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EFFICIENT ESTIMATION OF LINEAR FUNCTIONALS IN
EMISSION TOMOGRAPHY *

ALVIN KURUC t

Abstract. In emission tomography, the spatial distribution of a radioactive tracer is estimated
from a finite sample of externally-detected photons. We present an algorithm-independent theory of
statistical accuracy attainable in emission tomography that makes minimal assumptions about the
underlying image. Let f denote the tracer density as a function of position (i.e., f is the image being
estimated). We consider the problem of estimating the linear functional &(f) = f &(z) f(z) dz, where
¢ is a smooth function, from n independent observations identically distributed according to the
Radon transform of f. Assuming only that f is bounded above and below away from 0, we construct
statistically efficient estimators for $(f). By definition, the variance of the efficient estimator is a
best-possible lower bound (depending on ¢ and f) on the variance of unbiased estimators of &(f).
Our results show that, in general, the efficient estimator will have a smaller variance than the
standard estimator based on the filtered-backprojection reconstruction algorithm. The improvement
in performance is obtained by exploiting the range properties of the Radon transform.

Key words. Nonparametric estimation, Inverse problems, Ill-posed problems

AMS subject classifications. 92C55, 62G05, 44A12

1. Introduction. In emission tomography (ET), the goal is to characterize the
density, f, of a radioactive tracer in a subject as a function of position by external
detection of emitted photons. In this paper, we construct statistically efficient, i.e.,
minimum-variance unbiased, estimators of the linear functional &(f) = [ ¢(z)f(z) dz,
where ¢ is a smooth function. This problem is motivated, for example, by the problem
of quantifying the amount of tracer in a region of interest.

Our results can be summarized as follows. The standard estimator for ®(f), based
on the filtered backprojection (FB) reconstruction algorithm, is unbiased and may be
expressed as a linear estimator of the form n=13"" | ¢(I;), where % is a function
on the observation space and the I; are the observations. The efficient estimator is
the linear estimator generated by the projection of ¥ onto the range of the Radon
transform, viewed in a suitable function space. In general, its variance is smaller than
that of the standard estimator. Numerical results are given for the case where ¢ is a
Gaussian density function.

1.1. Mathematical Model of ET. We start by proposing a simple mathemat-
ical model of ET. The model is highly idealized in that it ignores numerous secondary
physical effects that occur in practice. However, it abstracts the basic problem of ET.

We consider the problem of characterizing the density, f, of a radioactive tracer
on the unit (radius) disk DC R?, where R? denotes 2-dimensional Euclidean space. A
radioactive disintegration occurring at z € D results in the emission of one or (in the
case of positron emitters) two photons which travel along a random line through = with
uniformly distributed random orientation. (Positron emitters give off two photons
that travel in antipodal directions, hence along the same line.) In most imaging
systems, only photons traveling along lines lying in the plane of D are detected. We
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will therefore consider the observations in ET to consist of these lines. In other words,
we will ignore the 3-dimensional aspect of the problem and treat it as a problem in 2
dimensions.

We assume that f is normalized to unit area. The locations of the radioactive
disintegrations are modeled as independent, identically distributed (i.i.d.) random
variables with probability density function (p.d.f.) f. The observations are modeled
as random lines in R? through the locations of the radioactive disintegrations with
uniformly distributed orientation.

Let L denote the set of lines in R2. We define the Radon transform of f to be
the function Rf: L — R whose value at ! € L is the integral of f over I. We put
coordinates on L by defining 6= (cos,sinf) € R and assigning the coordinates
(8, 5) to the line through sf that is perpendicular to §. In this coordinate system, the
observations in our model of ET are i.i.d. L-valued random variables with p.d.f. Rf
with respect to the dominating measure 7! dsdf on L [17, sec. 2.1] [20, sec. 2.3].

REMARK 1.1. Note that f is defined to be a p.d.f. on locations of radioactive
disintegrations; it contains no information about the rate of disintegrations. (One can
think of the p.d.f. as being obtained by dividing the disintegration rate per unit area
by the total count rate.) Similarly, the observations are taken to be a sequence of
elements of L, there is no time information. Thus the way we have set up the problem
defines away the problem of estimating the total count rate. This explains why the
familiar Poisson distribution does not appear in our model. In practice, one would
like to know the total count rate, but good estimates for this quantity are easy to
construct.

1.2. Linear Functionals. For ¢ : R? = R, we term the function

ez [ s@ie)

the linear functional generated by ¢. We shall consider the problem of estimating
®(f) from n i.i.d. observations distributed according to Rf.

A natural quantity of interest in ET is the fraction of the total tracer contained in
some subset § C D, i.e., the linear functional generated by the indicator function of S.
However, it turns out that estimating this quantity is a statistically ill-posed problem
without strong regularity conditions on f. (Precise results along these lines may be
found in (20, sec. 6.2]) and [21, prop. 7.1].) To obtain a well-posed problem without
strong assumptions about f, we therefore need to place some regularity conditions on
¢. In what follows, we will assume that ¢ is a smooth, i.e., infinitely differentiable,
function.

REMARK 1.2. Choosing ¢ to be a narrow Gaussian density gives a well-posed
approximation to the problem of estimating the tracer density at a point. In this
context, ¢ is sometimes referred to as an aperture function. The convolution of an in-
dicator function with, for example, a narrow Gaussian density gives an approximation
of the indicator function by a smooth function. One can therefore apply the results
in this paper, in an approximate way, to the problem of estimating the fraction of
tracer in a region of interest. Another obvious application is to reconstruction algo-
rithms where the image is given by a series expansion with coefficients that are linear
functionals of the image.

1.3. Image Model. We now need to specify our assumptions regarding the
unknown p.d.f. f. We will assume only that f is a p.d.f. on D C R® and that f is
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bounded above and below away from 0. We will denote the set of p.d.f.s satisfying
this condition by P.

REMARK 1.3. In our opinion, the restriction f € P is sufficiently weak to cover
almost all practical applications. The assumption that the density function is bounded
above corresponds to the physical condition that the concentration of tracer in the
subject is bounded above. Since this upper bound can be arbitrarily large, this con-
dition will be satisfied in any practical application. The assumption that the density
function is bounded below away from 0 is perhaps more problematic, but since this
lower bound can be chosen to be arbitrarily small, we do not believe it alters the
essence of the problem. Physically, one can think of it as postulating some posi-
tive level of background radiation. Alternatively, one could alter the experiment by
adding some artificial observations that mimic those that would be obtained from a
low-intensity uniform distribution.

1.4. Statistical Framework. We shall consider the statistical problem of esti-
mating ®(f) given n i.i.d. observations distributed according to Rf. For comparison,
we shall also consider the simpler statistical problem of estimating ®(f) given n i.i.d.
observations distributed according to f itself. In other words, the observations are
the locations of the radioactive disintegrations. We shall term the latter problem the
planar-imaging problem.

In what follows, we shall construct efficient estimators for both the ET and planar
imaging problems and compute their performance. By an efficient estimator, we mean
an unbiased estimator whose variance at some f € P is minimal in the class of all un-
biased estimators. By definition, the variance of these estimators gives a best-possible
lower bound on the variance attainable by any unbiased estimator. It therefore pro-
vides an algorithm-independent measure of how well ®(f) may be estimated. This
bound can be used as a benchmark in assessing the performance of image reconstruc-
tion and quantification algorithms. Appropriately generalized, it could also be used as
a design tool for assessing the performance that is achievable by new imaging devices.

REMARK 1.4. The efficient estimator at f will be seen to depend on f. Since,
in practice, f is unknown, one cannot attain the bound simply by just applying the
efficient estimator. However, as will be discussed in §7, the analysis gives insight into
how one might construct practical estimators whose performance approaches that of
the efficient estimator.

