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ABSTRACT 

A heterosexually active population is e>...1>osed to two competing strains or two 

distinct sexually-transmitted pathogens. It is assumed that a host cannot be invaded 

simultaneously by both disease agents and that when symptoms appear, a function 

of the pathogen or strain virulence, individuals recover. We conclude that in a 

behaviorally and genetically homogeneous population coexistence is not possible 

but under very special circumstances. The mathematical qualitatively analysis of 

our model is complete; that is, we provide a global stability analysis of the stationary 

states. We conclude this manuscript with two extensions. The first allows for the 

possibility that a host may face multiple competing strains while the second looks 

at the effects on coexistence of the host's age-of-infection when two strains compete 

for the same host. 
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1. INTRODUCTION 

The formulation of the first gonorrhea model by Cooke and Yorke {1973) insti­

gated the use of differential equation models to study the transmission dynamics 

and control of sexually-transmitted diseases (STDs). However, the use of differen­

tial equations for models for STDs goes back to Ross who, in 1911, introduced the 

first differential equation model for the transmission dynamics of vector-transmitted 

diseases. Ross' modeling work was motivated by his attempts to develop manage­

ment strategies for the control of malaria, a disease that is transmitted as part of 

the life cycle of the Plasmodium parasite. The life cycle of this parasite requires, 

at different stages, human and vector hosts for its completion. Humans can only 

become infected by being bitten by an infected vector {female mosquitoes) and vec­

tors can only become infected by biting infected humans. Ross' contributions to 

the understanding of the malaria life cycle were rewarded with a Nobel prize in 

medicine. 

Ross made a series of observations that became important components in the 

modeling of vector- and sexually-transmitted diseases including the fact that the 

average total rate of contacts between host and vectors must be conserved {Ross, 

1911, p.667). This simple conservation law has become the basis for modeling het­

erogeneous contact structures {Busenberg and Castilla-Chavez, 1989, 1991; Castilla­

Chavez and Busenberg, 1991). In this manuscript, the conservation of contacts law 

takes its simplest form as we are dealing with a gender specific homogeneously mix­

ing population. Ross' contributions were extensive and deserved to be credited in 

this setting as he explicitly recognized that STDs could be modeled in the same 

way as vector-transmitted diseases {Ross, 1911, p.678). Furthermore, he was aware 
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of the role of frequency dependent dynamics and, consequently, he did not restrict 

his work to situations were the interacting subpopulations did not change (Ross, 

1911, p.678; see also Lotka's review of Ross' work, 1923). The assumption that the 

sizes of interacting populations were constant and not dynamic variables became an 

important but limiting component in the modeling of sexually-transmitted diseases 

(Lajmanovich and Yorke, 1976; Hethcote and Yorke, 1984; and references therein). 

Variable population size significantly affects the qualitative dynamics of epidemic 

models (Castillo-Chavez et al., 1989a; Huang et al., 1992). In fact, it is a key ingre­

dient in the study of the effects of social dynamics in disease transmission. In the 

models discussed in this article, the population under consideration does not expe­

rience disease induced mortality. Moreover, we assume that the total population 

size becomes asymptotically constant and, consequently, we implicitly assume that 

social dynamics does not affect the qualitative dynamics of our model (see Thieme, 

1992; Castillo-Chavez and Thieme, 1993). This is a limiting assumption. However, 

our interest here is on the study of the dynamics of two strains that compete in a 

two-gender environment. 

Biologists have long been concerned with the evolutionary interactions that result 

from changing host and pathogen populations. Continuous advances in biology 

and behavior have brought to the forefront of research the importance of their 

role in disease dynamics (Ewald, 1993). Varying levels of virulence may be due 

to pathogens' mode of transmission, their ability to survive outside the host, etc. 

Human behavior may also play a significant role in the evolution of virulence. 

