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A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES IN
THREE DIMENSIONS*

$. JONATHAN CHAPMANt

Abstract. A mean-field model for the motion of vortices in a type II superconductor is for-
mulated, drawing on analogies with vortices in an inviscid fluid. The model admits discontinuous
solutions, and the conditions on such an interface are derived. In a natural limiting case the model
is shown to reduce to a novel, vectorial nonlinear diffusion equation. Finally, generalizations of the
model to incorporate vortex pinning and fluctuation effects are described.
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1. Introduction. The response of a superconducting material to an externally
imposed magnetic field is most conveniently described by Fig. 1, which shows the
minimum energy state of the superconductor as a function of H0, the applied magnetic
field, and the material parameter (known as the Ginzburg-Landau parameter),
which determines the type of superconducting material; n < 1/x/ describes what is
known as a type I superconductor, and n > 1/xfl describes what is known as a type II
superconductor.

For type I superconductors there is a critical magnetic field Hc below which the
material will be in the superconducting state but above which it will revert to the
normally conducting (normal) state. The transition between normal and supercon-
ducting states as the applied magnetic field is raised or lowered through Hc takes
place by means of phase boundaries separating normal regions from superconducting
regions sweeping through the material and is described in [10], [13], and [22].

For type II superconductors a third state exists, which is known as the mixed state.
The mixed state, as its name suggests, is neither wholly superconducting nor wholly
normal but consists of many normal filaments embedded in a superconducting matrix.
Each of these filaments carries with it a quantised amount of magnetic flux and is
circled by a vortex of superconducting current; thus these filaments are often known
as vortices. The transition from the normal state to the mixed state takes place via
a bifurcation as the magnetic field is lowered through some critical value He2 (known
as the upper critical field), and is described in [1], [5], [11], [12], [23], [25], and [26].
This bifurcation is subcritical for type I superconductors but supercritical for type II
superconductors; hence, although the mixed state exists in type I superconductors, it
is unstable and therefore observed only in type II superconductors.

The transition between wholly superconducting and mixed states is studied in [9].
The critical field Hc plotted in Fig. 1 (known as the lower critical field) is calculated
on the basis of an energy argument; it is the field at which the energy of the wholly
superconducting solution becomes equal to the energy of the single vortex solution for
an infinite superconductor. It is found in [9] that there is a barrier to the generation
of vortices and that there exists a "superheating field," Hsh, such that for fields
Ho < Hsh vortices will not be generated even though the wholly superconducting
solution may not be the minimum energy solution.
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FIG. 1. The response of a superconducting material as a function of the applied magnetic field
Ho and the Ginzburg-Landau parameter .

In this paper we will consider the behaviour of the superconductor while it is in
the mixed state for large values of the parameter and for fields H0 << He2.

We will draw heavily on analogies between superconducting vortices and vortices
in an inviscid fluid. In an otherwise irrotational, inviscid fluid a (curvilinear) line
vortex F is a solution of the equations

(1) curl u w0r(x),
(2) div u 0,

where u is the fluid velocity, w0 is the circulation of the vortex (Wo 2rK, where K
is the vortex strength), x (x, y, z), and

5r(x) 9f 5(x x’)5(y y’)5(z z’) dx’,

where 5 is the Dirac &function. Introducing a vector potential Y2 such that

(3) curlY2 u,

(4) div Y2 0,

we find

(5) (curl) 2 Y2 -V2 Y2 w06r(x).
Using the Green’s function for the Laplacian on 73 we find that Y2 is given by

Wo . _1 dx(6) F2
s

where s m and s =1 s l. Hence

wo jfr l
dx wo fr ( ) wo /i s A dx’

(7) u(x) curl V A dx’
4 s------"

This is the familiar Biot-Savart law.
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The asymptotic behaviour of (7) as the point x approaches the vortex line is given
by [28]

020 020- log Cb +

where r and 0 are local polar coordinates centred on the vortex line, e0 is the unit
vector in the local azimuthal direction, C is the curvature of the vortex line, and b is
the unit vector in the binormal direction (see, e.g., [24]).