1.5. Relation to Previous Work. During the early years of computed tomog-
raphy, a number of authors characterized the propagation of measurement errors of
specific reconstruction algorithms for both x-ray [4] [14] and emission [5] tomography.
As a result, the statistical performance of the standard linear reconstruction algo-
rithms, such as the FB algorithm, is fairly well understood. There have also been
several papers on algorithm-independent lower bounds for the estimation of linear
functionals in tomography. Tretiak {26] derived such a bound for the linear functional
generated by a Gaussian aperture function centered at the origin in a model of x-ray
computed tomography. He considered the case where f is the uniform distribution
on D and showed that the FB algorithm comes close to attaining the bound in this
case. More recently, Bickel and Ritov [3] considered the estimation of linear func-
tionals using the same model of emission tomography considered here. However, they
incorrectly assumed that the estimator based on the FB reconstruction algorithm is
efficient. In this paper, we show that this estimator is not efficient except in certain
special cases. One such special case is when both f and ¢ are radially symmetric, as
was the case in the problem treated in [26]. In general, the construction of an efficient
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estimator needs to take into account the range properties of the Radon transform.
The analysis of this point plays a large role in this paper.

1.6. Outline of Paper. In §2, we show that the non-tomographic planar imag-
ing problem is rather trivial in the sense that there is only one unbiased linear esti-
mator for ®(f). In contrast, in §3 we show that there are many essentially different
unbiased linear estimators for the ET problem. The construction of the efficient esti-
mator, which depends on an analysis of the range properties of the Radon transform,
is also carried out in this section. In §4, we show that the efficient linear estimators
constructed in §2 and §3 are actually efficient without restriction of the class of esti-
mators. In §5, we discuss concrete representations of the estimators constructed in §2
and §3. In §6, we consider the special case where ¢ is a Gaussian aperture function.
Explicit numerical results for this case are given. Some concluding remarks are given
in §7.

2. Efficient Linear Estimators for Planar Imaging. In order to develop
some intuition for the problem, we start by considering a restricted class of estimators,
the linear estimators. We shall construct estimators that are efficient within this
restricted class, which we term efficient linear estimators. In §4, we shall see that these
efficient linear estimators turn out to be efficient even when the class of estimators is
not restricted.

In this section, we consider the estimation of ®(f) given n ii.d. observations
distributed according to f, i.e., the planar-imaging problem. For this problem, there
is an obvious estimator for ®(f). Indeed, note that ®(f) is the expected value of
the random variable constructed by evaluating the function ¢ at a random sample
distributed according to f. Thus an obvious estimate for ®(f) is the sample mean
of the derived observations obtained by evaluating the function ¢ at the original
observations.

DEFINITION 2.1. Let v : D — R We define the linear estimator generated by
v to be the function given by (zi,...,z,) — n™ 13 . v(z;), where z; is the ith
observation.

We shall now show that the estimator generated by ¢ is essentially the only
unbiased linear estimator for ®(f). It is thus an efficient linear estimator by default.

DEFINITION 2.2. Let L'(D) and L*(D) denote the usual spaces of absolutely
integrable and bounded almost everywhere functions on D, respectively. We will
assume some familiarity with the elementary facts about these spaces. The reader
that is unfamiliar with these facts may consult, e.g., [11, sec. 6.1].

PrOPOSITION 2.3. The linear estimator generated by v: D — R is an unbiased
estimator of ®(f) if and only if v = ¢ almost everywhere on D.

Proof. At f € P, the linear estimator generated by v has expected value

/D.../Dn—l gv(x,.)f(zl)--.f(x,,)dzl---dz,,=/Dv(x)f(z)dx-

It is then clear that if v = ¢ almost everywhere on D, then v generates an unbiased
estimator for (f). To prove the converse, suppose v generates an unbiased estimator
for ®(f). We first claim that v € L*°(D). To prove the claim, assume, to obtain a
contradiction, that v ¢ L>°(D). Define S = {z € D : v(z) > 3supp ¢} and consider

f 15+

2 1
= 1pys,
3[; de 3fps dz /
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where 15 and 1p,s denote the indicator functions of S and the difference of D and
S, respectively. Then, f € P,

2
L’U($)f($)d$ Z 351;p¢3—j—.s—dz'</;d$
= 2sup¢,
D

but [, #(z)f(z)dz < supp ¢, contradicting the unbiasedness of the estimator gener-
ated by v. This proves the claim that v € L°°(D). Now the unbiasedness assumption
implies that the linear functional Y : f = T(f) = [, v(z)f(z)dz agrees with the
functional & on the linear span of P. The linear span of P is dense in L!(D) since it
contains all simple functions, i.e., functions taking only a finite number of values, and
the set of simple functions are dense in L(D) [11, prop. 6.7]. Thus the functionals T
and & are equal on L}(D). The result now follows from the fact that L=(D) is the
dual space to L}(D). O
PROPOSITION 2.4. The variance of the estimator generated by ¢ at f € P is

w7 [ S ds - B
Proof. The variance of the unbiased linear estimator generated by ¢ is

[ [0S o) - (0P o)+ alzn) des -+ dz
D D i=1

=n! /D [6(z) - $(fo) folz) do

=nY /D $:(2)f(z)dz — [B(f)P}. O

In the ET problem, it will be useful to compare linear estimators by viewing their
generators as elements of suitable function spaces. To facilitate comparison, we will
now introduce the corresponding function spaces for the planar imaging problem.

DEFINITION 2.5. Let fo € L*®°(D). The space of real-valued functions f on D
such that

WA lIZ2p.10) = /sz(z)fo(z)dz <o

will be denoted by L?(D, fo). When fy = 1, we simply write L2(D). L*(D, fo) is a
Hilbert space when equipped with the inner product

(£, 9)L3(D.50) E/D.f(-'l—‘).tl(-’b')fo(=v)dﬂs

(see, e.g., [8, thm. 5.2.1}).

REMARK 2.6. When fo in definition 2.5 is a p.d.f., the space L%(D, fo) corre-
sponds to the space of random functions on D with finite second moment when the
underlying random variable is distributed according to f;.

The results of this section may now be summarized:

THEOREM 2.7. The estimator generated by ¢ is an efficient linear estimator for
the planar-imaging problem. Its variance at f € P is

n_1{||¢”%=(n,f) - [R(HP}- 0




3. Efficient Linear Estimators for ET. The efficient linear estimator for the
planar imaging problem derived in §2 is not directly applicable to the ET problem
since the observations do not lie in the domain of the function ¢. To construct
analogous estimators for the ET problem, it is natural to look for a function, 4, on
L such that (Rf) = &(f) for all f € P and use the linear estimator generated by
1. We call such a 1 an observation-domain representation of ¢. In this section, we
shall construct efficient linear estimators for the ET problem using this approach.
The major complication is that, due to the nature of the Radon transform, there are
many such observation-domain representations of &.

3.1. Preliminaries.
DEFINITION 3.1. We write the integral of a function g on L as

/J:g(l)dl =qxt ‘/: /;: g(8,s)dsdé.

REMARK 3.2. The coordinates (6, s) may be identified with points in S$* x R in
a obvious way, where S' denotes the unit circle. Under this identification, each I € L
maps to two points in S x R. In the literature, the Radon transform is often defined
to be the real-valued function on S! x R obtained under this identification. It then

becomes natural to write the integral of a function g on L as [, [, 9(f,s)dsdf =

02 ¥ ff‘; g(8, s}ds df. Since we use a different convention here, many of the formulas

here will appear to differ from those in the literature by a factor of 2x. We shall
henceforth make these conversions without further comment.

DEFINITION 3.3. We define C to be the subset of L consisting of lines whose
distance from the origin is < 1, i.e., lines with ‘s’ coordinate of magnitude < 1. For
go € L>(C), we define L?(C, go) in an analogous way to the definition of L%(D, fo)
given in definition 2.5. Let ¢ € L2(C, go). We define the linear estimator generated
by % to be the function C™ — R given by (I1,...,1,) = n"1 350 ¥(l;). We define

¥(g)

/ B(Dg(t) di
C

b4 1
-1
T /; /;1 ¥(0,5)g(6, s) ds db.

