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Pulse dynamics in an unstable medium”) 

N. J. Balmforth? G. R. Ierley;) and R. Worthingd) 
r 

Abstract 

A study is presented of a one-dimensional, nonlinear partial differential equation that 

describes evolution of dispersive, long-wave instability. The solutions, under certain specific 

conditions, take the form of trains of well-separated pulses. The dynamics of such patterns 

of pulses is investigated using singular perturbation theory and with numerical simulation. 

These tools permit the formulation of a theory of pulse interaction, and enable the map- 

ping out of the range of behavior in parameter space. There are regimes in which steady 

trains form; such states can be studied with the asymptotic, pulse-interaction theory. In 

other regimes, pulse trains are unstable to global, wave-like modes or its radiation. This 

can precipitate more violent phenomena involving pulse creation, or generate periodic states 

which may follow Shil’nikov’s route to temporal chaos. The asymptotic theory is generalized 

to take some account of radiative dynamics. In the limit of small dispersion, steady trains 

largely cease to exist; the system follows various pathways to temporal complexity and typi- 

cal bifurcation sequences are sketched out. The investigation guides us to a critical appraisal 

of the asymptotic theory and uncovers the wealth of different types of behavior present in 

the system. 
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I. INTRODUCTION 

The dynamics of coherent structures plays an important role in the physics of a wide range 
of different systems. From moving interfaces in condensed matter physics to propagating 
solitary waves in fluids, the interaction of localized objects constitutes a fundamental issue. 
A theory of the dynamics of coherent structures is therefore of far-reaching and general 

utility, but here our goal is much more modest and precise. 

Our aims in this paper are threefold. Firstly, we consider the interaction of coherent 
structures in one of the simplest mathematical settings: pulse dynamics in one dimension. 
The particular physical system we study is one describing long-wave instability in a dis- 
persive, nonlinear medium. In order to study the dynamics of the pulses, we use both 
numerical techniques and a formulation based on singular perturbation theory. An assess- 
ment of the utility and accuracy of this asymptotic method comprises the second aim of our 
study. Thirdly, the partial differential equation (PDE) we study undergoes various kinds of 
transitions to temporal complexity. In order to give a coherent study of this equation, we 

catalogue these various bifurcation pathways. 

We begin with a PDE that arises in the fluid dynamics of thin liquid films4: 

atu + Ud,U + a,”. + pa;u + g u  = 0. 

In this circumstance, u(z, t )  is the thickness of the film. Perhaps more importantly, equa- 

tion (1) describes phase evolution in a translating frame for the complex Ginzburg-Landau 
equation, at least to within a small nonlinear term.26 Hence the impact of our results extends 
to many spatially extended systems undergoing a Hopf bifurcation. In that context, u(z, t )  
is the gradient of the phase of the order parameter. Previous studies have uncovered solitary 
wave solutions to the PDE (l);28*13 these pulses constitute the central objects of our analysis. 

The asymptotic method we employ to study dynamics assumes that the solutions to (1) 

are trains of widely separated, weakly interacting pulses. In an earlier work (hereafter paper 
13) we gave a detailed discussion of this method in the context of constructing the steadily 
propagating solutions to (1). These steady pulse trains are the solutions to a third-order, 
ordinary differential equation (ODE). The asymptotic theory reduces the problem to an 
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algebraic relation between any one pulse separation within the train and its immediate SUC- 

cessor. This can be viewed as a map of the interval into itself; a map intimately connected 

with a theorem of In certain regions of parameter space the map guarantees 
chaotically spaced pulse trains, or spatial complexity. This spacing map is the main achieve- 
ment of the asymptotic analysis of the equilibria. Here we follow the asymptotic recipe once 
again, but we do not restrict the motion of the pulses to be steady. Instead, the supposition 
that the train consists of weakly interacting pulses leads us to extract a set of coupled ODES 
describing the evolution of the pulse positions; the equations of motion of the pulses.12 

This asymptotic approach to pulse dynamics originates from studies on nonlinear field 

theories, reaction-diffusion systems and excitable media.30118i29 The distinction between the 
pulse dynamics of our system (l), and that of these earlier cases lies in the nature of the 
mechanism that creates the coherent structures. In nonlinear field theories, reaction-diffusion 
systems and excitable media, solitary pulses are typically generated by finite amplitude 
perturbations that exceed some threshold. In the long-wave equation (l), the homogeneous 
state, u = 0, or vacuum state, is intrinsically unstable. It is the amplifying instability that 
steepens into the pulse train for (1). This feature leads to some crucial differences in the 
dynamics associated with (1). In particular, it leads us to confront what we may call radiative 
instability; the instability of a solitary pulse through global, wavelike modes related to the 
unstable continuum of the vacuum state. 

The main thrust of this paper is therefore to explore radiative pulse dynamics. In Sec. 11, 
we give the standard, asymptotic formulation of pulse dynamics. Appendix A contains some 
important remarks concerning the ramifications of Galilean invariance on this theory. We 

compare the predictions of asymptotic theory with numerical calculations in Sec. 111, which 
considers linear theory about simple equilibria. These comparisons highlight the importance 
of radiative instability, which motivates the extension of the asymptotic analysis presented 
in Appendix B. They also reveal regimes in parameter space in which we may be confident in 

the accuracy of the usual asymptotic theory. That observation, and the general importance 
of radiative instability, then motivate the more extensive numerical experiments of Secs. IV 
aad V. Finally, in Sec. VI, we explore the limit of small dispersion, a regime of parameter 
space which contains various transitions to temporal complexity. Section VII concludes the 
study with some remarks about the implications of our results and some related issues. Some 
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preliminary calculations and discussion have appeared previo~s ly .~~*~ 

11. SINGULAR PERTURBATION THEORY 

A. Steadily propagating solutions 

An important class of solutions to our PDE (1) are those that propagate steadily, u(x, t )  = 

U ( x  - c t ) ,  with some wave speed, e. These solutions satisfy the ordinary differential equation 

(ODE), 
(2) 

1 
2 

( a c 3  +pa: + a< - c) u + -u2 = 0, 

where = x - ct is a travelling-wave coordinate. In (2) and we have assumed that a constant 
of integration can be set to zero by suitably offsetting U and modifying c (this constant is 
fixed by selecting the Galilean frame in which we solve the PDE). Various solutions to this 
equation have been given e l ~ e w h e r e . ~ ? ~ ~ * ~ j ~  Of special interest are the solitary wave solutions, 
H ( J )  = u(x,t), that represent localized pulses. If we regard (2) as describing the state of 
a dynamical system, the pulses correspond to  homoclinic orbits in the phase space of this 
system that connect the origin, U(<) = 0 to itself as + r f = ~ o . ~  The development towards 
a solitary pulse of a sequence of spatially periodic solutions with increasing period is shown 
in Fig. 1 (the limiting pulse shape is clearly apparent). 

In paper I, we used singular perturbation theory to construct travelling-wave solutions 
in the form of pulse trains. These solutions consist of widely separated, weakly overlapping 
pulses. They have the approximate form, 

K 

u(x, t )  = H ( X  - ct - Ck) + eR(z ,  t ) ,  
k=l 

(3) 

for a train of K pulses centered at  the positions &. The degree of error is measured as 

E = exp(-ra)  for a a typical pulse separation, and y signifies the characteristic exponent 
of the rate of the decline of the pulse amplitude to the front and back (assumed to be 
essentially the same). In order for the order E correction, R, to remain bounded, singular 
perturbation theory enforces a condition on the positions of all of the pulses. This solvability 
condition can be written as, 

c1 = F(-&+1) + F(Ak),  

4 

(4) 



where c1 is a constant speed correction, 

is the separation of the pulses, and the function 

with 

and N ( 5 )  defined as the solution to 

For large spacings, the function F ( f A )  has a dependence on A like the behavior of the tails 

of H ( 0  
Equation (4) is the map of the pulse spacings; given Ak, we compute Ak+l, thence a 

pulse train. 

B. Time-dependent pulse trains 

For dynamics, we envision an array of widely separated pulses that mutually interact. 
Again, these pulses are assumed to overlap in their low-amplitude tails. The force exerted on 
a particular pulse by its immediate neighbors is therefore small, and leads to slow adjustments 
in the pulse positions. These ideas form the ingredients for weak-interaction analysis. 

In equilibrium theory, the positions & are constants that become determined as a secu- 
larity condition on R. In our theory of dynamics, we let the positions vary weakly in time 
to accommodate the slow adjustments mediated by interaction. This amounts to setting 

<k = &(et) = &(r),  where r = E t  is a slow adjustment timescale. 

