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Abstract

Traditional numerical discretizations of conservative systems generically yield an arti�cial sec-

ular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm

that exactly conserves these invariants. We illustrate the general method by applying it to the three-

wave truncation of the Euler equations, the Lotka{Volterra predator{prey model, and the Kepler

problem. This method is discussed in the context of symplectic (phase space conserving) integra-

tion methods as well as nonsymplectic conservative methods. We comment on the application of our

method to general conservative systems.
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I. Introduction

For many years now symplectic integrators have been the subject of much productive study.

(See Channell and Scovel

[1]

for an overview; see also the recent book by Sanz-Serna and

Calvo

[2]

.) There are variety of Hamiltonian systems for which symplectic methods have

proven extremely useful, if not essential; but these methods do not constitute the last word on

integration techniques. As Ge and Marsden show,

[3]

exact energy conservation is, in general,

not possible with a symplectic method. Since the energy error is typically not secular but

rather oscillatory, it is commonly believed that exact energy conservation is not as important

a bene�t as preserving the phase space structure.

Concerning the numerical preservation of more general constants of motion, less is known.

Based on the work of Cooper,

[4]

Sanz-Serna

[2;5]

has shown that a restricted class of quadratic

invariants will be conserved by certain symplectic Runge{Kutta schemes. For the Runge{

Kutta methods studied by Cooper,

[4]

conservation of quadratic invariants necessarily requires

that the method be implicit. One method of ensuring the preservation of any constant of

motion is to use the constant to reduce the number of equations that must be solved. If

the constants are in involution, then an entire degree of freedom (one coordinate and one

momenta) can be removed from the dynamics for each such constant. This is seldom practical

since the relationship between the constants of motion and a given dynamical variable may

well be noninvertible (see the discussion in Gear

[6]

). The net result is that the reduced

equations tend to be more complicated than the original system (hence the \force" terms are

more expensive to compute); thus, in a system with a large number of degrees of freedom,

little advantage is gained. Furthermore, if the constants of motion are not in involution, the

system obtained by eliminating these invariants will be noncanonical,

[7;8]

resulting in even

greater complexity.

It may be that the system of interest is most naturally described by variables that give

rise to a noncanonical Hamiltonian structure. For noncanonical systems, Ge and Marsden

[3]

have provided a general construction for integrators that preserve both momentum maps and

the structure of the Poisson manifold. Channell and Scovel

[9]

have shown how to implement

these algorithms without the need of coordinatizing the con�guration space group. This

notwithstanding, they report that, with the exception of certain special (albeit important)
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forms of the Hamiltonian, such methods tend to be computationally expensive.

There is a further class of dynamical systems that is of interest, namely those systems

that are not Hamiltonian (canonical or otherwise) but still possess constants of motion.

Prime examples of such systems are transport equations, such as the Boltzmann equation.

Further examples are truncations of the Fourier-transformed Euler 
uid equations. The

untruncated equations constitute an in�nite-dimensional Hamiltonian �eld theory, however,

when the number of Fourier modes is reduced to a �nite set, the Hamiltonian structure is

typically lost even though energy and enstrophy are still conserved. One might (justi�ably)

argue that such a truncation is not appropriate, but presently there is no practical alternative.

(It is very much an open question as to the overall e�ect on the dynamics of such truncations.)

Given that these systems are not Hamiltonian, symplectic methods are of no use, while the

preservation of constants of motion is still of great interest.

A variety of methods for enforcing conservation of general invariants has been proposed.

Baylis and Isaacson

[10;11]

have proposed a two stage algorithm where the approximate solu-

tion, obtained by standard methods in the �rst stage, is projected onto the constraint surface

de�ned by the invariants in the second stage. Brasey and Hairer

[12]

have proposed a \half-

explicit" method where the projection (via a Lagrange multiplier) and integration stages are

merged together. LaBudde and Greenspan

[13;14]

have developed an algorithm for central

force problems that conserves both energy and angular momentum. Gear

[6;15]

advocates an

approach that amounts to an embedding of the original system into a higher dimensional

space, yielding a set of di�erential-algebraic equations, the solution of which coincides with

the solution of the original equations and preserves the invariants.

Our purpose in this paper is to present another approach to the development of exactly

conservative algorithms. We begin with a simple model problem, that is of interest in both


uid mechanics and plasma physics, which possess two quadratic invariants. We develop

integrators for this system that are explicit and exactly conserve both invariants. We further

illustrate our method by applying it to the Lotka{Volterra predator{prey model and to the

Kelper problem.
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II. A Model Problem

Our original interest in the issues of exact preservation of constants of motion arose in

the study of two-dimensional inviscid 
uid turbulence. As an illustration, consider the

\three-wave" problem obtained by restricting the Fourier-transformed Euler equations to

three modes

[16{18]

:

d 

K

dt

=M

K

 

P

 

Q

� S

K

( ) ; (1a)

d 

P

dt

=M

P

 

Q

 

K

� S

P

( ) ; (1b)

d 

Q

dt

=M

Q

 

K

 

P

� S

Q

( ) ; (1c)

where  = ( 

K

; 

P

; 