PROPOSITION 3.4. Let fo € P and ¥ € L?(C,Rfo). Then the linear estimator
generated by ¢ has mean Y(Rfy) and variance

n ( /C Y? () Rfo(l) dl — [‘I'(Rfo)lz)

at fo.

Proof. The calculations are essentially the same as those in the proofs of propo-
sitions 2.3 and 2.4. |

REMARK 3.5. The condition ¢ € L?(C, Rfy) is clearly necessary and sufficient
for the variance of an estimate of the form (Iy,...,1,) — n™ ! 30, ¥(L) to exist at
fo € P. 1t is also necessary and sufficient for the variance to exist at any other f € P
since all the spaces L?(C, Rf) with f € P are equal as sets.

6




3.2. Characterization of Unbiased Linear Estimators. Our next goalis to
find the conditions under which an element 1 € L%(C, Rf,) with fo € P generates an
unbiased estimator for €(f). The intuitive content of the result is that ¢ generates
an unbiased estimator for &(f) if and only if ¥/ backprojects to ¢. A mathematical
formulation of this statement is that the adjoint operator of the Radon transform
must map 3 to ¢. We devote the remainder of this subsection to making these ideas
precise.

Since it is natural to assess the variance of the linear estimator generated by 3 at
fo € P by viewing 9 as an element of L?(C, Rf,), we reformulate R as an operator
Ry, whose range is L?(C, Rfo).

DEFINITION 3.6. For f, € P, define the linear operator Ry,: L2(D) — L%(C, Rfo)
by f — Rf/Rfo. It is shown in [22, thm. I1.1.6] that Ry, is continuous when fy is the
uniform density, from which it easily follows that Ry, is continuous for any fo € P.

REMARK 3.7. Ry, f(l) is just the likelihood ratio of the observation ! under the
statistical hypotheses f and fs.

The desired unbiasedness condition is naturally expressed in terms of the adjoint
operator of Ry, .

DEerFINITION 3.8. If A: H — K is a continuous linear operator from a Hilbert
space H to a Hilbert space K, there is a unique continuous linear operator, which is
called the adjoint of A and denoted by A*, such that (Az,y)x = (z, A*y)y for all
z € H and y € K {19, sec. 3.9].

PROPOSITION 3.9. Let fo € P. The linear estimator generated by ¢ € L?(C,Rfo)
is an unbiased estimator of ®(f) if and only if R} ¥v=¢.

Proof. Suppose R} ¢ = ¢ and f € P. Then, by the definition of the adjoint,

Y(Rf) = (¥,Rsf)rsc.reo)
= (Ry¥, flrxp)
= ¥(f).
for all f € L*(D), in particular for all f € P. Conversely, suppose ¥(Rf) = &(f) for
all f € P. Since ¥ and & are linear operators, ¥(Rf) = ®(f) for all f in the linear
span of P. Now the linear span of P is dense in L?(D) since it contains all simple

functions and the set of simple functions are dense in L?(D) 11, prop. 6.7]. It follows
that

(0, R flrrc,rpe) = Y(RS)
(¢, fL3(D)

for all f € L?(D). This says that R} ¢ = 4. 0

We conclude this subsection by showing that the adjoint of Ry, : L?*(D) —
L%(C,Rfy) is essentially the familiar backprojection operation used in the FB im-
age reconstruction algorithm. The next proposition shows that the backprojection
operation is the adjoint operator for R.

PROPOSITION 3.10. The map R*: L*(C) — L>=(D) given by

(3.1) R*g(z) = 77_1/ 96,z - 6)ds
0
for g € L>®(C) is the adjoint of R : L*(D) — L*(C) in the sense that

/ RF() gy dl = / f(z) R*g(z) dz
C D
7




for all f € L*(D) and g € L*(C).

Proof. The corresponding result for R : L'(R?) — L!(L) is given in [13, p. 169].
The result for R : L}(D) — LY(C) follows easily by extending the functions on D and
C to R? and L with zeros. 0

PROPOSITION 3.11. The adjoint of Ry, : L*(D) — L*(C, Rf,) is given by the
unique continuous ectension of R* : L=°(C) — L*(D) to L*(C, Rfo).

Proof. Let f € L*(D) and g € L®(C). Then f € L'(D) and proposition 3.10
shows that

(Ryfr9)12comse) = /C Rf(t)g(l) dI
= (f,R*9)r2D)-

Since L*°(C) is dense in L2(C, Rf,) [11, prop. 6.7], the result follows. 8]
REMARK 3.12. If f, fo € P, then it is easy to see from the proof of proposition
3.11 that R} = R}, .

3.3. Existence of Unbiased Linear Estimators. Proposition 3.9 says that a
function ¥ € L?(C, Rf,) generates an unbiased linear estimator if and only if Ry ¥ =
¢. We are therefore lead to investigate the existence and uniqueness of solutions to
this equation. In this subsection, we answer the existence question in the affirmative
by constructing a solution that is closely related to the standard FB reconstruction
algorithm. We start by reviewing this algorithm.

DEFINITION 3.13. We denote the Schwartz space of smooth functions on R?
that, along with their derivatives, rapidly approach 0 as |z] — oo by S(R) [27, ch. 10,
ex. IV]. The Fourier transform F: S(R?) — S(R?) is denoted by f + f, where f is
defined by

for= [ @)
R4 :

[27, p. 268, def. 25.1]. We define the Riesz potential operator I~! for functions

f e S(R?) by

(3:2) (1= 77(6)  2nlel )

(cf., [25, sec. V.1]). Let C=(R?) denote the set of smooth functions on R?. For

f € S(R?), it is shown in lemma A.1 below that I~!f € C=(R?). For functions on

L, we define I~! to act on the second, or ‘s’ variable only.

REMARK 3.14. In the context of medical imaging, I~? acting on functions on L
is the “ramp filter” in the FB algorithm.

REMARK 3.15. For any ¢ € C*(RR?), one can find a ¢' € S(R?) that is equal to
¢ on D (cf. [11, lem 8.10]) and thus generates the same functional on P as ¢. In what
follows, we will therefore assume, without loss of generality, that ¢ € S(R?).

REMARK 3.16. Theorem 3.17 below is the basis for the FB algorithm. The
Radon transform of ¢, R¢, is ramp-filtered (I~!) and backprojected (R*) to recover
é.

THEOREM 3.17. Let ¢ € S(R?). Then ¢ = 2" 'R*I"1R¢ (recall that I~! acts on
the second or ‘s’ variable of functions on L).

Proof. See [22, p. 18, thm. 2.1]. O

Theorem 3.17 immediately gives a solution to the unbiasedness condition R} ¢ =
é.
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DEFINITION 3.18. For ¢ € S(R?), define F¢ € C=(L) by F¢ = 2" *I"1R¢ (cf.
lemma A.1).

PROPOSITION 3.19. Let ¢ € S. Then R} F¢ = ¢.

Proof. By propositions 3.11 and 3.17,

R} F¢ = R'F¢
= ¢ O

REMARK 3.20. Intuitively, proposition 3.19 says that an observation-domain
representation of the functional generated by ¢ is obtained by ramp filtering the
Radon transform of ¢. This representation was considered in {3]. A discrete version
of this representation for indicator functions may be found in [15].

REMARK 3.21. The standard approach to estimating linear functionals in medical
imaging is to first obtain the FB estimate, f, of f and then apply the functional to
f. We shall now give a heuristic argument to the effect that this standard procedure
is essentially the linear estimator generated by F¢.