The law of motion for vortices in an inviscid fluid simply states that they are
convected with the fluid velocity. The first term in (8) corresponds to the rotation
of the fluid about the vortex line and does not result in any translation. The second
term determines the motion of the vortex line and, since it must be evaluated on
r 0, implies that the vortex moves with infinite velocity in the binormal direction.
In actual fact equations (1)-(2) cease to be valid as the vortex core is approached.
They are derived as the first term in an expansion of the Navier-Stokes equations as
the Reynolds number tends to infinity. Near the vortex core the velocity gradients of
this outer solution become unbounded, and an inner region needs to be introduced,
in which viscous forces are not negligible. When the solution in the inner region is
matched with the limit of the outer region as the core is approached, the leading-order
velocity of the vortex line is found to be

(9) o
v --4-logeCb+O(1),

where e is the radius of the viscous core region [7].
Let us now turn to superconducting vortices. It has been shown in [14] that as
oc a superconducting line vortex is a solution of the equations

(10) (curl)2H + H 2zr6r(x),
(11) div H 0,

where H is the magnetic field and 6r is as before. Equation (10) is known as the
London equation. In deriving it in [14] it was assumed that the timescale for the
relaxation of the magnetic field was much shorter than the timescale for the motion
of vortices, so that the magnetic field is quasi-static. A calculation of these timescales
for various materials in [27] indicates that this assumption is valid.

Note the absence of the parameter w0 in the equations above. This is because,
unlike fluid vortices, vortices in a superconductor have quantised strengths. Further-
more, it is found numerically [16], [17] and experimentally [4], [18] that the only stable
vortex is that containing exactly one quantum of magnetic flux, and hence all super-
conducting vortices have the same strength, which we have nondimensionalised to
unity.

Using the Green’s function for the modified Helmholtz equation on a (10) can
be inverted to give

1J e-s
dx(12) H(x) - s

An alternative regularization involves replacing the vortex by a thin region of distributed vor-

ticity, as in [21], which also results in (9).
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where s is as before. The magnetic field H is analogous to the fluid vector potential
Y. The variable analogous to the fluid velocity u is the current j, which is given by

lfr (_) l jrr (1 1)(13) j(x) curl H - V A dx’
2

e -5 + - s A dx’.

Following the argument that led to (8), it is shown in [14] that the asymptotic be-
haviour of (13) as the point m approaches the vortex core is also given by

1 1
-co- logrCb+O(1),(14) J r

where r, e0, C, and b are as before.
The first major difference between fluid vortices and superconducting vortices is

in the law of motion. Rather than moving with the current j, a superconducting
vortex moves in a direction perpendicular to the current, with a velocity given by

(15) v=jAt,

where t is the unit tangent to the vortex line. This relationship is often interpreted
as follows. The right-hand side can be interpreted as the "Lorentz force" on a vortex
line due to the presence of the current, since the vortex carries with it a unit amount
of magnetic field. Equation (15) follows from equating this driving force to a ficticious
"viscous drag" experienced by the vortex as it moves, which is taken to be proportional
to its velocity. (Time has been scaled so that the drag coefficient is unity.)

The asymptotic behaviour (14) would seem to imply that the vortex moves with
an infinite velocity in the normal direction. In actual fact, as in the case of a fluid,
equations (10)-(11) are simply the outer expansions of a more complicated model as
the parameter tends to infinity. In this case the underlying model is the Ginzburg-
Landau theory. When an inner region is introduced near the vortex core and matched
with the limit of the outer region, as in I14], it is found that the leading-order velocity
of the vortex is given by

1
(16) v log e Cn,

2

where e is again the radius of the vortex core (which is the inverse of the Ginzburg-
Landau parameter ). It is this asymptotic matching which justifies the relationship
().

The purpose of this paper is to formulate a mean-field model, in which the individ-
ual vortices are homogenized to give a vortex density, or vorticity. We use the case of
vortices in an inviscid fluid as a paradigm problem, since there we are already familiar
with the mean-field model we hope to obtain--it is simply the Euler equations.