Q

), K, P , and Q are the magnitudes of the Fourier wavenumbers of

the three modes and the mode coupling coe�cients M

K

, M

P

and M

Q

satisfy

M

K

+M

P

+M

Q

= 0 ; (2)

and

K

2

M

K

+ P

2

M

P

+Q

2

M

Q

= 0 : (3)

This system possess two invariants: the total energy

E =

1

2

�

 

2

K

+  

2

P

+  

2

Q

�

(4)

and the total enstrophy

Z =

1

2

�

K

2

 

2

K

+ P

2

 

2

P

+Q

2

 

2

Q

�

: (5)

The constancy of these quantities follows directly from properties of S

k

:

X

k

 

k

S

k

= 0 ; (6a)

X

k

k

2

 

k

S

k

= 0 ; (6b)

where k ranges over the set fK;P;Qg. (These equations are isomorphic to Euler's equations

for the rigid body, in which case the second invariant is the total angular momentum.)
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When (1) is integrated numerically using standard methods neither E nor Z are exactly

conserved. This behavior is made apparent by applying Euler's method with a time step � :

 

k

(t+ �) =  

k

(t) + � S

k

; k 2 fK;P;Qg : (7)

The energy at the new time is

E(t+ �) =

1

2

X

k

�

 

k

(t) + � S

k

�

2

=

1

2

X

k

�

 

2

k

+ 2� S

k

 

k

+ �

2

S

2

k

�

= E(t) +

1

2

�

2

X

k

S

2

k

; (8)

where we have used (6a) in the last step. Thus the total energy is always increasing. A

similar calculation for the enstrophy gives

Z(t+ �) = Z(t) +

1

2

�

2

X

k

k

2

S

2

k

; (9)

which is likewise always increasing. For extremely long runs these results imply that a very

small time step is required to keep the accumulated error down to a given level | clearly an

undesirable situation.

Many authors have noted that the lack of preservation of constants of motion potentially

introduces signi�cant unphysical e�ects and as such these errors are, in some sense, more

important than those numerical errors that do not alter constants of motion. As de Frutos

and Sanz-Serna

[19]

point out, one can think of the local error in a numerical integration as

having two \components": one which leads to unphysical changes in the constants of motion

and another which does not. When these local errors accumulate over many time steps, the

former component is signi�cantly more harmful than the latter in that errors which lead to

changes in the constants of motion a�ect the qualitative nature of the solution, whereas other

errors only a�ect the quantitative results. (A similar observation regarding the accumulation

of error in area-preserving maps has been made by Greene.

[20]

) In essence we are saying

that nonconserving integrators have the potential to make \structural" errors in the solution

| an observation which agrees well with one's physical intuition. In the context of our
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model problem the implication is clear: keeping the time step small enough to maintain a

reasonable level of energy and enstrophy conservation means that we are likely to be using

more computational resources to obtain a given accuracy in the solution than would otherwise

be necessary with a conservative integrator.

Although the three-wave problem is both integrable and Hamiltonian, our ultimate in-

terest in this problem concerns the n-wave generalization of this system, which possesses

both energy and enstrophy invariants but is not Hamiltonian; hence, we are lead to consider

methods that do not rely on a particular geometrical structure. One might be tempted to

enforce energy and enstrophy conservation by using these invariants to eliminate two modes

from the dynamics. In this case the algebraic relations are simple enough to allow this, but

there is a compelling physical argument against this approach. The modes are associated

with di�erent length scales; the choice of which modes to eliminate in favor of the invariants

therefore has signi�cant physical implications. Furthermore, the numerical error responsible

for the lack of energy conservation could be imagined to contribute to a nonphysical energy

and enstrophy transport. In any event, since each mode makes a positive contribution to

both the energy and enstrophy, this scheme would eventually fail when the arti�cial growth

in the invariants surpasses the initial contributions of the eliminated modes. Doubtless this

scheme would exhibit nonphysical behavior long before this stage of failure was reached.

III. Conservative Integrators for the Model

Problem

In light of the above discussion, an algorithm that exactly conserves energy and enstrophy is

clearly desirable. As we have noted in Section I, a variety of implicit methods are known that

preserve quadratic invariants. While implicit methods have noteworthy stability properties,

they tend to be less computationally e�cient than explicit methods since they typically require

multiple evaluations of the \force" terms. Therefore, we turn our attention to the development

of explicit conservative methods for our model problem.

An elegant approach to this problem is found by borrowing from the ideas of backward

error analysis.

[2]

The essential idea is to construct a new system of equations that, under

the conventional (nonconservative) integrator, yields a conservative numerical approximation
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to the original equations. To this end, consider the alternative problem described by three

equations of the form

d 

k

dt

= S

k

( ) + f

k

: (10)

Our objective is to �nd an f

k

that guarantees exact energy and enstrophy conservation and

that vanishes in the limit of small step size. The form of f

k

will depend on the integration

algorithm. We begin by deriving f

k

for Euler's method. We then construct a second-order

predictor{corrector scheme.

A. Euler's Method

As a \proof of principle" test we develop a conservative version of Euler's method. While not

particularly useful in practice, Euler's method has the advantage that the algebra associated

with constructing the conservative method is quite straightforward.

