
SlAM J. APPL. MATH.
Vol. 55, No. 5, pp. 1233-1258, October 1995

1995 Society for Industrial and Applied Mathematics
004

SUPERHEATING FIELD OF TYPE II SUPERCONDUCTORS*

S. JONATHAN CHAPMAN

Abstract. The superheating magnetic field of a type II superconductor is examined, using the
time-dependent Ginzburg-Landau equations and the methods of formal asymptotics. The supercon-
ducting solution in a halfspace is found to exist only for magnetic fields lower than some critical
value where there is a folding over of the solution branch. A linear stability analysis is performed
both in one and two dimensions, giving differing criteria for stability. Finally, superheating fields for
more general geometries are considered, and in particular the case of a sine-wave perturbation of a

halfspace is examined.
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1. Introduction. This paper is concerned with the response of a superconduct-
ing material to an externally imposed magnetic field. This response is most conve-
niently described by Fig. 1, which shows the preferred state of the superconductor as
a function of Ho, the applied magnetic field, and , a material parameter (known as
the Ginzburg-Landau parameter) which determines the type of superconducting ma-
terial; < 1/x/ describes what is known as a type I superconductor, and > 1/
describes what is known as a type II superconductor.

For type I superconductors there is a critical magnetic field Hc (known as the
thermodynamic critical field) below which the material will be in the superconducting
state but above which it will revert to the normally conducting (normal) state. The
transition between normal and superconducting states as the applied magnetic field
is raised or lowered through Hc takes place by means of phase boundaries separating
normal regions from superconducting regions sweeping through the material and is
described in [7], [10], and [17].

For type II superconductors a third state exists, which is known as the mixed
state. The mixed state, as its name suggests, is neither wholly superconducting nor
wholly normal but consists of many normal filaments embedded in a superconducting
matrix. Each of these filaments carries with it a quantised amount of magnetic flux
and is circled by a vortex of superconducting current; thus these filaments are of-
ten known as vortices. The transition from the normal state to the mixed state takes
place via a bifurcation as the magnetic field is lowered through some critical value
(known as the upper critical field) and is described in [1], [6], [8], [9], [18], [21], and
This bifurcation is subcritical for type I superconductors but supercritical for type II
superconductors, hence the observation of the mixed state only for type II supercon-
ductors. There is a mutual repulsion between superconducting vortices, which leads to
the formation of a hexagonal lattice of vortices in the mixed state, as observed in [12].

The transition between superconducting and mixed states is less well studied
mathematically, and this will be the subject of the present paper. The critical field

Hc plotted in Fig. 1 (known as the lower critical field) is calculated on the basis of
an energy argument; it is the field at which the energy of the wholly superconducting
solution becomes equal to the energy of the single vortex solution for an infinite
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FIG. 1. The response of a superconductor as a function of the applied magnetic field and the
Ginzburg-Landau parameter .
superconductor. In fact, as H0 is raised, there is a barrier to the generation of vortices
in a superconductor, and there exists a "superheating field" Hsh such that for He1 <
Ho < Hsh the superconducting solution is still locally stable, even though it is not the
global minimum energy solution. We will find that the response of a superconductor
is different in two dimensions than in one dimension, leading to a different value of
H,h from that obtained by de Gennes [14], Matricon and Saint-James [20], and Fink
[13]. We note that Bean and Livingston have also calculated approximate surface
barrier fields, using an energy argument [3]. The approach we adopt is via the time-
dependent Ginzburg-Landau equations (to be introduced in the next section) and
again leads to a different result.

The results we obtain do agree with that obtained for a halfspace by Kramer
[19], who uses the steady-state Ginzburg-Landau equations with the positivity of the
second variation of the free energy being the criterion for stability. We will see that the
present approach allows the superheating field of an arbitrary body to be calculated,
including the site of first instability.

2. The Ginzburg-Landau model. For a more complete introduction to the
Ginzburg-Landau theory of superconductivity the reader is referred to [10] and [11]
and the references therein. Here we merely state the dimensionless, time-dependent
Ginzburg-Landau equations as

iA)2(1) c -1) in

( ) (*V V*)+IIA ina+v +

In fact, there is also a "supercooling field," Hsc, such that for fields Hsc < Ho < Hcl vortices
within the superconductor will remain trapped, even though the global minimum energy solution is
that of a completely superconducting sample with no vortices. This will be the subject of another
paper.
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where ft is the region occupied by the superconducting sample, is the (complex)
superconducting order parameter (which can be thought of as a kind of macroscopic
wavefunction for the superconducting electrons), and A and q5 are the (real) magnetic
vector potential and the electric scalar potential, respectively, which are such that

OA
(3) H curl A, E

Ot
A is unique up to the addition of a gradient; once A is given, b is unique up to
the addition of a function of t. Here a is a positive material constant, and is
the Ginzburg-Landau parameter mentioned in the introduction; we see that is a
ratio of the typical lengthscale for variations of the vector potential (known as the
penetration depth, which has been used as the lengthscale in nondimensionalising the
equations) to the typical lengthscale for variations in the order parameter (known as
the coherence length).