Before we proceed we make a final comment on the laws of motion of vortices.
When more than one vortex is present, we may decompose the velocity of a particular
vortex into two components. The first is the self-induced velocity, which we denote
by vs, and the second is the velocity due to all the other vortices present, which we
denote by vg. Using the above arguments, we find that for a fluid

a0 log e Cb + 0(1)(17) v8 4r
(lS) v u,
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as e - 0, where u.o is the velocity of the fluid due to all the other vortices (i.e.,
having removed the singular contribution from the vortex itself). Similarly, for a
superconductor

1
(19) vs

2
logeCn + O(1),

(0) v j/ e,

where j. is the current due to all the other vortices.
Now, ug and j. will be of order 1/52 when the vortices are separated by

distances of order 5. For well-separated vortices, that is, for 5 1, ug andj will
be O(1) and the leading term in the vortex velocity will be the self-induced motion.
Here, however, we consider the limit in which the distance between vortices tends
to zero, so than 5 << 1/ Ilog 11/2, u9 and j. are very much greater than vs,
and the self-induced motion is replaced by a motion due to the mean field. For the
case of superconducting vortices this argument has been justified in [14], through an
asymptotic analysis of densely packed vortices.

2. Paradigm problem: Homogenization of vortices in an inviscid fluid.
As a paradigm problem for the homogenization of vortices in a superconductor, we
consider the problem of homogenization of line vortices in an inviscid fluid. The model
we hope to derive is simply the Euler equations.

We consider the motion of a system of vortices of equal strength. The fluid
velocity, u, satisfies

(21) curl u cz0 6r. (x),

(22) div u 0,

where the curves Fi are the positions of the vortices and w0 is the vortex strength.
We formally define

(23) 3w0
-X’J<rl

We consider the limit as r] -- 0, c0 --+ 0, and the number of vortices tends to infinity
(i.e., the separation 5 -- 0) in such a way that 5 << , and oa lira,__.0 co is finite. For
this to be so we must have cv0 of order 52, so that ca0/52 is finite. That such a limit
exists is the key assumption, and we do not attempt to justify it here. In particular,
it is not clear that a distribution of vortices will remain separated by distances of
order 5, even if they are so initially. We note that the procedure of averaging discrete
line vortices to produce a continuum model is very similar to the vortex method for
calculating inviscid, rotational flows, in which continuously distributed vorticity is
approximated by point vortices. For two-dimensional flows, in which the vorticity
is always directed normal to the plane of interest, the two procedures are effectively
inverses, since three-dimensional line vortices reduce to two-dimensional point vor-
tices. In this case, justifying the limiting procedure above is equivalent to proving the
convergence of the vortex method, which has been done in [19]. In three dimensions,
however, the two procedures differ, since the vortex method uses point vortices, while
we are interested here in averaging line vortices. Thus, although the convergence of
the point vortex method has been established in [20], the rigorous justification of the
limiting procedure above remains open.
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We define the average velocity g as

(24) g lim
3 fx udV,

d-,0 47d3
(where the limiting process is such that r/<< d). It is not difficult to show formally
that as r/, 5, d, cOo - 0, g satisfies

(25) curl

(26) div O.

To close the model we need to derive an evolution equation for w, which will take the
form of a conservation equation.

Suppose the vortices are convected with a velocity field v. Consider an arbitrary
surface S (not closed), and form a tube T around the vortices which pass through
S as shown in Fig. 2. Let S and T be convected with the velocity field v. Then no
vortices will then enter or leave the tube T, since the vortices are convected with the
same velocity v. Thus the number of vortices crossing S is conserved. This can be
written as

as o,

since this integral simply counts the number of vortices crossing the surface S. Now
as we pass to the limit e 0, it can be shown formally that this integral becomes

(28) d-- o. n dS O.

FIG. 2. A tube T enclosing the vortices passing through the surface S.
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This is our conservation law in integral form. Since the surface S is arbitrary, we have
the equivalent differential form

(29) cot + curl (w A v) O.

It remains to relate the velocity field of the vortices to the velocity field of the fluid.
Following the discussion at the end of the introduction, self-induced motion is negli-
gible in comparison to the mean-field motion. Hence the vortices will move with the
mean fluid motion, i.e., v g.

Thus we arrive at the Euler equations

(30)
(31)
(ae)

wt+curl(wAv) O,
curl oa,
V’v 0.