If we make a Galilean transformation into a frame moving with the speed of an individual 
pulse, the train is almost steady, and the only temporal dependence occurs through pulse 
adjustments and therefore r. This transforms (1) into the PDE, 

€a& + a< [ (a: + pa: + a< - c) u + -?A2 = 0. 2 ' I  (9) 
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Written in this form, the method outlined in paper I can be straightforwardly generalized to 
accommodate the evolution of the pattern. The singular perturbation theory then enforces 
a solvability condition, 

t k  = +&+1) + W k ) ,  (10) 

which is an equation of motion for the position of the kth pulse.12 

111. PERIODIC EQUILIBRIA AND STABILITY 

Periodic domains provide a convenient and informative setting in which we can solve the 
PDE (1). In such cases the pulse trains are comprised of periodic sections of length L, each 
of which contain N pulses. 

In general, it is not possible to find analytically the exact, nonlinear periodic solutions 
to the PDE (1) and examine their stability. Instead, we use numerical techniques. Given a 
periodic solution U(x - c t ) ,  stability can be determined by solving the equation, 

AV = a< [ (at3 + pat2 + a< - c + u) VI , (11) 

for infinitesimal perturbations of the form, v(t) exp At.  In the frame moving at speed c, 

the periodic solution is stationary, and (11) is a conventional eigenvalue problem (rather 
than a Floquet calculation). We solve (11) by introducing a Tchebyshev expansion in 5, and 
truncating at some suitably large order (using the tau method to treat boundary conditions). 
This yields as many eigenvalues a s  there are rows in the truncated matrix, and gives a faithful 
represent ation of the low-order eigenmodes. 

In asymptotic theory, we must supplement the equations of motion for the pulse positions 
(10) with the periodicity requirements, 

N 

An = L,  21 + L = X N + ~ ,  AN+1 = Ale (12) 
n=l  

Equilibria follow from the spacing map (4) and the above relations. The stability of such 
configurations is dictated by the linear eigenvalue problem, 
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where X is an eigenvalue and d k  is an infinitesimal perturbation in spacing, with the con- 
straints, 

n=l 

This is an N x N tridiagonal matrix problem subject to the constraint (14). The solu- 
tion consists of a zero eigenvalue and a set of nontrivial eigenvalues. The zero eigenvalue 
corresponds translation of the whole pattern in 5, and also emerges a s  a solution to the 
full problem (11). The other eigenvalues correspond to relative displacements of the pulses 
within each periodic array. 

A. Single-pulse states 

Periodic solutions containing a single pulse compose the simplest kinds of pulse trains 
that we can consider. As solutions of the PDE (l), these single-pulse states are born in a 
supercritical Hopf bifurcation from the equilibrium or vacuum state, U = 0. This bifurcation 
occurs as the domain size L is increased through 27r, and signifies the destabilization of the 
wave, sin<, with c = p. Beyond the bifurcation, the mode saturates at finite amplitude, and, 
on increasing L further, steepens into a pulse. As L + 00 the pulse develops into a solitary 
wave (see Fig. 1). 

In Fig. 2, we display some properties of the stability of the single-pulse states. In panel 
(a), the stability is illustrated for the particular state L = 40 and p = 0.5. Displayed are 
the lowest eigenvalues in the complex plane; modes occur as a real solutions, or complex 
conjugate pairs. The behavior of the real parts of the lowest-order eigenvalues as L varies 
is plotted in the second panel, and a selection of eigenfunctions for L = 40 is drawn in the 
final panel. 

For the single-pulse states, there are two real modes, one of which has a zero eigenvalue. 
That mode corresponds to a simple shift in the position of the pulses and arises from transla- 
tional invariance. By differentiating the equilibrium equation (2), we observe that this mode 
must have the eigenfunction, U’(<). Provided the domain is sufficiently large, the structure 
of the single-pulse state is almost that of a solitary wave, and Ut(<) N H’(c). 

The other real mode is relaxational in character; it arises at the birth of the pulse as the 
neutral mode transforming the equilibrium into the infinitesimal wave (Fig. 2(b)). We denote 
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its eigenfunction by V(<).  As L becomes large, the eigenfunction (somewhat surprisingly) 

takes on an appearance very much like ET(<). The eigenfunctions of the real modes are 
localized to the vicinity of the pulse; they are examples of modes that are intrinsic to the 

shape of the pulse itself. 

In addition to the real modes, the single-pulse states also have an infinite set of complex 
eigenmodes. The eigenfunctions of these modes are not localized, and, rather than being 

attenuated away from the core of the pulse, possess substantial amplitude there. As shown 
in Fig. 2 (a), the eigenvalues approximately 

u = P(1 - k”>, 

where IC parameterizes the curve, and 
1 

This curve emerges 
exp ZkJ, assuming IC 

lie along the curve, 

w = k ( ~  - Q + p k 2 ) ,  

L / 2  
Q =  J - L / 2  U(x)dx. 

from a variational estimate of the eigenvalues with a trial solution, 
>> 1. In addition, for k = 27rn/L, Q = 0 and n = 2,3,4, ..., it is 

the dispersion relation for infinitesimal perturbations to the state U = 0. This observation 
suggests that the complex solutions are related to the normal modes of the vacuum state; 
that connection can be established more completely by tracing the eigenvalues as functions 
of L back to the critical domain size. In these senses, then, the complex eigenmodes are 
intrinsic to the vacuum rather than the pulse. In view of their oscillatory structure and 

finite frequency we call them radiation modes, following similar terminology in nonlinear 
field t h e ~ r y . ~ > I ~  

According to asymptotic analysis, single-pulse states follow from the relation F ( L )  + 
F(-L)  = c1, which determines the speed correction for each L,  and there is only a single, 
trivial stability eigenvalue. Thus asymptotic theory predicts that the single-pulse states are 
always stable. This highlights one of the main failures of the asymptotic theory; the omission 
of the radiation modes. It arises because the singular perturbation theory is founded on the 
idea of weakly interacting localized structures, whereas the radiation modes are global. An 
embarrassing consequence is that, in the limit of large spacing in which one would expect 
the asymptotic theory to be most accurate, large numbers of radiation modes bifurcate to 
instability (Fig. 2(b)), and the dynamics becomes dominated by them. 
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The failure of the asymptotic theory, whilst unappealing, is not completely ~ u r p r i s i n g ; ~ ~ > ~  
solitary wave solutions contain extensive regions over which the amplitude is very small. 

These regions are susceptible to the same instability that creates the pulses themselves. 

Double-pulse states B. 

The stability properties of some two-pulse states are illustrated in Fig. 3. These states 
are characterized by equal spacing, A1 = A2 = L/2 (there exists an infinite sequence of 

asymmetrical states with unequal spacing.13) Like the single-pulse states, the symmetrical 
double-pulse states bifurcate out of the vacuum when L increases through a critical value, 
in this case, 47~. In Fig. 3, we display the low-order portion of the spectrum for the state 
with 1-1 = 0.4 and L = 40, the behavior of the real parts of the eigenvalues with domain size, 
and a selection of eigenfunctions. The spectrum has much in common with the single-pulse 
state; it contains a small number of real modes, and an infinite set of radiation modes that 

bifurcate to instability for sufficiently large L. 
Of the real eigenvalues, we can again identify the purely neutral mode. However, rather 

than a single mode of relaxational character, there are now three more real eigenvalues. The 
eigenfunctions of all the real modes are displayed in Fig. 3(d). It is clear from that picture 
that the real eigenfunctions are spatially localized to the pulse positions, indicating that 
they are all intrinsic to the pulses. This leads us to explain the presence of the modes as 
follows. Just as the two-pulse state can be approximately constructed by superposing two 
single-pulse solutions, we can construct its eigenfunctions by superposing the localized modes 
of the single-pulse state (cf. Ref. 5). The analogues of the translation and relaxation mode 
are, therefore, If’([ - &) + H’(c - (2) and V+ = V(< - &) + V(< + J2) respectively. However, 
in linear theory it is not sdiicient to create all solutions by an constructive superposition, 
since the localized modes may have arbitrary amplitude. The destructive superposition, 

V- = V(( - cl) - V(< + &), and the individual translation, S = H’(e - J2), are also, 
therefore, permitted as linearly independent solutions. These four eigenfunctions comprise 
the real modes pictured in Fig. 3(d). 