In the steady state, with q5 0, these equations result from minimising the
Ginzburg-Landau formulation of the Gibbs free energy [15],

2
/ H -2H. Ho + -Vt iAtP dV,

where H0 is the applied magnetic field. In the time-dependent case they can be
obtained as a limiting case of the microscopic BCS equations [2], [16].

We will be concerned only with two-dimensional situations in which the magnetic
field is perpendicular to the plane of interest. In this case H (O, O, H(z, y, t)),
A= (Al(x, y, t),A2(z, y, t), O), and the boundary conditions appropriate to (1), (2)
are

(4) n-(V-iA)tP 0 on Oft,

(5) H H0 on Oft,

where rt is the unit outward normal to the boundary.
In the units we are using the thermodynamical critical field is given by Hc 1//,

the upper critical field is given by Hc. (for an infinite sample), and the lower
critical field is given by H (1/2)log , for large .

Equations (1)-(3) are gauge invariant in the sense that they are invariant under
transformations of the type

(6) A -- A + Va, - Or’
q2 - ei.

We may write the equations in terms of real variables by introducing the new gauge-
invariant potentials

(7) Q=A- 1VX, (I)- 10x
Ot

where feix. We then obtain coupled equations for just f, Q, and b:
a Of 1

(s) 2 0t - --V2f
(9) af(I) + div (f2Q)

(10) -(curl)Q

f3-f+f[Ql2

0 in
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with boundary conditions

(11}

(12)
(a)

of
0-- 0 on0fl,

Q.n 0 on 0,
H H0 on 0gt.

2.1. Analysis of a halfspace as ---. x. We examine the solution of the
Ginzburg-Landau equations for the halfspace x > 0 as the applied external magnetic
field is increased. We consider the case of an extreme type II superconductor by
setting 1/ and considering the limit as e -- 0. In one dimension the gauge may
be chosen so that is in fact real and A (0, A(x), 0). Then f, A Q, and
the Ginzburg-Landau equations are

(14) e2f,, fa_ I + fQ2,
(15) Q,, f2Q,
(16) H Q’

with boundary conditions

(17)
(18) H(0) H0, Q

where we have assumed that the material at infinity is superconducting. Because of
the small parameter multiplying the derivative of f in equation (14), we expect there
to be a boundary layer at x 0.

Outer solution. We formally expand the outer variables (which we denote by
the subscript o) in powers of e:

() fo f(o) + f(o) +...,
(20) Qo Q(o) -+- eQ(o1) +...,
(21) Ho H(o) +H(o1) +....

Substituting the expansions (19)-(21) into equations (14), (15) and equating powers
of e yield at leading order

(22)
(23)

If fo() 0, then

o (f(o)) f(o) + f(o)(Q(o))
(Q(o0)),, (f(oO)).Q(oO).

(fo()) 2 1 -(Q(o)) 2.

Substituting this into (23) gives

() ((o))" (o0)_ ((o0))
with solution

(25) Q(o) 2v/ aex
1 + a2e2"



SUPERHEATING FIELD OF TYPE II SUPERCONDUCTORS 1237

Therefore

(26) Ho() 2x/aeX(1 a2e2x)
(1 + a2e2X)2

This completes the leading-order outer solution, once we have determined the constant
a. Strictly speaking, because of the boundary layer at x 0, the boundary condition
(18) should not be applied directly to (26); rather a should be determined by matching
with the inner solution. However, when we define the inner variable X by z eX
and expand in powers of e as in (19)-(21) in the boundary layer, it is not dimcult
to show that Qi and Hi are constant to leading order (where the subscript denotes
the inner solution), and hence H}) H0, QI) b, say (the boundary layer simply
serving to take the derivative of f down to zero). Hence, on matching with the outer
solution

(27) Ho

v

2V a(1 a2)
(1 + a)2

2x/a
l+a2"

To solve these equations we note that

2(H;0)) 2 2((o0)) 2 --(((o0)) 4,

and hence

2b b4 2Hg,

with solution

The solution for a is now

a._ 4
b

1 + V/4- 2b2.

However, a must be such that 0 G (Q(o))2 G 1, giving

(29) a 4
b

1 + V/4- 2b2,

The solution for f(0) is then

f/(0) v/1 b (1 2H02) 1/4.

Thus we see that the solution exists only for H0 1/xf (note again that 1/x/
Hc in these units). This is the leading-order superheating field obtained by de Gennes
[14].