Host-vector interactions such as those observed in the myxoma-rabbit system 

challenge standard views of pathogen evolution while providing a fertile ground for 
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the study of coevolutionary interactions. If one sees hosts as patches that may be 

colonized by infectious pathogens the following questions arise: What are the pos­

sible outcomes of coevolutionary races where different strains of the same pathogen 

compete for the same patches/resource? What conditions are needed for a com­

petitive exclusion? What happens if patches change; that is, what happens if a 

new breed of resistant patches develop? Mathematical models and systematic field 

studies have begun to yield useful new paradigms for the study of coevolutionary 

interactions (Anderson and May, 1982, 1991; Beck, 1984; Bremermann and Pick­

ering, 1983; Bremermann and Thieme, 1989; Castilla-Chavez et al., 1988, 1989; 

Dietz, 1979; Dwyer et al., 1990; Fenner and Myers, 1978; Fenner and Ratcliffe, 

1965; Levin, 1983a, 1983b; Levin and Pimentel, 1981; May and Anderson, 1983). 

In this manuscript, we provide the global mathematical analysis of a simple but 

important case. We study a population of humans (the patches) who get exposed 

to two different strains of the same pathogen (gonorrhea and a strain of partially 

drug-resistant gonorrhea provide an appropriate system). We asked the question 

of whether or not coexistence is possible? We found out that coexistence of two 

competing strains is not possible regardless of initial conditions but in special and 

unrealistic circumstances. Our results are similar to those obtained by Bremerman 

and Thieme (1989) for SIR models with variable population size. Here, however, we 

provide the global analysis of a two-strain and two-sex SIS model while Bremerman 

and Thieme's model does not include the gender of the host. 

Some generalizations are possible. Hence, we conclude this manuscript with the 

discussion of possible generalizations. Partial results are stated for a model that 

considers N -competing strains and for a model involving two competing strains in a 
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population structured by a strain-dependent age-of-infection. Our results are local 

but consistent with our global ones. The main conclusion is that in a population 

that is stratified only by gender and is exposed to two treatable and non-fatal 

sexually-transmitted pathogens, coexistence is not possible. Therefore, the observed 

coexistence must be due to behavioral and/ or genetical factors, or to geographic 

isolation (small sexually-interacting networks), or to social dynamics. 

This manuscript is organized as follows: Section 2 introduces our model and sim­

plifies it using some recent results on asymptotically autonomous epidemic models 

(Castilla-Chavez and Thieme, 1993; Thieme, 1993); in Section 3, we compute the 

necessary thresholds and study the stability of the infection-free state; a principle 

of competitive exclusion for SIS models with homogeneous mixing is established 

in Section 4; some extensions and some partial results are given in Section 5; in 

Section 6 we discuss the consequences of our results and outline our future work. 

2. MODEL DESCRIPTION AND PRELIMINARIES 

We model a two-sex heterosexually-active population. The disease that guides 

the modelling is gonorrhea and, consequently, infectives recover after treatment. We 

further assume that the population is genetically and behaviorally homogeneous 

except for their gender. Hence, we use a susceptible-infective-susceptible model, 

that is, a homogeneously mixing two-sex SIS model. We use superscripts m and f 

to denote the male and female populations, respectively. We think of susceptible 

hosts as patches that are invaded or colonized by a pathogen. The assumption 

here is that once a patch has been colonized (infected), it cannot be invaded again. 

However, patches recover (that is, they get rid of the pathogen) and become again 
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equally susceptible to infection as the patches' immune system does not remember 

prior infections (models that incorporate cross-immunity have been developed, see 

Castilla-Chavez et al., 1988, 1989, and references therein). The infectives are divided 

into two groups: those infected with strain 1 and those infected with strain 2. The 

dynamics of the spread of the disease then are governed by 

2 

sm =Am - Bm - J-LSm + L r7' If", 
i=l 

j;_n =B7'- (J-L + 'Yi) If", 
2 

s' =A'- B'- J-Ls' + L ,f I{, 
i=l 

where 

B"!t = m sm{3! I{ 
~ c ~ Tf, 

msm 2 
Bm = C ""{3fif 

Tf L...J J J' 
j=l 

!Sf 
Bf = _c - ""{31!" If!L rm L...J J J , 

j 

with the constraint 

(2.1) 

(2.2) 

