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Abstract. Continuous sedimentation of solid particles in a liquid takes place in a clarifier-
thickener unit, which has one feed inlet and two outlets. The process can be modeled by a nonlinear
scalar conservation law with point source and discontinuous flux function. This paper presents exis-
tence and uniqueness results in the case of varying cross-sectional area and a complete classification
of the steady-state solutions when the cross-sectional area decreases with depth. The classification
is utilized to formulate a static control strategy for the large discontinuity called the sludge blan-
ket that appears in steady-state operation. A numerical algorithm and a few simulations are also
presented.
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1. Introduction. Continuous sedimentation of solid particles takes place in a
liquid in a clarifier-thickener unit (or settler); see Fig. 2.1. Such a process is used, for
example, in waste water treatment and in the chemical and mineral industries. The
purpose is to provide a clear liquid at the top and a high concentration of solids at
the bottom. Discontinuities in the concentration profile are observed in reality and
under normal operating conditions there is a large discontinuity in the thickening zone
called the sludge blanket.

Previous works. Previous studies of the clarifier-thickener unit have usually been
confined to the modeling of the thickening zone with emphasis on the sludge blan-
ket and the prediction of the underflow concentration; see [2]–[6], [14], [16]–[19], [33],
[36]. Dynamic models of the entire clarifier-thickener unit mostly have been pre-
sented as simulation models, usually in the waste water research field. Some re-
cent references of one-dimensional models are [16], [21], [35], [37], [38]. Because of
the nonlinear phenomena of the continuous sedimentation process, it is difficult to
classify the steady-state solutions for different values of the feed concentration and
the volume flows; see [7], [29], [30], [34]. Particularly interesting results are pre-
sented by Chancelier, de Lara, and Pacard [7]. They introduce a good mathemat-
ical definition of the often-used term limiting flux, the maximum mass-flux capac-
ity of the thickening zone at steady state. Their main result is a classification of
the steady-state behavior of a settler with decreasing cross-sectional area with re-
spect to the limiting flux. When the settler is fed with a mass flux greater than
the limiting flux, it becomes overloaded, which means that the effluent at the top
is not clear water. They also show that any steady-state solution has at most
one discontinuity in the clarification zone. Solutions in the thickening zone are de-
scribed only qualitatively, because of a general assumption on the constitutive settling
flux function.
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In [11], the author presented a dynamic model of a settler with constant cross-
sectional area, including the prediction of the effluent and underflow concentrations.
Construction of solutions and a proof of uniqueness were obtained by using the method
of characteristics and a generalized entropy condition according to the theory in [10].
The different steady-state solutions were also presented explicitly. In [9], analysis
of the sedimentation of multicomponent particles is presented. The results of [9],
[11] have been used for an implementation of the settler model within a simulation
model of a waste water treatment plant; see [13]. Comparisons with other models are
presented in [25], [26].

The basic model equation for the sedimentation in the thickening zone used in
almost all the references above is a scalar conservation law of the form ut +f(u)x = 0.
It is well known that the entropy condition by Oleinik [32] guarantees a unique,
physically relevant solution with stable discontinuities. The equivalence between the
entropy condition and the so-called viscous profile condition, where the unique solution
is obtained by adding a small diffusion or viscosity term to the conservation law, is
well established; see, e.g., [22], [27].

When it comes to the modeling of the entire settler including the feed inlet and
the outlets, a number of ad hoc assumptions have been presented in the literature. To
avoid such assumptions, a generalized entropy condition, condition Γ, was presented in
[10], and it is the key behind the results in [11] and in the present paper. This condition
is used to establish the unique connection between the concentration of the feed inlet
with the concentrations in the settler just above and below the feed point and the
connection between the outlet concentrations and the concentrations at the top and
the bottom of the settler. The equivalence between condition Γ and the viscous profile
condition is presented in [12]. The stability of the viscous profiles is analyzed in [15].

Contents. In section 2 we describe the clarifier-thickener unit and the basic con-
stitutive assumption, by Kynch [28], used in the modeling of sedimentation: the flux
of particles per unit area and time is a function of the concentration only. Hence,
there is no modeling of effects such as compression or diffusion. The conservation of
mass can be used to obtain the scalar conservation law

A(x)
∂u

∂t
+

∂

∂x

(
A(x)F (u, x)

)
= S(t)δ(x),(1.1)

where u = u(x, t) is the concentration, δ is the Dirac measure, S is a source term
modeling the feed inlet, A is the cross-sectional area, and F is a flux function, which
is discontinuous at the inlet (x = 0) and at the two outlets. Section 3 treats dynamic
solutions. All steady-state solutions of the problem are presented and classified in
section 4.2. Examples, a control strategy for the optimal steady-state operation,
and a discussion on the design of a settler can be found in section 4.3. To support
the analytical results, a numerical algorithm and a few simulations are presented in
section 5. Conclusions can be found in section 6.

Main results. The aim of the paper is to generalize the results in the preceding
paper [11] to the case of nonconstant cross-sectional area and to give a control strategy
for the steady-state behavior. One reason for the work was to answer some of the open
questions addressed by Chancelier, de Lara, and Pacard [7]. Theorem 3.1 contains
results on local existence and uniqueness of dynamic solutions. Theorems 4.4 and 4.6
contain the classifications of the steady-state solutions for a settler with strictly de-
creasing and constant cross-sectional area, respectively. Theorem 4.7 contains explicit
formulas for the static control of the process. The numerical algorithm in section 5 is
one outcome of this paper that has practical applications.
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The differences in method and results from the presentation of steady-state so-
lutions by Chancelier, de Lara, and Parcard [7] are the following. Their approach
starts by smoothing the point source and the discontinuity of the flux function at
the feed inlet so that the well-known entropy condition and jump condition for scalar
conservation laws with a continuous flux function can be used. In section 4 of the
present paper, the steady-state solutions, including the effluent and the underflow
concentrations, are obtained in a more direct way by using results from [11] involving
condition Γ. With a slightly stronger constitutive assumption, the results of Chance-
lier, de Lara, and Pacard [7] are extended by a thorough description of the solutions in
the thickening zone. In particular, it is shown that there is at most one discontinuity,
the sludge blanket, in the thickening zone when the cross-sectional area is decreasing.
Furthermore, it turns out that the steady-state behavior of a settler with constant
cross-sectional area A is a degenerate subcase of the case with a strictly decreasing
A. For example, if a sludge blanket is possible, its level is uniquely determined by the
feed concentration and the volume flows if A is strictly decreasing, whereas it can be
located anywhere if A is constant. We also want to emphasize that the effluent and
the underflow concentrations are generally not the same as the concentrations at the
top and the bottom within the settler; see Lemma 4.1. For example, at the top of
the clarification zone it is possible to have a specific high concentration of solids, such
that the gravity settling downward is balanced by the volume flow upwards. Hence,
the solids stay fixed, yielding a high concentration at the top and still the effluent
concentration is zero. Analogously, the underflow concentration is generally larger
than the bottom concentration in the thickening zone if the cross-sectional area is
discontinuous between the bottom and the outflow pipe.

Related works. Away from the discontinuities of F (u, ·) and the source, (1.1) can
be written in the form A(x)ut +

(
A(x)f(u,A(x))

)
x

= 0, or

ut + f
(
u,A(x)

)
x

= A′(x)g
(
u,A(x)

)
.(1.2)

Equation (1.2) can be augmented to a nonstrictly hyperbolic system by adding the
equation at = 0, where a = A(x). This type of inhomogeneous conservation law (with
f(·, A) convex and a = A(x) continuous) has been analyzed by, for example, Liu [31]
and Isaacson and Temple [23], [24] with respect to the structure of elementary waves
in a neighborhood of a state where a wave speed of (1.2) is zero (resonance) and the
multiple steady states which then appear. In the present paper, we are interested in
large discontinuities in a specific application where f(·, A) is nonconvex. Furthermore,
the multiple steady states of (1.1) originate basically from the discontinuities of F (u, ·)
and the delta function in the source term. The latter can be included in F , and a
discontinuity in F (u, ·), say at x = 0, can be replaced by a variable a by adding the
scalar equation at + k(a)x = 0 having Heaviside’s step function H(x) as the solution.
For physical reasons (viscosity arguments), the function k should not be chosen as the
zero function; see [12]. Since also a is discontinuous, (1.1) cannot easily be covered by
the theory in [23], [24]. This is also indicated by the viscous profile analysis in [12],
[15], where it is shown that the smoothing of a discontinuity in F (u, ·) (to obtain a
continuous a) should not be made without introducing a certain amount of viscosity
in order to obtain physical stable solutions.