We now perform a local analysis for H0 close to 1/x/ in order to examine the
behaviour of the solution branch at this critical point and to determine to first order
correction to the superheating field.
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When H0 1/x/ we find a -(1 4, /) and b -1. Hence Q(o)(0) -1,

fo() (0) 0. In this case a different scaling must be used for the inner solution. As
x -- 0, fo(0) 21/4X1/2. This, together with (14), indicates the following scaling. We
define the inner variable by x e/aX and let fi el/ai, Q -1 + ez/aQ. Then
(14)-(16) become

(a0) ’ ]y-u?O+/̂ ,
2^2(31) (, _a/3]{

We expand f, Qi, and Hi in powers of e/a"

fi f}O) 4" 2/3]}1)4" 4/3]/(2) 4"’’’,

2/3 ^(1) 4/3(12) I)+ Q + +...,

}0)+:/.}1)+4..})+....
Substituting these expansions into equations (30)-(32) and equating powers of e yield
at leading order:

(34) (0))" 0,

() H}0) (0)),.
Hence

)0) X + C

The equation for f}0) is now the equation for the second Painlev transcendent and
cannot be solved in terms of elementary functions. To match with the outer solution
we require the solution that has the asymptotic form

f(i O) 21/4X1/2 as X -- o.
Let us return for the moment to the outer solution. Because of the form of the

inner solution, we expect the outer expansions also to be in powers of

Qo
o(0)+ :/o() + /o(.) +...,

4/3 (2)Q(o) 4. e2/3Q(o1) 4- Qo 4....,

Ho() 4, (2/3Ho(1)4. e4/3H;2) 4.’".

Substituting the expansions into (14) and equating coefficients of e2/a yield, using
(as),

(36) fo(1)
Q()Q(I)

fo()

To solve for Q(o1) we first note that equations (14)-(15) have a first integral given by

(37) e(f,) + (Q,) (1 -2f2)2 + f2Q,
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where we have applied the boundary conditions at infinity to eliminate the constant
of integration. We equate coefficients of e2/3 in this equation to give, using (33) and
(36),

(Q(o))’(Q(ol))’ (Q(o) -(Q(o))3)Q(ol),
with solution

(38) Q(ol D(Q(oO)) 2x/ DaeX(1 a2ex)
(1 + a2e2x) 2

where D is arbitrary at this point. This gives

Ho(1) D(((o0) -(Q(o))3)
DaeX(1 6a2eX + aae4x)

(1 + aex)3

We proceed to one more term in the outer solution. Equating coefficients of e4/3

in (14) and (37) and using (33), (36), and (38) yield

+

Q(o)Q(o) D((Q(o))’) 2
2)

fo() 2(fo())3
((Q(o))3 Q(o))Q(o) D(Q(o))4((Q(o)) 3)

(Q(o)) 4(Q(o))
with solution

Q(o2 2xaD2eX(1 3a2e2x) EaeX(a2ex 1)
(1 -4- age2x)3 + (1 + age2x)9

+ +
where, again, E is arbitrary at this point.

When we match with the inner solution, we will need to know the limiting forms
of the outer solution as x - 0. We have

X X3

(39) Q(o) -1+
3x/- +’"’

(40) Q(ol D Dx

D E
(41) Q(o)

(42) Ho()

(43) Ho(1)

(44) Ho(2)

(45) fo()

D2x

1 x2 X3

3Dx-Dx + +...,
2

D2

21/4xl/2 X3/2

21/4.4 +’",
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(46)

(47)

D 3Dv/
fo(1) 23/4x/- 21/4.8 -4-...,

f(o2) 23/4.4x3/ +’’"

Let us now turn again to the inner solution. We have

Q{ -i + 2/3 X -- CHence
x

(lto)(2ti) -1 -4- ,
X y2/3 C(2to)(2ti) -I + /

x/-"

We have from the outer expansion

(2ti)(2to) -1 + (2/3X -f- (y2/3 x’D
Hence C- D.

We now turn our attention to Hi. We have

H(1)’

Matching with the outer solution implies H}I) 0. Equating powers of e at the next
order in (32) yields

_(f}0))2.
Hence

H(o:)

where H0 1/x/ + 4/3H0(2). Matching this term with the outer solution will give

the constant D in terms of H0(2). Writing Hi in terms of the outer variable x and
expanding give

1 x2

(lto)(3ti) x/ v’
1 x2

e_2/3Dx(2to)(3ti) xfl xfl
1 x2

(3to) (3ti) 2/3Dx
__

(4/3H0(2) 4/3/,

where

x/(X + D)] dX.
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FIG. 2. D as a function of H(o2).

From the outer solution we find

(3ti) (3to)
1 4/3 X2 X/ 4/3DX 4/3 D_2

Hence
02

Figure 2 shows a plot of D against Ho(2). We see that there is a folding over of
the response diagram as the solution branch turns back on itself. The value of Ho at
the nose gives the limiting field for the existence of this solution branch. Above this
field the solution must switch to some other solution branch (which will correspond
to changing into the mixed state).

This shows the limit of the existence of the superconducting solution. However,
to determine the superheating field we need to examine the stability of the supercon-
ducting solution.

3. Linear stability in one dimension. We consider the linear stability of the
solution. In one dimension, the time-dependent Ginzburg-Landau equations are

(2-=-Of + 2 f f3 f + fQ2(4S) -a
ot Ox

(49)
OQ aeQ
Ot + Ox--’ f2Q,

(50) H Ox"
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We denote the previously found steady-state solution by (fo, Qo) and make a small
perturbation about it by setting

f fo+etfl(x),
Q Qo+eQ(z),
H Ho + e’tHl(Z), 0 < << 1.