3. A mean-field model of superconducting vortices. We now derive an
analagous model for vortices in superconductors. As before we formally define

(33)
-x’l<v 2@ E 6(x’ xi) dx’,

and consider the limit in which --, 0 and the number of vortices tends to infinity
(i.e., the separation 5 --, 0) in such a way that 5 << r/and the vorticity

(34) w lim

is O(1/(52). Note that since superconducting vortices all have unit strength we cannot
let the strength of the vortices tend to zero as 5 0. The consequence of this is that
the magnetic field generated by the vortices is not O(1) but order 1/52 However, if
we rescale the magnetic field with 1/52 the effect is the same as letting the strength
of the vortices tend to zero, and it is easy to show formally that as , 5, d -- 0 in
(10), (11) the rescaled average magnetic field H satisfies

(35) H-V2 oa,

(36) V. H 0.

As before, we need to write an equation for the evolution of oa in the form of a
conservation law. Given a velocity field v with which the vortices are convected,
exactly the same argument holds as in the previous example, and thus we have

,, dS 0

for an arbitrary surface S convected with the velocity field v. As before there is the
equivalent differential form

(38) oat -+- curl (oa A v) 0.

It remains to relate the velocity field v to the magnetic field H and the vorticity
oa. Following the discussion in the introduction, the self-induced motion is again
negligible in comparison to the mean-field motion, so that v is given by

(39) v j A & curl H A &,

where j is the average current and & is a unit vector in the direction of
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Thus we arrive finally at the following mean-field model for the motion of vortices
in a superconductor (where we drop the overline and use H to denote the average
magnetic field):

(40) cot +curl (coAv) 0,

(41) (curl)2H / H co,
v.u 0,

(43) v curlHAd.

Remark. Note that equations (41) and (42)imply that

(44) V. co 0

as expected, since vortices cannot start or end except at boundaries. Note also that
equation (40) implies 0(V .co)lOt 0, so that if V .co is zero initially it will remain so.
Equation (41) then implies that V. H 0, so that equation (42) is in fact superfluous
in this case.

Remark. The model (40)-(43) for superconducting vortices is ostensibly very
similar .to the model (30)-(32) for fluid vortices. Indeed, a close inspection reveals
only two differences. If the term H were removed from equation (41) and the term
d were removed from equation (43), so that these equations read

(curl)2H co,

v curl H,

respectively, then H would simply be the vector potential of an inviscid fluid (which
reduces to the stream function in two-dimensional flows), and we clearly have co curl
v as in equation (31). However, together the two terms omitted change the nature of
the equations quite considerably.

Equation (43) describes the nature of the interaction between superconducting
vortices. In particular the presence of the term da means that there is a repul-
sive/attractive interaction between like/unlike vortices along the line of centers,
in contrast to the interaction perpendicular to the line of centres between fluid vor-
tices. This leads to a diffusive type of behaviour and an apparent lack of turbulence
among superconducting vortices. For example, a common observation is the forma-
tion of a stable two-dimensional hexagonal lattice of superconducting vortices. The
corresponding lattice of fluid vortices would be unstable (although von Karmon vor-
tex streets may persist for some time, despite their instability). This difference in the
interaction leads us to conjecture that the rigorous justification of the limiting pro-
cess for superconducting vortices will be easier than the corresponding justification
for fluid vortices, since the mean-field model we obtain is "better behaved."

The term H in equation (41) appears at first sight merely to change the decay
of the magnetic field H away from regions of vorticity to being exponential rather
than algebraic. In fact it has a much greater significance, since it implies that there
is a natural lengthscale associated with the model, in contrast to the Euler equations,
where lengths can be scaled arbitrarily. We will investigate this aspect of the equations
further in 6.

Remark. It will be useful to calculate the average electric field associated with
the model (40)-(43) since this will allow the calculation of effective resistivities due
to vortex motion.



A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES 1267

In [14] it is shown that the electric field associated with a single moving vortex is
given by

0
(curlH)+rAv

Averaging over many vortices we find

0
(curlH)/wAv,(46) E

where E and H now represent the average electric and magnetic fields, respectively.
The first term here simply corresponds to the London equation

E
Ot

while the second term is the electric field generated by the vortex motion.
We note that (46) is consistent with Maxwell’s equations, since

curlE+
0t 0t (curl) +H +curl(coAv)

Ot + curl (co A v),
0

by (40) and (41).
Remark. The model (40)-(43) is only appropriate for a clean homogeneous

superconductor, i.e., one with no sites at which vortices are "pinned." In practice,
however, it is exactly the pinning of vortices which is the most technologically im-
portant aspect of superconductivity. In 7 we will generalise the model to include
such effects. We note here though that even with the introduction of pinning sites,
equation (40) will remain valid as before, since pinning will not affect the conserva-
tion of vortices. Similarly equation (41) simply describes the magnetic field generated
by vortices, which will not be affected by the pinning of vortices. Equation (42) is
simply a Maxwell equation. Thus all the extra physics required to model pinning
and/or fluctuations must be built into equation (43), which can be seen as a kind of
"material law."