2. Continuous sedimentation.

2.1. The clarifier-thickener unit. Continuous sedimentation of solid particles
in a liquid takes place in a clarifier-thickener unit or settler; see Fig. 2.1. Let u(x, t)
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FIG. 2.1. Schematic picture of the continuous clarifier-thickener unit. The indices stand for:
e = effluent, f = feed, and u = underflow.

denote the concentration (mass per unit volume), where t is the time coordinate and
x is the one-dimensional space coordinate; see Fig. 2.1. The height of the clarification
zone is denoted by H and the depth of the thickening zone by D. At x = 0 the settler
is fed with suspended solids at a concentration uf (t) and at a constant flow rate Qf

(volume per unit time). A high concentration of solids is taken out at the underflow
at x = D at a flow rate Qu. It is assumed that 0 < Qu < Qf . The effluent flow
Qe at x = −H is consequently defined by the flow condition Qe = Qf − Qu > 0.
The cross-sectional area A(x) is assumed to be C1 for −H < x < D. Let us directly
extend this function to the whole real axis by letting A(x) = A(−H) for x < −H
and A(x) = A(D) for x > D. We define the bulk velocities in the thickening and
clarification zone as

v(x) =
Qu

A(x)
, w(x) =

Qe

A(x)
,(2.1)

with directions shown in Fig. 2.1. For the source term, it will be convenient to use
the notation

S(t) = Qfuf (t), s(t) =
S(t)
A(0)

,

where S(t) is the mass per unit time entering the settler. The mass per unit time
leaving the settler through the outlets is the sum of Qeue(t) and Quuu(t), where the
effluent concentration ue(t) and the underflow concentration uu(t) should be deter-
mined by the model.

The volume flows Qf , Qu, and, hence, Qe may vary with time. The generalization
to the case when Qf (t), etc. are piecewise smooth is straightforward, and to avoid
cumbersome notation we assume that the Q-flows are constant.
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2.2. A constitutive assumption. Denote the maximum packing concentration
of solid particles or sludge by umax. In batch sedimentation there is no bulk flow and
the solids settle due to gravity. The settling velocity is assumed to depend only on the
concentration of particles, vsettl(u). This assumption was introduced by Kynch [28].
The downward flux of sludge (mass per unit time and unit area), the batch settling
flux, is defined as φ(u) = uvsettl(u). We shall use a common batch settling flux φ with
the following properties; see Fig. 2.2,

φ ∈ C2,

φ(0) = φ(umax) = 0,
φ(u) > 0, u ∈ (0, umax),
φ has exactly one inflection point uinfl ∈ (0, umax),
φ′′(u) < 0, u ∈ [0, uinfl).

(2.2)

Chancelier, de Lara, and Pacard [7] use the weaker condition v′
settl(u) < 0 for u ≥ 0,

which admits more than one inflection point of φ. (Note that vsettl(u) = φ(u)/u
implies v′

settl(u) = ψ(u)/u2 with ψ(u) = φ′(u)u − φ(u). If φ satisfies (2.2), then
ψ(0) = 0, ψ(umax) = φ′(umax)umax ≤ 0 and ψ′(u) = φ′′(u)u. Hence, ψ(u) < 0 for
u ∈ (0, umax) and v′

settl(u) < 0 for u ∈ (0, umax).) With our choice of φ, it is possible
to obtain a detailed description of the steady-state solutions in the thickening zone;
see section 4.2. Furthermore, by letting umax be finite (instead of infinite as in [7])
with φ′(umax) < 0, there are more qualitatively different cases (see section 4) that
might be of interest in chemical engineering; cf. [1], [8].

2.3. A mathematical model. In continuous sedimentation the volume flows
Qu and Qe give rise to the flux terms v(x)u and −w(x)u, respectively, which are
superimposed on the batch settling flux φ(u) to yield the total flux in the clarification
and the thickening zones. We extend the space variable to the whole real line by
assuming that outside the settler the particles have the same speed as the liquid.
Thus, we define a total flux function, built up by the flux functions in the respective
region, as

F (u, x) =


ge(u) = −w(−H)u, x < −H,
g(u, x) = φ(u) − w(x)u, −H < x < 0,
f(u, x) = φ(u) + v(x)u, 0 < x < D,

fu(u) = v(D)u, x > D.

(2.3)

Typical flux curves φ, f , and g are shown in Fig. 2.2. In the following, we write
g(u,−H) for the limits g(u,−H + 0), etc.

Assume that the Q-flows and, hence, the flux function F given by (2.3) are known
as well as the feed concentration uf (hence the source function S). The concentration
distribution u(x, t) in the settler and the two functions ue and uu are unknown.
Introduce the limits

u±(t) = lim
δ↘0

u(±δ, t).
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uinfl umax

φ(u)

u

f(u, x1) = φ(u) + v(x1)u

g(u, x0) = φ(u) − w(x0)u

FIG. 2.2. The flux curves φ, f(·, x1) and g(·, x0), where −H < x0 < 0 < x1 < D.

The conservation law, preservation of mass, can be used to obtain, for t > 0,

∂tu+ ∂xge(u) = 0, x < −H,
A(x)∂tu+ ∂x

(
A(x)g(u, x)

)
= 0, −H < x < 0,

A(x)∂tu+ ∂x

(
A(x)f(u, x)

)
= 0, 0 < x < D,

∂tu+ ∂xfu(u) = 0, x > D,

g
(
u(−H + 0, t),−H)

= ge

(
ue(t)

)
,

f
(
u+(t), 0

)
= g

(
u−(t), 0

)
+ s(t),

fu

(
uu(t)

)
= f

(
u(D − 0, t), D

)
,

u(x, 0) = u0(x), x ∈ R.

(2.4)

We assume that u0(x), uf (t) ∈ [0, umax]. Note that the speed of the characteristics in
the region x < −H is −w(−H) < 0 and in the region x > D is v(D) > 0. This means
that the solution is known if u(x, t), ue(t) ≡ u(−H− 0, t), and uu(t) ≡ u(D+0, t) are
known for −H < x < D and t > 0. The weak formulation of (2.4) is

(2.5)
∫ ∞

0

∫ ∞

−∞
A(x)

(
u∂tϕ+ F (u, x)∂xϕ

)
dx dt+

∫ ∞

−∞
A(x)u0(x)ϕ(x, 0) dx

+
∫ ∞

0
S(t)ϕ(0, t) dt = 0, ϕ ∈ C∞

0 (R2),

with F given by (2.3). By standard arguments it can be shown that (2.4) is equivalent
to (2.5) if u(x, t) is a function that is smooth except along x = −H, x = 0, and x = D.
A function u(x, t) is said to be piecewise smooth if it is bounded and C1 except along a
finite number of C1-curves such that the left and right limits of u along discontinuity
curves exist. A function of one variable is said to be piecewise monotone if there are
at most a finite number of points where a shift of monotonicity occurs.

3. Results on dynamic solutions. In [11], existence and uniqueness results for
(2.4) were given in the case of a constant cross-sectional area A. The construction of
solutions in that case can be generalized rather straightforward to the case of varying
A(x). It depends heavily on a generalized entropy condition, condition Γ, handling
the solution at the discontinuities of F (u, ·), and the notion of a regular Cauchy
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problem. Since these concepts need cumbersome notation, and since they have been
described thoroughly in [10]–[12], we refer to those papers for the definitions and
examples. Briefly described, condition Γ converts flow conditions (conservation of
mass) into well-defined boundary values on both sides of a discontinuity of F (u, ·).
The regularity assumption is made only for technical reasons and causes no restriction
in the application to sedimentation. Here we shall formulate the theorem, but only
outline the proof.

THEOREM 3.1. Assume that A(x), u0(x), and uf (t) are piecewise monotone,
u0(x) and uf (t) are piecewise smooth, A(x) ∈ C1(−H,D), uf (t) has bounded deriva-
tive, and 0 ≤ u0(x), uf (t) ≤ umax, x ∈ R, t ≥ 0. If (2.4) is regular, then there exists
a unique piecewise smooth function u(x, t), x ∈ R, t ∈ [0, ε) for some ε > 0, satisfy-
ing condition Γ, and with u±(t), ue(t), and uu(t) piecewise monotone. This solution
satisfies 0 ≤ u(x, t), ue(t), uu(t) ≤ umax for x ∈ R, t ∈ [0, ε).

Proof. The construction of solutions consists in finding boundary functions on
either side of the discontinuities of F (u, ·) such that the method of characteristics can
be applied, for small t > 0, to the initial boundary value problem that arises. Away
from the discontinuities of F (u, ·), the solution is determined by the characteristics
from the x-axis. In the thickening zone, for example, the equation is A(x)∂tu +
∂x

(
A(x)f(u, x)

)
= 0 and it can be written

∂tu+ ∂uf(u, x)ux = −A′(x)
A(x)

φ(u).

Hence, a characteristic x = x(t) and its concentration values are governed by the
equations

dx

dt
= ∂uf(u, x),

du

dt
= −A′(x)

A(x)
φ(u).

(3.1)

Now consider the discontinuity of F (u, ·) at x = 0. It is straightforward to check
that the boundary functions, used in the proof in [11], on either side of the t-axis
will depend on the functions f(·, 0), g(·, 0), S, and on functions of the type ũ(0+, t),
where ũ is the unique solution (Kružkov [27]) of the auxiliary problem

A(x)∂tũ+ ∂x

(
A(x)f(ũ, x)

)
= 0,

ũ(x, 0) =

{
a, x < 0,
u(x, 0), x > 0,

(3.2)

where a is a constant, depending on A(0). The technical assumptions on regularity
concern piecewise smoothness and piecewise monotonicity of ũ(0+, ·) and the cor-
responding function to left of the t-axis. These two functions are used in formulas
depending on A(0) that finally define the correct boundary functions; see [11].