Let §;, denote a point mass at the ith observation I; and define the empirical
estimate Rf = n~! i 8, of Rf. The FB estimate of f may be obtained by

substituting é} in for R¢ in the inversion formula of theorem 3.17:
f=2"'R'I"'R}.

Let a € S(R?). Then, using the identity a * R*b = R*(Ra * b), where convolution
of functions on L is understood to taken with respect to the second or ‘s’ variable
only {22, eq. V.1.2],

axf = 27lax R‘I’lﬁ}
2~1R*(Ra I~ Rf)
= 27'R*(I"'Rax Rf)
(3.3) = R*(Fa=x Rf).
We can apply equation 3.3 to the estimation of linear functionals by defining é(z) =

#(—z) and noting that &(f) = ¢+ f(0). Defining (8, s) = ¥(8, —s), the corresponding
FB estimate of ®(f) is given by

&(f)

R@nt Y 6)0)

i=1

= n Y RB6 - 653060, - 500

i=1

= n‘liﬂ:(ai,—s;)
i=1

= n—liiﬁ(ei,si),
=1

which is just the linear estimate generated by ¥. A discrete version of this argument
may be found in [15].




3.4. Uniqueness of Unbiased Linear Estimators. Proposition 3.19 estab-
lishes the existence of an unbiased linear estimator. The next proposition addresses
its uniqueness.

PROPOSITION 3.22. Let ¢ € S. Then ¢ € L*(C, Rfo) satisfies R} ¥ = ¢ if and
only if € F¢ + N(Rj,), where N(Rj ) denotes the nullspace of R}, .

Proof. If R} ¢ = ¢, then R} (¢ — F¢) =0, so ¢ — F¢ € N(Ry,). Conversely, if
¢ — F¢ € N(Rj,), then R} ¢ = ¢. 0

Intuitively, proposition 3.22 says that the functions that generate unbiased linear
estimators form an affine linear space obtained by adding to F¢ functions that back-
project to 0. Thus the uniqueness question boils down to whether or not there exist
nonzero functions on C that backproject to 0 on D. In fact, there are many such
functions. For example,

[ 1 f0<O<n/2
‘f’(”’s)‘{ ~1 ifrj2<8<n

We conclude this subsection by pointing out that A (Rj},) is orthogonal to the range
of Rfo .
PROPOSITION 3.23. Let fo € P. Then

N(R},) = R, I3(D)

where RJ:(,L"’(D-)’L denotes the orthogonal complement of the closure of Ry, L*(D).
Proof This is a special case of the following general fact. If A : H — K is
a continuous linear operator from a Hilbert space H to a Hilbert space K, then
N(A*) = At (see, e.g., [6, secs. 1.2, I1.2}). 0
3.5. Construction of Efficient Linear Estimators. We conclude this section
by showing that the efficient linear estimator is generated by the projection of any
¥ € L*(C, Rf,) satisfying R} ¢ = ¢, e.g., F¢, onto Ry, L*(D).
THEOREM 3.24. Let fo € P and ¢ € S(R?). Suppose ¢ € L*(C,Rfo) satisfies
R; ¢ = ¢. Let W denote the projection of 1 on the subspace Ry L?(D) C
Q
L?(C,Rfo). Then the estimator generated by pm)"d) is an efficient linear esti-
[}
mator for ®(f) at fo in the ET problem. Its variance at fo is

(34) 7t (prmmydlEacc.mre) — [E(RAN?) -

Proof. We first note that pETf(—D—)’/’ generates a unbiased estimator since ¥ —
(o]

e — | .
PR oYY € R;, L2(D)” and hence ¢ — W € N(R3,). Now suppose ¢' €
L%(C, Rf,) generates an unbiased estimate of &(f). Then R} (¢'—¢) =0,s0¢'~¢ €
N(Rj,) and hence orthogonal to Ry, L2(D). It follows that pR,oLz(D)‘fI’I = PR,.15(D) b
Thus

W'z cmre = lPrrszmy¥lize.rse + I 7o) Yllerc.rn)

v

lrr zzmy¥llzre.rey)- O

In effect, the unbiasedness condition determines the component of the generator
of any unbiased linear estimator in the range of the Radon transform, but allows the
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component in the orthogonal complement to be arbitrary. The variance is minimized
by setting the component in the orthogonal complement to be 0.

REMARK 3.25. In §4, we shall see that the estimator constructed in theorem 3.24
is an efficient estimator even when the class of estimators is not restricted. However,
unlike the estimator for the planar imaging problem, the efficient estimator at fo
depends on fy through Rfy since the projection operation depends on the weighting
function Rfy. Thus there is no estimator that is uniformly efficient over P.

REMARK 3.26. Roughly speaking, the dependence of the efficient estimator on
fo reflects the fact that Rfy is measured with a statistical uncertainty that varies
over C with variance proportional to Rfy. The efficient estimator constructed above
is not a practical estimator since the weighting function Rfy is not known a priori.
To construct a practical estimator, one would have to replace Rfy with a suitable
estimate.

4. Efficient Estimators.

4.1. The Uniformly Efficient Estimator for Planar Imaging. In this sub-
section, we will prove the claim made in §2 that the linear estimator generated by ¢
is an uniformly efficient estimator for ®(f) in the planar-imaging problem.

THEOREM 4.1. Let ¢ € S(R?). The estimator generated by ¢ is an efficient
estimator for ®(f) uniformly over f € P in the planar-imaging problem.

Proof. Let fo € P be given. For [t| < sup,p #(z) — ®(fo), define f, : D — R by

fo={1+t[¢ - 2(fo)l} fo-
Using the fact that

(41) /D [6(z) — 8(fo)lfodz = 0,

it is clear that the f, € P. Consider the one-dimensional subproblem of estimating
®(f,) from n i.i.d. observations distributed according to f;. The Cramér-Rao inequal-
ity [16, art. 399D)] states that the variance of any unbiased estimator of ®(f:) at fo is
bounded below by

8.2 (fe)le=o]?
n||0; log ft(z)|t=0”%2(D,fo) .

The denominator of this expression is commonly referred to as the Fisher information

for t at t = 0. We have
_ (=) — 8(fo)lfo(z)
at log ft(z)|i=0 - ft(z) —o

= ¢(z) - @(fo),
and hence the Fisher information at ¢ = 0 is equal to

nllé(z) — 2(fo)llZ2(p,10) = n{lldlIZ2(p,50) — [B(F0)]*}

Again using equation 4.1, we also have

83(f)les = O /D $(2){1 + t$(z) — 2(fo)]}fo dzlemo

/D $(2)[6(z) — B(fo)l folz) dz
8l1Z2(p, 70y — [2(fo))*.
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It follows that the variance of an unbiased estimator of ®(f:) at fo must be >
10l p,50) — [®(f0)]?}. By theorem 2.7, the linéar estimator generated by ¢
is unbiased and achieves this lower bound. Since fy € P was arbitrary, we conclude
that the estimator generated by ¢ is an efficient estimator for ®(f) uniformly over
fer. a

4.2. Efficient Estimators for ET. In this subsection, we will show that the
efficient linear estimator constructed in §3 is an efficient estimator for the ET problem.

THEOREM 4.2. Let fo € P and ¢ € S(R?). The estimator generated by ¢ =
p—EM—L,—(D—)FqS is an efficient estimator for ®(f) at fo in the ET problem.