Substituting these expressions into (48)-(50) and linearising in 5 (to give the leading-
order behaviour of an asymptotic expansion in powers of i) yield

02 fl(51) -ce2rfl + 3ffl fl + flQ + 2foQoQ1
Ox2

() -Q + oz----5-
(53) H1

with boundary conditions

0fl
o (0) 0,

Ofl---’0Ox

fgQ1 + 2foflQo,

OQ1
Ox

H1 (0) O,

H1 0 as x ---, oo.

We also have that

02r)(0)

(0) r)(o)
o,0’o,1

f o)
,0

(or() + 1 ((o) (o),,o,o))Qo,.

(56) -cecrfi,1 +

(57) -erQ, +

(58)

(o) ,qr)(o)
Jo,1 "o,1 0 as X
Ox O,

Ox
To obtain a boundary condition at x 0 we must consider the inner solution.

As before we define the inner variable X by x eX. Equations (51)-(53) become

OX2

cgHi,1
OX

3fi,ofi,1 fi,1 + fi,iQ,o + 2fi,oQi,oQi,,

f,oQi,1 + 2fi,ofi,lQi,o),

OQ,
OX

(55)

(54) r(0)
Jo,1

We now consider an asymptotic expansion in powers of e as before:

r)(0) r)(1)Qo,1 "o,1 q- ’’o,1 -J"’’’’
r(0) (1)fo,1 o,1 "-]- ’-J o,1 Jr- "’’,

Ho,x H(0) (H(1)
o,1 Jr- o,1 --Note that since we are expanding in powers of e after linearising in 5, we are assuming

that 5 << e. As before, we will need to consider both the outer solution and the inner
boundary layer. At leading order in the outer region we have, using (33),
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with boundary conditions

(59) o (0) 0,

(60) H,(0) 0.

We find OH()/cOXi,1 0 and hence H}, 0. Matching with the outer solution implies

(OQ(o/Oz(O) 0. Now, multiplying (55) by )(0) and integrating over [0 oc) yield,"o,1
after integration by parts,

I(o) (o, OZ
dx + 3(o,0, 1 dz.

(0))Now, for H0 small (o, < 1/3, and hence (0) < 0. Hence the solution is linearly
stable for small H0. We expect each of the eigenvalues a(0) < 0 to depend continuously
on H0. When an eigenvalue passes through zero, we know that the only solution of

(55) is o,0() dQ()/dz In order for this to satisfy the boundary condition at z 0o,0

we require d()/dz(O) 0 This is only true when H0 1/ Thus we expecto0
all eigenvalues a(0) to be negative for H0 < 1/. When H0 1/ the largest
eigenvalue will be zero to leading order. Hence we need to proceed to higher orders
in the expansion to determine the stability of the solution in the neighbourhood of
0- /.

3.1. Ho close to 1/. We have the leading-order behaviour of the perturba-
tion

o(o)
(61) 0(0) -o,O

" o,1 dx
0(0) 30(0)

t:(o) " o,O ’’ o,o(62) Jo,1 (o) dx
Jo,0

As in the steady state, we assume an expansion in powers of e2/a:

0(0 e2/aQ(1)Qo,1 ,o,1 -t-- o,1 -t-...,
ie(0) (2/3rr(1)fo,1 o,1+ o,1 +"’,

Ho,1 H() (2/3H;Io,1+ +""

Substituting these expansions into (51)-(53), equating coefficients of e2/3, and using
(33), (36), (61), and (62)yield

0(0)0(1) /,o(o) \
.

1) " o,0’o,1 D [ ’o,0(63) f(’l r(- (r())3 \ dx )ao,O \JoO

020(1) AO(0 (dO(0) )
2

( 1)-(1)" o,1 dx ’-’" o,O dx

where D is as before. Now ,o()/dx is a solution of the homogeneous version of
(64). Note though that we will find when we match with the inner solution that the
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boundary conditions on Q(1)o,1 are not homogeneous. We multiply by ,r()/dx andt" o,0
integrate to give

-- ---+ ,qr() /dx(O) 1/-, 2r3()/dx2(O)Since m()/dx, z2r()/dx2 0 as x cx, and o,0’’So,O "o,0 "o,0
O, we have

dx -D
1 "o,1

Ox (o).

In order to determine r(1)/Ox(O) we turn our attention to the inner solution. As in’o,1

the steady state we define the inner variable X by x e/3X and new variables
and i,o by

fi,o (1/3i,0
Q,o -1 +

Equations (51)-(53) then become

__20.fi,1 + 2/3
OX2

OX2

We see that the correct scaling for f,l is f,l e-1/3fi,1. The leading-order behaviour
of fi,1 is then given by

OX2

with boundary conditions

ax (0) 0,

aS X -- oo.
23/4X/-
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The solution of this equation is

0f(g,1)- ov
4/3H(2) whereWe see that the leading-order behaviour of Hi, is given by Hi,1 ,1,

fo
Now

(2ti)(2to) -e2/3x/-X + e/
OQ(’
&, (o).