The proof of uniqueness of the constructed solution consists in treating several
cases. The division of these depends on the continuity and monotonicity both of
the functions ũ(0+, t), f

(
ũ(0+, t), 0

)
, etc. for small t > 0 and of u(x, 0) for x in a

neighborhood of x = 0. Arguments such as “∂uf
(
ũ(0+, t), 0

)
< 0 for small t > 0

implies that ũ(0+, t) is uniquely determined by the characteristics from the positive
x-axis” still hold by continuity of A and A′ and by equations (3.1). It is also of
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importance that the jump and entropy conditions for a discontinuity along the t-
axis of the solution of (3.2) are independent of A(x). The jump condition is simply
f(u−, 0) = f(u+, 0), and the entropy condition reads f(ũ,0)−f(u−,0)

ũ−u−
≥ 0 for all ũ

between u− and u+.
Finally, the boundedness condition on the solution is proved as follows. With

U = A(x)u, the equation in the thickening zone is ∂tU + ∂x

(
A(x)f(U/A(x), x)

)
= 0

and the ordering principle for two solutions U and U1 holds (Kružkov [27]): 0 ≤
U(x, 0) ≤ U1(x, 0) implies 0 ≤ U(x, t) ≤ U1(x, t). Now U1(x, t) ≡ A(x)umax is a
solution, because φ(umax) = 0 implies

∂tU1 + ∂x

(
A(x)f

(
U1/A(x), x

))
= 0 + ∂x

(
A(x)φ(umax) +Quumax

)
= 0.

For the clarification zone, replace Qu by −Qe and f by g. It follows that 0 ≤ u ≤ umax
for the concentrations u carried by the characteristics from the x-axis. The same
bound can be obtained for the boundary functions at the discontinuities of F (u, ·)
(see [11]) by using the cross-sectional areas A(−H), A(0), and A(D) at the respective
discontinuity.

4. Steady-state behavior. In order to capture the steady-state behavior of
the settler for different values of uf and the Q-flows, a number of characteristic con-
centrations and fluxes are defined in section 4.1. One of these is the limiting flux,
introduced by Chancelier, de Lara, and Pacard [7], which determines whether there
is an overflow or not, as well as the type of solution in the clarification zone. It turns
out that when A′(x) < 0 in the thickening zone, there is actually only one possibility
for a stationary discontinuity. This is usually referred to as the sludge blanket. We
shall use this definition, whereas Chancelier, de Lara, and Pacard [7] define the sludge
blanket as being the uppermost discontinuity between clear water and solids. This
appears in the clarification zone or at the feed level. The following terms are often
used for the steady-state behavior. The settler is said to be

• in optimal operation if there is a sludge blanket in the thickening zone and
the concentration in the clarification zone is zero;

• underloaded if no sludge blanket is possible and the concentration in the
clarification zone is zero;

• overloaded if the effluent concentration ue > 0.
As we shall see below, there are steady-state solutions which do not fit into any of
these three definitions. For example, there may be a discontinuity in the clarification
zone but the effluent concentration is still zero.

Owing to the appearance of the sludge blanket, we introduce the sludge blanket
flux Φsb(x1), which is a decreasing function of the sludge blanket depth x1. There
are roughly three different types of stationary solution in the thickening zone. If the
applied flux in the thickening zone lies in the range of Φsb, then there will be a sludge
blanket (possibly a degenerate discontinuity); see Fig. 4.2. If the applied flux is lower
(higher), then the solution is continuous and low (high), respectively.

Section 4.3 contains some interpretations of the results obtained in section 4.2
with emphasis on the static control of the sludge blanket depth by using Qu as a
control parameter.

4.1. Definitions and notation. First, we define some characteristic concentra-
tions that depend on the flux functions f and g. For fixed x ∈ (−H, 0), denote the
unique strictly positive zero of g(·, x) by uz(x), so that

uz(x) > 0,
(
uz(x), x

)
= 0;
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see Fig. 4.1. Write uz(−H) instead of uz(−H+0). For very high bulk velocities w(x)
such that g(·, x) is decreasing, we define uz(x) = 0. If this happens, some of the cases
in this paper will be empty and we shall refrain from commenting upon this anymore.
The concentration uz(x) is such that the gravity settling downward is balanced by
the volume flow upward. Hence, a layer of sludge in the clarification zone with this
concentration will be at rest.

Let h(u, v) = φ(u) + vu, where φ has properties (2.2). Then f(u, x) = h
(
u, v(x)

)
.

Note that the inflection point uinfl of φ is the same as the inflection point of h(·, v)
independently of v. It turns out that the strict local minimizer of h(·, v) in the interval
(0, umax), denoted ǔ(v), is important for the behavior of the solution in the thickening
zone. It is defined implicitly by

∂uh
(
ǔ(v), v

)
= φ′(ǔ(v)) + v = 0

as long as φ′′(ǔ(v)) 6= 0. The properties (2.2) of φ imply that uinfl < ǔ(v) < umax
and that for such values of v

ǔ′(v) = − 1
φ′′(ǔ(v)) < 0.

Therefore, we define

v̄ = −φ′(umax) > 0 ⇐⇒ ∂uh(umax, v̄) = 0,

which is the bulk velocity such that the minimizer ǔ(v) equals umax, and

¯̄v = inf
{
v : h(·, v) is strictly increasing

}
.

Hence, ǔ(v) decreases from umax to uinfl as v increases from v̄ to ¯̄v. Define, for fixed
x ∈ (0, D),

uM (x) =


umax, v(x) ≤ v̄,

ǔ
(
v(x)

)
, v̄ < v(x) < ¯̄v,

uinfl, v(x) ≥ ¯̄v,

um(x) = min
{
u : f(u, x) = f

(
uM (x), x

)}
;

(4.1)

see Fig. 4.1. Note that the assumption A′(x) < 0 in the thickening zone implies that

v′(x) > 0, 0 < x < D,

u′
M (x) < 0, v̄ < v(x) < ¯̄v,
u′

m(x) > 0, 0 < v(x) < ¯̄v,

and that all these derivatives are continuous.
A term frequently used to describe the behavior of the settler is the limiting flux,

which denotes the maximum flux capacity of the underflow. Chancelier, de Lara,
and Pacard [7] introduce the following definition, which we apply directly to our flux
function f(·, 0). Given Qu and uf , define the limiting flux as

Φlim = A(0) min
uf ≤u≤umax

f(u, 0)

=

{
A(0)f(uf , 0), uf ∈ [

0, um(0)
] ∪ [

uM (0), umax
]
,

A(0)f
(
uM (0), 0

)
, uf ∈ (

um(0), uM (0)
)
.
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f(u, x1) = φ(u) + v(x1)u

um(x1) uM (x1)

g(u, x0) = φ(u) − w(x0)u

uz(x0) u

FIG. 4.1. The zero uz(x0) of g(·, x0) and the two characteristic concentrations of f(·, x1) in the
case when v̄ < v(x1) < ¯̄v. The slope of the dotted line is v(x1) and −H < x0 < 0 < x1 < D.

Note that Φlim is independent of Qf and Qe and that Φlim is a continuous increasing
function of uf , constant on the interval

(
um(0), uM (0)

)
, strictly increasing otherwise.

Let u(x, t) ≡ us(x) denote a steady-state, or stationary, solution of (2.4) with

us(x) =

{
ul(x), −H < x < 0,
ur(x), 0 < x < D.

Hence, u− = ul(0−), u+ = ur(0+), and we let ul(−H) ≡ ul(−H + 0) and ur(D) ≡
ur(D− 0). Denote the steady-state fluxes in the clarification and the thickening zone
by Φclar ≥ 0 and Φthick ≥ 0, respectively, so that S = Φclar + Φthick. (Recall that
S = Qfuf .) Then ul(x) and ur(x) are defined implicitly by the equations

Φclar = −A(x)g
(
ul(x), x

)
, −H < x < 0,

Φthick = A(x)f
(
ur(x), x

)
, 0 < x < D,

and the effluent and underflow concentrations satisfy

Φclar = Qeue,

Φthick = Quuu.

In section 4.2, it turns out that, when A′(x) < 0 in the thickening zone, there
is actually only one possibility for a stationary discontinuity, the sludge blanket. If
x ∈ (0, D) is the location of the discontinuity, then the left and right limits of the
discontinuity are um(x) and uM (x); see Fig. 4.1. To describe this situation we define
the function

Φsb(x) = A(x)f
(
uM (x), x

)
=


Quumax, v(x) ≤ v̄,

A(x)φ
(
uM (x)

)
+QuuM (x), v̄ < v(x) < ¯̄v,

A(x)φ(uinfl) +Quuinfl, v(x) ≥ ¯̄v.