The mode S(5) acts to translate the second mode and not the first. In other words, it 
pushes two neighboring pulses together, and the pairs on either side apart. These relative 
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displacements are the motions that are described by asymptotic theory. As is evident from 
Fig. 3(c), there is agreement between this eigenvalue, and the stability eigenvalue, A, derived 

from asymptotic analysis, provided the domain is sufficiently wide. In the asymptotic limit, 
such compressional motions of the array of pulses are overdamped (Appendix A). Their 
resemblance to over-damped oscillations in a one-dimensional lattice of springs leads us to 
call the associated eigensolution, a “lattice mode.” The eigenvalue associated with S(c) is 
therefore the linear damping of the spring; the nonlinear behavior of this spring follows from 
asymptotic theory and equation (10). 

Throughout most of the range of spacings pictured in Fig. 3, the relaxational modes are 
much more strongly damped than the lattice mode. However, it is clear from Fig. 3(b), 
that when A becomes too short, the eigenvalues of the lattice mode and V- can become 
comparable. At that point, the modes actually collide and form a complex conjugate pair. 
This signifies a point at which perturbations of the shape of the pulses decay with critical 
damping. For smaller values of L,  the system of pulses is underdamped and the effects of 
inertia become felt. The complex mode formed from the fusion of the two real solutions we 
denote by M ( c ) ;  for want of a better term, we call it an “inertial-mode.” 

The formation of the inertial mode amounts to a greater degree of freedom in the dy- 
namics of the pulse interactions; it signifies the breakdown of the asymptotic theory at short 
spacing. Unlike the large-spacing limit, this regime is where one expects the theory to cease 
being valid, and is, therefore, rather less unsatisfactory. However, over a fairly wide. range 
in the parameter space, (p, L) ,  the inertial mode actually becomes unstable. This lead to 
overstable pulse dynamics which we explore numerically in a later section. 

IV. ACCESSIBLE DYNAMICS 

The calculations of equilibria and their stability suggest that the asymptotic theory of 
pulse dynamics works within a fairly narrow range of spacing values. In Fig. 4, we give some 
idea of this range of validity, by plotting a “regime diagram” for the symmetrical, double- 
pulse states. In this figure, we sketch various bifurcation points on the ( L  - p) plane. To the 
right, we encounter the Hopf bifurcation that signifies the inception of radiative instability. 
To the left, we plot the curve along which the lattice mode and V-(c) merge into a complex 
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eigensolution. The locus at  which this mode bifurcates to overstability is also sketched. 

If we lower the degree of dispersion in the system by reducing p ,  the linear stability 

properties become more complicated, as the regime diagram suggests. In fact, below about 
,LL = 0.1, our classification scheme becomes a little ambiguous since we cannot always dis- 
tinguish the inertial mode and radiative solutions. Moreover, even further towards the 
dispersionless limit, the modes we can trace to radiative solutions at larger p, begin to split 
into real pairs, and the equilibria themselves no longer resemble distinct pulses. In addition, 
the asymptotic theory also fails for all spacing because pulses become asyrnmetri~al.~ At 
that point, then, it is no longer useful to use the terminology. In Sec. VI we continue to use 

the notation in the limit ,LL = 0, but only when following bifurcation sequences from larger 

dispersion where there is no ambiguity. 

A. Simple adjustments 

According to the above arguments, it is only in the region of Fig. 4 marked “accessible,” 
and for ,LL well away from zero, that we can hope that the asymptotic theory provides a 
reasonable description of the pulse dynamics. Here we have solved the PDE numerically2* 
for a selection of values for p and L. Typically, from a set of arbitrary initial conditions, 
the system evolves to a steady pulse train. More often that not, the relaxation proceeds 
too quickly in its initial stages to be captured by any weak interaction analysis (examples of 
this kind of evolution are given in Subsec. V1.A). The limit in which the asymptotic theory 
can be conveniently realized are the instances in which the system begins from a weakly 
disturbed, unstable equilibrium. That is, evolution from an equilibrium for which there is a 

mildly unstable lattice mode. The unstable train then relaxes slowly to a stable train. We 

call this kind of evolution a simple adjustment to distinguish it from the fast relaxations 
that, for example, violently create pulse trains out of very different initial states. 

Figure 5 shows an adjustment from a slightly perturbed unstable state at  p = 0.7 and L = 

28. The unstable equilibrium is an asymmetrical double-pulse solution. The states to which 
the system evolves depends on the initial condition, but provided the initial perturbation is 

not excessively large, the outcome is one of two equilibria neighboring the unstable state in 
solution space. Four experiments are shown in Fig. 5;  two approach the symmetrical state as 
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time proceeds, whereas the others decay into another train with more asymmetrical spacings. 

In the figure, we show the evolution projected onto the A - A plane. Although the PDE, 
when viewed as a dynamical system, has as many dimensions as there are modes used in the 
truncated spectral expansions, the evolution from all four initial conditions rapidly settles 
down to follow a well-defined curve which is accurately predicted by the one-dimensional 

ODE of asymptotic theory. 

The experiments shown in Fig. 5 are a fairly favorable example for comparing numerical 
results with asymptotic calculations; the spacings are well within the “accessible” regime, 

and, for this value of p, the pulse amplitude decays quite symmetrically. We show results in 
less favorable regimes in Figs. 6 and 7. Figure 6 shows an experiment at 1-1 = 0.4 and L = 

28. In this calculation, the stable, asymmetrical two-pulse state possesses an eigenvalue of 
inertial-mode character. Consequently, the trajectory spirals into the fixed point in the A-A 
plane. Adjustment to the stable, symmetrical state is better predicted by the asymptotics, 
although the comparison is worsened by the asymmetry in the decay of the pulses amplitude 
at this value of p .  

The experiment shown in Fig. 7 lies close to the border of radiative instability. The initial 
disturbance excites the nearly neutral radiation mode, and it begins to ‘‘ring)) persistently. As 

the state evolves towards a neighboring asymmetrical state, this mode passes parametrically 
through a Hopf bifurcation, and thereafter begins to grow exponentially. Throughout the 
evolution, the trajectory of the numerical solution follows a helical path. On average, it 
roughly shadows the asymptotic calculation, when projected onto the A - plane, but the 
drift of the pulses is substantially accelerated by the radiation through its root-mean-square 
effect. 

V. RADIATIVE DYNAMICS 

Stability theory and experiments like that shown in Fig. 7 suggest that radiation modes 
play a primary role in the dynamics of pulse trains with relatively large spacings. An 
investigation of pulse train dynamics cannot therefore be complete without a study of the 
ramifications of radiative instability. 

Very close to the border of instability, there is a single radiation mode that is nearly 
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neutral. Here, we can extend the asymptotic theory by including that mode as a further 
small perturbation. The details of the calculation are presented in Appendix B. Briefly, the 
eigenfunction, cp, and frequency, w, of the marginal mode emerge as the solution to, 

where H k  = H(C-&), and c is the solitary wave speed, and we have expanded the parameter, 
p ,  about its marginal value, p - PO + E ~ I .  We then modify the ansatz for the approximate 
pulse train, 

where A(r) is the amplitude of the radiation mode, and R and S are successive corrections in 
the asymptotic expansion. By scaling the amplitude of the nearly neutral mode by $I2, we 
introduce the root-mean-square effect of the wave at the same order as the terms modelling 
long-range pulse interactions. This conjunction is encapsulated in the solvability cohdition, 

with p112/10 and 

The amplitude of the radiatifin mode is found to evolve according to the relation, ' I  

&A = W A  + plAI2A, 

where a and p are integrals given in Appendix B. 

Superficially, equation (21) appears to be a standard type of Landau equation. Implicitly, 
however, 'p depends on the set of pulse positions, {&}, thence T. The coefficients, cxk,  a and p 

in equations (20) and (21), therefore give those ODES a rather complicated non-autonomous 
character. In practical terms this means that the amplitude equations are somewhat time- 
consuming to solve. Because, in addition, the expansion is not likely to remain valid very 

far away the point of bifurcation, we have not explored the solutions to (20) and (21) in any 
detail. Nonetheless, the amplitude equations provide some insight into the' phenomenon of 
radiative inst ability. 
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Equations (20) and (21) predict the emergence of a solution with finite-amplitude radia- 

t ion; 

CI = %1J'(A,) + F(-&+l) - aklAI2, /AI2 = -Re w/Re p. (22) 

This branch is either subcritical or supercritical depending on the sign of the real part of 

p. Just beyond the point of bifurcation, subcritical branches are unstable, and radiative 
instability precipitates a violent event. By contrast, supercritical branches are stable, and 
pulse trains with superposed radiation are realizable. 