Application of Euler's method to the modi�ed system yields

 

k

(t+ �) =  

k

(t) + �(S

k

+ f

k

): (11)

The energy at the new time,

E(t+ �) =

1

2

X

k

�

 

k

(t) + �

�

S

k

+ f

k

��

2

= E(t) +

1

2

X

k

�

2� f

k

 

k

+ �

2

(S

k

+ f

k

)

2

�

; (12)

will be conserved provided

X

k

�

2� f

k

 

k

+ �

2

(S

k

+ f

k

)

2

�

= 0 : (13)

There is considerable freedom in satisfying (13). To guarantee that our approximate solution

satis�es the original di�erential equation, it is necessary that f

k

vanish as � �! 0. That is,

for small time steps, we must recover the original integration algorithm. One would prefer

that f

k

not introduce additional couplings into the di�erential equations. In light of these

observations, let us try to satisfy (13) with the more restrictive condition that each term in

the sum must independently vanish:

2f

k

 

k

+ � (S

k

+ f

k

)

2

= 0 : (14)
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There is an additional motivation for splitting (13) into three equations, namely that for f

k

satisfying (14), the enstrophy will also be conserved. This equation is easily solved, yielding

� f

k

= �( 

k

+ � S

k

) + �

k

q

 

2

k

+ 2� S

k

 

k

: (15)

where �

k

� �

k

(t; �) is so far an unknown sign. Evaluation of (15) at � = 0 implies

that �

k

(t;0) = sgn( 

k

(t)). Upon substituting (15) into the Euler integrator, (11), we ob-

tain the following time stepping rule:

 

k

(t+ �) = �

k

q

 

2

k

+ 2� S

k

 

k

: (16)

It is now clear that �

k

(t; �) must in fact be the sign of  

k

(t+ �).

If  

k

(t) 6= 0, then for su�ciently small � the sign can be expressed explicitly as �

k

=

sgn( 

k

(t)). In this limit, f

k

then vanishes, or equivalently, (16) reduces to Euler's method:

 

k

(t+ �) = sgn( 

k

(t))

q

 

2

k

+ 2� S

k

 

k

�  

k

+ � S

k

: (17)

In this case the new algorithm predicts values of  

k

(t+ �) that are quite close to those given

by Euler's method | this is exactly what one would expect. The energy and enstrophy

errors arising from (7) are the result of small (but nontrivial) errors in  

k

(t+ �) that can be

corrected by making a slight modi�cation to the algorithm.

However, if  

k

(t) = 0, it is seen from (15) that f

k

has the nonzero limit �S

k

as � �! 0.

Consequently, (16) has a spurious �xed point at  

k

(t + �) = 0. Fortunately, a remedy for

this problem has been developed. Equation (16) may be used up to and including the time

step where  (t+ �) = 0. Likewise, a scheme that steps backwards in time from t+ 2� may

be used to integrate all the way back to t + � , where the two solutions must match. In this

manner, we have developed an algorithm for the case where  

k

(t) changes sign.

Another potential problem with (16) is that the argument of the radical can become

negative. In this case, we can rewrite the radical term as

p

 

k

�

k

, where �

k

=  

k

+ 2� S

k

is just the Euler approximation for a step size of 2� . The condition  

k

�

k

< 0 tells us that

Euler's method is predicting a sign change of  

k

between t and t + 2� ; hence, we are in
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the vicinity of  

k

= 0. To deal with this case, one adjusts the time step so that at the new

time  

k

= 0 and then proceeds with the implicit algorithm described above.

We give the name \Conservative Euler" (C{Euler) to this combined algorithm. In Fig-

ure 1 we compare the numerical solutions of the three-wave problem obtained using the

conventional Euler method with those obtained using C{Euler and with the exact solution.

For these calculations K =

p

3, P = 3, Q =

p

6, M

K

= 1, M

P

= 1 and M

Q

= �2. The

e�ect of the energy growth can be seen on the amplitudes computed by the Euler method.

With the exception of the points where  

k

changes sign, C{Euler is an explicit algorithm.

We will soon see that the gymnastics associated with the �xed point of the integrator just

described are a consequence of the low order of the Euler method and that a fully explicit

conservative integrator is possible.

t

 

K

 

P

 

Q

Figure 1: Solutions of the three-wave problem for the initial conditions  

K

=

p

1:5,  

P

= 0:0, and  

Q

=

p

1:5 computed using the conventional Euler

(Euler), the conservative Euler (C{Euler) and the exact solution (Exact).

A �xed time step of 0.02 was used. The unphysical energy growth in the

conventional Euler algorithm leads to large errors in the amplitudes.
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B. Predictor{Corrector

In practice, one would prefer to use a scheme that both is of higher order than Euler's method

and has better stability properties. We now turn to a simple second-order predictor{corrector

scheme, which we apply to our model problem (1):

e

 

k

=  

k

+ � S

k

(18a)

 

k

(t+ �) =  

k

+

�

2

�

S

k

+

e

S

k

�

; (18b)

where

e

S

k

= S

k

(

e

 ). As we will show, using a second-order method overcomes the �xed-point

problem that we encountered with Euler's method.