Ak, k = m, f, denote the "recruitment" rates into the sexually active popula­

tions; f1, is the natural death rate (which includes retirement from sexual activity); 

rf denote the rates of recovery (this includes the time that it takes to become symp­

tomatic); ck gives the average rate of partner acquisition per male or per female; 

and /3f denote the transmission rates of infection. The constraint given by (2.2) 

indicates that the total average contact rate of females equals the total average 

contact rate of males. 
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2 
Since Tk = Sk + E If, (2.1) is equivalent to 

i=l 

( 
2 ) rm- E I'T!t If 

·-1 J ~ 
j:n =- (11. + '"":rt) J"!l + cmj3f J-
~ ,.., I~ ~ ~ Tf ' 

(2.3) 

( 2 ) Tf- E If I:rt 

j! =- (''· + '""!) If + cf[3:rt j=l 
3 ~ 

~ fA' I~ 1. ~ rm 

The equilibrium for Tk is 

T m_ Am 
- ' 

I Af 
T =-, 

f-L f-L 

which, from the constraint (2.2), leads to 

The limiting system of (2.3) is 

(2.4) 

The dynamics of (2.3) or (2.1) can be qualitatively determined by those of (2.4), 

(Castilla-Chavez and Thieme, 1993; Thieme, 1993). We will investigate (2.4) here-

after. 
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k ( k) Jl.Cm [3! f p,cf {31!'- k A k 
Set ui = J1. + 'Yi , ai = Af ~ , ai = Am~ , and p = --;· System (2.4) can 

be rewritten as 

j~ = - u~ I~ + af!t (pm -~ If!t) I! ~ ~ t t L.., 3 t ' 

j=l 

jf =- u{ I{+ a{ (r-tlf) qt. 
j=l 

(2.5) 

Define a subset of R~ by 

Then, clearly, the flow generated by (2.5) is positively invariant on n. 

Under a usual order, such a flow is not monotone. However, we can introduce a 

special order so that the flow generated by (2.5) becomes monotone. 

Definition 2.1. Letx = (x1,x2,xa,x4)T E R4 a.ndK = {x E R4;x1,x2 > O,xa,x4 ~ 0}. 

A type K order, denoted by " '5:.K ", is defined in such a. wa.y that 

if and only if x1 - x0 E K. (2.6) 

Using this order, we can show that the flow generated by (2.5) is monotone. 

Theorem 2.2. Let I= (I'f',I{,T;",I/)T a.nd let I(t,I0 ) be a. solution of (2.5) 

with I(O,Io) = Io. Then 

I (t, I0) ~K I (t, Ig) , t 2:: 0, 

Proof. Let Q = diag(qi) with q1 = q2 = 1, qa = q4 = -1. The matrix QJ(I)Q 

has nonnegative off-diagonal elements for every IE n, where J(I) is the Jacobian 
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matrix of (2.5) evaluated at I. It follows from Lemma 2.1 in Smith (1988) that the 

flow I ( t, I0 ) preserves a type K order on n, that is, the flow is monotone under a 

type K order. 

The flow generated by (2.5) has many remarkable properties under the defined 

type K order. More details will be given in the following sections. 

3. THRESHOLDS 

The concept of a threshold condition is one of the most important concepts in 

mathematical epidemiology. It determines whether an epidemic spreads or dies out 

in a population; that is, it addresses the question of invasion. Thresholds are usually 

characterized by the reproductive number (Diekmann et al., 1990; Heesterbeek, 

1992) which usually determines the stability of the infection-free equilibrium of the 

epidemiological system, which is (Sk > 0, If= 0) for (2.1) or (2.5). 

We compute the reproductive number from the linearization of the model (2.5) 

around the infection-free equilibrium, that is, from the system 

{ 
j~ =-a~ I~+ a"!'-pmif 
~ ~ ~ ~ ~' 

j! =-a! If+ a!pf I~. 
~ ' ~ ~ ~ 

(3.1) 

Equations in (3.1) are decoupled. If 

f I I 
a'I!La. >a 'I!' a~ pmpJ 

~ 2 ~ ~ ' 
i = 1,2, 

the infection-free equilibrium is stable. If there exists ani, 1 ~ i ~ 2, such that 

then the infection-free equilibrium is unstable. 
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We define the reproductive number, il?,, of the ith subgroup by 

(3.2) 

Then, if il?, < 1, (I["', I{) --t (0, 0). Hence, if Ri < 1, fori= 1 and 2, the infection­

free equilibrium is stable and the disease in the population goes extinct. However, 

if there exists at least one subgroup such that il?, > 1, then (I["', I{) -f+ ( 0, 0); that 

is, the disease spreads in the population. In fact, the infection-free equilibrium is 

globally stable if il?, :::; 1. 