The coefficient p is plotted in Fig. 8 for single-pulse states on the verge of radiative 

instability. At larger values of p, the coefficient has positive real part; there the radiative 
modes compose subcritical instabilities. At smaller values of p,  radiation saturates at finite 
amplitude. The switch from supercritical to subcritical bifurcation as p increases also holds 
for double-pulse states, and we suspect it to be true for pulse trains in general. 

The solution (22) remains valid only at relatively small amplitude. In order to continue 
the solution branches further, towards strongly nonlinear radiative states, we need to fall back 
to numerical techniques. Various solutions constructed using truncated Fourier expansions 
in both time and space are illustrated in Fig. 9. In panel (a), solution branches are portrayed 
according to the mean amplitude of the radiation mode, A, defined by 

A = [ 2- s" I"(. - (u))2dtdz , 
LrI 0 0 1 1'2 

where ( F ( z , t ) )  means average of the quantity at point x over one period, rI. The dashed 
lines at the base of the branches indicate the asymptotic solutions, (22), although in order 
to draw the branches against L, we expand about the critical domain size which leads to 
a slightly different form for w than given in Appendix B (there we have expanded in p to 
more clearly illustrate the asymptotic expansion). In Fig. 9(b), the finite-amplitude solution 
branches are plotted according to period. 

The branches proceed from their bifurcation points to larger amplitude and longer period; 
various space-time surface plots of the solutions at three points along the branch for p = 0.4 
are shown in 9(c), 9(d) and 9(e). The form of the collision between the radiation and the 
pulse is surprisingly similar to pictures of interactions in experiments with binary fluids." 

The branches are not continued further than the uppermost points shown in Figs. 9(a) 
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or 9(b) because the computations become laborious and expensive. The increasing period, 

various numerical experiments and the final space-time plot of Fig. 9(e) all suggest that the 
fate of the solution branches is a homoclinic bifurcation to an asymmetrical two-pulse state. 
The termination of the radiative solution branch is therefore an example of a nontrivial 
homoclinic orbit in a PDE. 

To smaller values of p, the structure of the branches become more complicated. In 
particular, the topology of the branches alters near p = 0.3, and the path to homoclinicity 
becomes less obvious, if it exists at all. 

A. Subcritical instability and pulse creation 

When the unstable radiation mode is subcritical, its amplitude grows destructively such 
that instability disrupts the original pulse train. In Fig. 10, we show the result of instability of 
the single-pulse state at p = 0.8. After a slow period of exponential growth, the instability 
suddenly amplifies rapidly, violently disturbs the pulse and eventually destroys it. The 

principal wavecrests of the radiation mode then emerge as pulses in their own right. Any 
remaining small-amplitude disturbances subsequently either damp out or collide with the 
pulses, leaving a steadily propagating, two-pulse state. (In Fig. 10, and all following figures 
portraying space-time evolution, we present the solutions in suitably moving frames to bring 
out their details.) 

In Fig. 10, the weakly unstable radiation mode grows fairly slowly, but it triggers a 
relatively fast transition. Yet more violent transitions are shown in Fig. 11. This figure 

shows experiments with a single-pulse state at p = 0.5 and L = 40. This equilibrium is 
well to the right of the threshold of radiative instability in Fig. 5, at which point, in fact, 
the state is actually supercritically unstable. As is evident from Fig. 2(a), this single-pulse 
state possesses a total of five pairs of unstable, complex eigenvalues. Of these, the 7-3 and 7-4 
modes are dominant. The two calculations shown in the figure begin with slightly different 
initial perturbations off the unstable equilibrium. In panel (a), the mode 7-3 emerges initially 
with largest amplitude. It grows with little influence from the original pulse, which survives 
after the creation of three new pulses. In panel (b), the mode 7-4 emerges first, and the 
final state consists of only three pulses. Though the final state has some dependence on the 
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initial condition and dominating instabilities, the pathway taken to the final configuration is 
complicated. That the lower-order mode creates the more pulses illustrates that one cannot 
straightforwardly predict the outcome of violent growth of radiation modes. 

The pulse-creation events of Fig. 11 illustrate the outcome of strong radiative instabilities 
irrespective of whether they are supercritical or subcritical at threshold. These experiments 
are also similar to situations in which the system relaxes to a pulse train from some very 
different initial condition. The final number of pulses can be bounded above by the occur- 
rence of separation-limiting instabilities, and from below by constraints imposed by the finite 
width of a pulse. For example, for the domain size L = 40, the single and double-pulse states 
are both unstable; the domain cannot contain more than six pulses. Secondary instabilities 
complicate the issue even further (the six-pulse state permitted in a domain of size 40 is 

unstable). 

Roughly, we can estimate the number of pulses in the final train as follows. The un- 
bounded vacuum state has an unstable continuum of eigenvalues. That continuum peaks 
at modes whose spatial scales (wavelengths) lie in the vicinity of 2fi7r N 9. This suggests 
that the maximally growing instability, which can be plausibly taken to yield a typical pulse 
separation, generates a pulse train with characteristic spacing, = 9. In fact, this is an 
underestimate of the pulse separation since there is clearly a scale difference between in- 
finitesimal disturbances and pulse equilibria (Fig. 1). For values of p near 0.5, numerical 
experimentation indicates that a more accurate estimate of the typical pulse separation is 

just over 10 (this estimate depends on the amount of dispersion). Therefore, pulse creation 
from the vacuum should typically produce trains with rather short spacing (see Fig. 4). 
Creation from unstable pulse states produces trains with somewhat larger spacing. 

B. Saturated supercritical solutions 

In addition to ascending to larger period, the finite-amplitude supercritical radiative 
branches also tend to wind back and forth as we vary L. An interesting feature of the 
p = 0.4 solution branch, a portion of which is pictured in more detail in Fig. 9(f), is that 
it loses stability within the region marked by stars. In the original infinite-dimensional 

phase space corresponding to the spatial variable z, the radiative solutions lie on invariant 
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tori characterized by the frequencies, 2n/L and w (the frequency of the nonlinear radiation 

mode). In a suitable Galilean frame, these tori collapse down to limit cycles. Along the 
magnified branch of the radiative solution, this limit cycle loses stability in a (supercritical) 
period-doubling bifurcation. If we increase the domain size further, there is a second such 
bifurcation and a stable period-four orbit emerges. This progression is displayed as a sequence 
of phase portraits in Fig. 12(a). These portraits are generated by plotting the solution at 
one point in the moving frame against the solution at another point, distance L/7 away. 

Figure l2(a) illustrates the inception of a cascade of period-doubling bifurcations. This 

generates what we interpret to be strange attractors at larger L; samples are presented in 
Fig. 12(b). An important feature of these irregular states is that chaos is barely discernible; 
space-time surface plots of short-interval pieces of the solution are superficially regular. Only 
on sufficiently long timescales can we discern the temporal irregularity (Fig. 13). 

In larger domains ( L  2 20)) it becomes difficult to find any strange attractors related 
to those shown in Fig. 12(b). From various initial conditions, the system hovers near what 
looks to  be the strange set for a time, but then rapidly departs and converges to the stable, 
periodic, radiative branch at  lower amplitude. This probably results from the collision of the 
set with a fixed point which destroys its asymptotic stability (a so-called “crisis”), but we 
have not explored such a possibility. In any case, towards larger values of L,  the set regains 
attractiveness and inverse period doubles back to the original radiative branch (Fig. 12(c)). 

The behavior of the supercritical radiation branch is very much like beginning of Shil’nikov’s 
route to hom~clinicity.~~ That route is characterized by a periodic orbit which winds through 
an infinite number of saddle-node bifurcations into a homoclinic orbit. In addition, along each 

stable branch, period-doubling bifurcations begin cascades that generate infinitely many, 
unstable periodic orbits. In paper I we found that, as orbits within a three-dimensional 
dynamical system, the steady pulse trains are nearly homoclinic solutions that also follow 

the bifurcation pathways predicted by Shil’nikov theory. It is rather amusing that both the 
steady trains and their time-dependent radiative dynamics have the Shil’nikov flavor. Al- 
though calculations with single or double-pulse states may be largely irrelevant, this raises 
the question of whether spatially extensive pulse trains can be irregular in both space and 
time as a result of mechanisms that can both be described by homoclinic theory. 
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VI. DYNAMICS AT SMALL DISPERSION 

A. Inertial-mode instability 

Radiative instability at larger values of p appears to create temporally chaotic states. 
These constitute solutions that occupy a very small window of the total parameter space 
and their basins of attraction are small. This fragility of complexity is apparently a common 
hallmark of homoclinic ~ h a o s . ~ > ~  At smaller values of p, temporally complicated solutions 

arise through different transition mechanisms, and are more common and persistent. In 
this section we present two examples for which solutions bifurcate to temporal complexity. 
These examples are meant only as illustration of the wealth of different behavior present 
in the PDE (l), and are not meant to give a complete picture of the bifurcation sequences 
possible. 