The energy now evolves according to

E(t+ �) =

1

2

X

k

�

 

k

(t)

2

+ �  

k

�

S

k

+

e

S

k

�

+

�

2

4

�

S

k

+

e

S

k

�

2

�

= E(t) +

1

2

X

k

�

�( 

k

S

k

+

e

 

k

e

S

k

)� �

2

S

k

e

S

k

+

�

2

4

(S

k

+

e

S

k

)

2

�

= E(t) +

�

2

8

X

k

�

S

k

�

e

S

k

�

2

; (19)

where we have used the de�nition of

e

 

k

and the properties of S

k

in the �nal step. A similar

calculation gives

Z(t+ �) = Z(t) +

�

2

8

X

k

k

2

�

S

k

�

e

S

k

�

2

: (20)

Again we see that the numerical method yields an ever increasing energy and enstrophy.

y

To obtain a conservative version of this algorithm, we proceed as above by applying the

predictor{corrector method to the modi�ed equation of motion, (10), giving

e

 

k

=  

k

+ �

�

S

k

+ f

k

�

; (21a)

 

k

(t+ �) =  

k

+

�

2

�

S

k

+ f

k

+

e

S

k

+

e

f

k

�

: (21b)

y

One might be tempted to conclude that any conventional method will yield a positive-de�nite energy

growth. While nonconservation is generic, the sign of the energy error is typically inde�nite. For example,

a second-order Runge{Kutta method gives oscillatory errors in energy and enstrophy, although on average

both the energy and enstrophy grow.
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As we commented above, the conservative algorithm makes only small corrections to the

values of  

k

(t+�). This immediately brings to mind the underlying philosophy of the predic-

tor{corrector algorithms; in fact, one might suspect that energy and enstrophy conservation

can be achieved by modifying only the corrector part of the integrator. Since the predictor

is merely an intermediate approximation, there is surely no need for it to be conservative.

Thus we can replace (21) with the simpler prescription

e

 

k

=  

k

+ � S

k

; (22a)

 

k

(t+ �) =  

k

+

�

2

�

S

k

+

e

S

k

+ g

k

�

: (22b)

As before, we determine g

k

by demanding conservation of energy and enstrophy. The

energy at t+ � is given by

E(t+ �) =

1

2

X

k

�

 

k

(t)

2

+ �  

k

�

S

k

+

e

S

k

+ g

k

�

+

�

2

4

�

S

k

+

e

S

k

+ g

k

�

2

�

= E(t) +

�

2

X

k

h

g

k

 

k

� � S

k

e

S

k

+

�

4

(S

k

+

e

S

k

+ g

k

)

2

i

; (23)

where the last step follows from the de�nition of the predictor and the properties of S

k

. We

see that energy will be conserved provided that

X

k

h

g

k

 

k

� � S

k

e

S

k

+

�

4

(S

k

+

e

S

k

+ g

k

)

2

i

= 0 : (24)

Similarly, enstrophy will be conserved if

X

k

k

2

h

g

k

 

k

� � S

k

e

S

k

+

�

4

(S

k

+

e

S

k

+ g

k

)

2

i

= 0 : (25)

We can satisfy these conditions simultaneously if we can solve

g

k

 

k

� � S

k

e

S

k

+

�

4

(S

k

+

e

S

k

+ g

k

)

2

= 0 (26)

for g

k

. Some straightforward algebra gives

�

2

g

k

= �

h

 

k

+

�

2

�

S

k

+

e

S

k

�i

+ �

k

r

 

2

k

+ �

�

 

k

S

k

+

e

 

k

e

S

k

�

; (27)
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where we choose �

k

= �1 such that as � �! 0, g

k

vanishes. We consider the limit of small �

in two cases. If  

k

is nonzero, then for small enough � , both  

k

and

e

 

k

have the same sign

and we can expand the radical to give

�

2

g

k

= � 

k

�

�

2

�

S

k

+

e

S

k

�

+ �

k

sgn( 

k

)

h

 

k

+

�

2

�

S

k

+

e

S

k

�i

+ O(�

2

) ; (28)

leading us to choose �

k

= sgn( 

k

). Otherwise, if  

k

= 0, then

e

 

k

= � S

k

and

e

S

k

= S

k

+O(�),

so that

�

2

g

k

= �� S

k

+ �

k

q

�

2

S

2

k

+ O(�

2

)

= �� S

k

+ � �

k

sgn(S

k

)S

k

+ O(�

2

) : (29)

In this case we take �

k

= sgn(S

k

) = sgn(

e

 

k

). In the previous case, we noted, for small � ,

that  

k

and

e

 

k

have the same sign. Therefore, the choice �

k

= sgn(

e

 

k

) will always provide

the correct limiting behavior.

Using the expression (29) for g

k

in our modi�ed predictor{corrector algorithm, (22), we

obtain the following conservative integrator:

e

 

k

=  

k

+ � S

k

; (30a)

 

k

(t+ �) = e�

k

r

 

2

k

+ �

�

 

k

S

k

+

e

 

k

e

S

k

�

; (30b)

where e�

k

= sgn(

e

 

k

). Unlike the C{Euler algorithm, this algorithm, which we call \conserva-

tive predictor{corrector," (C{PC), does not su�er from �xed points. It is still possible that

the argument of the radical can become negative; however, this merely indicates that the step

size is too large.