Proof. The proof is analogous to that of theorem 4.1 in that the Cramér-Rao
inequality is applied to a one-dimensional subproblem to show that the variance of
any unbiased estimator cannot be less than that of the efficient linear estimator. In the
proof of theorem 4.1, we considered perturbations of fy in the direction ¢(z) — ®(fo).
In the ET problem, we consider perturbations of go (approximately) in the direction
PRy @ — ¥(90)-

We start by noting that constant functions are in Ry, L%(D), since Ry, fo = 1.
It follows that WFQS —~ ¥(go) € Ry, L?(D). Define go = Rfy and let L3(D)
and L2(C, go) denote the subspaces of L?(D) and L?(C, go) whose elements h satisfy
JpMz)dz = 0 and [, h(l)go(l)dl = 0, respectively. Then qub — ¥(go) €

[+]

Rg, L*(D)N Li(C, go), since meqﬁ generates an unbiased linear estimator. We

claim that R; L2(D) N L%(C, g0) C Ry, LE(D). To prove the claim, let f € L*(D).
Then

/D £(z)R*1(z) dz
/ RfQ)dl

C

[ Rus®ga.
C

/D #(z)dz

(4.2)

Thus if f € L?*(D)\LZ(D), then Rys f ¢ L3(C,g0). This says that Ry L3(D) N
L3(C,90) C Ry, L3(D). Now suppose g € Ry L2(D) N LZ(C, go). Then there exists
a sequence {gn} in Ry, L*(D) such that g, — g in L?(C,go). Since g € Li(C, go),
limn oo [ 9n(1)go(!)dl = 0. We can write each g, as Ry, f, for some f, € L*(D).
By equation 4.2, limp .o [}, fa(z) dz = 0. Consider the sequence {f, — [}, fn(z)dz}
in LZ(D). We have

lim Rfo[fn-'/ fa(z)dz] = lim g, — Ry, lim / fa(z)dz
n—oo D n— o0 D

I = OO

= %

so g € Ry, L3(D). This proves the claim that Ry, L?(D) n L3(C,go) C Ry, L3(D).

From the claim, we can now conclude that WF@S — U(go) € Ry, LE(D).

Let € > 0 be given. Since pz—z57F¢ — ¥(g0) € R4, L(D), we can choose
]
n € Li(D) such that ||Rsn — R,0L=(D)F¢ — ¥(g0)llz2(c,g0) < € Now the simple

functions are dense in L3(D) [2, p. 52]. Using this fact and the fact that Ry, is con-
tinuous, one may assume, without loss of generality, that 7 is a simple function. For
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[t| < sup,¢p |n(z)|, define g € RP by g. = R(fo + tn). Consider the one-dimensional
subproblem of estimating [, F¢(l)g:(I)d! from n i.i.d. observations distributed ac-
cording to g;. (Note that, defining f; = fo + tn, this is equivalent to the problem of
estimating ®(f;).) We will now compute the Fisher information for the estimation of
t at t = 0. We have

Bige
gt li—0
Rn
Rfo
= Ry

B log gilt=0 =

Thus the Fisher information for the estimation of ¢ is equal to n[lR,OnH%,(C 90) 8t
t = 0. Now

3, /C Fo(1)ge(1) dlle=o
- / Fo(l)Ra(l) dl
C
- /C Fo(l)Ryn(l)o(l) dI
= [C (E6(1) ~ ¥(g0)] Ry, 1(D)go(1) dl + ¥(go)
= [ prrrmriF o) - Hen) Rinlsol) dl + ¥(eo
= [ Ry 0) - ¥eolor e - ool !
+ [ Prmm o) - He ) Rul) = bt - Heolboo)

2 llpr; =y F e - ¥(go)llZ2(c.g0)
~lpr; ey F'¢ — ¥ (90)llz2(c,00)I R C(1) — PR TapyF ¢ — ¥lg0)llz2(C00)
2 llpg, 22y E® — ¥(90)llz2cc.o0) PR TopyF @ — ¥lg0)llz2(ci00) — €)
(the first inequality follows from the Cauchy-Schwarz inequality). It follows from the

Cramér-Rao inequality {16, art. 389D] that the variance of an unbiased estimator of
Jo Fo()g:(1) dl at go must be at least

(6 fc Fo(1)ge(l) dls=0]
n”Rfo(”sz(c,go)
PRI S~ ‘I’(QO)“%’(C.go)(”WF¢ - ¥(g0)llz2(c.90) — €)°
nllrrzzmyl @ — ¥(go)llzz(o,00) + €)? '

I
2

Since ¢ > 0 was arbitrary, we conclude that the variance of an unbiased estimator of
Jo Fo(l)g:(l) dl at go must be > "—1|IPE—E?('D_)F¢ - ‘I’(gﬂ)”iz(c,go)' The unbiased

0
linear estimator constructed in theorem 3.24 achieves this lower bound. 0
REMARK 4.3. Unlike the estimator in theorem 4.1, the efficient estimator in

theorem 4.2 depends on fg. It is thus not a uniformly efficient estimator.
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REMARK 4.4. The general approach used to construct lower bounds on the vari-
ance of estimators in theorems 4.1 and 4.2 is well known in the literature. In the
terminology of Pfanzagl [23], the spaces LZ(D) and Ry,L3(D) used in the proof are
the tangent spaces to the statistical model in the planar imaging and ET problem, re-
spectively. The functions ¢— &(fy) and med;— ¥(go) are termed the canonical

gradients of the functional & for these problems, respectively.

5. Construction of Projection Operators. In §4.2, we saw that the linear
estimator generated by mezﬁ is an efficient estimator for ®(f) at fo in the
ET problem. In this section, we will express the projection operator PR T3 (D) in a
concrete way that is suitable for numerical calculations.

We start in §5.1 by considering the special case where fq is the uniform distribu-
tion on D. It turns out that the analysis of this special case provides useful building
blocks for the analysis of the general case with fy € P, which is carried out in §5.2.

5.1. The Uniform Distribution.

DEFINITION 5.1. Let f, denote the uniform density on D, i.e., f, is the con-
stant function 7=! on D. Define g,= Rf,. Explicitly, g.(8,s) = 27711 — 2 (cf. [7,
sec. 2.5, ex. 4], [17, sec. 2.1]). From this expression, we see that the marginal distri-
bution of the s variable under g, is given by the probability density 27~1v/1 — s2 on
[-1,1]. We shall denote this probability density by p,.

DEFINITION 5.2. Let Z, N, and N denote the sets of integers, nonnegative
integers, and positive integers, respectively. For m € N, define the functions Un,:
[-1,1] —= R by

sin{(m + 1)4)

sin ’
The U, are called the Chebyshev polynomials of the second kind (7, sec. 7.6] [17,
sec. 2]. They form an orthonormal basis for L%([-1,1], p,) [7, app. C.2]. As the name
implies, the U,, are indeed polynomials, the first three are 1, 2s, and 45> — 1. We
extend the functions Uy, to S! x R by the formula U,,,(6, s) = Un(s). For j € N* and
m € N, define the functions a;m : S x R — R and bjm : S X R — R by

Unm(cos8) =

a;m(0,8) = V22U, (3) cos(56),
and

bjm(0,5) = V2Urm(s) sin(j8).

DEFINITION 5.3. If g(6, s) is an even function on S! x R, i.e., g(—8, —s) = ¢(8, s),
it can be viewed in a natural way as a function on L given by the formula ¢(6, s). In
particular, since Uy, is even when m is even and ajm and b;m are even when j + m
is even, we shall view U, a; m, and b; ., as being defined on C by the formulas given
in definition 5.2 when m and j + m are even, respectively.

DEFINITION 5.4. Define

B, ={Um:m € 2N} U {a;m,bjm :j € N ,m € j + 2N}
and

B, ={ajmbjm:jEN, me{jmod2,jmod2+2,...,5—2}}.
14




PROPOSITION 5.5. B, and B, are orthonormal bases for Ry L?*(D) and its
orthogonal complement in L*(C, g.), respectively.

Proof. For j € Z and m € N, define the functions ¢;m: S! x [-1,1] —- C (C
denotes the set of complex numbers) by

¢jim(8,8) = Un(s)eV?.