In Fig. 4, we drew the threshold of instability of the inertial mode. This is a localized 
mode that describes overstable compressional oscillations of the train of pulses. Beyond the 
threshold of overstability, at L = 19, if we track the solution to smaller p, the amplitude of 
the inertial mode saturates supercritically. Once again, in an appropriately moving frame, 
the finite-amplitude solution is seen as a limit cycle. It loses stability first in a symmetry- 
breaking bifurcation which destabilizes the purely antisymmetrical oscillation of the two 
pulses. Thereafter, symmetry-broken oscillations are st able until a period-doubling bifur- 
cation. Once again, this second bifurcation sparks a cascade. In Fig. 14 we show period 

one, two and four orbits and a ribbon-like, (presumably) strange attractor. This figure por- 
trays the solutions as phase portraits projected onto the A - A plane (because of symmetry 
breaking only the first of the limit cycles has the invariance, A -P L - A). Details of the 
strange object are revealed in Fig. 15, which shows a plot of one maximal spacing against the 
following maxima. In appearance, this function looks like a typical attractor of the H6non 
map,21 z’ = y and y’ = 1 - ay2 + bx. It is superficially double-valued, but appears fractal in 
detail. Although it is not strictly a one-dimensional map, we informally refer to the graph 
of successive maxima in A as the maximal spacing map. 

The strange object develops further as we lower p. The pulse positions over many char- 
acteristic periods are displayed in Fig. 16 for four experiments at different dispersion. Just 
after the period-doubling cascade, the space-time pattern is imperceptibly irregulas. Some- 
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what further beyond the cascade (panel (b)), chaos is more visible, but the pulses preserve 

their mean positions. By p = 0.07, new features become evident (panel ( c ) ) .  These are what 
one might call “phase jumps.” These jumps jar the pulses out of alignment, and lead to 
sharp dislocations in the space-time pattern. Even more extreme events occur at yet lower 
p; the pulses apparently collide and merge, and a new one nucleates (panel (d)). 

Figure 17 shows maximal spacing maps for the first three experiments of Fig. 16. In 
panel (a), the map consists of two pieces. These two pieces correspond to the two distinct 
attractors arising from the period-doubling cascades of the two symmetry-broken limit cycles 
(in Fig. 15, only one of the attractors is displayed). Shortly below p = 0.08, the two attractors 

expand and intersect, then merge into one (Fig. 17(b)). 

In the maximal spacing maps, phase jumps appear as sporadic excursions away from the 

main body of the attractor (Fig. 17(c)). The annihilation-nucleation events seem to be more 
extreme versions, but because it is no longer possible to identify spacings during the events, 
we can no longer draw a maximal-spacing map. The mechanism behind the phase jumps and 
annihilation-nucleation events becomes clearer on plotting phase portraits for the system. 
Portraits projected onto the A - A plane are shown in Fig. 18. After the two asymmetrical 
attractors merge, the strange object gradually grows and begins to approach the fixed point 
corresponding to an asymmetrical two-pulse state with spacings of 6.555 and 12.445. (In the 
phase portraits of Fig. 18, the fixed appears to lie within the strange set, but this is purely 
an artifact of projection.) When the trajectory nears this k e d  point, it becomes attracted 
towards its stable manifold. Phase jumps occur when the trajectory approaches the fixed 
point too closely, then rapidly departs from the vicinity of that point in the direction of its 
unstable manifold. 

For some value of p between 0.07 and 0.0675, the inertial-mode attractor collides with 
the k e d  point. Trajectories can then pass around the stable manifold of this saddle-point. 
There follows a rapid evolution away from the strange set in the phase space that corresponds 
to the annihilation-nucleation event. This event is shown in more detail in Fig. 19. 

Pulse annihilation-nucleation therefore corresponds to the loss of asymptotic stability of 

the strange set. The event takes the system on a rapid excursion in phase space, but then the 
trajectory returns to the neighborhood of the strange set; the metastability of this set then 
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leads to the intermittent dislocations present in the evolution of the pulse positions. It is an 
example of on/ of l  i n t e ~ m i t t e n c y , ~ ~  or, more specifically, the crisis-induced intermittency of 
Grebogi, Ott and Yorke.19 

B. Nearly heteroclinic dynamics 

If we decrease p further, the number of annihilations and nucleations increases over a 

given time period as the strange set loses further stability. The space-time plot of the solution 
then takes on a rather erratic appearance (Fig. 20). 

At even smaller dispersion, the irregularity of the solution begins to decline once more. In 
time, the solution acquires the character of a relaxation oscillation between a pair of briefly 
coherent steady states (Figs. 2l(a) and (b)). These approximately steady states are two-pulse 
equilibria, phase shifted from one another by L/2. The transition between the two states 
occurs when an inertial-mode instability amplifies and triggers an annihilation-nucleation 
event, which generates the new state. 

If we take slices through the space-time pattern (in a suitably moving frame), the time 
traces have a similar character to a train of irregularly spaced kinks or fronts (Figs. 21(c) 
and (d)). In order to understand the occurrence of states of this kind we display in Figs. 22 

various phase portraits of the solution at ,u = 0. These portraits reveal that the train of 
kinks is comprised of almost heteroclinic connections of the two phase-shifted equilibria, a 
phenomenon encountered previously for the Kurarnoto-Sivashinsky e q ~ a t i o n ~ , ' ~  (that is, the 
PDE (1) with p = 0). Moreover, the connections spiral both in and out of the fixed points 
(they are bi-focal orbits). For these values of p and L,  the two-pulse equilibrium state has 
an unstable complex eigenmode (the inertial mode) with eigenvalue +0.08 f 0.42. The least 
decaying modes are a complex pair with eigenvalue -0.27 f 0.462. The rates at which the 
trajectory spirals into and out of the fixed points coincides roughly with these eigenvalues, 
and so it seems reasonable to suppose that the solution winds out of the unstable manifold 
of the fixed point, then back in predominantly within the plane spanned by the eigenvectors 
of the least unstable complex pair. 

Like the homoclinic orbits that our basic pulses correspond to, four-dimensional bifocal 
heteroclinic orbits can be analyzed with Shil'nikov theory.15 This reduces the problem of 
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nearly-heteroclinic dynamics to the iteration of a three-dimensional map. Provided the 
system is sufficiently dissipative, the map can be replaced by an approximation of lower 

dimension. In our case, the orbits in phase space are a little more complicated than simple 
heteroclinic connections; other fixed points appear to influence the trajectory. Moreover, at 
p = 0, the system is reversible in time, so the flow in phase space is volume preserving, and 
it is typically difficult to study such situations with Shil’nikov theory. For these reasons we 
have not pursued analysis of the heteroclinic patterns in any detail (but see Ref. 9). 

At larger values of p, the quality of the heteroclinic connection is diminished; the interval 
between events is smaller and the regularity of the space-time pattern is degraded. For a 
value of p of about 0.0015, the nearly heteroclinic attractor appears to collide with the 
unstable steady solution corresponding to the asymmetrical two-pulse state. This leads to 
intervals of rapid evolution in phase space, during which the trajectory flies away from the 
nearly-heteroclinic set, but then approaches it once more. As for the phase jumps in the 

pulse positions at larger p, this generates intermittent dislocations in the space-time pattern 
of the solution (see Fig. 23). 

C .  Radiative states at small p 

An alternative route to temporal complexity arises from tracking radiative instability 
from its inception to smaller p. According to Fig. 5, the symmetrical two-pulse equilibrium 
bifurcates to instability in domains of size L = 29 at p ci 0.2. At that point, a supercritical, 
radiative branch of solutions emerges. This solution branch first loses stability to a mod- 
ulational or subharmonic mode with an incommensurate frequency. Then the state suffers 
a symmetry breaking instability. Both bifurcations are supercritical, and we find a doubly 
periodic, asymmetrical radiative branch. 

At p N 0.1308, this solution apparently ceases to exist as the result of a saddle-node 
bifurcation. Beyond the bifurcation, there emerges a wealth of temporally intermittent 

patterns (Fig. 24). The transition to temporal chaos therefore occurs through a mechanism 
of the Pomeau-Manneville type I variety.33 

At smaller values of p, the degree of intermittency declines, and incoherent states become 
predominant. For p = 0, evolution from the two-pulse state proceeds as shown in Fig. 25. 
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This illustrates a sequence in which a radiative instability destroys the initial two-pulse 
configuration leaving a four-pulse state that undergoes a nearly heteroclinic transition to its 

L/2 phase-shifted relative. The second four-pulse state begins another phase shift, but then 
loses stability and the system eventually converges into a rather interesting periodic solution 
containing an almost stationary pulse, and two other, oscillating peaks. 