We now compare the numerical solutions of our model problem obtained with the con-

ventional predictor{corrector method with those obtained from C{PC, (30). Our results are

summarized in Figures 2{5. In Figure 2 we show  

k

(t) computed with both methods as well

as the exact solution. The errors in the two approximate solutions are displayed in Figure 3.

The conservative predictor{corrector is seen to yield a more accurate solution. In Figure 4

we plot �E = E(t)� E(0) and �Z = Z(t)� Z(0) for both methods.
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t

 

K

 

P

 

Q

Figure 2: Solutions of the three-wave problem for the initial conditions  

K

=

p

1:5,

 

P

= 0:0, and  

Q

=

p

1:5 computed using the predictor{corrector (PC), the

conservative predictor{corrector (C{PC), and the exact solution (Exact). A �xed

time step of 0.2 was used.

Figure 3: Di�erences between the computed and exact solutions in Figure 2.
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Figure 4: Change in energy and enstrophy for the conventional predictor{corrector

method (PC) and the conservative predictor{corrector (C{PC).

�

e

r

r

o

r

i

n

 

K

Figure 5: Single-step error in mode K for the initial conditions  

K

=

p

1:5,

 

P

= 1:0, and  

Q

=

p

1:5 for the conventional and conservative predictor{cor-

rector methods. The results of �tting the error to a power law A�

n

is shown,

indicating that conservative algorithm is of second order, as expected.
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In the limit of small step size, C{PC reduces to the conventional predictor{corrector. To

illustrate this property we �t the error for a single step of mode K to a power law:

� 

k

= A�

n

: (31)

The results of this �t, shown for both methods in Figure 5, are consistent with our expectation

that both the conventional and conservative predictor{corrector methods are second order.

In constructing our conservative algorithms, we have essentially altered the manner in

which truncation error enters the solution. Where this error has gone is an important question.

It is unreasonable, of course, to expect that the truncation error has vanished. In fact, all

of the truncation error is now lumped into the only place left | the phase of the solutions.

Since our ultimate application is to 
uid turbulence, the nature of this phase error could be

of great importance. There are two general possibilities: either this error manifests itself as

a global phase shift, with all three waves exhibiting the same phase error with respect to

the exact solution, or each wave receives a di�erent phase error, so that relative phase shifts

begin to develop. Of the two possibilities, the �rst is of little consequence in a turbulence

simulation, whereas the second could, arguably, be as bad (from a structural point of view)

as the energy growth that we have sought to eliminate.

Since our model problem is integrable, we can easily distinguish between these cases. In

a plot where each of the axes is one of the dynamical variables, an integrable system yields a

simple closed curve. For our case, such a plot is shown in Figure 6. The solid line is the orbit

computed with the conservative integrator while the dots represent the solution obtained from

the conventional predictor{corrector. Since the conservative solution yields a closed curve,

we may conclude that the additional phase error introduced is global and thus the relative

phases of the waves are not a�ected by our method. This supports the general observation

made by de Frutos and Sanz-Serna regarding the nature of local truncation error in systems

with invariants.

[19]
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Figure 6: Integration of the three-wave problem using a conventional second-

order predictor{corrector (solid line) and the conservative predictor{corrector

(dots). The e�ect of the 4% energy gain by the conventional method is clearly

visible.
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C. Generalizations

The C{PC algorithm has two important straightforward generalizations: to n-waves and to

complex  

k

. The n-wave generalization is immediate | nowhere in our derivations of the

conservative algorithms have we made use of the number of modes. Both C{Euler and C{

PC can be applied to a system with an arbitrary number of modes, where the energy and

enstrophy expressions are the appropriate generalizations of (4) and (5) respectively.

The generalization to complex amplitudes proceeds as follows. Consider a system with n

complex-valued amplitudes  

k

. We split these amplitudes into real and imaginary parts  

r

k

and  

i

k

, respectively, which evolve according to

d 

r

k

dt

= S

r

k

( ) ; (32a)

d 

i

k

dt

= S

i

k

( ) ; (32b)

where S

r

k

and S

i

k

are the real and imaginary parts of the source function S

k

. For this system

the energy and enstrophy are given by

E =

1

2

X

k

�

�

 

k

�

�

2

(33)

and

Z =

1

2

X

k

k

2

�

�

 

k

�

�

2

; (34)

where k ranges over the wavenumbers of the n modes. The properties of the source terms

that guarantee conservation of energy and enstrophy are

X

k

 

r

k

S

r

k

+  

i

k

S

i

k

= 0 ; (35a)

X

k

k

2

�

 

r

k

S

r

k

+  

i

k

S

i

k

�

= 0; (35b)

hence, we see that a system of n complex modes is completely equivalent to a system of 2n

real modes. Therefore, the complex version of our conservative algorithms follows by applying

the real algorithm separately to each component of the complex amplitudes.
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D. Discussion

It is worth saying a few words about computational e�ciency. There are two sources of com-

putational overhead associated with the conservative algorithms compared to the conventional

methods. Here we concentrate on C{PC since C{Euler is not appropriate for practical use.

