to the whole solid during this stage, with all the 
terms in the conservation equation of the same order. 
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If we define T = q(3/{l + (fi)2 = 0(1), from (5.5) we can write the inert temper­
ature during the ignition stage in the form 

(5.11) Vi = Vl + r ^f^- ( ( l + | ) ( i - tr) - I (1 - «>) - I (f - r,2)) , 

where (fi/q = £/(l + / _ 1 ) + (1 + Z)/3. Then we introduce the new time variable 

(5.12) f = T ( 1 + 1) ft - tx) +ln ( ( 1 + ^ / ) 2 ^ e x p 
! + ¥>/ 

and, after neglecting terms of order 1//? or smaller in the conservation equation for 
ip, we obtain the following problem for the lowest-order approximation for ip in Q = 
[o,i]x[o,q 

(5.13) r ( i + 

(5.14) 

1 
-— = Aip + exp 
OT 

[* + f-\((i-*) + )(*2-i?)) 

#c ,2 / , - oo )=0 inf2, M ^ l 2 = 0 in 90. 
on 

Notice that we use the initial condition at f = — oo because the duration of the reaction 
stage is of order unity while the duration of the inert heating stage is of order (3 > 1. 

The numerical solution of (5.13)-(5.14) blows up at f = 77(r, /), shown in Fig. 5. 
If the ignition time is t — ti, the relation 

(5.15) 
psQBa2 q2(l + <pI)

2 

AT0 P 
exp f j ( r , 0 + 

p 
1 + <PI 

determines B. 
For large values of the slenderness, /, the inert distribution (5.3) or (5.4) must 

be replaced by its appropriate representation for / = 00, leading to the equation 
Td^/df = A ^ + exp(-0 + f - T((l - x2)/2 - y)) to be solved in 0 = [0,1] x [0,00[ 
with the initial and boundary conditions given in (5.14). The solution blows up at 
f = f/(r, 00), also represented in Fig. 5. 

When solving (5.13)-(5.14) for T > 1, we notice that the reaction zone is confined 
to the small corner region, so that the results of §2.3 can be used to obtain 77(F, /) = 
ri((l + l ) /2 / r ) + 21nl\ The solution for T < 1 is given in the following §5.4. 

5.4. Analysis of the limit q » 1//3 (Case C.3). When r ~ q/3 < 1, the 
time to obtain ipi ~ 1 is tj ~ 1/q ^> (3 and the duration of the reactive stage is 
0(l/T) ^> 1. Due to the dominant effect of heat conduction the spatial variations of 
temperature resulting from the external heating, of order g, are much smaller than 
the increments in temperature introduced by the chemical reaction, of order 1/(3 ^> q. 
Therefore, during the ignition stage, the inert temperature is, in the first approxima­
tion, spatially uniform and can be represented by <fi = q(l + l~1)t, which determines 
the same reaction rate at each point of the solid. This, together with the boundary 
condition dip/dn\dn = 0, allows us to neglect the spatial variations of i\). Hence, if 
q «C 1/(3 the ignition event is the result of a nearly adiabatic homogeneous explosion, 
which is described by (5.13) when the diffusive term is left out and T is replaced by 
zero in the exponent of the reaction term, plus the initial condition of (5.14). The 
solution of this initial value problem is eT = T(l + 1/Z)(1 — e~^), which leads to the 
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asymptotic representation 77 — ln(r( l + 1/0) °f the function 77 (T, I) for small values 
of T. Therefore, if the ignition time is t = ti, the pre-exponential factor is given by 

(5.16) 
psQBa2 

q 1 + exp 
P 

l + y>i 

6. Concluding remarks. We have shown how a chemical reaction of large acti­
vation energy can be triggered to occur in a short time only when the peak temperature 
of the reacting body has been raised, during an inert heating stage, from its initial 
value To to an "ignition" value Tj. Then, the incipient effects of the chemical reaction, 
although confined to the region where T — Ti is of the order of the Frank-Kamenetskii 
temperature RTf/E, will produce at the end of a short ignition stage a local thermal 
runaway. This will originate (see the analysis of Kapila [4]) a fast deflagration wave 
that propagates across the body to complete the chemical reaction. 