Note that ¢j is even (odd) when |m — j| is even (odd). An orthonormal basis for
Rs,L?(D) C L*(C, g4) is given by ¢jm with j € Z and m € |j| + 2N |7, sec. 7.6] [17,
sec. 2.3}, where the ¢; . are interpreted as functions on C per definition 5.3.

Since we are dealing with (real) probability densities and linear functionals gen-
erated by real-valued functions, it is convenient to replace the above basis with one
consisting of real-valued functions. Applying the standard procedure for converting a
complex orthonormal basis to a real orthonormal basis to {¢; m : j € N, m € j + 2N}
vields B,, which proves the first assertion.

To prove the second assertion, we show that an orthonormal basis for L?(C, g.)
is given by

B,UB, = {U, :m € 2N} U{ajm,bjm :j € N*,m € j mod 2 + 2N}.
We start by noting that, since {(27)~%/2,772/2 cos(j6),7~*/%sin(j8) : j € N*} is
an orthonormal basis for L?(S') and {U., : m € N} is an orthonormal basis for
L?*([-1,1},277 V1 — s2), an orthonormal basis for L%(S? x [—1,1],g,) is given by
{(2m) YU, :m e N} U{(27)" 2 m, (27) Y 2bjm : j € N* ,m € N}.

If ¢ € L*(C, gu), then

1 2r 1 ’
2 - 2
Wlltco = 37 ) [ #0.00.9)dsas
1
= oz (Z(Um,%b)%z(su[-l,u,g.,)
meN
+ Z Z (@5.m, D)2 x-11)00) T (Bims ¥)T2(sn x[~1,1),0.)
FEN+ meN
(5.1) = (Z (U, $)22(C.00)
me2N

+ Z Z (aj’m"l/])%z(cvgu) + (bj,ma '(/’)2[42(0,9\&) ’

FEN+T mé&jimod2+2N

where the last equality follows since U, is even (odd) when j + m is even (odd) and
@;.m and bj ., are even (odd) when j+m is even (odd). Since B,UB,, is easily verified
to be an orthonormal subset of L%(C,g,), it is an orthonormal basis for L*(C, g.,).
Combining this fact with the first assertion gives the second assertion. 0

Having established that B, is an orthonormal basis for Ry L?(D), it is now
straightforward to express PR, I%(D) in terms of this basis.

15




COROLLARY 5.6. The efficient estimator at f, for the ET problem is generated

by
PRTDY ¢ = 3 Umi FdhraconlUm+ D, D {@5m FO)12(C0)%5m
me2N FEN+ mej+2N
(5.2) + Z Z <bj,m,F¢)L2(C,g‘)b',m'

JEN+ mej+2N

Its variance at f, is given by

(5.3) n_l z (Uma Fd’)iz(c,gu)
me2N+
(5.4) +n~! E z ((aj,m7F¢)iz(C,g.) + (b,-,,,,,F¢)",:z(C,g")) ’

jeNt mej+2N

where

kg 1
65)  (0Fdcan =2 [ [ d0.9F60,9VT-Fdsas. O
-1

We noted in remark 3.21 that the estimator generated by F¢ roughly corresponds
to applying the functional & to the FB estimate of f. We shall therefore refer to it as
the FB estimator. It is interesting to compare the performance of the FB estimator
with that of the efficient estimator generated by Wng.

COROLLARY 5.7. The variance of the FB estimator at f. is given by

2l > (Unm, F@)lac g
mE2N+

A Y Y (em Fo)iace.) t (bims FO)Lac)

FENT mE€jmod2+2N

The difference in variance at f, between the FB estimator and the efficient estimator
is

(5.6)n7" > > (@sm FO) 2090 + (05mi FO) o000y O

FEN+ m=jmod,jmod2+42,...,5—2

We conclude this section by showing there is an important special case where the
FB estimator coincides with the efficient estimator.

PROPOSITION 5.8. If ¢ € S(R?) is radial function, i.e., a function of |z| alone,
then me ¢ = F¢. Moreover, then F¢ depends only on s.

Proof. It is not difficult to verify that F'¢ is independent of § and can be writ-
ten as an even function of s. It follows that, for j + m € 2N*, the inner product
(a,-‘m,F¢)Lz(C,g“) reduces to

272 /* cos(_'i0)dt9‘/l Un(s)F@(s) V1 —352ds =0.
0 -1
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Similarly, (bjm, F@)r2(c,¢.) = 0. Equation 5.2 thus reduces to

(5.7) PRmmF? = 2 Um FOsor,e)Un
me2N
= F¢)

where the last line follows since the set of functions {U,,; m € 2N} is an orthonormal
basis for the subspace of even functions in L?([-1,1],p,).0

COROLLARY 5.9. Suppose ¢ € S(R?) is radial. The estimator generated by F¢
is an efficient estimator for ®(f) at f, in the ET problem. Its variance at f, is given

by
(58) w7t (IF90, M aora ) — RUOP) - O

5.2. The General Case.

REMARK 5.10. Given a countable linearly-independent subset of a Hilbert space,
there is a standard procedure, the Gram-Schmidt procedure, for constructing an or-
thonormal subset with the same linear span [6, 1.4.6]. We shall refer to this procedure
as orthonormalizing.

PROPOSITION 5.11. An orthonormal basis for Ry, L*(D) is obtained by orthonor-

malizing the set of functions {%‘:gj}gjeB“ in L?(C, Rf,).
Proof Defining the multiplication operator M%.L : L*(C,Rf.) — L*(C,Rf,) by
0

g %%‘ g, it is clear that we can decompose Ry, into the composition Mgy, Ry, .
Rfo ’

Since M I is continuous, the linear span of {%‘%91}9568.. is dense in Ry, L2(D).
] P ———
Orthonormalizing this set thus gives an orthonormal basis for Rg, L2(D). O
REMARK 5.12. Let {n;} be a orthonormal basts for Ry, L?(D), which may be con-

- o . 2
structed according to proposition 5.11. Then W and HW”L?(QRM
are given by the formulas

PR DY = Z(iﬁ, N30 L2(C,Rfo)T;
i=1

and

o0

HPR,OL’(D)wHi’(C,Rfo) = Z<¢"’j)i=(c,an)~
i=1

One issue encountered with the use of these formulas in numerical calculation is that
one can only compute a finite number of terms and it is difficult to assess how many
terms are necessary. This issue may be addressed by constructing a basis for the
orthogonal complement of Ry, L2(D).

PROPOSITION 5.13. An orthonormal basis for RfOLz(D)J- is obtained by or-
thonormalizing the set of functions B!, in L*(C,Rf,).
L

Proof. By proposition 3.23, R, L?>(D) = N(Rj},). Thus, by proposition 3.23
1 L
and remark 3.12, Ry, L?(D) = N(Rj ). An orthonormal basis for Ry, L?(D) is
therefore obtained by orthonormalizing B, in L*(C, Rfo). o
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REMARK 5.14. We are now in a position to outline a numerical approach to
3 2
the calculation of W and [IWH 12(C.Rfo)" Orthonormal bases for

Ry, L%(D) and Ry, L2(D)L are given by propositions 5.11 and 5.13. Together they
form a basis for L2(C,Rf,). One can then expand ¢ in terms of this basis. To
check whether one has computed a sufficient number of terms, one can comparing the
squared L2(C, R fo) norm of the expansion with |[¢{|2 13(C,Rfo)’ which can be computed
by numerical integration.

6. Gaussian Functionals. In this section, we shall consider the special case
where the linear functional is generated by a Gaussian density function. For brevity,
we shall refer to such functionals as Gaussian functionals. In §6.1, we shall see that
an observation-domain representation of Gaussian functionals can be given explicitly
in terms of special functions. In §6.2, we specialize to the case of radial Gaussian
functionals.