(2to)(2ti)

Hence, by matching

r)(1)

o (0)=

Hence

() fJo .’O,Odx dx
v/- OD

D

vOD--
10H(o)
v OD

Hence cr() < 0 if and only if OH(oU)/OD < 0. Thus we see that the stability of the
solution branch switches as we pass through the nose in Fig. 2, with the upper branch
being stable, and the lower branch unstable, as shown in Fig. 3. Thus in one dimension
the superheating field is given by the field at the nose in Fig. 2 and is approximately
1/x/ + O.3a/4/a.

4. Linear stability in two dimensions. In this section we consider the sta-
bility of the solution with respect to two-dimensional perturbations. When we wrote
the one-dimensional equations we were implicitly choosing a gauge by writing the
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FIG. 3. D as a function of H(o2), showing the stability of the solution branches.

order parameter real and taking the vector potential to be directed in the y-direction.
Since we are going to perturb about the one-dimensional solution that we obtained,
we should choose a compatible gauge even though we are now in two dimensions.
Hence we again take the vector potential to be directed in the y-direction, so that
A (O,A(x, y), O) and H (0,0, H). We also take A and to tend to zero as
x - o. rh Cibrg-Ld qtion (), () th bom

() j(a_b + -5a)
02A

(66) OxOy

(67)
O2A
Ox

(68) H

062 062 OA

+ A262 + 62 16212

Ox+- *-Ox Ox J’
OA ie ( O 0* )o+N+g *o- +11d,

with boundary conditions

(69)

(70)

(71) A,

o
(o ) o

OX
H(O, ) Ho,
O

’ Ox
-+
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We consider a small two-dimensional perturbation of the one-dimensional solution
found previously. Now, as we have seen, there are two lengthscales and two timescales
in the problem. We consider first perturbations varying on the longer lengthscale (i.e.,
that of the penetration depth) by setting

(72) f(x) + (ecrtqJ (x, y),
(73) A Q(x) + (SetAl (x, y),
(7) (x,).

Substituting these expressions into (65)-(67) and linearising in yield

(76)

(77)

OxOy Ox

02A1 01
Ox Oy

Again we consider inner and outer solutions. Expanding in powers of e yields the
leading-order outer problem (dropping the l’s)

(78) o

O A(o
(79)- OxOy

O A(o
(80)

+
0(o0)
Oz

()0--;- + ,(o A(oO + (So(O)).A(o0 + So(O (oo) ((o0), + (o0)
We let q2(o) u + iv, where u and v are real. Then we find that v is arbitrary,

(o)

O A(oO2A(o
Ox Oy

Q(o)A(o)
f(o)

OA(oo)

o()A(o) + (1- 3(Q(o))’) A(o)

The boundary condition at z 0 on equation (81) is given by matching with the
inner solution. As before, we define the inner variable by z eX. In the inner region
(77) becomes

(81) OH1
OX

01
e
OA1 ie ( 01 0 )e--y-y / --- / V f---y f--y

+ ef2A1 + efQ(l + ).
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Since H1 0 at X 0, we see that at leading order H})
conditions on (81) are

0. Thus the boundary

(82)
OA()
0

(0, y)

(s) A(o) - 0 as X-- CX:).

The normal modes are given by A(o) A(x)sin ky, where

(k2+a()+(1-3(Q(o))2))A.
Hence

where cr are the eigenvalues of the one-dimensional perturbation, all negative for
H < 1/x/. Hence the superconducting solution is stable to long-wavelength pertur-
bations for fields H < 1//.

We now consider the stability of short-wavelength perturbations. We consider a
short timescale by setting t e2T and perform a multiple-scales analysis by intro-

ducing a new lengthscale to the outer problem. We set

x eX, y 6-Y.

We consider a perturbation of the steady-state solution of the form

(84)
(8)
(86)

tp f(x)+f(x,y,X,Y,T),
A Q(x) + fA(x,y,X,Y,T),
0- (,y,X,Y,T).

Substituting into equations (1), (2) and linearising in 5 yield

011/1 02 II/1 02/1/1 0211/1 02 tI/1
-a- aeifl + OX + O.y + 2e

OxOX + 2e OyOY

2i
O 11 OA OA
-2ieQ if-ief Oy

+2AQf +& +f( +) ,
6-2 02 I.

__
6_2

Ox2 Oy

We expand in powers of 6- as before (with 1 6--1(0) _qt_...) to give at leading order
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(on dropping the l’s)

02(o) 02(o)
OX2 OY

(87)

(88)

(89)

Hence

0(o)
a OT + air()(o) 2iQ(O) 0()0Y
+ 2A(O)Q(O)f(o) + (Q(O))2(o)
+ (f(o))2(2(o) + (o),) (o),

02A(o) 00(o)
OXOY OX

OA(o) 00(o) OA(o)

OX2 OY OT

02A(o)

O(o)
OA()
OY

02A(0) OA(o)

OY2 OT

if(o)OA()
OY

Thus A() simply diffuses back to its preperturbed position and is stable. We check
the stability of by setting A() 0() 0. This corresponds either to considering
modes in which the initial perturbation of A and is small or to a situation in which
c is large so that A relaxes instantly on the timescale of variations in . The normal
modes of equation (87) are then given by

q2 (0) eaT COS 1X (u sin kY + iv cos kY)

where

ca + k2 + 12 + 2(f())2) u- 2kQ()v O,

2kQ()u (ao + k2 +/2) v O.