When x is the depth of the sludge blanket, this function gives the sludge blanket flux.
Differentiating and using ∂uf

(
uM (x), x

) ≡ 0 for v̄ < v(x) < ¯̄v gives

Φ′
sb(x) = A′(x)φ

(
uM (x)

)
=


0, v(x) ≤ v̄,

A′(x)φ
(
uM (x)

)
, v̄ < v(x) < ¯̄v,

A′(x)φ(uinfl), v(x) ≥ ¯̄v.
(4.2)
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4.2. The steady-state solutions. A steady-state solution of (2.4) is obtained
by determining the stationary concentration distribution us(x) (in terms of ul(x) and
ur(x)) and the constant effluent and underflow concentrations ue and uu. Suppos-
ing that us(x) is piecewise smooth and piecewise monotone, Theorem 3.1 guarantees
uniqueness. Furthermore, we assume that A′(x) < 0 in the thickening zone. Then the
properties (2.2) of φ are sufficient to conclude that there is at most one discontinuity
in the thickening zone and that ur(x) is increasing. The procedure for obtaining the
steady-state solutions consists in extracting all possible combinations of the concen-
trations at the point source and at the two outlets from [11] and combining these with
the steady-state solutions in the clarification and thickening zone. However, we shall
only describe the main line here and refer to the appendix for the tedious details.

If uf = 0, then 0 = S = Φclar +Φthick and since both these fluxes are nonnegative,
they must be zero. Hence, us(x) ≡ 0 and ue = uu = 0. We assume from now on that
uf > 0.

LEMMA 4.1. Necessary conditions on the concentrations at the outlets at steady
state are

• either ul(−H) = ue = 0 or ul(−H) ≥ uz(−H) with ue = ul(−H) −
φ
(
ul(−H)

)
/w(−H);

• ur(D) ∈ [
0, um(D)

] ∪ [
uM (D), umax

]
with uu = ur(D) + φ

(
ur(D)

)
/v(D).

Proof. See section 9 in [11].
The lemma implies that the effluent and underflow concentrations satisfy ue ≤

ul(−H) and uu ≥ ur(D) with equality if and only if the concentrations are zero or
umax.

LEMMA 4.2. Possible concentration distributions and fluxes in the clarification
zone at steady state are

CI. ul(x) = 0, x ∈ (−H, 0), with Φclar = 0;

CII. ul(x) =

{
0, −H < x < x0

uz(x), x0 < x < 0
for some x0 ∈ [−H, 0) with Φclar = 0 (here,

x0 = −H means ul(x) ≡ uz(x));
CIII. ul(x) is smooth with ul(x) > uz(x), x ∈ (−H, 0), with Φclar > 0.

Furthermore, when ul(x) ≥ uz(x), then

u′
l(x) ≶ 0 ⇐⇒ A′(x) ≶ 0.

The steady-state solutions in the thickening zone are a bit more complicated to
sort out. The appearance of a sludge blanket is particularly important. So far, we
have associated the sludge blanket with a discontinuity. Before presenting Lemma 4.3
and Theorem 4.4, we augment the concept of the sludge blanket at x1 by including
the case when Qu is so large or A(x) so small that f(·, x1) is increasing, i.e., when
v(x1) ≥ ¯̄v. Then the discontinuity degenerates, since um(x1) = uM (x1) = uinfl, by
(4.1) (TIIIB in Lemma 4.3); see the rightmost graph of Fig. 4.3.

The assumption A′(x) < 0 for 0 < x < D implies that v′(x) > 0 and, by (4.2),
that

Φ′
sb(x)

{
= 0, v(x) ≤ v̄

< 0, v(x) > v̄.
(4.3)

Hence, Φsb(0) ≥ Φsb(D) with equality if and only if v(D) ≤ v̄.
LEMMA 4.3. Assume that A′(x) < 0 for 0 < x < D. Then there are three different

possible types of concentration distribution in the thickening zone at steady state. In
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all cases, ur is smooth with u′
r(x) > 0 when ur(x) ∈ (0, umax) except possibly at the

sludge blanket. The types are the following:
TI. ur(x) < um(x), x ∈ (0, D), with Φthick ≤ Φsb(D).

TII. A. ur(x) = umax, x ∈ (0, D), with Φthick ≥ Φsb(0).
B. uM (x) < ur(x) < umax, x ∈ (0, D), with v(0) > v̄ and Φthick ≥ Φsb(0).

TIII. There exists a sludge blanket at x1 ∈ (0, D), which is uniquely determined by
Φsb(D) < Φthick = Φsb(x1) < Φsb(0) (for given Φthick). Also v̄ < v(x1) holds.
The solution satisfies

0 < ur(x)

{
< um(x), 0 < x < x1,

> uM (x), x1 < x < D,

with ur(x1 −0) = um(x1), ur(x1 +0) = uM (x1), ur(x) < umax for x ∈ (0, D),
and either

A. v(x1) < ¯̄v: ur(x) is discontinuous only at x1 with u′
r(x) → ∞ as x ↘ x1;

cf. Fig. 4.2; or
B. v(x1) ≥ ¯̄v: ur(x) is continuous and um(x1) = uM (x1) = uinfl; cf. the

rightmost graph in Fig. 4.3.
Now we shall put together the stationary solutions ul(x) and ur(x) obtained in

Lemmas 4.2 and 4.3 by using Lemma A.1 of the appendix.
THEOREM 4.4. Referring to the different types of solution, CI, etc., in Lemmas 4.2

and 4.3, the following classification of steady-state behavior holds for a settler with
A′(x) < 0 for 0 < x < D. The symbol ∅ denotes an impossible case.

F S < Φlim. The solution in the clarification zone is of type CI with ue = 0 and
Φclar = 0. Hence Φthick = S and uu = S/Qu. In the thickening zone the solutions are
the following when v(D) > v̄ ⇔ Φsb(D) < Φsb(0):

Φsb(D)
S ≤ Φsb(D) < S < Φsb(0) S ≥ Φsb(0)

0 < uf ≤ uM (0) ∅
uM (0) TI, u+ TIII, u+ TIIB,

< uf ≤ umax < min
(
uf , um(0)

)
< min

(
uf , um(0)

)
uM (0) ≤ u+ < uf

For v(D) ≤ v̄ ⇔ Φsb(x) ≡ Φsb(0) the following holds:

S < Φsb(0) S ≥ Φsb(0)
0 < uf ≤ umax TI, u+ < min

(
uf , um(0)

) ∅

F S = Φlim. CI or CII (u− = 0 or u− = uz(0)) with ue = 0 and Φclar = 0.
Hence, Φthick = S and uu = S/Qu. For v(D) > v̄ the following holds:

Φsb(D)
S ≤ Φsb(D) < S < Φsb(0) S = Φsb(0) S > Φsb(0)

0 < uf TI, u+ TIII, u+
< um(0) = uf = uz(0) = uf = uz(0) ∅

TIIA (v(0) ≤ v̄) ∅
um(0) ≤ uf or B, uf ≤ uz(0)

≤ uM (0) ∅ ∅ ≤ uM (0) = u+

uM (0) TII, u+
< uf ≤ umax ∅ = uf = uz(0)
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For v(D) ≤ v̄ the following holds:

S < Φsb(0) S = Φsb(0) S > Φsb(0)
TI,

0 < uf < um(0) u+ = uf = uz(0) ∅
TIIA, uf ≤ uz(0) ∅

um(0) ≤ uf ≤ umax ∅ ≤ uM (0) = u+

F S > Φlim. CIII with u− > uz(0), Φthick = Φlim, Φclar = S − Φlim, ue =
Φclar/Qe > 0, uu = Φlim/Qu. Then

Φlim < Φsb(0) Φlim ≥ Φsb(0)
0 < uf < um(0) TI, u− = u+ = uf ∅

TIIA (v(0) ≤ v̄) or B,
um(0) ≤ uf ≤ uM (0) ∅ uf < u− < uM (0) = u+

TIIA (v(0) ≤ v̄) or B,
uM (0) < uf ≤ umax ∅ u− = u+ = uf

The tables and the equation f(u+, 0) = g(u−, 0) + s determine the concentrations
u− ≤ u+ uniquely.

For a discussion on the different cases above we refer to section 4.3.
COROLLARY 4.5. Assume that A′(x) < 0 for x ∈ (0, D). Given Qf , Qu, and uf ,

there is precisely one steady-state solution of (2.4) except for the clarification zone
when S = Φlim, corresponding to the solution-type CII of Lemma 4.2.

Although the steady-state solutions in the case of a constant cross-sectional area
have been presented in [11], we shall here give a classification similar to that in
Theorem 4.4. When A is constant, v, um, uM , uz, and Φsb are constants and us(x)
is piecewise constant. Lemma 4.2 gives the possibilities for ul(x). It is appropriate to
redefine the types of solution in the thickening zone slightly so that the sludge blanket
in type TIII is allowed to be located at x = 0 or x = D. This simplifies the summary,
which we present in the following theorem. We omit the proof since it is easier than
that of Theorem 4.4.

THEOREM 4.6. Assume that A′(x) = 0 for 0 < x < D. The different types
of solutions in the clarification zone, CI, etc., are given by Lemma 4.2 and in the
thickening zone there are three possible types:

TI. ur(x) = u+ < um, x ∈ (0, D), with Φthick < Φsb.
TII. ur(x) = ur(D) > uM , x ∈ (0, D), with Φthick > Φsb.