We have seen how the evolution of the temperature distribution within a body, 
of size a and heat conductivity A, depends on the nondimensional value q = qa/XTo 
of the external heat flux. For values of q of order unity the time required for the inert 
temperature to reach the ignition temperature is of the order of the heat conduction 
time across the body. But for values of q ^> 1 the thermal heating during the inert stage 
will be confined to a thin surface layer, with identical temperature history along the 
surface of the body if this is smooth; in this case the ignition time will be equal to that 
of a planar semi-infinite body [1], [2]. However, if the surface has edges the temperature 
will rise more rapidly in these edges and the ignition time will be shortened. Thus, for 
a rectangular-shaped body subjected to a large external heat flux, q ^> 1, the reaction 
will be confined during the ignition stage to small regions close to the corners, and 
the ignition time will be independent of the body size. 

When the external heating rate is small, q <^1, the temperature rises slowly with 
time, and shows small spatial variations of order qTo. When these are of the order of 
RTj/E, they must be taken into account when describing the structure of the ignition 
stage; although they may be neglected for values of q <C RTj/E. v 

The ignition time is given, for large values of the nondimensional activation energy, 
(3 = RTQ/E > 1, by the time required to reach the ignition temperature Tj. This 
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temperature is given, with errors of order RTj/E, by the order of magnitude estimate 

(6.1) Bexpi-E/RTj) = E/RT0, 

so that if we want to calculate a first approximation for the ignition time we could 
be dispensed of analyzing the short ignition stage that precedes the thermal runaway. 
Or in other words, the value of the nondimensional frequency factor B leading to an 
ignition time £/, or ignition temperature T/, is given in order of magnitude by the 
above relation (6.1). The precise value of B can only be determined, as done in the 
previous sections, after the analysis of the ignition stage. Notice that the value of Ti is 
mainly determined by the kinetics, but the time, £/, to reach this value is determined, 
through the inert distribution by the geometry of the solid. 

The structure of the ignition stage for bodies with wedge type edges was analyzed 
in §§2 and 3 for values of q > 1 when the reaction zone is confined to these wedge 
type regions. Although during the heating stage the time derivative term is smaller, 
by a factor 1//3, than the heat conduction and reaction terms in the reaction zone, 
the temperature level can only be determined by taking into account how the heat 
generated by the reaction is conducted to an outer inert region of larger size by a 
factor y/p. The temperature distribution during the ignition stage is given by the 
value of ?/>, solution of the problem (3.3)-(3.4), with errors of order 1/(3 in i\). If we 
want to use inner and outer expansions of the Poincare type to solve this problem, 
we find that, due to the lnr terms appearing in the solution of the heat conduction 
equation, the expansion parameters are integer powers of v ~ l / ln/3; then, accurate 
results can only be obtained for unrealistic large values of /?. Thus, we were forced 
to solve numerically the problem (3.3)-(3.4) for small values of e in order to obtain 
an accurate relation between the frequency factor and the ignition time. However, the 
method of inner and outer expansions can be used for the description of the ignition 
stage of three-dimensional square corners, as shown in Appendix B, using expansions 
in the small parameter l/y/p. 

While the ignition time for large values of the nondimensional flux q is independent 
of the body size and shape, with the thermal runaway at the edges, this is not the 
case when q is of order or smaller than unity. We have carried out the analysis for the 
inert and ignition stages for cylindrical bodies of rectangular cross sections and various 
values of the slenderness /. The results for / = oo can be used to describe the ignition 
of thin, coin-shaped plates (bounded by a smooth, straight, cylindrical surface), if the 
ratio of their thickness 2a to the characteristic dimension L of the surface of the plate 
is small. The effect of the end sections can be seen when one compares the ignition 
times of the semi-infinite slab (I = oo) and the infinite slab without edges. Figure 6 
shows the nondimensional pre-exponential factor psQBa2/XTQ as a function of the 
groupings q\ftj and qtj, characterizing, for q ^> 1 and q ~ 1//3, respectively, the 
maximum inert temperature at the ignition time. Notice the strong reduction in the 
ignition time if q ^> 1, for a given value of the nondimensional pre-exponential factor, 
due to the fact the ignition process is controlled by the corner effect. In the opposite 
case, q ~ 1//3, the temperature is nearly uniform and the reduction is much smaller. 