In order for a nonzero solution (u, v) to exist we have the following dispersion relation"

(90) aa -12 k2 (f(o))2 + v/(f(0))4 q_ 4k2(Q(O))2.

Note that cr depends on x since f(o) and Q(O) do. Noting that (f(o))2 1- (Q(O))2 we
find that there are modes giving positive values of a whenever (Q(O))2 > 1/3. Since
(Q(o))2 is monotonic decreasing in x, we see that the instability will occur first at the
boundary of the sample. In the boundary layer

Q(O) b
l+a2’

where a is related to the applied field Ho by (29). Thus we can calculate the field at
which the instability first occurs, being the field at which b2 1/3. We find

1d v/
H 0.745Hc(91) Hh -We note that this result has been arrived at independently by Neu, via a boundary

layer analysis [22].
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Remark. We have shown that the superconducting solution becomes unstable at a
certain value of the magnetic field, which we then define as the superheating magnetic
field. We have not shown that this instability leads to the formation of vortices and
the mixed state, though we would conjecture that it does. This remains an interesting
open problem.

Remark. Bean and Livingston calculate the superheating field by considering the
energy of a vortex line near a sample surface. They find that for distances close to the
surface the energy increases with increasing distance, while for distances further away
the energy decreases with increasing distance. Thus, they conclude, a vortex placed
sufficiently close to the sample surface will be sucked out of the surface, while one far
enough away will move into the interior of the sample. This is the "surface barrier"
to vortex penetration. The superheating field that they calculate is the magnetic field
at which the critical distance from the boundary is of the same order as the vortex
core. The actual field obtained depends upon the details of the vortex core; they use
a "cutoff" calculation which leads to a value of Hc/. This differs from the present
calculation by the factor of V/10/9, or 1.05.

This definition of the superheating field is unsatisfactory for the following reasons.
First, the true value of the superheating field can only be calculated by a careful
analysis of a vortex whose distance from the boundary is the same order as its core
radius (i.e., O(1/t)). The arguments used by Bean and Livingston can only give the
order of magnitude of the superheating field. Second, a vortex near the boundary
is a major perturbation to the superconducting solution, and it may be that the
superconducting solution is locally stable, even though any vortices that happened to
be generated would move into the sample.

An analysis of the type indicated above is needed, though, to show that any
vortices generated by the instability we have found do actually make their way into
the sample. This also remains an interesting open problem.

Remark. Often in the limit as -- oc in the Ginzburg-Landau equations a dif-
ferent scaling of the parameter c is chosen, which corresponds to the present c e-2.
This means that the timescale for relaxation of the magnetic field is much shorter than
the timescale for relaxation of the order parameter, rather than the two timescales
being comparable as above. Adopting this different scaling of c makes the long-wave
stability calculation a little more tedious, though it does not alter the result. The
short-wave stability calculation is the same, since the magnetic field simply relaxes
instantly on the relevant timescale, as indicated above.

Remark. Note that the stability of long-wavelength perturbations is governed
by the time derivative of the potential A, whereas the stability of short-wavelength
perturbations is governed by the time derivative of the order parameter . This is
because A varies on an order one scale, while can vary on an O(1/) scale. For
long-wave perturbations A is the dominant variable and the solution is stable, while
for short-wavelength perturbations, once A relaxes, has a chance to dominate and
generate the instability. Note also that when k 0, so that the perturbation is a
function of x only, then cr < 0. These modes were not accounted for in our earlier
stability analysis in one dimension. However, since they are decaying, the conclusions
we came to still hold.

5. Superheating fields for sample geometries other than the slab. Since
the instability mentioned above occurs on an 0() lengthscale and not an 0(1) length-
scale, we can now calculate the superheating field for any specimen shape in which
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the boundary varies slowly on the inner lengthscale. In such cases the stability is
determined simply by the magnitude of the outer solution.

Because of the gauge-invariance property (6), it is not really the vector potential
A but the gauge-invariant potential Q A- eVX, where X is the phase of the order
parameter , which is important. For the halfspace X 0, but in general it may
not be.

If we solve the outer problem for Q, we know that the solution will be unstable
at any point at which the magnitude of Q is greater than 1/x/-, without needing to
do the stability calculation again. In the steady state, the outer problem is given by

(92) -(curl)2Q- (1-IQI)Q
(93) Q. n 0 on Oft,
(94) curl Q H0 on Oft.

in

Two geometries in which this problem reduces to an ordinary differential equation
are the film -d < z < d, in which case Q (0, Q(z), 0),

(95) Q,, =Q_Q3,
(96) Q’(+d) Ho,

where _= d/dx, and the circular cylinder r < R, in which case Q Q(r)O,

(97) Q" Q Q. /.2

(98) Q’ (R) + Q(R) HoR
(99) Q(O) bounded,

where d/dr and 0 is the unit vector in the azimuthal direction. The superheating
fields for these two geometries are shown in Figs. 4 and 5, respectively.