6.1. General Gaussian Functionals.
DEFINITION 6.1. Let

a+k)/1"(a.)z
M(a;b;z) = Z < T(b+ k)/T(b) &'

denote Kummer’s confluent hypergeometric function [2{], where I" denotes the gamma
function.
PROPOSITION 6.2. Define ¢, ,€ S(R?) to be the Gaussian density function

¢a,¢r(m) = (270'2)_16_':—3[2/201

centered at a € R?. Then the observation-domain representation F¢, , is given by

(6.1) Fo, ,(8,s) = (2mo?) te™ (== 29" M(_1/2,1/2; (s — a - )% /207).

Proof. R¢, , is given by

R¢a,a(01 s) = (27762)“1/23“("0'5)’/26’

[7, sec. 3.5, eq. 5.3] and the Fourier transform of R¢, , with respect to the second
variable is given by

(R¢)~(0, C) — e—i2-rm-§e-—21r21:!'2('2
{11, prop. 8.24]. Thus, by definition 3.18,

(Fé.,)7(6,() = 27'(I"'Ré,,)7(6,¢)
= 7|Cl(Re, ) (6,()
(62) — 7l.‘C|e—1'2‘Im~§e—21x»2a'2("" ,

where (F¢, ,)” denotes the Fourier transform of F¢, , with respect to the second
variable. The next task is to take the inverse Fourier transform of the above equation
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with respect to the second variable. First suppose that a - 6 =0. By symmetry, we
then have

F¢a,o’(9a 3) = 7l'/ Iqe—27fzo’2(26i27ra( dc

= r/m ]Cle‘z"z"zc2 cos(273() d¢

— o0

= 2z / Ce72™ " cos(2msC) dC,
[}

which expresses F¢, , in terms of a Fourier cosine transform. Using the Fourier cosine
transform identity

/ ze™=’ cos(zy) dz = (2a) "' M(1;1/2; —y*/4a)
0

(10, eq. 1.4(14)], we get
F¢, ,(8,5) = (2m0®) ' M(1;1/2; -5 [25°).

Ifa-8 # 0, then the result for a-0 = 0 and standard results on the effect of translation
on the Fourier transform (see, e.g., [11, thm. 8.22]) give

"Fé,,(0,8) = (210?) T M(1;1/2,—(s — a- 6)*/207).

We now apply the Kummer transformation identity M(a,b,z) = e*M(b — a;b;—2)
[24, eq. 13.1.27] [9, eq. 6.4.7] to the last equation to obtain equation 6.1. O
REMARK 6.3. Defining the function x, : R — R by

Xo(8) = (2m0?) "1™ /2" M(=1/2;1/2; 6 [207),
we can write

Fg,,(6,5) = xo(s —a-b).

Thus for each fixed 8, F¢, , as a function of s is a translate of the function x, .

EXAMPLE 6.4. In figure 1, we illustrate the function x, for ¢ = 0.1.

EXAMPLE 6.5. In figure 2, the graph on the upper left shows the zero-mean Gaus-
sian density function with ¢ = 0.5, i.e., ¢ 9.5- The graph on the upper right shows
the observation—domain representation Fi¢g g 5 of ¢ o5, obtained using equation 6.1.
The lower half of figure 2 is similar to the upper half, except that the Gaussian density
function is centered at a = (1, 0) instead of at the origin.

REMARK 6.6. By inserting the result of proposition 6.2 into corollary 5.6, we
can explicitly compute the efficient estimator for Gaussian functionals at the uniform
distribution along with its variance. Since the inner products in equations 5.2 and
5.3 are not available in closed form, it is necessary to evaluate them numerically.
This comes down to evaluating a two-dimensional integral numerically, cf. equation
5.5. It is useful to start by computing the expansion given in equation 5.1. One
can evaluate the left-hand side of this equation numerically and then verify that the
right-hand side converges to the left-hand side. This provides a check on the accuracy
of the numerical integrations and allows one to determine how many terms of the
expansions in equations 5.2 and 5.3 are needed to achieve a given level of accuracy.
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F1G. 6.1. The function x, evaeluated for 0 = 0.1. For each 6, the observation domain represen-
tation of a Gaussian functional with o = 0.1 is a translate of this function.

EXAMPLE 6.7. We consider the estimation of the functional generated by a Gaus-
sian density function ¢ centered at a = (1,0) with o = 0.5. (This was illustrated at the
bottom of figure 2.) The FB estimator is generated by F¢(; g ., Which is shown at the

left of figure 3. The efficient estimator at f, is generated by WF¢(1,0),07 which
is illustrated in the center of figure 3. The difference F¢(; ¢y, — WF¢(1,0),0’
which backprojects to 0, is illustrated at the right of figure 3. In this particular case,
the variance of the FB estimator is 0.087n~! while the variance of the efficient esti-
mator is 0.066n~1. Thus, in this case, the variance of the FB estimator is more than

30% higher than that of the efficient estimator.

6.2. Radial Gaussian Functionals.

REMARK 6.8. Efficient estimators for radial Gaussian functionals at f,, along
with their variance, can be computed by inserting the result of proposition 6.2 into
corollary 5.9. Numerical evaluation of these quantities is much easier than in the
nonradial case since no numerical integration is necessary to compute the estimator
and its variance can be computed by evaluating a single one-dimensional integral
numerically.

ExaMmPLE 6.9. Figure 4 shows the variance of efficient estimators for a radial
Gaussian functional given 10° observations evaluated at f, as a function of 0. The
lower curve is for the planar-imaging problem. It was obtained by numerically eval-
uating the formula given in theorem 4.1. The upper curve is for the ET problem. It
was obtained by numerically evaluating the formula given in corollary 5.9.

For radial Gaussian functionals and the uniform distribution, the asymptotic
behavior as ¢ — 0 can be described very simply.

DEFINITION 6.10. For convenience, we define ¢, = ¢, , and let $, denote the
linear functional generated by ¢,.
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FIG. 6.2. Gaussian functionals and their observation-domain representations. Gaussian den-
sities are shown on the left and their respective observation-domain representations are shown on
the right. The upper pair is for a radial Gaussian density, while the lower pair is for a Geussian
density centered at (1,0). For both pairs, ¢ = 0.5.

FIG. 6.3. The functions which generate the FB and efficient estimators are shown on the left
and middle, respectively. Their difference is shown on the right.

PROPOSITION 6.11. Asymptotically as ¢ — 0, the variance of the efficient es-
timator for ®,(f) at f. is given by 1/4n%0%n in the planar imaging problem and
1/873/2¢%n in the ET problem.
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FIG. 6.4. Varience of efficient estimator for radial Gaussian functionals at f, with 106 obser-
vations (lower curve is for planar imaging, upper curve is for ET).

Proof. Routine calculations show that
B,(f) = (riod) [ et
Iz]<1

— 71’—1(1 _e—l/Zo'z)

and

/ F@)fule)dz = 77 / () da
D jzi<1

= (4n20?)7Y(1 - 71/,

It follows from theorem 4.1 that the variance of the efficient estimator for the planar-
imaging problem is given by

n~} [(47&’20’2)"1(1 - e_l/"z) - 7l'~2(1 _ e—1/202)2] ,

which is clearly asymptotic to 1/47%0%n in the limit as ¢ — 0. Using theorem 4.2
and corollary 5.9, the variance of the efficient estimator for the ET problem is given
by

(6.3) n~? [||F¢a”%2(c,nf,.) -7 (1 - 6-1/2‘72)2] .

It is shown below in lemma A.2 that ||F¢,||7:(¢ gy,) is asymptotic to 1 /873263 in
the limit as ¢ — 0. It follows that variance of the efficient estimator for the ET
problem is asymptotic to 1/87%/2¢%. 0O

REMARK 6.12. The problem of estimating radial Gaussian functionals when f is
uniform was considered in [26] in the context of x-ray computed tomography. While
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FIG. 6.5. Small o approzimation to the variance of en efficient estimator for radial Gaussian
functionals at f, with 105 observations (lower curve is the true value, upper curve is the approzi-
mation described in ezample 6.13).

the structure of the observations and the noise for this problem differ from that of the
ET problem, it is interesting to note that the result in [26] reduces to 1/87%/2¢%n by
taking appropriate limits, where n now denotes the number of transmitted photons.
These results are roughly consistent with the performance of the ¥B algorithm seen
in practice [4] [3].