In terms of operations, C{PC requires two additional multiplications and a square-root eval-

uation over the standard predictor{corrector method. Importantly C{PC uses no additional

storage. The cost of the extra operations will, in most cases, be negligible compared to

the cost of one evaluation of S

k

. The square root is a cause for some concern as it may

involve a function call. In any event, on modern hardware the square-root operation is only

a small numbers of times (typically �ve to seven) slower than multiplication. Furthermore,

it is reasonable to expect that a conservative integrator will obtain a given global accuracy

with a larger time step than the corresponding conventional integrator, thereby ameliorating

the overhead problem. The second source of overhead is the occasional need to reduce the

time step when the argument of the square root becomes negative. In practice we �nd that

this happens approximately 10% of the time and, in light of the above discussion, we feel that

this is not signi�cant.

Since the C{PC method reduces to the usual predictor{corrector algorithm in the small

time-step limit, we expect that C{PC will inherit some of the stability properties of this

method. While this does not establish the stability properties for large time steps, we �nd in

practice that the C{PC method is numerically stable.

In numerical studies of the Euler 
uid equations, an arti�cial viscosity is often added to

the dynamical equations to compensate partially for the spurious growth of the energy and

enstrophy introduced by the numerical scheme. The viscosity is usually taken to vary as a

power of wavenumber. However, only one of the two invariants can be exactly conserved

by such a procedure and even this requires that the prescribed viscosity coe�cient be time

dependent. Moreover, this remedy can be shown to contaminate the modal evolution. In

contrast, the conservative algorithms developed in this work faithfully reproduce the modal

dynamics.

In addition these methods can be applied to dissipative systems where the change in

energy has a speci�c physical origin. The same numerical errors that previously led to
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nonconservation of energy will now contribute to the net energy change, thus having the

e�ect of altering the underlying physics. For example, in a viscous 
uid simulation the

amount of energy leaving a mode is determined by the viscosity. It is a straightforward

matter to use our methods to guarantee that the modal energy evolution is precisely that

given by the physics. It is an open question and a subject of further investigation by the

authors as to whether errors of this sort have the same structural e�ect on the solution as in

the strictly conservative case.

There is a simple interpretation of both the C{Euler and C{PC algorithms that sheds

light both on their form and on the existence of the two branches, labeled by �

k

. As numerous

authors have observed, most traditional numerical methods conserve the linear invariants of a

system. Consequently, one might be led to consider the possibility of transforming  

k

to new

variables, in terms of which the invariants are linear. For the three-wave problem, this can

be accomplished by making the transformation �

k

=  

2

k

. Upon applying the Euler method in

the �

k

space and transforming back by taking the square root, one immediately obtains (16).

This indicates that our restriction of the general constraint (13) to the condition (14) merely

ensures that the modal energies evolve in a manner consistent with the Euler discretization

of the energy equations. Below we will give derivations of integrators for other systems based

on this idea. The C{PC algorithm can be viewed in the same light, except that the predictor

is taken to have the simpler, nonconserving form. This also explains the  

k

= 0 �xed point

in C{Euler: the modal energies have a second-order zero at  

k

= 0, thus it is no wonder that

a �rst-order method fails at that point.

IV. Lotka{Volterra

As a further demonstration, consider the Lotka{Volterra predator{prey equations:

dx

dt

= ��x(1� y) ; (36a)

dy

dt

= y(1� x) : (36b)

These equations are surprisingly hard to integrate numerically since they are very susceptible

to round-o� error. With the exception of Kahan's

[21]

nontraditional method (which Sanz-

Serna

[22]

has shown to be symplectic) there are virtually no other methods that can integrate
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this system without eventually failing due to round-o� error.

This is a noncanonical Hamiltonian system

[22]

with Hamiltonian

H = x� logx+ �y � � logy (37)

and Poisson bracket

ff;gg = xy

�

@f

@x

@g

@y

�

@g

@x

@f

@y

�

: (38)

Just as with the three-wave problem, conventional integrators such as Euler and predic-

tor{corrector fail to conserve total energy H. It happens that the dynamics of this system

are particularly sensitive to the value of the energy, which explains the di�culty that these

methods encounter when integrating (36).

It is possible to derive a conservative algorithm for this systems using the methods of

backwards error analysis outlined above. The transcendental nature of the functions in the

energy greatly complicates the procedure and prevents an analytical solution of the rele-

vant equations. In light of these problems, we take an alternative approach to deriving a

conservative integrator. We proceed using the observation that standard methods such as

predictor{corrector exactly preserve linear invariants of a system of di�erential equations.

To exploit this behavior, we introduce new variables �

1

and �

2

de�ned by

�

1

= x� logx; (39a)

�

2

= � (y � logy) : (39b)

This transformation was chosen so that H is a linear function of �

1

and �

2

. Using the original

equations of motion, we obtain

d�

1

dt

= �(x� 1)(y � 1) ; (40a)

d�

2

dt

= ��(x� 1)(y � 1) : (40b)

Applying the usual second-order predictor{corrector to these equations yields

e

�

1

= �

1

+ � �(x� 1)(y � 1) ; (41a)

e

�

2

= �

1

� � �(x� 1)(y � 1) ; (41b)

�

1

(t+ �) = �

1

+

�

2

� [(x� 1)(y � 1) + (ex� 1)(ey � 1)] ; (41c)