Finally we note that, as expected, equations (40)-(43) reduce to the two-
dimensional equations derived in [15] in the case where H (0, O, H(z, y, t)), co

(0,

+ v. 0,

(48) -VH+ H w,

(49) v -sign(a)VH.

4. Boundary conditions. The boundary conditions on the magnetic field H
will be the usual boundary conditions at an interface between two media, namely,

(50) [(1/,)HAn] 0,

(al) 0,

where [] denotes the jump in the enclosed quantity across 0 and p is the permeability.
For most practical applications the permeability of the external region will be close to
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that of the superconducting region, so that these relations simply give the continuity of
H across the boundary Oft. These conditions couple equations (40)-(43) to Maxwell’s
equations in the region external to the superconductor (which we denote by fte)"

(s2)

(s3)

(s4)
(ss)

curl H j,

curl E +
OH
Ot

div H
div E

0,

0,

/9,

where E is the electric field and p is the charge density. As mentioned earlier, in
writing equation (10) we were assuming that the magnetic field relaxes instantly on
the timescale for the motion of vortices. In this approximation the normal current
flowing in the superconducting material has been neglected in comparison with the
superconducting current, except in vortex cores. To be consistent a similar approxi-
mation should be adopted in fte, giving j 0 there. For most practical applications
it will indeed be the case that the current in the external region is negligible in com-
parison to the current in the superconductor. For the few situations in which it may
not be the case the general question of how a normally conducting current becomes a

superconducting current as it passes through a metal/superconducting interface needs
to be addressed, but this is beyond the scope of this paper.

We now have enough conditions to determine H if co is given. The need for addi-
tional boundary conditions on co depends on whether the characteristics of equation
(40) are directed into or out of ft on the boundary. If v. n > 0, where n is the unit
outward normal to Oft, the vortices are leaving the sample and no extra information
need be given. However, if v. n < 0, vortices are moving into the sample and we need
to give extra information in order to determine the flux of vorticity across Oft.

It is not immediately obvious what this extra boundary condition should be, and
this may become the subject of future discussion. We present here one possibility.

It is found experimentally [3], [4] and has been examined theoretically in [9] that
no vortices will be generated at the boundary until the current density there reaches
a critical value Jnuct, which we call the nucleation current density and which is a
material parameter which will depend among other things upon surface roughness.
Thus if curl HI< Jnuc we should have co 0, indicating that no vortices are coming
in through the boundary.

When the current density is high enough to generate vortices at the boundary,
we postulate that the rate of production of vorticity, i.e., the flux of the vorticity
through the boundary, will be proportional to the excess of the current density over
the nucleation current density. In two dimensions this leads to the condition

(56) v na a ([7H -Jt)+ if v n < 0,

where (.)+ =max(., 0). In generalising this equation to three dimensions we need to
give also the direction of the flux as well as the magnitude. There are two obvious
possibilities: perpendicular to j and parallel to H, giving

(57) n A (co A v) a (IJ] -Ju)+ n A j
if v.n < 0

and

(58) n A (co A v) ct (IJl + n A (n A H)
InAH

if v.n <_ O,
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respectively. The analysis in [9] indicates that vortices are generated when the electric
current density, rather than the magnetic field, becomes too large; thus we would
conjecture that the former of these conditions is the more realistic.

In the limit as c - oc the production of vortices when the current density exceeds
Jnct is so rapid that the current density will be immediately reduced to Jnc, and
the boundary condition becomes

either n. (-wVH) > 0

(59) or n. (-wVH) < 0 and [VH -J 0

or n. (-wVH) 0 and VHI -J < 0

in two dimensions and

either n. (curl HAw) > 0

(60) or n-(curlHAw) < 0 and curlH I-J=0
or n. (curl H A co) 0 and curl HI -J < 0

in three dimensions. However, in taking this limit in three dimensions, we have lost
a boundary condition, since (60) is only a scalar equation, while (57) and (58) are
vector equations.