ExaMPLE 6.13. Figure 5 shows the result of inserting the approximation

1Fdsl122(c.r0) = 1/87%/%¢*

into the expression for the variance of the efficient estimator given by equation 6.3.
The approximation is shown in the upper curve, while the true value is shown in the
lower curve. We see that the approximation is very accurate in the region o < 0.1.

REMARK 6.14. For radial Gaussian functionals, the efficient estimator at f, co-
incides with the FB estimator. We now present an example that shows this estimator
can be very suboptimal at fo # fu.

EXAMPLE 6.15. Let ¢ be radial Gaussian with ¢ = 0.5. Then the eflicient
estimator at f, is generated by F'¢ and, by example 6.13, its variance at f, is =
0.087n~1. Suppose f; is highly concentrated about the point (0,0.63) € D. Then go =
Rfy is highly concentrated about the curve 8 — (0,0.63sin8) and we can approximate
the integral [ g(!)go(!)dl by =~ [, 9(6,0.63sin8) d6. Using this approximation, the
variance of the estimator generated by F'¢ at fo is =~ 0.04683n~!. From proposition
5.13, the function @2,9/|laz0{|z2(c,q) is @ unit vector of R,uL2(D)L. The squared
inner product of this function with F¢ in L?(C, go) is =~ 0.04594, which implies that
the variance of the efficient estimator at fy is at most 0.00089n~1. Thus in this,
admittedly extreme, example, the variance of the efficient estimator is less than the
variance of the FB estimator by a factor of more than 50.

7. Discussion. To summarize, the fact that not all functions on the observation
space are Radon transforms of functions on D means that ET is, in a sense, an
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overdetermined problem. To construct an efficient estimator, it is necessary to weight
the information obtained from the observations according to its statistical uncertainty.
The resulting estimator is analogous to a weighted least squares procedure.

The results in this paper quantify the potential improvement over FB attainable
by incorporation of information on the domain of the image and the statistical un-
certainty of the observations into the estimation process. Our numerical results show
that, at least in some cases, the efficient estimator has significantly less variance than
the FB estimator. More extensive evaluation of the bound should help delineate the
conditions under which significant improvement over the FB estimator is possible.

One potential application of the results on the estimation of functionals is as a
benchmark for the performance of reconstruction algorithms. If the image estimator
is denoted by f, one can compare the variance of the implied estimate &( f) with
the bound. The variance of this implied estimate gives a common performance index
for reconstruction algorithms that is applicable even to algorithms that use different
parameterizations of the image. Of course, parametric reconstruction algorithms may
beat the bound if the image conforms to a parametric model. But the bound gives
an index of the performance that might be expected from a “generic” reconstruction
algorithm.

In terms of practical applications, it must be recognized that real tomographic
data differs in two important ways from the mathematical model used here: they are
generally discrete and have been modified by physical effects such as tissue attenua-
tion. Thus to adequately model such data, it is necessary to replace the continuous
Radon transform R used in our analysis with a discrete range operator that describes
the imaging process. Discussion of such discrete-range operators may found in [1],
[18], and [3]. There is some computational advantage to moving from the continuous
formulation used here to a discrete one in that numerical evaluation of integrals is
replaced by discrete sums. The discrete approach would therefore probably be our
choice for a through assessment of the degree of improvement possible over the FB
estimator in a practical problem. In our opinion, the main advantage of the contin-
uous approach taken here is that, at least in the case f = f,, the range structure of
the Radon transform can be described explicitly, giving considerable insight into the
problem. In addition, it is possible to derive an explicit formula for the observation-
domain representation of a Gaussian functional and a compact asymptotic expression
for its variance.

Appendix. Supporting Mathematical Results.

In this appendix, we collect the statements and proofs of some supporting results
that were used in the body of this work.

LEMMA A.1. If f € S(R?), then I™1f € C>(R?).

Proof. For s > 0, let H,(R?) denote the subspace of L?(R?) whose elements f
have a Fourier transform satisfying

H£]

2
H,(R9)

L a+ e

< ©0.

H,(R?) is termed the Sobolev space of order s. For each k € N, the Sobolev embedding
theorem states that any function in H,(R?) for s > k + d/2 is k-times differentiable
[11, thm. 8.54]. Now the Fourier transform of a function in S(R?) is in S(R?) [11,
cor. 8.23]. Let s > 0 and f € S(R?) be given. Since f € S(R?), there exists ¢ > 0
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such that

1+ €22 D21 f ) < e

on R?. It follows that

M i rey =

IA

IA

<

4n? / (L4 [€P)* 21617 (6) d
Rd

7l'2 2 2 —dd

s [ (aie) e

2r¢/2 e 2y—d_d—1
I’(d/2)_/; (1+r*)%r  dg

Qe2p2+d/2 [oo
@2 Jy
et +d/2 [

e+ [ e
Tz Ot )

o0,

4r%c? .

1+ ,,,2)—1 dé

hence I-1f € H,(R?). Since s > 0 was arbitrary, it follows from the Sobolev embed-
ding theorem that I~'f is k-times differentiable for all k € N, i.e., I71f € C=(R?).

’ LeEMMA A’2. The limiting behavior of “Fd’a”%’(c,}tfo) as ¢ — 0 is described by
" o WS oy _ |
o—0 27r‘2|]F¢>,||i,(L)
where
-1 2 1
(A.2) 21 ||F e llaw) = gaags

Proof. Starting with definition 3.18 and using equation 6.2, we obtain

1Fe, 122w

7! /0* -/;";[Fdz,(&s)]2 ds df
[ [ sy e.oracs

™ / / (e g dp
0 ~00

2%2/ (2e_4"2"2<2 d¢ dé
0

1
1671/243

{12, 3.461.2], which gives equation A.2. To prove equation A.1, we will prove that

”F¢o’||%2(c,}2f“) - 277_1“F¢6”2L2(L) =0

a0

27"—1”F¢o”iz(1‘)
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Let € > 0 be given. Since v1 — s? is a continuous function at s = 0, we can choose
0 < é, <1 such that |[v/1 —3s%2—1| <¢/2if |s| < §,. Then, writing

,||F¢a”§=(c,nf.,) - 277_1”F¢6”2L?(]L)}

277_1||F¢a”2Lz(L)

I I (F6, (0, )|VI =52 —1|dsdf + [] [, (F$,)*(6,5)dsdo
B FS, oty

$lo f|.[<s(F¢a)2(9v s)dsdé [ f,,,25(F¢,)2(0, s)dsdf
- Wlle)v”i?(L) 7"”F¢a”iz([,)

€ n .[01r f]:[z&(F¢a)2(9,5) dsdf
—2 7r“F¢¢||%2(L) ’

we see that it suffices to prove that

fo7r f|.]25(F¢a)2(9,3)d8 dé 3
) X A

(A.3)

Using the expansion
. M(_l/z’l/z’z) = —2_1612-—1[1+O(|$|_1)],

which is valid for £ > 0 [24, eq. 13.1.4], and equation 6.1, there exists a constant ¢
such that

1 202
E—J—; . ?2—[1 +CO’2/82]

1+ co?/s?
2ns?

1Fo,(8,8) <

It follows that

T Co,z 232 _
fo .[|.|25(F¢a)2(9,3)d3d9 < Ll+—4,,p—]—f|,1268 4ds

7r“F¢a“2Li(L) - ||F¢o”%2(L)
160° [1 + co?/6%)267°
/2 107 ’
from which equation A.3 easily follows. |
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