�

2

(t+ �) = �

2

�

�

2

� [(x� 1)(y � 1) + (ex� 1)(ey � 1)] : (41d)
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Strictly speaking, here ex and ey are to be computed from

e

�

1

and

e

�

2

by inverting (39a) and (39b)

respectively. Following the philosophy of the previous section, we instead compute ex and ey

from the original equations of motion to obtain the following conservative integrator:

ex = x� � �x(1� y) ; (42a)

ey = y + � y(1� x) ; (42b)

�

1

(t+ �) = �

1

+

�

2

� [(x� 1)(y � 1) + (ex� 1)(ey � 1)] ; (42c)

�

2

(t+ �) = �

2

�

�

2

� [(x� 1)(y � 1) + (ex� 1)(ey � 1)] : (42d)

Here x(t + �) and y(t + �) are determined from �

1

(t + �) and �

2

(t + �) by inverting (39).

Since this inversion requires solving a transcendental equation, in practice it will have to be

carried out iteratively. Although the expressions for x(t+ �) and y(t+ �) can not be written

in closed form, (42) is still an explicit scheme.

Notice that �

1

and �

2

are not one-to-one functions of x and y; �

1

has a minimum value

of 1 at x = 1, while �

2

has a minimum of � at y = 1. These minimum values play the same

role as the point  

k

= 0 in the three-wave problem. Fortunately, the remedy is similar also:

if either �

1

or �

2

are pushed below their respective minima, this indicates that the time step

is too large. Temporarily reducing the time step alleviates this problem.

To illustrate the e�ectiveness of our conservative algorithm, we integrate (36) taking � =

1:5 with an initial condition of x(0) = 1:0 and y(0) = 0:4. In Figure 7 we show a comparison

between the standard predictor{corrector and C{PC. The C{PC orbit exactly conserves en-

ergy and forms a closed curve. The predictor{corrector orbit spirals outward; a consequence

of its energy gain.

We provide this example to illustrate the generality of our method; however, since there

is not an explicit expression for the inverse of the transformation (39) and a symplectic algo-

rithm is known,

[21;22]

this method seems to be of little practical value due to the computational

overhead of iteratively determining x and y from �

1

and �

2

.
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Figure 7: Integration of the Lotka{Volterra problem using a standard second-order predic-

tor{corrector and the C{PC algorithm each with 8 � 10

5

time steps of size 0:02. A point is

plotted every 200 time steps. The solid line represents the energy surface containing the initial

condition. The points obtained from C{PC all lie on this curve. The dramatic e�ect of the 1:2%

energy gain by the standard algorithm is clearly visible.
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V. Kepler Problem

As a �nal example we consider the problem of a single particle moving in a gravitational

potential.

[23;24]

Let r be the position vector of the particle of mass m and �(r), where r = jrj,

be the gravitational potential. The equations of motion for this system are

dr

dt

= v ; (43a)

dv

dt

= �r�: (43b)

This is a conservative system with the Hamiltonian

H =

1

2

mv

2

+ �(r) : (44)

As with all central force problems the total angular momentum, L = mr � v, is conserved,

con�ning the motion to the plane perpendicular to L. We exploit this feature by aligning our

coordinate system with the
b
z direction parallel to L and introducing polar coordinates (r;�)

in the plane perpendicular to L.

In these coordinates the equations of motion become

dr

dt

= v

r

; (45a)

dv

r

dt

=

`

2

m

2

r

3

�

1

m

�

0

(r); (45b)

d�

dt

=

l

mr

2

; (45c)

where ` is the magnitude of the angular momentum and the Hamiltonian can be written as

H =

1

2

mv

2

r

+

`

2

2mr

2

+ �(r) : (46)

Unlike all other central force problems, the Kepler problem has an additional constant of

motion known as the Runge{Lenz vector,

A = v �L+ �r : (47)

This invariant is somewhat unique in that it is not the consequence of a symmetry of the

equations of motion but is a result of the potential being proportional to 1=r. Conservation
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of the Runge{Lenz vector can be associated with the fact that the orientation of the bound

orbits of this system is �xed. It turns out the these orbits are elliptical and oriented with the

major axis in the direction of A. We say \associated" here since in central force problems

with any other force law, the orientation of the bound orbits precesses. Furthermore, the

Runge{Lenz vector is in some sense redundant: it is not needed to integrate the equation of

motion, as there are already enough constants of motion to render the problem integrable.

We adopt the initial conditions r(0) = r

0

and �(0) = v

r

(0) = 0, so that the vector A is

in the x-direction. Writing the potential as �(r) = �K=r, where K is a constant, we see that

the magnitude of A is given by

A =

`

2

mr

0

�K : (48)

A. A Conservative Integrator for the Kepler

Problem

The Kepler problem is an interesting example to consider in a study of conservative integra-

tors, not only as a preliminary to studying multi-body problems (which are of astronomical

signi�cance), but also because of the Runge-Lenz vector. While this vector is functionally

dependent on the Hamiltonian and on the angular momentum, exact conservation of these

invariants neither guarantees conservation of the Runge{Lenz vector nor prevents the com-

puted orbits from exhibiting a spurious precession. Hence numerical conservation of the

Runge{Lenz vector is as much a structural issue as is conservation of energy.