TIII. ur(x) =

{
um, 0 < x < x1

uM , x1 < x < D
for some x1 ∈ [0, D] with Φthick = Φsb.

The classification of the steady-state solutions is as follows.
F S < Φlim. CI, ue = 0, Φthick = S, and uu = S/Qu. In the thickening zone,

the following holds:

S < Φsb S = Φsb S > Φsb

0 < uf < uM ∅ ∅
uM ≤ uf ≤ umax TI TIII TII, uM < u+ < uf < umax

F S = Φlim. CI or CII, ue = 0, Φthick = S and uu = S/Qu. In the thickening
zone, the following holds:
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S < Φsb S = Φsb S > Φsb

0 < uf < um TI, u+ = uf = uz ∅
TIII,

um ≤ uf ≤ uM uf ≤ uz ≤ uM ∅
uM < uf ≤ umax ∅ ∅ TII, u+ = uf = uz

F S > Φlim. CIII, Φthick = Φlim, Φclar = S − Φlim, ue = Φclar/Qe > 0, uu =
Φlim/Qu. In the thickening zone, the following holds:

Φlim < Φsb Φlim = Φsb Φlim > Φsb

0 < uf < um TI, u− = u+ = uf ∅
uf = um TIII, u− = um

ur(x) ≡ uM , ∅
um < uf ≤ uM ∅ uf ≤ u− ≤ uM

TII,
uM < uf ≤ umax ∅ u− = u+ = uf

The tables and the equation f(u+, 0) = g(u−, 0) + s determine the concentrations
u− ≤ u+ uniquely.

Note that the sludge blanket can be located anywhere when A is constant.

4.3. Optimal steady-state operation. The main purpose of the settler is that
it should produce a zero effluent concentration and a high underflow concentration.
An additional purpose in waste water treatment is that the settler should be a buffer
of mass, since a part of the biological sludge of the underflow is recycled within the
plant. This can be achieved by adjusting Qu so that a steady-state solution with
a discontinuity arises. Furthermore, the behavior of the settler should be rather
insensitive to small variations in uf or in the Q-flows.

Chancelier, de Lara, and Picard [7] show that a discontinuity in the clarification
zone (corresponding to the one of type CII) satisfies an algebraic-differential system
and point out how it may be controlled dynamically by feedback. A stationary solution
with type CII occurs only if S = Φlim, see Theorems 4.4 and 4.6. Lemma 4.2 gives
that Φclar = 0 independently of the location x0 ∈ (−H, 0) of the discontinuity. Hence,
the values of Qe and uu are independent of x0. A small change in any Q-flow or uf

will cause an inequality (S ≶ Φlim) instead, which either yields a zero concentration
in the clarification zone or yields an overflow of sludge at steady state. Note that
this is the case regardless of the shape of the clarification zone. This is probably the
reason why one normally tries to adjust Qu so that, instead, a sludge blanket in the
thickening zone arises. For a settler with constant A, a stationary sludge blanket is
possible only if S = Φsb; see Theorem 4.6. Again, any small disturbance will cause an
inequality (S ≶ Φsb), which implies that the sludge blanket will increase or decrease
dynamically with constant speed (after a transient).

According to Theorem 4.4, this problem can be avoided in a settler with A′(x) < 0
in the thickening zone by letting

Φsb(D) < S < Φlim.(4.4)

This is a sufficient condition for a steady-state solution of the combined type CI-TIII
or TIIB (a sludge blanket at the feed level). Hence, (4.4) is a sufficient condition for
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FIG. 4.2. A steady-state solution with a sludge blanket (CI-TIIIA) in a conical settler with
H = 1 m, D = 3 m, A(x) = π(20 − 5x)2 m2, Qf = 1300 m3/h, Qu = 500 m3/h, Φsb(1.71 m) =
4000 kg/h, uf = 3.08 kg/m3, and s = Qf uf /A(0) = 3.18 kg/(m2h). Note how uf and uu can be
obtained graphically (the inclined dashed line has the slope v(0)).

our definition of optimal operation. If, in addition,

S < Φsb(0)(4.5)

holds, then the sludge blanket appears strictly below the feed level (TIII) by Theo-
rem 4.4. An example of a steady-state solution in a conical settler for which (4.4)
and (4.5) hold is given in Fig. 4.2. Note that the feed concentration uf is the unique
intersection of the graphs of f(·, 0) and g(·, 0) + s, since, with ui denoting an inter-
section,

(
v(0) + w(0)

)
uf =

Qu +Qe

A(0)
uf =

Qf

A(0)
uf = s

= f(ui, 0) − g(ui, 0) = φ(ui) + v(0)ui − (
φ(ui) − w(0)ui

)
=

(
v(0) + w(0)

)
ui

and v(0) + w(0) > 0.
A change in any variable such that (4.4) and (4.5) still hold will only cause a

different depth of the sludge blanket at steady state. The interval
[
Φsb(D),Φsb(0)

]
becomes larger the smaller A(D) is and the larger A(0) is and this should be of
importance when designing a settler. Furthermore, for the cases of Theorem 4.4, note
that v(D) > v̄ is equivalent to Φsb(D) < Φsb(0) and that v̄ = −φ′(umax) is zero or
close to zero in waste water treatment.

It is time to relate the terms underloaded, etc. to Theorem 4.4.
• The settler is in optimal operation if (4.4) holds. This corresponds to the

combination CI-TIII or TIIB (a sludge blanket at the feed level); see Fig. 4.3.
• The settler is underloaded if CI-TI holds, and a sufficient condition for this

is that S < Φlim and S ≤ Φsb(D) hold.
• The settler is overloaded if ue > 0, which is equivalent to S > Φlim; see

Fig. 4.4.
On the static control of the sludge blanket. Consider Qf and uf as given inputs,

Qu as the control parameter and Qe, uu, and the depth x1 of the sludge blanket
as outputs. Therefore, we write out the dependence on Qu, etc., e.g., uM (x,Qu),
and emphasize that this refers to steady-state solutions. The relations between the
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FIG. 4.3. Left: Steady-state solutions in optimal operation with the sludge blanket depths x1 =
0 m (CI-TIIB), x1 = 0.5, . . . , 2 m (CI-TIIIA), and x1 = 2.5 m (CI-TIIIB). The settler is conical
with data as in Fig. 4.2; Qu = 500 m3/h, Qf = 1300 m3/h, and the feed concentrations are
uf = 3.65, 3.54, 3.40, 3.19, 2.87, 2.33 kg/m3. Right: The sludge blanket flux.
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FIG. 4.4. An overloaded settler (CIII-TIIB, um(0) < uf < uM (0), u+ = uM (0)) with the same
data as in Fig. 4.2 except that uf = 6 kg/m3, which implies s = Qf uf /A(0) = 6.21 kg/(m2h),
Φlim/A(0) = f(u+, 0) = 3.77 kg/(m2h). Note how ue = 3.82 kg/m3 can be obtained graphically as
the intersection of the dashed line with the slope −w(0) and the horizontal line with value f(u+, 0),
since A(0)f(u+, 0) = Φlim = S − Φclar = A(0)(s − w(0)ue).

relevant parameters of a steady-state solution of type CI-TIII are

Qfuf = Φsb(x1, Qu) = Quuu, x1 ∈ (0, D),
Qf = Qu +Qe.

(4.6)

In particular, this gives the interesting relation between the underflow concentration
and the sludge blanket depth x1:

uu =
Φsb(x1, Qu)

Qu
=
A(x1)φ

(
uM (x1, Qu)

)
Qu

+ uM (x1, Qu).

For fixed Qu, uu decreases with increasing x1, because of (4.3) and the fact that
v(x1) > v̄ in TIII. For example, consider the data of Fig. 4.3. If Qu = 500 m3/h is
kept fixed, then the corresponding underflow concentrations are uu = 9.48, 9.21, 8.83,
8.30, 7.47, 6.07 kg/m3.

For given Qf and uf , what is the value of Qu such that Qe and uu are maximized
and such that the settler is still in optimal operation? The relations (4.6) give that
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Qe and uu are maximized precisely when Qu is minimized, and the following theorem
says how low Qu can be.

THEOREM 4.7. Assume that A′(x) < 0 for 0 < x < D and that Qf and uf are
given. As long as

Qu > v̄A(D)(4.7)

and

Qu > Qf − A(0)φ(uf )
uf

(4.8)

hold, then

Φsb(x1, Qu) = Qfuf , 0 < x1 < D(4.9)

defines implicitly the sludge blanket depth x1 as an increasing function of the control
parameter Qu, corresponding to the solution-type CI-TIII of Theorem 4.4.