The following lemma is needed to show the global stability of the infection-free 

equilibrium and in the next sections. 

Lemma 3.1. Let E1 = (If',I{,o,o)T and E2 = (o,o,Ir,I£)T be equilibria of 

(2.5), where I["', I{ > 0, if ~ > 1, and I["' = I{ = 0, if ~ :::; 1. Let e = 

(pm,pf,o,o)T and e = (o,o,pm,pf)T. Then 

i = 1, 2. 

Proof. Notice that the subset 

U := {I E f!; I;" = I{ = 0} ~ n 

is positively invariant under the flow I(t, ·) and that ~1 E U. It follows that 

I(t,e)EU, t~O. 

That is, Ir =I{= 0, t > 0, and If' and I{ satisfy the following equations 

(3.3) 
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with the initial condition 

(3.4) 

System (3.3) is a special case of the equations in Lajmanovich and Yorke (1976). 

Hence it follows that the solutions of (3.3) with the initial condition (3.4) approach 

a unique equilibrium, that is, 

Similarly, we can show that 

lim I (t,e) = E2. 
t-+oo 

The proof is complete. 

Assume 14 < 1. Since for any I= (rf',I{,Ii,I{)T En, 

0 ~ If' ~ pm, 0 < If :::; pf, i = 1, 2, 

which implies that 

e ~K I ~K e. (3.5) 

It follows immediately from Theorem 2.2 and Lemma 3.1 that 

0 = E2 = lim I (t,e) ~K lim I (t,Io) <K lim I (t,e) = E1 = 0. 
t-+oo t-+oo t-+oo ' 

In summary: 

Theorem 3.2. Let the reproductive number 14 for each group be deE.ned in (3.2). 

Then, if 14 ~ 1, i = 1, 2, the epidemic goes extinct regardless of the initial levels of 

infection. If~> 1 fori= 1, or 2, the epidemic spreads in the population. 
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4. ENDEMIC EQUILIBRIUM 

The model investigated in this paper is decomposable. Hence, there exist two 

types of endemic equilibria, one of which consists of one nonzero pair (If", I{) and 

the other pair being zero (boundary equilibria), and a second for which coexistence 

is possible. We call the first type of endemic equilibria winner equilibria, and the 

second coexistence equilibria. 

4.1. The Winner Equilibrium. 

A winner equilibrium exists whenever the epidemic spreads in the population: 

Theorem 4.1.1. Assume that R;, > 1, i = 1, 2. Then the nontrivial equilibrium 

(Sk > 0, If> 0, Ij = O,j # i) exists. 

Proof We need to solve 

{ 
uf!l-]"!' = a'!'- (pm - I!") I! t t t t ,, 

u{ I{= a{ (pf- !{)If', 
(4.1.1) 

for If, 0 < If < pk. A straightforward algebraic manipulation leads to 

a'!'-a!pmpf- u'!'-u! (D. - 1)u'!'-u! 
'" '" ' ' - .L"i ' ' 

a{ (uf" + af"pl) - a{ (uf" + af"pl)' 

a'!'-a!pmpf- u'!'-u! (D. - l)a'!'-a! 
'" ' ' ' - .L"i ' t 

af" ( u{ + a{ pm) - a'f ( u{ + a{ pm )" 

Hence, If> 0 if and only if R;, > 1. 

We may think of these equilibria as the result of competition for resources be­

tween two populations of pathogens. It is not surprising to see that the reproductive 

number determines the stability of these equilibria under the assumption of homo-

geneous mixing. 
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Theorem 4.1.2. Let R;. > 1, i = 1, 2, and assume R1 =I R2. If R;. > Rj, then 

the nontrivial equilibrium (Sk* > O,If* > O,Ij = O,j =I i) is globally stable and the 

other equilibrium ( Sk* > 0, IJ* > 0, If = 0) is unstable. 