We now illustrate a conservative predictor{corrector (C{PC) for integrating (45) that

exactly conserves H and A. The predictor is conventional:

er = r + � v

r

; (49a)

ev

r

= v

r

+ �

1

mr

2

�

`

2

mr

�K

�

; (49b)

e

� = � + �

`

mr

2

: (49c)

To obtain the corrector equations, we transform (r;v

r

) to the new variables

�

1

= �

K

r

; (50a)
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�

2

=

1

2

mv

2

r

+

1

2

l

2

mr

2

; (50b)

so that H = �

1

+ �

2

. Expressed in these new variables, the Hamiltonian is linear and will be

conserved by conventional integrators. The corrector is given by

�

1

(t+ �) = �

1

+� ; (51a)

�

2

(t+ �) = �

2

�� ; (51b)

where

� =

�

2

�

Kv

r

r

2

+

Kev

r

er

2

�

: (52)

In terms of the original variables, (51) may be rewritten as

r(t+ �) =

�K

�K=r +�

; (53a)

v

r

(t+ �) = sgn(ev

r

)

s

v

2

r

+

L

2

m

2

�

1

r

2

�

1

er

2

�

� 2

�

m

: (53b)

We still need an equation for �. Thus far, we have enforced the invariance of H, but

not A. Since only one integration variable remains to be determined, the conservation of A

enforces the following constraint on �:

A

�

v

r

cos� �

`

mr

sin�

�

= �K v

r

; (54)

as is seen upon taking the v-projection of (47). To avoid the complexities associated with

multiply-branched solutions, the most e�cient method for solving (54) appears to be Newton-

Raphson iteration, using �(t) for the initial estimate. Convergence is rapid; typically, only

3 or 4 iterations are required.

In Figures 8 and 9 we present our integration results for the conventional C{PC and PC

algorithms, respectively, adopting the initial parameters r = 1, v

r

= � = 0, ` = 1, K = 3=2,

and m = 1. To allow an even comparison, a slightly larger time step size was chosen for
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Figure 8: Solution of the Kepler problem computed using the conventional pre-

dictor{corrector. A total of 1313 �xed time steps of 0.08 were used.

Figure 9: Solution of the Kepler problem computed using the conservative pre-

dictor{corrector. A total of 1000 �xed time steps of 0.105 were used.
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the C{PC run such that the amount of computer time needed to reach the �nal time was the

same in both cases. The new algorithm dramatically outperforms the traditional integrator.

The arti�cial precession of the trajectory exhibited by the predictor{corrector result does not

occur in the C{PC solution, due to the explicit conservation of the Runge{Lenz vector.

B. Discussion

We have demonstrated an explicit conservative integrator for the Kepler problem that cap-

tures all of its important structural features. LaBudde and Greenspan

[13;14]

have constructed

integrators for this problem that conserve both energy and angular momentum but it is

unclear whether their method exhibits orbital precession.

The extension of these ideas to multi-body problems is a complicated task. Although

each of the components of the angular momentum are constants of motion, they are not in

involution. In the simple Kepler problem we are able to avoid any di�culties associated with

this behavior because the motion is con�ned to a plane perpendicular to the direction of the

angular momentum. In the multi-body problem this is no longer the case, which signi�cantly

complicates matters.

VI. Conclusions

We have demonstrated a method, based on the ideas of backwards error analysis, for deriving

explicit , exactly conservative integration algorithms. This method consists of modifying the

dynamical equations in such a way that when a particular conventional integration algorithm

is applied to the modi�ed equations, one obtains a solution consistent with the original

equations that exactly conserves a system's invariants. This method will generally yield

an explicit algorithm when an explicit conventional algorithm is chosen as the basis for

the conservative scheme. We have seen that this method can be interpreted in terms of a

transformation to a new set of variables in which the invariants in question are linear. This

promises to be a general method for deriving conservative integrators.

In Section III, we saw that for a system with quadratic invariants, conservative integrators

can be developed that are simple and computationally e�cient. The case of quadratic invari-

ants is of particular interest. The invariants in Lie{Poisson systems are typically quadratic
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Casimirs. Furthermore, for Hamiltonian systems with Lie group symmetry, a Lie{Poisson

system is the natural result of reduction; thus, our methods are applicable to integrating the

dynamics on the Poisson manifold of such systems. For the integration of canonical Hamilto-

nian systems where the con�guration space is a Lie group Simo, Lewis and co-workers

[25{28]

have developed a series of methods that are symplectic and conserve momentum. One could

imagine a hybrid of these algorithms: a conservative integrator of the type discussed above

for integrating the dynamics on the Poisson manifold coupled to the algorithms of Simo et

al. for reconstruction the full phase space 
ow.

In addition to the desirable physical aspects of exact energy conservation there is some

evidence

[25]

that such conservation leads to nonlinear numerical stability of the algorithm.

Furthermore, any conservative integration method developed for general systems could cer-

tainly be applied to Hamiltonian systems, providing an interesting comparison with symplec-

tic methods. For example, this might shed some light on the choice between preserving phase

space structure and exact conservation of energy. In fact, one could envision using the local

change in phase space volume as a diagnostic of the performance of a conservative integrator.

These ideas will be the subject of a future paper.
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