Proof. Theorem 4.4 gives that CI-TIII holds if (4.4) and (4.5) are satisfied, i.e., if

Φsb(D,Qu) < S = Qfuf < min
(
Φsb(0, Qu),Φlim(Qu)

)
(4.10)

is satisfied. To verify this, first note that Φsb(D,Qu) < Φsb(0, Qu) ⇔ v(D,Qu) > v̄ ⇔
(4.7). Second, by the definition of Φlim, we have

Φlim(Qu) =


A(0)f(uf , 0, Qu) < Φsb(0, Qu), uf ∈ [

0, um(0, Qu)
)
,

Φsb(0, Qu), uf ∈ [
um(0, Qu), uM (0, Qu)

]
,

A(0)f(uf , 0, Qu) > Φsb(0, Qu), uf ∈ (
uM (0, Qu), umax

]
.

(4.11)

The inequality (4.8) is equivalent to S < A(0)f(uf , 0, Qu), which together with (4.9)
and (4.11) implies (4.10).

Differentiating Φsb(x1, Qu) = Qfuf gives

dQu

dx1
= − ∂Φsb/∂x1

∂Φsb/∂Qu
= −A′(x1)φ

(
uM (x1, Qu)

)
uM (x1, Qu)

> 0, x1 ∈ (0, D),(4.12)

because Φsb(D,Qu) < Φsb(x1, Qu) < Φsb(0, Qu) implies, by Lemma 4.3, v(x1, Qu) >
v̄, which gives uM (x1, Qu) < umax and thus φ

(
uM (x1, Qu)

)
> 0.

Consider the conical settler with data as in Fig. 4.2. Assume thatQf = 1300 m3/h
and that we want to keep the sludge blanket level at the depth 1.5 m at steady state.
Fig. 4.5 shows the correspondence between uf and Qu given by (4.9). Note that (4.7),
Qu > 11.3 m3/h, is not a severe restriction. (4.8) imposes no restriction at all in this
case since the right-hand side is always less than Qu for each given uf .

On the design of a settler. Under the given assumptions on sedimentation, the
analysis in this paper yields that it is the cross-sectional area A(x), the batch settling
flux φ(u), and the underflow rate Qu that influence the behavior of the settler in
optimal operation. Given φ(u) and the range of Qu, the shape of the settler in the
thickening zone, i.e., A(x) for 0 < x < D, can be determined by means of the following
information.

First, for an optimal steady-state solution, (4.7) and (4.8) yield that A(0) should
be large and A(D) small.
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FIG. 4.5. An illustration of Theorem 4.7. The correspondence between Qu and uf =
Φsb(1.5, Qu)/Qf for obtaining the sludge blanket at the depth 1.5 m. The horizontal dashed line lies
on v̄A(3) = 11.3 m3/h, and the dashed curve is the right-hand side of (4.8) as a function of uf .
Note that 0 ≤ Qu ≤ Qf = 1300 m3/h.

Second, assume that Qu is fixed. (In some waste water treatment plants Qu

can only be adjusted at certain time points.) The shape of the settler influences the
sensitivity of the sludge blanket depth x1 for small variations in S = Qfuf . This
follows from (4.9) and can be motivated qualitatively as follows. In a region where
A′(x) is close to zero, uM (x) is almost constant; hence, Φsb(x) is almost constant,
and a small step change in S = Qfuf will imply a large change in x1 at the new
steady state. On the contrary, x1 is rather insensitive to small changes in S = Qfuf

if A′(x1) � 0, since Φsb(x) is then more rapidly decreasing. However, Φsb(x) =
A(x)f

(
uM (x), x

)
depends not only on A(x) but also on the batch settling flux, clearly

illustrated in Fig. 4.3 (right) (cf. the graph of A(x), which is a parabola for a conical
settler).

Generally, the reasoning in the last paragraph should be applied to all relevant
values of Qu. In other words, the study of Φsb(x,Qu) = A(x)f

(
uM (x,Qu), x,Qu

)
can

give much information on how to form the shape of the settler in the thickening zone,
given that the settler should normally have a specific sludge blanket depth and keep
a certain mass of sludge.

5. Numerical simulations. The theoretical investigations in the previous sec-
tions will be supported here by numerical simulations. We shall present an algorithm
using Godunov’s [20] method as a basis. The numerical fluxes in Godunov’s method
are obtained by averaging analytical solutions of Riemann problems, in which the ini-
tial data consist of a single step. If the initial data are approximated by a piecewise
constant function, such Riemann problems arise locally at the discontinuities of this
initial value function. If the cross-sectional area is constant in a neighborhood of these
discontinuities, the analytical solution of the Riemann problem can be used to obtain
the averages forming the Godunov fluxes exactly. The updates of the boundary values
are done by using the explicit formulas for the boundary concentrations given in [11]
and referred to in the proof of Theorem 3.1. No convergence proof of the algorithm
is presented.

A numerical algorithm. Divide the x-axis by n grid points equally distributed,
such that x = −H and x = D are located halfway between the first two and the last
two grid points, respectively. Let the integer i stand for space grid point at x = xi,
the integer j for the time marching, and U j

i for the corresponding concentration. The



CONTINUOUS SEDIMENTATION 1009

feed source is assumed to be located at the grid point, denoted i = m, closest to x = 0.
The distance between two grid points is thus ∆ = xi+1−xi = (H+D)/(n−2), and the
grid point m = round(H/∆+3/2) is nearest to the feed level. The length of the time
step is denoted by τ . According to the motivation above, we make the assumption
that the cross-sectional area is piecewise constant between two grid points, that is,
for fixed j

A(x) = Aj
i+1/2, xi ≤ x < xi+1, i = 1, . . . , n,

and we define

Aj
i =

Aj
i+1/2 +Aj

i−1/2

2
, i = 2, . . . , n− 1.

Let

ũj(x, jτ) = U j
i , xi ≤ x < xi+1, i = 1, . . . , n,

be piecewise constant initial data at time t = jτ and let ũj(x, t) be the analytical
solution built up of solutions of parallel Riemann problems. Thus ũ(x, t) satisfies
ut + g(u)x = 0 in the clarification zone and ut + f(u)x = 0 in the thickening zone.
Define the averages

U j+1
i =

1
∆Aj

i

∫ xi+∆/2

xi−∆/2
A(x)ũj

(
x, (j + 1)τ

)
dx, i = 2, . . . , n− 1.

The conservation law on integral form is, for example, in the clarification zone

(5.1)
d

dt

∫ xi+∆/2

xi−∆/2
A(x)ũj(x, t) dx = Aj

i−1/2g

(
ũj

(
xi − ∆

2
, t

)
, xi − ∆

2

)
−Aj

i+1/2g

(
ũj

(
xi +

∆
2
, t

)
, xi +

∆
2

)
, i = 2, . . . ,m− 1.

An analogous equation holds for the thickening zone and the flux function f and at
the grid point m the source term is added on the right-hand side in a natural way. If
τ satisfies

τ

∆
< min

 1
max

u∈[0,umax]
x∈[0,D]

|∂uf(u, x)| ,
1

max
u∈[0,umax]
x∈[−H,0]

|∂ug(u, x)|

 ,

then the solution ũ is constant on the line segments jτ ≤ t < (j + 1)τ , x = xi + ∆/2,
i = 1, . . . , n− 1, which is necessary for forming the Godunov fluxes. Integrating (5.1)
(and the analogous equations for the thickening zone and for the grid point i = m)
from jτ to (j + 1)τ and dividing by ∆Aj

i , the following scheme is obtained for the
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grid points i = 2, . . . , n− 1:

U j+1
i = U j

i +
τ

∆Aj
i

(Aj
i−1/2G

j
i−1/2 −Aj

i+1/2G
j
i+1/2), i = 2, . . . ,m− 1,

U j+1
m = U j

m +
τ

∆Aj
i

(Aj
m−1/2G

j
m−1/2 −Aj

m+1/2F
j
m+1/2 + Sj), i = m,

U j+1
i = U j

i +
τ

∆Aj
i

(Aj
i−1/2F

j
i−1/2 −Aj

i+1/2F
j
i+1/2), i = m+ 1, . . . , n− 1,

where Godunov’s numerical flux is (analogously for F and f)

Gj
i−1/2 =


min

v∈[Uj
i−1,Uj

i ]
g

(
v, xi − ∆

2

)
if U j

i−1 ≤ U j
i ,

max
v∈[Uj

i ,Uj
i−1]

g
(
v, xi − ∆

2

)
if U j

i−1 > U j
i ,

(5.2)

and Sj = Qfu
j
f , which is an average over jτ < t < (j + 1)τ .

Then the boundary values (grid points 1 and n) and the outputs ue and uu are
updated according to, cf. [11],

U j+1
1 =

{
U j+1

2 if g(U j+1
2 ,−H) ≤ 0,

0 if g(U j+1
2 ,−H) > 0,

uj+1
e = U j+1

1 − φ(U j+1
1 )

w(−H)
,

U j+1
n =

{
U j+1

n−1 if U j+1
n−1 ∈ [

0, um(D)
) ∪ (

uM (D), umax
]
,

uM if U j+1
n−1 ∈ [

um(D), uM (D)
]
,

uj+1
u = U j+1

n +
φ(U j+1

n )
v(D)

.

Two simulations. In Figs. 5.1 and 5.2 the results of two simulations are shown.
The settler is conical with H = 1 m, D = 3 m, A(x) = π(20 − 5x)2 m2. The flows
Qf = 1300 m3/h and Qu = 500 m3/h are kept constant. These are the same data as
in the examples shown in Figs. 4.2, 4.3, and 4.4.