Proof. Without loss of generality, we assume R1 > R2 and show that the equilibrium 

(Sk* > O,If = O,I~* > 0) is unstable. 

The Jacobian, J, of {2.5) at this equilibrium has the form 

J _(An 0 ) 
- B21 A22 ' 

where 

with Dij being the Kronecker delta function. 

The eigenvalues of J consist of the eigenvalues of Aii, i = 1, 2. All of the elements 

on the diagonal are negative, hence, whether all of the eigenvalues have a negative 

real part or some of them have a positive real part is determined by the signs of the 

determinants det Aii· 

The winner equilibrium satisfies 

Hence, 
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which implies that the equilibrium (Sk > 0, If= 0, I~* > 0) is unstable. 

Next, we show that the equilibrium (Sk > O,If* > O,I~ = 0) is globally stable. 

As it is shown above, the matrix 

is unstable. Moreover since the off-diagonal elements of An are positive, there 

is a positive eigenvalue ). of An with a strictly positive eigenvector (TJb TJ2)T. In 

addition from ( 4.1.1), there is € > 0 such that 

Gf: := a-r'f/1 + af:(pm- (!2* + c))'T/2 > 0, 

G{ := a{(pf- (I£* +c))TJ1-a{TJ2 > 0, 

G~ := -o-2 I2*(1 + €) + a~(pm- I2*(1 + c))I£* < 0, 

I mr 
1 = T'f/1, I /T 

1 = T'f/2, 

i,From (4.1.2) it follows that 

li 1 I·kr Gk 0 m-1= 1>, 
T-+0+ T 

li I"kr Gk 0 m 2 = 2<' 
T-+0+ 

and, hence, there is 7* > 0 such that for all T E (0, 7*), 

(4.1.2) 

which implies that I(t, Ir) is type K monotone; that is, If(t, F) are increasing and 

I~(t, F) are decreasing. 
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The fact that the set {IE R4 ; Ir =I{= 0} is positively invariant under the 

flow I(t,·) implies that for all IE n with Ir(o) + I{(O) > 0, Ir(t,I0 ) > 0 and 

I{ (t, Io) > 0 for all t > 0, where I0 = ( Ir(o),I{ (0), Ir-(o),I{ (0)) T. Hence, we 

have from (3.5), that for each IE n with Ir(o) +I{ (0) > 0, 

E2 = lim I (t,e) <K w(I), 
t-+oo 

where w(I) is the omega limit set of I. From the definition of type K order and the 

definition of E2, we have that for any i = (ir, i{, ir,i!) T E w(I), 

jm < Jffi* j2f <_ r2' *. 
2 - 2 ' 

Therefore, for sufficiently large t~, 

On the other hand, since If(tb Io) > 0, if Ir(o) +I{ (0) > 0, ,- can chosen so 

small that 

which yields 

Hence 

Moreover, since I(t, F) is type K monotone, 



17 

where E* is an equilibrium with ei 2:: Tr/i > 0, i = 1, 2. Hence, it follows that 

E* = E1 (see Theorem 4.2.1 below), and 

lim I(t, Io) = E1. 
t-+oo 

The proof of Theorem 4.1.2 is complete. 

4.2. The Coexistence Equilibrium. 

Coexistence of two viral strains can occur mathematically provided a very special 

relationship between the parameters takes place. This relationship is not robust and, 

consequently, it is of no biological significance. We include it here for mathematical 

completeness. 

Theorem 4.2.1. Let R1 > 1 and R2 > 1 be the reproductive numbers for groups 1 

and 2 respectively. Then there exists a coexistence equilibrium ( Sk > 0, If > 0, i = 1, 2) 

if and only if 

(4.2.1) 

Furthermore, if (4.2.1) is satisE.ed then there exists a continuum of equilibria ex­

plicitly given by 

i = 1, or 2, 

I{ =a, 

(4.2.2) 
Im _ pmaj(pf ai(R- 1)- (Rai + pf ai) a) 

j - R(a!ar + pfaiaj + (aiaj- ajai) a)' 
j :f i, 
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where 

(4.2.3) 

Proof. Suppose that such an equilibrium exists. Then 

afif" = af (Pm- tir) I{, 
l=1 

a{ I{= a{ (pf- tif) Ii. 
l=1 

Hence 

holds fori= 1, 2. This shows that (4.2.1) is necessary for the existence of a coexis-

tence equilibrium. 