VII. DISCUSSION 

A. The reIevance of asymptotic theory 

In this paper we have studied the dynamics of interacting pulses in a medium whose 
homogeneous state is unstable. More specifically, we have described the dynamical fate of 
pulses in relatively small, periodic domains. In such settings, we can crudely catalogue the 
behavior as follows. For larger values of p, the system slowly settles into moderately spaced 
trains. For smaller amounts of dispersion, pulses exhibit temporally complicated motions 
either through their own interactions, or because of spatially unlocalized instabilities. 

In larger domains, we expect initial configurations with a small number of pulses violently 
to create new ones. This regulates the typical spacings between the pulses of a train. It 
reflects the most serious failing of the analytical theory we have considered. Simultaneously, 
however, it also provides its possible savior; the outcome of creation is a train with moderate 
spacings that can fall within our “accessible range” of dynamics, at least for large p. 

It is quite illuminating to establish the degree of complexity in the solutions of a simple 

PDE like (1). At the outset, one might have felt that, aside from some interesting transient 
behavior,” steady pulse trains were eventually its only solutions. That feeling has certainly 
motivated some earlier, analytical ~ t u d i e s . ~ ~ J ~  However, in what we might call the ideal 
limit, p -+ 0, the system loses all semblance of simplicity in its range of behavior. The 
asymptotic theory of pulse interaction described in Sec. I1 is not, therefore, of great generality, 
a noteworthy point if we are to advance to consider more complicated situations like higher 
dimension. 

We can attempt to improve the asymptotic theory in order to remove its shortcomings. In 
fact, the need to include radiative instability was the motivation for the analysis of Appendix 
B, which, unfortunately leads to a rather convoluted formulation. Along a similar vein we 
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could try to treat inertial-mode dynamics by decomposing the pulse train into well separated 

pulses and narrowly spaced pairs. The dynamics of the inertial modes can then be accounted 

for by replacing the pairs by individual entities with internal degrees of freedom, much as one 
treats the intrinsic degrees of freedom of kinks in nonlinear field theories.’ The experiments 
described in Sec. VI suggest that the internal dynamics can be complicated, though possibly 

reproducible by a low-order dynamical system. It seems difficult, however, to extract an 
analytical theory of such dynamics. In practice, it may prove simpler to formulate a hybrid 
scheme in which we evolve the individual pulses under asymptotic, long-range interactions 

and numerically simulate any close  encounter^.^^ 
In principle, then, we might formulate an improved theory of pulse dynamics, incorporat- 

ing both radiation and inertial modes. That formulation, however, is complicated and prob- 
ably not sufficiently general to provide a theory of coherent-structure dynamics. Indeed, in 
reaction-diffusion systems, bifurcations appear to set fronts into oscillatory and even chaotic 
motion. 1098920325 These arise through localized effects rather than global radiation-like modes, 
and may affect even isolated fronts. Thus, such frontal dynamics seems largely to be of a 
different flavor to the pulse dynamics considered here. The distinction between our thin-film 
problem and these excitable systems probably has its origin in the absence of vacuum insta- 
bility from the latter. In kink dynamics in nonlinear field theory there may be a stronger 
connection since external perturbation and collision can act to excite the otherwise stable 
radiation modes. 5714 

B. Multiply peaked pulse equilibria 

To return to some further details of the thin-film problem, we have only studied one kind 
of pulse in the main body of the paper. In earlier  investigation^^>^^>^^ and paper I, it was 
found that there existed other kinds of steady solitary-wave equilibria. These are specifically 
pulses which have multiple principal peaks, and for completeness we ought to explore the 
dynamics associated with them. 

The asymptotic theory of Sec. I1 gives no indication as to the fate of multiply peaked 
pulses. In fact, since weak pulse interactions are mediated by the exponential tails of the 
pulses, irrespective of the number of principal peaks intrinsic to them, the asymptotic equa- 
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tions of motion take an identical form for all of the solitary-wave states. Numerically, how- 
ever, we find that the multiply peaked pulses all possess inertial-mode instabilities, i. e. 
intrinsic “shape modes” that act to break them apart into groups of singly peaked pulses. 
The overstabilities seem always to be destructive on single (multiply peaked) pulse states. 
However, in the presence of other pulses, it may be the case that the inertial mode saturates 
at finite amplitude. This provides one explanation of the periodic solution found in Sec. V1.C 
(Fig. 25), which could be viewed as a singly peaked pulse paired with an overstable, doubly 

peaked pulse. Otherwise there would seem to be no analogue in our current system of the 
breather solitons that occur in systems like the Sine-Gordon equation. 

The intrinsic instability of the multiply peaked pulses implies that it is probably not 
worth considering them further. This is somewhat unfortunate since these solutions move at 
sufficiently different speeds to permit fast collisions between the localized objects. Otherwise 
such events are precluded by the tight speed controls imposed by the dynamical balance 
making up the solitary-wave envelopes. In Fig. 26 we record a collision between a singly 
peaked pulse and its doubly peaked relative. It is made somewhat interesting because the 
event proceeds too quickly for any intrinsic instability to become manifest. The collision 
(unsurprisingly) breaks apart the doubly peaked pulse, and three of the singly peaked variety 
emerge, together with an unlocalized disturbance. Subsequently the disturbance excites a 
radiative instability that nucleates another pulse. In our dissipative system (1) , collisions 
of this kind are the only analogues of the comparatively perfect, soliton collisions. Other 
equations modelling instabilities on thin films have a richer range of collisional b e h a ~ i o r . ~ ~ ~ ~ ~ ~ ~  

C .  A remark on Galilean invariance 

We conclude with a remark concerning Galilean invariance. As explained in Appendix 
A, the additional symmetry associated with this invariance has no effect upon the dynamics 
of the pulses in leading-order asymptotic theory. This is not to say that Galilean invariance 
plays a minor role in the general dynamics of pulses in the PDE (1). In fact, its role is 
critical. The PDE conserves the spatial average, 

L 

- L  
n(t) = 1 u(a;,t)dz. 
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Individually, each pulse has a certain average value, E ,  associated with it. Therefore, in 

order to create a new pulse, which is seemingly the tendency of the PDE over a large regime 
in its parameter space, we cannot simply add a pulse onto the initial state. In fact, in order 
to create new pulses we must change the average of the initial state. It is the ability of the 
system to accelerate into a new Galilean frame (hence modify its average) that permits the 
nucleation of new, individual pulses. When we break the Galilean invariance, the system 
can no longer make a Galilean boost to allow pulse creation. Instead, the rapid evolution 
resulting from violent radiative instability typically generates states that do not take the 

form of pulse trains. In this respect, then, Galilean invariance is crucial with regard to pulse 
dynamics in the thin-film equation (1). 
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APPENDIX A: ON GALILEAN INVARIANCE 

The PDE (1) possesses two invariances, namely translational and Galilean. In singular 
perturbation theory, such invariances are typically of primary importance; they provide free 
parameters with which we use to construct asymptotic solutions. 

Translational invariance allows us to centre solutions on the z-axis wherever we choose; 
if u(z, t )  is a solution, so must be u(z - 20, t ) ,  where 20 is constant. In the main text we 

employ this freedom to distribute a set of localized solutions, H(z-c t -&) ,  along the z-axis 
to construct an approximate pulse train. For well separated pulses, in the vicinity of any 
particular one, the ansatz, u - H(z - ct - &), is accurate to order E ,  and so there are <k 
free parameters. The arbitrariness involved in locating the pulses relative to one another is 
removed by singular perturbation methods. 

Galilean invariance allows us to add a boost, V, to a solution whilst simultaneously 
moving into a frame moving with speed V. Thus we also have the solution u(z - Vt ,  t )  + V. 
In principle, the presence of this extra degree of freedom should force us to permit another 
parameter (namely V), to depend weakly on time and fix it via singular perturbation theory. 