We found regimes similar to those described in this paper in our analysis of the 
ignition of a rectangular solid, with Dirichlet type conditions resulting from a step in 
surface temperature [11]. In that case we found a critical value of the Damkohler num­
ber, such that no ignition occurred for Damkohler numbers less than the critical one. 
Since in the present mathematical model we have Neumann type boundary conditions, 
with predetermined heat flux to the solid from the surrounded external medium, the 
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minimum temperature in the solid is continuously increasing, so that self-ignition will 
always take place, even when the external heat flux disappears. However, the time 
delay to the thermal runaway can be so long, even at the new solid temperature, that 
the heat losses to the surrounded medium cannot be neglected. 

We have not included in this work the effect of the reactant consumption, under 
the assumption that the heat-release parameter 7 is sufficiently large. When this effect 
is taken into account if 7 is of order unity, one may expect to encounter a direct 
transition to a deflagration wave, without thermal runaway, as a result of the heating 
from an external heat flux. 

Appendix A. The inert solution for a wedge of angle 2c*. Let us consider 
the problem 

(A.1) 

(A.2) 

dip 

~dt 
= A(p in Q =]0, oo[x]0, a[, t > 0, 

(pe(r, 0, t) = 0, (pe{r, a, t) = r, <pr(oo, 0, t) = 0, <p(r, 0,0) = 0, 

sina 

cosa; 
p — v(r, 0, t\ p, oj)pdpduj 

,K(r,0,O) = fr 

where A stands up for the Laplace operator in polar coordinates (r, 0). We seek its 
solution as cp = U — V, where U = —r cos 0/ sin a is a steady solution of (A.l) and the 
first two conditions of (A.2). V is the solution of 

(A3) ^ = A 7 ; % ( r , 0 , t ) = ^ ( r , a , t ) = 0 , Vr(oo, 0,t) C ° ^ 

It can be written as 

(A.4) V(r,e,t) = - [" f 
Jo Jo 

in terms of the Green function v(r,0,t]p,u), or temperature at the instant t at the 
point (r, 0) due to a instantaneous source of strength unity located at the point (p, a;). 
This function can be obtained [14, p. 379], using the Laplace's transform, as 

sina 

(A.5) v(r,0,t'iP>UJ) = —e r~^~ 
00 

T Crp\ ^ v ^ n 7 r ^ / n 7 r r (r9\ 
J o ( ^ - ) + 2 > c o s — 0 t o s — c o i n . ( - £ ) 

\2tJ ^-f a a <* \2tJ 
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where I^z) is the modified Bessel function of order \x. 
Taking into account that 2j^^ cos u> cos (mru)/a)doj = —2(—l)™sina/((n7r/a)2 —1), 

the solution of (A.1)-(A.2) can be written in the form 

a Jo \VtJ s ina 
A.6 

a ^[ W « ) 2 - l Jo a \ViJ 

(A.7) v,(r><>,t) = y , / + _^L=( t - t /)- r^l + o ( 4 _ t / ) 2 

For small values of r/y/t only values of £ of order unity need to be considered in 
the integrals appearing in (A.8). Then, taking into account the behavior of the Bessel 
functions for small values of their argument, the temperature distribution given by 
(A.6) simplifies to cp = y/wt/a — r cos 9/ sin a, near the edge of the wedge. Here, the 
second contribution is the steady solution of the heat conduction equation accounting 
for the external heat flux, and the edge temperature is y/nt/a, determined by the 
history effects. For times close to t = ti we can use the relation 