We then assume that (4.2.1) is satisfied and solve the following system 

amim- am(pm (Im +lm))Jf 1 1 - 1 - 1 2 1l 

a1I1- a1(pf- (I1 +L1))Im 11-1 1 2 1l 

a~ I;"= a~ (Pm- (If+ I;") )If, 

a~ I[= a~ (pf- (I{+ If} )I;", 

for If and Ij, with 0 <If+ I2 < pm and 0 <I[+ I[ < pf. 

;.From ( 4.2.4)1 and (4.2.4)3, 

(4.2.4) 
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l,From ( 4.2.4) we obtain 

If 

(4.2.5) 

Substituting (4.2.5) into (4.2.4)2, using (3.2), and after some straightforward alge-

braic manipulations we arrive at 

Choosing I{ =a;:::: 0 (satisfying (4.2.3)) leads to (4.2.2). 

Remark. System (4.2.4) is equivalent to 

that is, the system (4.2.4) is undetermined (there are three equations for four vari­

ables). Hence, solutions can be obtained by choosing I{= a arbitrarily. 

It is not difficult to see that this continuum is stable. Because these equilibria 

are a continuum and the flow generated by (2.5) is type K monotone, then all 

equilibrium points have the same stability. Consider either of the two end points 
CJ·pf(R -1) 

for a, that is a = 0 or a = ( R ~ m f m) . Then from the proof of Theorem 4.1.2 
CJi + P ai 

we see that an eigenvalue of A11 and A22 equals zero while the other three have 

negative real parts. Hence, each equilibrium is stable and so is the continuum. We 

summarize our results on the next theorem. 
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Theorem 4.2.2. Let the reproductive numbers for the two groups be R 1 and 

R2, respectively, and assume that R1 = R2 > 1. Then every equilibrium on the 

continuum parameterized by (4.2.3) is stable. 

5. EXTENSIONS 

It is possible to provide extensions of the results of this manuscript to more 

general situations including the case in which a two-sex host population is exposed 

to any number of strains. Age-of-infection has become an important variable in 

recent epidemiological studies (see Thieme and Castilla-Chavez 1989, 1993). We 

also extend our two-strain model to the situation in which the hosts' age of infection 

depends on the the infective strain. We find out that realistic coexistence is not 

possible in these more elaborate situations. 

5.1. The Multi-strain Model. 

Assume there are N different viral strains spreading in a heterosexually-active 

and homogeneously mixing population. The infected males and females are divided 

into N groups based on the infectious viral strain that they have acquired. We 

assume that susceptibles that become infected acquire the viral strain of their in-

fectors and that individuals cannot carry two or more strains simultaneously. Then 

the model can be described, as in Section 2, by the following system of equations: 

N 

sm =Am - Em - 1-Lsm + L "Yrn If'' 
i=l 

N 

st =At _ nt _ J-Lst + I: 7[ I{, 
i=l 

I·t -Bf ( !) If 
i - i - 1-L + "Yi i ' 



where 

msm N 
Bm = c "' {3! I! 

Tf ~ J J' 
j=l 

with the constraint 

's' N B f = _c - "' {31!'- J"!'­
Tm~JJ' 

j=l 

21 

The reproductive number of each group is also given by (3.2). If~ < 0 for 

all i, the epidemic dies out or the disease cannot invade while if there exists one 

~ > 1 then the epidemic spreads. Mathematically, there are two types of endemic 

equilibria if Ri > 1. If all the reproductive numbers are distinct, one viral strain 

wins; that is, there is only one stable winner equilibrium, the viral strain with the 

largest reproductive number. If two or more groups have the same reproductive 

number then mathematical coexistence occurs. We have a continuum of endemic 

equilibria which can be computed explicitly. The stability of this continuum cannot 

be settled with the arguments provided in Section 4. Fortunately, this situation is 

of less biological interest. 