We can get an idea of how the shape of the boundary affects the superheating
field by considering perturbations of the slab and cylindrical geometries. We consider
here a halfspace with a slowly varying, small-amplitude sine-wave perturbation of
the boundary. Here the wavelength of the perturbation has to be >> e (so that the
boundary is still planar in the boundary layer expansion). The amplitude of the
perturbation should be << 1 but >> e, since we will calculate a series expansion in
powers of it while neglecting terms of order e in our original expansion.

We consider the domain x > 5 sin ky, << 5 << 1. The equations are then

(100) 0- Oz Oy

(101) OzO (OQ2Ox OQ1)Oy
(1-Q-Q)

(1-Q-Q)Q,

with boundary conditions

(102)

(103)

Q1 (5 sin(ky), y) k5 cos(ky)Q2(5 sin(ky), y) 0,
OQ

(5 sin(ky) y)
OQ

(5 sin(ky) y) H0cgx -0-Y--y
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FIG. 4. The superheating field Hsh as a function of thickness for a slab of size 2d.

Expanding Q1 and Q2 in powers of 5 we find

(104) Q1 5Q1) +...,

(105) Q: Q + 5Q) +...,

where Q is the previously found solution for a halfspace given by (25) and Q) and

satisfy

with boundary conditions

(1) (0, y) kQ(O) cos(108)
OQ() OQ) O:Q2 (0 y) (0 y) (0) sin ky.(109) cox Oy Ox2

Seeking a solution of the form

(110) QI) f(x) cos ky,

(111) QI) g(x)sinky,

we have

(112)
(113)

-kg’ k2f (1 Qe) f,
g" + kf’ (1 3Q2)g,
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FIG. 5. The superheating field Hsh as a function of radius R for a cylinder.

with boundary conditions

(114) f(0) kQ(O),
(115) g’(0) -k2Q(O) Q"(0) -Q(0) {1 + k2 Q(0)},
where _= d/dz. The remaining boundary conditions come from the constraint that

f and g must be bounded as z -- oc, which implies f(oc) g(oc) 0. We are
interested in QI. We have

(116) JQJ= Q(z) + 26Q(z)g(z)sinky + 0(62).

Evaluating this on the boundary we find

(117) jQj2 (6sinky, y) Q(0) + 26Q(0)[Q’(0) + g(O)]sinky + 0(6).

Thus we are interested primarily in the quantity g + Q’ w, say. Eliminating f and
using (24) we find

(118) w"-k2( w’ )’1 + kz Qz + k2 1Q(+lku--Qz)Qu (1 3Qg)w,

(119) w’(0) -kzQ(O),
(120) w

Let us consider the case in which Q is exactly on the point of instability, i.e., Q(0)
-1/x/-. It is then of interest to see whether the instability occurs at the troughs or
peaks of the boundary perturbation. This will depend on whether w(0) is greater
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than or less than zero. It is not difficult to show that g(0) must be less than zero.
However, QI(0) is positive, and so we need to work harder to determine the sign of w.

Even in this simplified form the problem (118)-(120) is still difficult. We simplify
it further by considering the limits of small and large wavenumber k.

Small wavenumber. For small k we expand

w w0 -[- k2Wl nu’’"

Then at leading order

(121)
(122)

,/ (1 3Q:)wo,Wo

0,

Wo0 asx0.

Hence w0 0. At first order we find

(124)
(125)
(126)

w + (1 3Q2)wl,
Wl(0 -Q(0),

/)1 --->0 as x -- 0.

We define

0 Q(x) dx.

Then b > 0, q51 > 0, b" < 0, for x > 0. Letting v w 0, we have

(127) v" (1 3Q2)w1,
(128) v’(0) 0,

(129) v’ -- 0 as x --
Now suppose that w(0) a > 0. Then v(0) a > 0, v’(0) 0, v"(0) 0,
vm(0) > 0. Thus v is increasing initially, and we have v > 0 in a neighbourhood of
the origin. Suppose there is a first point x0 such that v"(xo) 0. Then w(zo) O,
which implies V(Xo) -0(x0) < 0, contradicting the minimality of x0. Hence v" > 0
for all z, and v cannot satisfy the boundary condition at infinity. Thus a cannot be
positive; i.e., wl(0) <_ 0. From (117) we see that this implies that Qlis increased in
places on the boundary where sin ky is positive (since Q(0) < 0), and therefore it is
at these points that the instability will first occur, as shown in Fig. 6. Note that the
effect on the superheating field of the boundary perturbation is O(k2) for small k.

Large wavenumber. The limit of large wavenumber in (118)-(120) is a singular
perturbation problem, since the coefficient of w" tends to zero as k - oo. Thus we
expect that there will be a boundary layer at x 0. Indeed, if we naively let k tend
to infinity, then the leading-order behaviour of w is

(Q(1 Q))’
1 3Q

which does not satisfy the boundary condition at x 0.
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VACUUM ( SUPERCONDUCTOR

FIG. 6. Diagram showing the region of first instability for a sine-wave perturbation of a halfspace.