2ay/tJ s ina \ */, 

with (pj = y/nti/a. 
Notice that, although the spatial variation in (A.7) is readily found — because 

the heat conduction term is dominant in (A.l) for r <C 1 — the edge temperature is 
more difficult to obtain, since it involves the evaluation of (A.6). However, this time 
contribution can also be easily obtained by using the method of superposition, as 
follows: if we designate by <pa(r,9,t) the solution of (A.1)-(A.2), it can be seen that 
the solution corresponding to an angle 2a/n (n G N) is given by 

n - l 

(A.8) 
k=0 

In particular (pa/n(0,0,t) = mpa(0,9,t) and m(pma/n(0,9,t) = (pa/n(0,0,t) (m e N). 
Therefore, if we begin with the one-dimensional solution corresponding to 2a = 7r, we 
obtain (prn7r/2n(Q,Q,t) = 2nyfwt/'nm. Then the completeness property of R leads to 
(/?a(0,9, t) = y/nt/a for any real value of a. 

Appendix B. The three-dimensional square corner. With the assumptions 
and the notation of §2.1, here using ipj = Gy/ti/ir and a = 3(t — ti)/3/y/7rti(l + (/?/)2, 
the problem describing the ignition of a three-dimensional square corner takes the 
form 

(B.l) 3 e - ^ = Aip + v{e)eb exp 
OCT 

^ + a-Z-rl-( + 0(l/P) 

(B.2) 
^(0,77, C, (J) = 1>v& °i C, <r) = MZ> ^ ° i a ) = °i 

V>(£, V,£, -oo) = *I>P(P -> oo, a) = 0 

with p = V s + ^ + C^ when written in terms of the space and time variables of the 
reaction zone and the ignition stage. 

In the ignition stage ip must be of order unity, and the time derivative term can 
be neglected at p ~ 1. For moderately large values of p, where the reaction term can 
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be neglected, ip has the behavior 

(B.3) 1>~{2/*)w(a)lp + C{a), 

where 00(a) = v(e) J0°° J0°° J0°° exp (ip + a + b — £ — rj — C) d^d/qd^. In the outer region, 
defined by r = py/3e = 0(1), the problem (B.1)-(B.2) is reduced to the radial heat 
equation with a point source, located at the origin, of strength 8\Z3ecj(a). For small 
values of r the outer solution can be expanded as 

(B.4) V ~ -y/3eu(<r)- - Vtel(a), 

where 1(a) = Jl^v - s)l/2(duo(s)/ds)ds. The matching between (B.3) and (B.4) 
clearly implies C(a) = 0. Therefore, the function ip verifies the boundary condition 
ip —> 0 as p ->oo, if terms of order y/e are neglected. If we want ignition to take 
place at a = 0, v(s)eb must be of order unity; thus we can choose v(e) = 1, and then 
b = 0(1). Hence, the appropriate expansions for i/j and b are ip = Vo + y/eipi + • • • 
and 6 = 6o + y/sbi + • • •, leading to the lowest-order quasi-steady problem 

(B.5) AVo + S exp (Vo - £ - V - 0 = 0, 

(B.6) ^o,e(0, ry, C) = V>o5?7(̂  0 , 0 = ^o.cK, V,0) = Vo(£2 + V2 + C2 ^ oo) = 0, 

where 6 = ea+b. This problem, to be solved numerically, is very similar to that con­
sidered in [11]. We can expect, as in similar reactive-diffusive systems, two solutions 
to exist for values of 6 smaller than a certain critical value, i.e., the solution branch 
[ll^ll? °] is expected to show a turning point at some value of 6, say <5j, at which dipo/da 
becomes unbounded, so that for 6 greater than Sj there is no solution to (B.5)-(B.6). 
We can identify 8j as the value of 6 at which the thermal runaway occurs, if terms of 
order y/e are neglected. Therefore, if the ignition is chosen to take place at t = £/, i.e., 
a = 0, then b = In Si and the following relation between B and tj holds: 

(B.7) B = 8I(KtI)-
1/2e-1exp(0/(l + <pI)). 

The numerical calculations shows Sj = 1.55. Notice the order of magnitude 
change of the value of J5, resulting in a given ignition temperature (/?/, for the three-
dimensional case as compared with the two-dimensional case (2.15) and the one-
dimensional value B = efe(7rt/)~1/2e""1/2exp(/?/(l + </?/)), with eb ~ 0.65, obtained 
in [2]. 
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