5.2. The Infection-age Structured Model. 

If the ages of infection, as a function of the strain, are included in the process, 

then the dynamics of disease spread are governed by a system of first order partial 

differential equations with complex boundary conditions (integral equations). In 

this section, for simplicity, we only formulate a model for a two-sex population that 

is exposed to only two strains. Suceptibles are divided by gender while infectives 

are stratified by gender, strain, and age-of-infection. The system is given by the 
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following set of equations: 

2 00 

sm(t) =Am- Bm(t) -p,Sm(t) + ~ j 'YI"'(r)Ir(t,r)dr, 
~=1 0 

8ti;n(t, r) + 8ri;n(t, r) =- (p, + 'YI"'(r)) II"'(t, r), 

I;n(t, 0) = BI"'(t), 
2 00 

81 (t) = Af- Bf (t) -p,Sf (t) + ~ J 'Y{ (r)I{ (t, r)dr, 
~=1 0 

8tl{(t,r) +8rl{(t,r) =- (IL+'Y{(r)) I{(t,r), 

If (t, 0) = B{ (t), 

where 

00 00 

m cmsm(t) f f f 
Bi (t) = Tf (t) • {3i (r)Ii (t, r)dr, 

f - cfSf(t) J m 
Bi (t) - Tm(t) {3i (r)Ji(t, r)dr, 

0 0 

and 
2 

Bk(t) = L Bf(t), 
i=1 

2 00 

Tk(t) = Sk(t) + ~ j If(t, r)dr, 
~=1 0 

with the constraint 

The reproductive number for each group is given by 

. 00 R: · .. So R: 
l' J -p.r- -yf'(u)du J -p.r- -rf (u)du 

Ri = cmcJ f3I"'(r)e 0 dr /3{ (r)e o dr. 
0 0 

Existence, stability, and coexistence can be handled as before. We again observe 

the existence of a continuum of equilibria if R 1 = R2 , which is of less biological 

interest. The argument that we used to settle the stability of this continuum does 

not seem to work in this case. 



23 

6. DISCUSSION 

An important principle in theoretical biology is that of competitive exclusion 

which states that no two species can forever occupy the same ecological niche. Clar­

ifications on the meaning of competitive exclusion and niche have been central to 

theoretical ecology (Butler et al., 1983; Levin, 1970; May 1975; Maynard Smiths, 

1974). Sexually-transmitted diseases like gonorrhea have incredibly high incidences 

throughout the world providing the necessary environment and opportunities for 

the evolution of new strains (see Hethcote and Yorke, 1984, and references therein). 

The coexistence of gonorrhea strains is becoming an increasingly serious problem. 

Understanding the mechanisms that lead to coexistence or competitive exclusion 

is central to the development of disease management strategies as well as to our 

increase understanding of STD-dynamics. 

In this article, we have set up a very simple situation in which two strains or 

possibly more compete for the same resource. Lack of genetical and behavioral 

heterogeneity in a heterosexually mixing host leads to competitive exclusion. How­

ever, as it is indicated above, coexistence has been observed in many situations 

and, hence, it is important to determine the type of mechanisms that lead to coex­

istence. For example, a large proportion of women are asymptomatic to gonorrhea 

and, hence, a potential reservoir for the pathogen. Is this sufficient for coexistence? 

Heterogeneity in human behavior is central to the spread of gonorrhea as Heth­

cote and Yorke (1984) convincingly illustrated through their introduction of the 

core group concept. Research driven by HIV /AIDS dynamics (see, e.g., the volume 

edited by Castilla-Chavez, 1989) has shown the importance of social networks and 

social dynamics for the spread of STDs. Behavioral and geographical isolation may 
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play a central role in maintaining pathogen heterogeneity. As it has been shown in 

ecological systems, homogeneity leads to competitive exclusion while heterogeneity 

may, in its various manifestations, lead to coexistence. This seems to be the pattern 

for STDs and, consequently, we need to conduct further research to understand the 

type of heterogeneities that lead to coexistence. 
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