In the case of a single pulse we are therefore led to study a solution of the form, H(z - 
ct - & - v k t )  + V k ,  with & and Vk dependent upon the slow time, r. For multiple-pulse 
solutions we must generalize this ansatz, and the question then arises as to how to treat 
the individual Galilean boosts of all the pulses. A straightforward generalization of the 
single-pulse approximation leads us to pose an ansatz,13 

K 
u(z, t )  1: C [ H ( z  - ct - & - V k t )  + G]. 

k= 1 

In the vicinity of the I C t h  pulse, this becomes 

K 
u(z, t )  - H ( z  - ct - & - Gt) + 6 ,  (A2) 

j=l 

which cannot be accurate to order E unless 
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This implies that no individual boosts are permitted. Our only option for accounting for 

Galilean invariance is therefore to uniformly boost the entire set of pulses and fix = V .  In 
fact, this must be the case since free parameters are assigned exclusively to localized solutions, 
but any one boost contributes a constant offset to the solution everywhere. Therefore, each 

individual solution, H ( s  - et - & - Vkt) + V k ,  cannot be considered as localized unless all of 
the boosts are identical. 

Once we allow for a global Galilean shift of the whole pattern, our ansatz is modified to 

K 

u(2, t )  N H ( z  - ct - & - Vt) + v. 
k=l 

A straightforward calculation (multiplying the O(e) terms of the PDE by the null vector 1 
and integrating over e )  then generates the solvability condition d V / d ~  = 0. In other words, 
all effects of Galilean invariance (inertia) become buried at order c2. Hence we deal with an 
overdamped system. The ansatz (A4) was not employed by Elphick et al l3  They introduced 
a different ansatz like (Al )  that permitted individual Galilean shifts with the result that 
their asymptotic solution generated equations of motion for the positions of the pulses that 
were of artificially high order. 

The effects of Galilean invariance are also discussed by Chang and Demekhin.6 
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APPENDIX B: RADIATIVE PULSE DYNAMICS 

Asymptotic theory of pulse dynamics fails, as we have seen, when radiative modes bi- 
furcate to instability (Sec. 111). To take some account of this phenomenon, we now modify 
the singular perturbation theory. Our modification bears some similarity to the analysis of 

a nonlinear field theory presented in Ref. 14. We consider a situation in which there is a 
train of pulses whose separations are sufficiently wide to permit a radiation mode to become 
very weakly damped or even unstable. To represent the radiation mode, we introduce the 

expression, 
v(5, t )  = AV(E)e"' + c.c., 

where A is the modal amplitude, ~ ( 5 )  is its spatial eigenfunction and w its frequency. The 
slow decay or growth of the mode is accommodated by permitting the amplitude to vary on 
the long timescale: A = A(T) .  

In order to decide the magnitude of the mode's amplitude, we observe that rapid temporal 
oscillation cancels linear terms in A over long times. Radiation can therefore only affect the 
pulses nonlinearly through the term, dt(v*v). In order to bring this term into the evolution 
equation at O(e)  for the pulse positions, we must fix the wave field to be 

Our ansatz is now modified to become, 

ti(<, t )  = H k  + & ' / 2 V ( Z ,  t ,  T) + &R(t, <,T)  + &3/2S(t,  t, 7) f O(E2). 
k 

In addition, we expand the parameter, p, about the marginal condition, p - pg + ~ p l ,  

so that we may introduce a control parameter, 1-11. If we introduce these expansions into 
the governing PDE (5), and once more asymptotically order the various terms, we find the 
expression, 

€"2(iW + a,L)v+ 

28 



where we have used the short-hand notation, Hk = H ( c  - & ) ,  and 

The term of the third line of equation (B3) which contains the factor 1/& arises from the 

overlap of adjacent pulses. It represents nonlocal pulse interactions and, despite appearances, 
is order &.12 

At leading order we obtain a sum of expressions. Each expression in the sum is just the 

homoclinic equation, and so the order unity terms vanish automatically. At order E ~ / ~ ,  we 
find, 

( iw + a& = 0, 

which provides the definition of (p(<); the marginal, oscillatory eigenfunction of the operator, 
ag. 

At order E ,  we find an inhomogeneous, linear equation for R containing terms that depend 
on the “fast time,” t ,  and terms that do not. To account for both, we divide the correction 
R into two pieces, 

w, <, r )  = m, 7) + r( t ,  <, 7 - 1 7  

and then separate the order E terms of equation (B.3) into the two relations, 

and 

(at + 
Equation (B7) integrates once to 

= -[A2(pat(p e2wt + c.c.]. 

LR = c [ & H k  - PlH; - H k ( H k - l  + H k + I ) ]  - lA121~12, 
k 

This equation has a bounded solution for R only provided the inhomogeneous term satisfies 
the set of solvability conditions, 
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where 

Enforcing this condition amounts to determining the free parameters appearing in the 
leading-order solution. In the absence of the radiation mode, A = 0, and equation (B10) 
reduces to the usual equation of motion for the position of the pulse, given by equation (10). 

The second O(E) relation, (B8), can, in general, be straightforwardly integrated to give 
the solution, 

T = A2$(J)eZiwt + A 2 ( ~ ) c p ( [ ) e * ~ ~  + c.c., 

where $(J) is the spatial dependence of the particular solution and the term proportional to 

A2 is the homogeneous solution which we will not actually use. 

The terms of equation (B3) of order can be written in the form, 

(at - a&)S = -{&(Acp) + [p1ae3q7 + i+(Rv)]A + i3t($cp*)IA12A}eiwt + C.C. + (other terms), 

(B14) 
where by “other terms” we mean those that are either independent of t ,  or are harmonics 
of exp(iwt). In (B14), we have omitted a term proportional to &w, which can be shown to 
vanish. Because the eigenfunction depends upon r only through the implicit dependence on 
the pulse positions, we can further write, 

In order to derive a bounded solution for S, we must again enforce a solvability condi- 
tion by multiplying by cpt, the eigenfunction of the operator Lt that is adjoint to cp, and 
integrating. This yields an equation for the amplitude of the radiation mode, 

K .  
&A + = w’A -I- p11A12A, ( B m  

k=l 

which contains coefficients that depend on the pulse positions in a complicated, implicit way. 
The coefficient <k is given by, 

( & / a < k  7 P’) 
(cp,  cpt> 

<k = 

To record the form of a’ and p l ,  we first split the solution for R into two parts as follows, 



Hence &, is the solution for R without radiation. This makes the dependence of R on IAI2 
explicit, and we write 

Equation (B16) can be reduced to a form that resembles a conventional Landau equation 
for A, by introducing the expressions (B10) for &. This gives, 

&A = W A  + plA12A, 

with 
K K 

p = p' - QkCk and = a' - x [ F ( A k )  + F(-Ak+l)]Ck. ( B W  
k=l k = l  

In order to evolve the pulses and radiation using these equations, we would need to solve 
an eigenvalue problem together with its adjoint, and calculate $ at each step. This reveals 
the equations to be largely impractical, except in some less general, simpler situations. One 
such case, is when the underlying pulse train is a single-pulse state in a domain of size L. 
Equation (B10) then becomes, 

where c1 = F ( L )  + F(-L) .  If we solve (B5) and write the solution as p(J - [I), we find, 

t%p/& = -app. Every coefficient then becomes independent of r. Equation (B22) con- 

stitutes a standard Landau equation, and (B23) determines the change to the speed of the 
pulse train as a function of the amplitude of the radiation mode. Furthermore, the periodic, 
bifurcated solution branch is given by, 

]AI2 = -.Re (w)/Re (p ) ,  0324) 

which is quoted in Sec. V. 
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FIGURE CAPTIONS 

FIG. 1. Emergence of periodic pulse trains. Shown is a sequence of profiles of periodic 
solutions at p = 0.5 for several values of L (two periods are shown for each). 

FIG. 2. Stability properties of single-pulse states. Panel (a) shows the low-order part of the 
eigenvalue spectrum. Panel (b) shows the real part of the eigenvalues as a function 

of domain size. Panel (c) illustrates the eigenfunctions of the lowest-order modes. 
(Modes have been labelled according to the classification scheme outlined in the 
text.) 

FIG. 3. Stability of double-pulse states. Panel (a) shows the low-order part of the eigenvalue 
spectrum. Panel (b) shows growth rates as functions of domain size; panel (c) is 
a magnification of part of (b) in which the lattice mode’s eigenvalue, calculated 

according to asymptotic theory, is also plotted as the continuous curve. Panel (d) 
illustrates the eigenfunctions of the lowest-order modes. (Modes have been labelled 
according to the classification scheme outlined in the text. Note that the asymptotic 
eigenvalues are plotted in the original, unscaled time units, not on the -r-scale.) 

FIG. 4. Regime diagram for the symmetrical double-pulse states. The region containing 
equilibria with an unstable inertial mode is labeled by U I M .  