The expansion

1 vQ - + -x +... as x - 0

motivates the following scalings in the boundary layer. We define the inner coordinate
by x Xk-u/3 and let w ka/3W. Then the leading-order behaviour of W is given
by

(130) W" V-XW,
1

(1) W’(0)

(132) W - 0 as X -- c.
Hence

/ 1
Ai X(laa) w

v/gAi, (0)
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where Ai is the Airy function. In particular, since Ai(0) > 0 and Ai’(0) < 0, we see
that W(0) < 0. Thus, as for small wavenumber, Qlis increased in places on the
boundary where sin ky is positive. Thus for large wavenumber the instability will also
first occur at the places shown in Fig. 6. Note that the effect on the superheating field
of the boundary perturbation is O(k4/a) for large k. Thus small-wavelength pertur-
bations have a much stronger effect on the superheating field than long-wavelength
perturbations.

Figure 7 shows a numerical calculation of w(0) plotted against wavenumber k.
Moving back to the general situation, we can reformulate the outer problem (92)-

(94) in terms of the variables which are of primary interest, namely, the magnetic field
H and the square magnitude of the potential Q, which we will call u. If Q (Q1, Q2)
then H OQ2/Oz OQI/O/, u Q + Q, and (92)-(94) become

(134)
OH

(1- u)Q in a,
Oy

(135)
OH
Ox (1- u)Q. in ft,

(136) H Ho on Oft.

(Note that (93) follows from (92) and (94) since H0 is constant, and is therefore
superfluous.) Hence

VH
(137) H=V.(1,n)
(138) u(1 u)2 VH ]2 in

(139) H Ho on Oft.

w(O)

-0.i

-0

-0

-0

-0 5

-0

-0

-0

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

FIG. 7. w(0) as a function of k.
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Questions of interest here are the value of H0 and the position in the sample at which
u first becomes equal to 1/3. Is the first point at which u equals 1/3 always on the
boundary? Since 1/3 is relatively small compared to unity, one way of approaching
this problem would be to perform an asymptotic expansion in powers u. The leading-
order magnetic field would then satisfy

(140)
(141)

72H(0) H() 0 in

H() H0 on cgf.

The leading-order u is then given by u() =1 VH()12. The error in the leading-
order solution should be of the order of (u())2, or about 10%. Of course, it can
be improved upon if we compute higher terms in the expansion. These terms will
each satisfy inhomogeneous versions of the modified Helmholz equation, with known
right-hand sides.

The leading-order approximation for a slab is

H() Hoe-x.

This gives the leading-order superheating field as Hsh 1/v/ 0.577, which is about
10% larger than the true value of 0.527.

6. Comparison with experiment. We compare the superheating field Hsh
0.745Hc calculated in 4 with the available experimental data.

Boato et al. [5] perform superheating experiments by applying an axial alternating
magnetic field to a cylindrical sample with radius approximately equal to 4 ,k. They
find that the field at which the first vortex enters the sample is 190 Gauss. The alloy
filament they use has a value of about 8, and a thermodynamic field of 275 Gauss.
Thus they find Hsh 0.69Hc.

De Blois and De Sorbo [4] use a larger sample with 4, H 1360 Oe. They
find a superheating fields varying along the length of the specimen from 750 Oe to 1400
Oe, corresponding to 0.55 H to 1.03 H. In another sample with 4, H 310
Oe. Then the average superheating field was 245 Oe and, after the next electropolish,
235 Oe, corresponding to 0.79 Hc and 0.76 H, respectively.

Quantitative experimental data for other geometries is harder to come by, but
there does seem to be at least qualitative agreement with the theory presented. For
example, for rectangular samples vortices were first nucleated in the middle of the
longest side, while for more irregular shapes interior angles were the preferred nucle-
ation sites [24].

7. Conclusion. We have examined the solution of the Ginzburg-Landau equa-
tions for a halfspace in the limit as the Ginzburg-Landau parameter - x. We find
that there is a folding over of the response diagram so that as the applied magnetic
field is increased beyond the value at the nose the solution must jump to another
branch. This is the superheating field calculated by de Gennes [14].

An examination of the linear stability of the solution with respect to one-dimen-
sional perturbations revealed that the higher of the two solution branches was indeed
stable until the nose was reached, while the lower of the two solution branches was
unstable. However, on examining the linear stability of the solution with respect to
two-dimensional perturbations we found that it became unstable to short-wavelength
perturbations at a lower value of the applied magnetic field, namely, Hsh v/-H/3,
which is therefore the true superheating field. This value agrees with that obtained
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by Kramer in [19] but is different from that obtained by Bean and Livingston in [3]
(although the difference is only 5%). It agrees well with experimental observations.

Finally, we examined the superheating field for geometries other than a halfspace.
We found that for sine-wave perturbations of a halfspace, the instability first sets in
at the troughs rather than at the peaks of the perturbation, i.e., at points on the
boundary with the largest negative curvature. The general problem of calculating the
superheating fields for an arbitrary domain (37)-(39) remains an interesting open
question.
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