The initial value function in Fig. 5.1 is the steady-state solution shown in Fig. 4.2,
which corresponds to uf = 3.18 kg/m3. At t = 0 h, the feed concentration is set to
the larger value uf = 6 kg/m3. The extra amount of sludge fed into the settler implies
that the sludge blanket, originally at the depth of 1.7 m, rises, and after two hours it
reaches the feed point. After that, a large discontinuity rises in the clarification zone,
and the steady-state solution of Fig. 4.4 will be obtained asymptotically.

The second simulation, see Fig. 5.2, demonstrates some of the steady-state so-
lutions shown in Fig. 4.3 (left). The initial value function is a steady-state solution
with a sludge blanket at 1.5 m and with the sludge blanket flux Φsb(1.5) = 4149 kg/h
corresponding to uf = 3.19 kg/m3. At t = 0 h, the feed concentration is set to the
lower value 2.33 kg/m3. Then, already at t ≈ 3 h, the rightmost steady-state solution
in Fig. 4.3 (left) is formed. This solution is continuous, although we have defined the
sludge blanket at the depth of 2.5 m, which is the depth where the concentration is
uinfl. At t = 4 h, the feed concentration is changed to 2.87 kg/m3, which implies that
a new steady state is formed with a sludge blanket at the depth of 2 m.

6. Conclusions. The dynamic behavior of continuous sedimentation in a settler
with varying cross-sectional area has been analyzed with the following outcomes:
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FIG. 5.1. A dynamic simulation with initial data from Fig. 4.2 and with the asymptotic solution
as in Fig. 4.4. The number of grid points is n = 50.

• a theorem on existence and uniqueness;
• a numerical algorithm.

The steady-state behavior has been analyzed with the following outcomes:
• a complete classification of the steady-state solutions when A′(x) ≤ 0 in the

thickening zone (A(x) is arbitrary in the clarification zone);
• explicit formulas on the static control of the settler in optimal operation, by

using Qu as a control parameter;
• an explicit formula for the underflow concentration as a function of the sludge

blanket depth;
• a discussion on the design of a settler; the cross-sectional area’s impact on

the settler behavior.

Appendix A. Proof of Theorem 4.4. In the proofs below we shall always
use the jump and entropy conditions for scalar conservation laws with continuous flux
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FIG. 5.2. A dynamic simulation showing three steady-state solutions (at t = 0, 4, 7 h) of Fig. 4.3
(left).

function. For a stationary discontinuity at x, the jump condition is simply f(u−, x) =
f(u+, x), where u± are the concentrations to the left and right of the discontinuity.
The entropy condition reads

f(ũ, x) − f(u−, x)
ũ− u− ≥ 0 for all ũ between u− and u+.

The following lemma considers the solutions of the equation f(u+, 0) = g(u−, 0)+
s. Note that multiplying by A(0) this equation becomes S = Φthick + Φclar.

LEMMA A.1. Necessary conditions on the concentrations just above and below the
feed inlet at steady state are u− ≤ u+ and
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0 < uf ≤ um(0):
• s < f(uf , 0): u− = 0, u+ is uniquely determined by f(u+, 0) = s, 0 < u+ <

uf .
• s = f(uf , 0): (uf = uz(0)), (u−, u+) = (0, uf ) or u− = u+ = uf . The

possibility (u−, u+) =
(
um(0), uM (0)

)
holds only if uf = um(0).

• s > f(uf , 0): u− = u+ = uf > uz(0).
um(0) < uf < uM (0):

• s < f
(
uM (0), 0

)
: u− = 0, u+ is uniquely determined by f(u+, 0) = s, 0 <

u+ < um(0).
• s = f

(
uM (0), 0

)
: (uf < uz(0) < uM (0)), (u−, u+) =

(
0, um(0)

)
, (u−, u+) =(

0, uM (0)
)

or (u−, u+) =
(
uz(0), uM (0)

)
.

• s > f
(
uM (0), 0

)
: u− > uz(0) is uniquely determined by g(u−, 0) =

f
(
uM (0), 0

) − s and satisfies uf < u− < uM (0), u+ = uM (0).
uM (0) ≤ uf ≤ umax:

• s < f
(
uM (0), 0

)
: u− = 0, u+ is uniquely determined by f(u+, 0) = s, 0 <

u+ < um(0).
• s = f

(
uM (0), 0

)
: (u−, u+) =

(
0, um(0)

)
or (u−, u+) =

(
0, uM (0)

)
.

• f
(
uM (0), 0

)
< s < f(uf , 0): (necessarily uM (0) < uf < umax), u− = 0, u+

is uniquely determined by f(u+, 0) = s, uM (0) < u+ < uf .
• s = f(uf , 0): (u−, u+) =

(
0, uf

)
or u− = u+ = uf = uz(0).

• s > f(uf , 0): u− = u+ = uf > uz(0).
Proof. See section 9 in [11].
Proof of Lemma 4.2. ul(x) is a piecewise smooth solution of the implicit equation

A(x)g
(
ul(x), x

)
= −Φclar, −H < x < 0,(A.1)

where g(u, x) = φ(u)−w(x)u and Φclar ≥ 0 is a constant. In a neighborhood of points
where ∂ug

(
ul(x), x

) 6= 0, (A.1) implies

u′
l(x) = − A′(x)φ

(
ul(x)

)
A(x)∂ug

(
ul(x), x

) .(A.2)

Lemma 4.1 gives the possible boundary limits at x = −H, underlined below.
Assume that ul(−H) = 0, which means that ul(x) is smooth in a right neighbor-

hood of −H and (A.2) gives u′
l(x) = 0 in this neighborhood. It also follows directly

that Φclar = −A(−H)g(0,−H) = 0. Either ul(x) ≡ 0 or there is a discontinuity
at some x0 ∈ (−H, 0) with left value 0 and right value uz(x0). By definition of uz,
∂ug

(
uz(x), x

)
< 0, hence, ul(x) is smooth to the right of the discontinuity satisfying

A(x)g
(
ul(x), x

)
= −Φclar = 0, x0 < x < 0,

ul(x0+) = uz(x0),
(A.3)

which has the unique solution ul(x) = uz(x), x0 < x < 0. The uniqueness follows
from the basic uniqueness theorem for ordinary differential equations since the solution
satisfies (A.2) with the right-hand side at least Lipschitz continuous.

Assume that ul(−H) = uz(−H). Then Φclar = 0 and (A.3) with x0 = −H gives
ul(x) ≡ uz(x). We have proved CI and CII.

Assume that ul(−H) > uz(−H). Then Φclar = −A(−H)g
(
ul(−H),−H)

> 0.
Using this fact together with g

(
uz(x), x

) ≡ 0 and that ul(x) satisfies (A.1) we get

A(x)
(
g
(
ul(x), x

) − g
(
uz(x), x

))
= −Φclar, −H < x < 0.
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For every x ∈ (−H, 0) there exists a ξ(x) between ul(x) and uz(x) such that

∂ug
(
ξ(x), x

)(
ul(x) − uz(x)

)
=

−Φclar

A(x)
.(A.4)

Since ∂ug
(
ξ(x), x

)
< 0 for x in a right neighborhood of −H, it follows that ul(x) >

uz(x) in this neighborhood. However, since the right-hand side of (A.4) is < 0, it
follows that ul(x) > uz(x) for all x ∈ (−H, 0). Finally, no discontinuity is possible
with left value > uz(x). Item CIII is proved. Finally, the claim on the sign of u′

l(x)
follows from (A.2) for ul(x) ≥ uz(x) since in this case ∂ug

(
ul(x), x

)
< 0 holds.

Proof of Lemma 4.3. ur(x) is a piecewise smooth solution of the implicit equation

A(x)f
(
ur(x), x

)
= Φthick, 0 < x < D,(A.5)

where f(u, x) = φ(u) + v(x)u and Φthick ≥ 0 is a constant. In a neighborhood of
points where ∂uf

(
ur(x), x

) 6= 0, (A.5) implies

u′
r(x) = − A′(x)φ

(
ur(x)

)
A(x)∂uf

(
ur(x), x

) .(A.6)

Lemma 4.1 gives the possible boundary limits ur(D) ∈ [
0, um(0)

]∪[
uM (0), umax

]
. We

shall underline the different cases. First, we conclude that ur(x) ≡ 0 and ur(x) ≡ umax
are the only two constant solutions of (A.5). Furthermore, the conditions ur(x0) = 0
for any x0 ∈ [0, D] and ur(x) continuous imply that ur(x) ≡ 0 for x ∈ (0, D) by
uniqueness of solutions of (A.6) because ∂uf(0+, x) > 0 for x ∈ (0, D). Since there is
no possibility for a discontinuity with u = 0 as left or right value, all other solutions
satisfy ur(x) > 0 for x ∈ (0, D).