FIG. 5.  Adjustments between two-pulse equilibria for ,u = 0.7 and L = 28. Four cases 
are shown (two with dotted, two with dashed lines). The initial conditions are the 
unstable equilibrium, A, = 11.6, with slight perturbations added (the experiments 
portrayed by dashed lines have initial perturbations to the pulse shapes of order 
loe3, those with dotted lines, perturbations of order Two conditions relax 
to the symmetrical A, = A, = 14 state, and the others decay to the state with 
A, = 9.6. The complementary asymptotic calculations are also shown (solid lines). 
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The equilibria have eigenvalues, 

a1 llnum V=Y 
11.58 f0.0121 +0.0126 
14.00 -0.00489 -0.00470 
9.51 -0.144 -0.0618 

where qnum and qay are the numerical and asymptotic estimates. In the third case 
there is also a less strongly decaying complex mode with eigenvalue -0.061 f 0.572. 

FIG. 6. Adjustments between two-pulse equilibria for p = 0.4 and L = 28. Two experiments 
are shown with dotted lines. These relax from the state with A1 = 11.6 and A2 = 

16.4, to either the symmetrical, A1 = A2 = 14 state, or the periodic steady solution 

with AI = 9.6 and A2 = 18.4. Asymptotic calculations are also plotted (solid lines). 
The equilibria have eigenvalues, 

A1 llnum V=Y 
11.70 +0.0348 +0.0410 
14.00 -0.0256 -0.0221 
9.50 -0.0398 f 0.4452 -0.159 

FIG. 7. An adjustment near the border of radiative instability. Shown is evolution from near 
the unstable symmetrical state with 01 = A2 = 16.88 (dotted line) and an asymp- 
totic prediction (solid line). The unstable state has eigenvalues, Vnum = f0.00309 

and qay = f0.00271. The nearly neutral radiation mode has an eigenvalue with 
real part -2 x 

FIG. 8. The cubic coefficient, p, as a function of p for single-pulse states. 

FIG. 9. Finite-amplitude, radiative solution branches as functions of domain size for various 
values of p .  The figure presents the bifurcation curve in (a) amplitude, -4, defined 
by equation (5.7),  and (b) period. Curves are labelled according to the value of 

p. Panels (c), (d) and (e) are space-time surface plots of the solution, over two 
temporal periods at  the points marked in panel (a) for p = 0.4. They are shown 
in suitably moving reference frames to bring out their structure. Panel ( f )  shows a 
detail of the p = 0.4 solution branch. The stars delimit the stability of the branch. 
The vertical, dotted lines indicate the locations of the experiments that develop into 
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the limit cycles and strange objects displayed as phase portraits in Fig. 12. Stable 

parts of the branch are drawn as continuous curves, unstable ones as dashed curves. 

FIG. 10. Evolution of a subcritical radiative instability at p = 0.8 and L = 20.5. Panel 
(a) shows a contour plot of the solution. Panel (b) shows the world-lines of the 
principle peaks (defined to be peaks with amplitudes in excess of 0.7 times the 
global maximum of u(z, t ) ) .  

FIG. 11. Evolution of radiative instabilities at p = 0.5 and L = 40. Velocity frame with 
V = 1.3. Panels (a) and (c) show space-time surface plots, and (b) and (d) contour 
plots of the solutions, which more clearly reveal the dominant initial instability. 

FIG. 12. Phase portraits projected onto the plane, [u(z, t ) ,  u(y,  t ) ] ,  with y = x + L/7, in a 

moving frame. In panel (a), we display the portraits for the period one, two and 
four solutions. In panel (b), we present the objects we infer to be strange attractors. 
Panel (c), show portraits before and after the inverse period-doubling cascade (the 
three portraits are of a strange object, a solution near the period 8 bifurcation point, 
and a period one solution). 

FIG. 13. In panel (a) we plot the variation of the pulse positions in time for the chaotic 
solution at L = 20. A “pulse” in this picture is defined as a peak whose amplitude 
exceeds 0.7 times the global maximum of u(z, t ) ,  which includes the radiation mode 
over a fraction of its cycle. Panel (b) shows a power spectrum of the solution at a 
particular point in the moving frame. The frequency of the original periodic solution 
is labelled as f .  

FIG. 14. Phase portraits at L = 19 projected onto the A - A plane. Shown are period one, 
two and four limit cycles, and a ribbon-like object we interpret to be a strange at- 

tractor. Note that the objects shown, except for the first, do not have the symmetry 

A + L - A .  

FIG. 15. A plot of the maximal spacing values against the following maxima for the strange 
object shown in Fig. 14. Inset is a picture (inverted) of the Henon map for a = 1.7 
and b = -0.15. 
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FIG. 16. Plots of the pulse positions for the apparently chaotic attractors at p = 0.08, 0.075, 
0.07 and 0.0675. In each case, we show the positions relative to a moving frame. 
In the final panel, pulses annihilate and are created at three instants; this makes 
the identification of worldlines somewhat ambiguous and so we have plotted the 

positions as points. 

FIG. 17. Graphs of the maximum values of A against the following maximal spacings. The 

data is generated from several experiments and transients have not been suppressed, 
leading to several outlying points in the pictures. Three panels are shown corre- 
sponding to experiments at p = 0.08, 0.075 and 0.07. 

FIG. 18. Phase portraits of the developing strange object projected onto the A - A plane. 

In panel (a) we show portraits at p = 0.08 and 0.075; panel (b) shows the same 
at p = 0.07 and 0.0675. The trajectory of the solution at p = 0.0675 is continued 
up to the point for which two pulses apparently collide, and another one nucleates. 
In panel (b) the fixed point corresponding to the asymmetrical two-pulse state is 
shown by stars; it appears to lie within the strange set only through projection. 

FIG. 19. Space-time plot of an annihilation-nucleation event ( p  = 0.065). Panel (a) shows 

a space-time surfaces plot, and (b) the corresponding contour plot, together with 
stars indicating the positions of the principal peaks. 

FIG. 20. Irregular two-pulse state at p = 0.03. Panel (a) shows a space-time plot in a moving 
frame. Panel (b) shows a contour plot together with the positions of the principal 
peaks. Panel (c) shows a time series of the solution at a particular point in the 
moving frame, and (d) shows the power spectrum taken from it. 

FIG. 21. Solutions at p = 0.005 and p = 0. Panel (a) and (b) show space-time surfaces of 
the solutions in two suitably moving frames. Panel ( c )  shows time traces extracted 
from fixed locations, distance L / 4  apart. Panel (d) shows the intervals between 

annihilation-nucleation events (defined according to a minimum in the first asym- 
metrical Fourier coefficient). 

FIG. 22. Phase portraits at p = 0. Two of these portraits, (i) and (ii), were obtained by 
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plotting the solution at one location in the moving frame against the solution at 

another point, distance L/4 and L/8 away. The other portraits are the time series 
and its temporal derivative of (iii), the first asymmetrical Fourier coefficient, and of 
(iv), the solution amplitude at a particular point. 

FIG. 23. Evolution over longer timescales at p = 0.005. Plotted are the positions of the 

pulses against time. 

FIG. 24. Intermittent patterns at ,u = 0.13, L = 29. Shown is a particular contour level 

of the solution. Roughly, there are three phases: firstly there is a brief two-pulse 
state; this gives way to a symmetrical radiative state which finally subsides to an 

asymmetrical, doubly periodic state. 

FIG. 25. Evolution from the unstable two-pulse equilibrium at y = 0, L = 29. Two space- 
time surface plots are shown. 

FIG. 26. A collision between a singly peaked pulse and a pulse with two principal peaks. 

The picture shows a contour plot of the solution with the positions of the principal 
peaks superimposed. 

_____ ___-- 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any infomation, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

40 



60 

50 

40 

30 
h c1 

0 
I 

X 
3 
- 

20 

10 

0 

-loo 

Figure 1 : Development of periodic pulse trains 

L=6.3 

q/q L=7 - L=10 

5 L=l5 

Y L=20 

/ L=25 

10 20 30 
x-ct 

40 50 60 



.’.*... . .. . . * .  . 

-? t 

(u s m 
ii 



(a) Double-pulse spectrum 

Figure 3 

(b) Double-pulse eigenvalues against domain size 
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(b) Chaotic radiative solutions 
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Figure 14: Period-doubling cascade of saturated inertial-mode solutions 
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(a) The developing attractor 
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(a) The annihilation-nucleation event 
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Figure 25(a) Evolution for mu=O, L=29 
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Figure 25(b) Continued evolution for mu=O, L=29 
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Figure 2 6  A hard collision 