We stress that we are only speculating about what may form sensible boundary
conditions on (40)-(43). It remains an interesting open problem to determine what
type of boundary condition on w gives a mathematically well-posed problem. Of
course, since our equations are ultimately derived from the Ginzburg-Landau equa-
tions, to obtain the boundary conditions on w we should really perform an analysis
of the rate at which vortices enter a sample using the Ginzburg-Landau model, ex-
tending the work in [9].

5. Discontinuous vortex densities. Since equation (40) gives the system
(40)-(43) a real characteristic, we have the possibility of solutions with discontin-
uous w. Indeed, in two dimensions there is a whole family of static solutions in which
w is discontinuous with compact support [15].

We now derive the conditions on an interface at which there is a discontinuity in
co. Integrating equation (40) over a small box containing part of the interface gives

(61) vn v.n,

where v is the normal velocity of the interface. This was to be expected, since if the
discontinuity is to propagate it must move at the same speed as the vortices on either
side. Applying the same procedure to the equations

leads to the conclusion that

j curl H,
curl j + H w

(62) [H An] 0,

(63) [curl HAn] 0,

where [] denotes the jump in the enclosed quantity across the interface. The same
argument applied to div j div H -0 gives

(64) [H.n] 0,

(65) [curl H. n] 0,
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while (44) implies

(66) [w. n] 0,

Hence H and curl H are continuous across the interface. Note that the jump in co
itself is not determined. Note also that the boundary conditions (61)-(66) are not all
independent.

In two dimensions, with H (O, O,H(x, y, t)), w (O, O, w(x, y, t)), equations
(61)-(63) become

(67) [H] 0,

(68) 0,

OH
(69) vn -sign(w) On

on F,

where v is the normal velocity of the interface F. One case of particular interest is
that in which the vorticity is zero on one side of the interface, representing vortices
moving into a previously superconducting region. Equations (47)-(49) and (67)-(69)
then give

(70) at

(71) -V2H + H
(72) -V2H+H
(73) [H]

V.(IwlVH)
w in

0 in

0,

(75) vn -sign(w)
OH
On

on F,

where ft, is the mixed or vortex region and fts is the superconducting region. A
travelling wave solution to these equations, representing a wave of vortices moving
into a previously superconducting region, has been studied in [8] and was shown to
be linearly stable.

6. Nonlinear diffusion as a limiting case. Throughout the analysis so far we
have been working on the natural lengthscale for the decay of the magnetic field away
from a superconducting vortex, which is known as the penetration depth and denoted
by AL. We mentioned at the end of 3 that lengths cannot be scaled arbitrarily in
equations (40)-(43). If we scale length instead with a typical length of our supercon-
ducting sample, say, (and rescale time with 12/2L accordingly), then we arrive at
the following equations:

(76) wt +curl (wAy) 0,

(77) H-

(78) V-H 0,

(79) v curl

where =/L/1. Typically /L is of the order of tenths of microns, whereas may be
of the order of millimeters. Thus will be of the order of 10-3-10-4. If we make the
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assumption that/-/does not vary too quickly on this lengthscale, so that X72/-/is not
too large, then we may let A 0 to obtain the following simplified model:

(so) u,
(81) Ht+curl (HA(curlHAlf-/)) 0,

(82) V. H 0,

where if-/is the unit vector in the direction of H. Equation (81) has been previously
written by Brandt [6].

Of course, in order to impose boundary conditions on (81) we need to consider
boundary layers. When an interface F between a region in which H 0 and a region
in which H 0 is examined using inner and outer asymptotic expansions it is found
that the free boundary conditions on (81) are

(83) H 0 on F,

(84) v n. (curl HA f-/) on F.

Equation (81) is a nonlinear diffusion equation and demonstrates the diffusive
nature of (40)--(43). The diffusive nature of the equation becomes more obvious if we
consider the simpler two-dimensional case in which H (0, O,H(x, y, t)). Then (81)
becomes

(s5) He V (I H VH)

which we recognise as a version of the porous medium equation.
conditions (83), (84)become

The boundary

(86) H 0 on F,

(87) v -sign(H)OH
On

on F.

There is an extensive literature on equation (85); see [2] for a review.