Since ∂uf(·, x) > 0 on
(
0, um(x)

]
for every x ∈ [0, D] we get

0 < ur(D) ≤ um(D) =⇒ f
(
ur(D), D

) ≤ f
(
um(D), D

)
=⇒

A(x)f
(
ur(x), x

)
= Φthick = A(D)f

(
ur(D), D

)
≤ A(D)f

(
um(D), D

)
= Φsb(D) ≤ Φsb(x) = A(x)f

(
um(x), x

)
, 0 < x < D

⇐⇒ ur(x) ≤ um(x), 0 < x < D,

(A.7)

which together with (A.6) implies that u′
r(x) > 0. ur(x) = um(x) is impossible on any

open interval, for substituting into (A.5) and differentiating gives A′(x)φ
(
um(x)

) ≡ 0,
which is a contradiction. Furthermore, no discontinuity is possible with right value
strictly less than um(x). TI is proved.

The boundary limits left are now uM (D) ≤ ur(D) ≤ umax.
Assume that uM (D) < ur(D) < umax. Then

Φthick = A(D)f
(
ur(D), D

)
> A(D)f

(
uM (D), D

)
= Φsb(D)

because ∂uf(·, x) > 0 on
(
uM (x), umax

]
. Equation (A.6) says that u′

r(x) > 0 in
a left neighborhood of x = D. Either ur(x) > uM (x) for all x ∈ (0, D), which
implies uM (0) ≤ u+ ≡ ur(D) < umax. Hence, v(0) > v̄ and Φthick ≥ Φsb(0), which
gives TIIB. Otherwise, there exists an x1 ∈ (0, D) with ur(x1 + 0) = uM (x1), giving
Φthick = Φsb(x1). The property u′

r(x) > 0 for x1 < x < D implies ur(x1 + 0) =
uM (x1) < umax, which in turn gives v(x1) > v̄. Then (4.3) gives Φ′

sb(x1) < 0, hence,
Φsb(D) < Φthick = Φsb(x1) < Φsb(0), which determines x1 uniquely for given Φthick.
We consider two subcases depending on v(x1) ≶ ¯̄v.
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First, if v̄ < v(x1) < ¯̄v, then ur(x1 + 0) = uM (x1) > uinfl. Assuming ur(x) =
uM (x) in a left neighborhood of x1, substituting into (A.5) and differentiating gives
A′(x)φ

(
uM (x)

) ≡ 0, which is a contradiction, since 0 < uM (x) < umax. If ur(x) were
continuous at x1 with ur(x) < uM (x) in a left neighborhood of x1, then
∂uf

(
ur(x), x

)
< 0 and (A.6) implies u′

r(x) → −∞ as x ↗ x1. Since u′
M (x) is finite,

it follows that ur(x) > uM (x) in a left neighborhood of x1, contradicting the assump-
tion. Thus, the only possibility is a discontinuity at x1 with um(x1) as the left value
and uM (x1) as the right value. Replacing D by x1 in (A.7) implies ur(x) < um(x) for
0 < x < x1. The case TIIIA is proved by concluding that (A.6) implies u′

r(x) → ∞
as x ↘ x1.

Second, if v(x1) ≥ ¯̄v, then f(·, x1) is increasing and ur(x1) = uM (x1) = um(x1) =
uinfl. Replacing D by x1 in (A.7) implies ur(x) < um(x) for 0 < x < x1. This proves
TIIIB.

Assume that uM (D) = ur(D) < umax. Using D instead of x1 in the reasoning
two paragraphs above this yields a discontinuity at x = D, which implies ur(D) =
um(D) < uM (D), a contradiction.

Assume that ur(D) = umax. Either ur(x) ≡ umax for 0 < x < D and then, since
φ(umax) = 0,

Φthick = A(0)f(umax, 0) = Quumax ≥ A(0)f
(
uM (0), 0

)
= Φsb(0),(A.8)

which proves TIIA. With similar arguments as above, the only possibility left is a
discontinuity at some x1 ∈ (0, D) with um(x1) as left value and umax as right value.
Replacing D by x1 in (A.7) yields ur(x) < um(x) for 0 < x < x1. Especially,
u+ < um(0) implies Φthick = A(0)f(u+, 0) < A(0)

(
um(0), 0

)
Φsb(0), which contradicts

(A.8).
LEMMA A.2. When A′(x) < 0, x ∈ (0, D), any steady-state solution satisfies

u+ ∈ [
0, um(0)

) ∪ [
uM (0), umax

]
.

Proof. This follows directly from Lemma 4.3.
Proof of Theorem 4.4. Recall that

S ≶ Φlim ⇐⇒ s ≶
{
f(uf , 0), uf ∈ [

0, um(0)
] ∪ [

uM (0), umax
]
,

f
(
uM (0), 0

)
, uf ∈ (

um(0), uM (0)
)
.

We shall generally assume that v(D) > v̄ and only make some comments on the cases
when v(D) ≤ v̄ since these are special cases (often empty cases) of the others because

(A.9) v(D) ≤ v̄ ⇐⇒ Φsb(0) = Φsb(D) =⇒
v(0) < v(D) ≤ v̄ =⇒ uM (0) = umax =⇒ Φlim ≤ Φsb(0)

by the definition of Φlim.
• S < Φlim: Lemma A.1 implies that u− = 0 and then Lemma 4.2 gives CI for

the clarification zone. Hence, S = Φthick.
S = Φthick < Φsb(0): Hence s < min

(
f
(
uM (0), 0

)
, f(uf , 0)

)
holds and Lem-

ma A.1 implies u+ ≡ ur(0) < min
(
uf , um(0)

)
. Since S = Φthick < Φsb(0),

Lemma 4.3 implies that the solution in the thickening zone is of type TI if
Φthick ≤ Φsb(D) and TIII if Φsb(D) < Φthick < Φsb(0).
S = Φthick ≥ Φsb(0): Then f

(
uM (0), 0

) ≤ s < Φlim/A(0) holds, which implies
that Φlim = A(0)f(uf , 0) and uf > uM (0), otherwise this case is empty (e.g.,
when v(D) ≤ v̄). Lemma A.1 implies that either u+ = um(0), which is
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impossible by Lemma A.2, or uM (0) ≤ u+ ≤ uf < umax. Lemma 4.3 then
implies that the solution in the thickening zone is of type TIIB.

• S = Φlim: Lemma A.1 implies that u− = 0 or u− = uz(0) and then Lemma 4.2
gives CI or CII are possible for the clarification zone, both with Φclar = 0. Hence,
S = Φthick.

S = Φthick < Φsb(0): Thus, s = f(uf , 0) < f
(
uM (0), 0

)
, hence uf < um(0)

and Lemma A.1 gives u+ = uf = uz(0). Then Lemma 4.3 gives the possibil-
ities TI or TIII according to the table, though only TI when v(D) ≤ v̄.
S = Φthick = Φsb(0): This implies s = f

(
uM (0), 0

)
= Φlim/A(0), hence,

um(0) ≤ uf ≤ uM (0). Lemma A.1 gives that either u+ = um(0), which
is impossible by Lemma A.2, or u+ = uM (0) with uf ≤ uz(0) ≤ uM (0). If
u+ = uM (0) = umax, i.e., v(0) ≤ v̄, then TIIA holds, otherwise TIIB.
S = Φthick > Φsb(0): Then f

(
uM (0), 0

)
< s = Φlim/A(0) holds, which im-

plies that Φlim = A(0)f(uf , 0) and uf > uM (0), otherwise this case is
empty. Lemma A.1 implies that either u+ = um(0), which is impossible
by Lemma A.2, or u+ = uf = uz(0). Lemma 4.3 then implies that the
solution in the thickening zone is of type TIIA or B.

• S > Φlim: Lemma A.1 implies that u− > uz(0) and that

uf ∈ (
0, um(0)

] ∪ [
uM (0), umax

]
=⇒ u+ = uf

=⇒ Φthick = A(0)f(uf , 0) = Φlim,

uf ∈ (
um(0), uM (0)

)
=⇒ u+ = uM (0)

=⇒ Φthick = A(0)f
(
uM (0), 0

)
= Φlim.

Then Lemma 4.2 gives CIII for the clarification zone.
Φlim = Φthick < Φsb(0): The inequality Φlim < Φsb(0) implies f(uf , 0) <

f
(
um(0), 0

)
with uf < um(0). The inequality Φthick < Φsb(0) gives f(u+, 0) <

f
(
um(0), 0

)
, which implies u+ < um(0). Since s > f(uf , 0), Lemma A.1 im-

plies that u− = u+ = uf and, finally, Lemma 4.3 gives TI.
Φlim = Φthick ≥ Φsb(0): Hence, f(uf , 0) ≥ f

(
um(0), 0

)
with uf ≥ um(0). If

um(0) ≤ uf ≤ uM (0), then Lemma A.1 gives that either u+ = uf = um(0),
which is impossible by Lemma A.2, or uf < u− < uM (0) = u+. Lemma 4.3
implies type TIIA (then v(0) ≤ v̄) or TIIB. If uM (0) < uf ≤ umax, then
Lemma A.1 gives u− = u+ = uf and Lemma 4.3 implies type TIIA or B.
Finally, if v(D) ≤ v̄, only TIIA is possible in both cases.
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