7. Pinning and fluctuation effects. As we remarked at the end of 3, the
model (40)-(43) is appropriate only for a superconductor which has no sites at which
vortices are "pinned." Since most superconducting samples are full of pinning sites
(grain boundaries, twin planes, dislocations, impurities, cracks), and since the pinning
of vortices is crucial in applications, we generalise the model here to include such
effects.

Since equations (40)-(42) hold regardless of pinning or fluctuation effects, all the
extra physics needed to model pinning and/or fluctuation effects must be built into
equation (43).

Various scales of pinning sites can be introduced. One possible scenario is that
of many small pinning sites outnumbering the vortices. In this case it is conjectured
that a vortex will not move until the current at that point exceeds a certain critical
value, the depinning current Jpin, required to break it away from its pinning site.
Once moving the direction of the velocity of the vortex will follow the Lorentz force
as before, but the presence of a sea of pinning sites will also slow the vortex to beneath
its ideal speed. Once the depinning current has been exceeded, the velocity may again
be linear in the current density (as in Fig. 3), or it may be that the curve asymptotes
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FIG. 3. The possible form of the velocity of a vortex v as a function of the local current density j.

to the ideal curve (as in Fig. 4), as the pinning sites have a lesser effect on fast-moving
vortices. A careful analysis of the interaction between vortices and pinning sites will
be needed to determine this curve theoretically. Of course, it may be determined
empirically from experimental measurements of resistivity as a function of current
density.

When such a relationship between the vortex velocity and the current is adopted,
there will clearly be two regions: one in which j I< Jpin and the vortices are stationary
and one in which J I> Jpn and the vortices are moving. The result is the following
free-boundary problem:

(88) (curl)2/-/+ H w in ’1,

(89) cot 0 in ’1,
(90) curl HI < Jpin in al,

(91) (curl)2H +/-/

(92) cot +curl(coAv) 0 in

(93) ]curl H

s
s

s
s

s
s

s

FIG. 4. An alternative possible form of the velocity of a vortex v as a function of the local
current density j.
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(94) [/-/] 0,

(95) [curl HI 0,

(96) curl HI Jpin on F,

where F is the interface between the two regions fl and ft2, [] represents the jump
in the enclosed quantity across F as before, and

(97) v (curl H A da)
curl H I)
curl HI

where f is the function graphed in Fig. 3 or Fig. 4.
Note that the velocity of the boundary is not given explicitly by the boundary

conditions but is implicit. In particular, unlike the interface conditions of 5, the
velocity of the boundary is no longer equal to the local vortex velocity.

If the density of pinning sites is nonuniform throughout the sample, then the
depinning current Jpin will be a function of position. It will also be a function of
temperature, and thermal effects could be built into the model this way. In particular
thermal fluctuations can be modelled by incorporating fluctuations of Jpi. it may
also be that Jpi is a function of the magnetic field H. Further investigation of the
nature of pinning is needed to clarify this possibility.

Large-scale pinning sites may be incorporated into the model if we introduce a
pinning potential into equation (43), i.e., add an attractive velocity toward certain
pinning sites. Some vortices would then be pinned at these sites, and depending on
the number of such sites, other vortices may flow around them. Clearly, a combination
of both sizes of pinning sites can also be modelled.

8. Conclusion and further remarks. We have derived a mean-field model for
the motion of vortices in the mixed state of a type II superconductor. The model
consists of a quasi-static equation for the magnetic field coupled with an evolution
equation for the vortex density, in a particular limiting case the model reduces to
a degenerate, nonlinear diffusion equation, which we considered in 6. In 7 we
generalised the model to include vortex pinning and fluctuation effects.

Finally, we comment on two further restrictions to the applicability of the model.

Temperature range. Equations (40)-(43) have effectively been derived from
the London equation (10) and the Lorentz force law (15). Both of these can be
derived as the London limit of the Ginzburg-Landau equations, and therefore the
model (40)-(43) should be valid, for London superconductors whenever the Ginzburg-
Landau equations are valid.

Hall effect. In the law of motion (15) the velocity of a vortex has been taken
to be in a direction perpendicular to the current. In fact there is also a component
of the velocity in the direction parallel to the current, due to the Hall effect (by
which a moving charged particle is deflected by a magnetic field). This component
is generally small in comparison to the Lorentz component (about 10%) but could
easily be included in the law of motion if we simply add another term to (15).
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