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DYNAMICAL HYSTERESIS WITHOUT STATIC HYSTERESIS:
SCALING LAWS AND ASYMPTOTIC EXPANSIONS*

GUILLERMO H. GOLDSZTEINT, FERNANDO BRONER', AND STEVEN H. STROGATZ?

Abstract. We study dynamical hysteresis in a simple class of nonlinear ordinary differential
equations, namely first-order equations subject to sinusoidal forcing. The assumed nonlinearities are
such that the area of the hysteresis loop vanishes as the forcing frequency tends to zero; in other
words, there is no static hysteresis. Using regular and singular perturbation techniques, we derive
the first term in the asymptotic expansion for the loop area as a function of the driving frequency,
in the limit of both large and small frequency. Although the theory was originally motivated by
experiments on bistable semiconductor lasers, it is applied here to explain (and in some cases, to
correct) the scaling laws that were recently reported in numerical studies of mean-field kinetic Ising
models of ferromagnets.
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1. Introduction. Hysteresis is ubiquitous in mechanical, chemical, biological,
electronic, optical, and magnetic systems. It is technologically useful for switches and
memory devices and is also of fundamental scientific and mathematical interest.

Figure 1.1(a) illustrates a familiar form of hysteresis, in which a bistable system
is driven adiabatically by an external periodic forcing. The dashed curve represents
the branches of equilibria that would be obtained if the control parameter £ were
held fixed. If, instead, we vary £ extremely slowly, say according to £ = E sin Qt with
Q) — 0, the state variable x essentially tracks the curve of equilibria, except when &
crosses a turning point and the system jumps from one stable branch to the other.
The resulting closed curve in the (€,z) plane is called a hysteresis loop. Since this
hysteresis loop has nonzero area even in the limit of zero-frequency driving, we say
that this system exhibits static hysteresis.

The situation becomes more interesting if we allow the switching parameter &
to vary slowly, but not quite adiabatically, with some frequency €2 > 0. Then, as
shown in Figure 1.1(b), the hysteresis loop acquires extra area because the system
is unable to relax completely. This extra area is known as the dynamical hysteresis
area. In many applications it is a physically important quantity. For instance, in
magnetic and optical switches, the dynamical hysteresis area provides a measure of
the additional power dissipated by repetitive switching at a frequency 2. For this
reason, and for reasons of intrinsic mathematical interest, one would like to know how
this area depends on (.

In the last few years there have been many experimental [8, 9, 11, 12] and theo-
retical [1-7, 9-11, 13-24] investigations of dynamical hysteresis, often in the context
of magnetic spin systems driven by an oscillating external field. Such spin systems
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Fic. 1.1. (a) Static hysteresis loop (solid curve) for £ = EsinQt, with Q — 0. Dashed curve,
equilibria for fized values of £. (b) Dynamical hysteresis loop for Q > 0.

are formidable to analyze because they involve many coupled degrees of freedom,
as well as stochastic effects due to thermal fluctuations. As an alternative strategy,
some authors have investigated dynamical hysteresis in the simplest possible setting
of deterministic systems with only one state variable. These systems pose interesting
mathematical challenges in their own right, and they have been shown to provide use-
ful insight into the dynamics of bistable semiconductor lasers and mean-field models
of magnetic systems.

For instance, the dynamical hysteresis area was calculated analytically by Jung,
Gray, Roy, and Mandel [11] for the model equation

(1.1) &= Az — bz + Esin Qt,

where A, b, E, and € are all positive constants, and F is large enough that the system
is repeatedly carried past the turning points, as in Figure 1.1(b). Jung, Gray, Roy,
and Mandel [11] found that in the limit & — 0, the area A(£2) of the hysteresis loop
(E'sin Qt, z(t)) obeys the scaling law

(1.2) A(Q) — A(0) x QF,

where A(0) is the area of the static hysteresis loop. They also showed that this
scaling law provides a good fit to their experimental measurements on a bistable
semiconductor laser system.

A natural extension of this research involves the effects of bifurcations on the
scaling laws. Figure 1.2 illustrates one common scenario, often associated with phase
transitions. Suppose that in addition to the switching parameter £ there is also a
bifurcation parameter, analogous to the bias current in a bistable laser [9] or the
temperature in a magnetic spin system [14]. As this bifurcation parameter varies,
the curve of steady states x versus £ changes from triple valued to single valued.
At a threshold value of the parameter, the curve develops a vertical inflection point
(Figure 1.2(b)). The single-valued dashed curves of Figures 1.2(b) and 1.2(c¢) cannot
exhibit static hysteresis, but they can still exhibit dynamical hysteresis, with loops
of the shape indicated in Figure 1.2. Several questions arise: in the absence of static
hysteresis, are there still scaling laws for the dynamical hysteresis area and, if so, what
are the new exponents?

In this paper we answer these questions analytically for equations of the form

(1.3) & =—F(z) 4+ EsinQt,
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F1G. 1.2. Dynamical hysteresis loops (solid curves) for the model system (1.3) with E =1,Q =
0.1, and F(z) = =z + 3. Here X is the bifurcation parameter. Dashed curve, equilibria for fized
values of €. (a) A =1. (b) Threshold case: A =0. (¢) A = —1.
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where F(x) is a continuously differentiable function that is strictly increasing (so
there is no static hysteresis). In section 2 we prove that (1.3) has a globally attracting
periodic solution for any {2 > 0, and we calculate the area of the hysteresis loop for
the special case where F(z) is linear. This solvable case provides a benchmark for
later results.

In sections 3 and 4 we analyze (1.3) in the limit of small Q. As the discussion above
suggests, there is a crucial distinction between the “generic” case when F’(z) > 0 for
all z of interest (Figure 1.2(c)) and the “threshold” case when F’(z) = 0 for some z
(Figure 1.2(b)).

The generic case is analyzed in section 3, and the results are summarized in
Proposition 3.1. We use regular perturbation theory to prove that the scaling law is

(1.4) A(Q) x Q

as {2 — 0. Recently, in a collaboration with Hohl, van der Linden, and Roy [9], we
found good agreement between this prediction and the scaling measured experimen-
tally in a bistable semiconductor laser system.

The threshold case (section 4) is more delicate and requires singular perturbation
theory. As shown in Proposition 4.1, the exponent in the scaling law depends on
the order of the zero of F’(x). Our techniques yield the first term in an asymptotic
expansion for A(Q) itself, so we obtain the numerical prefactor in the power law as
well as the exponent. Specifically, for systems of the form

(1.5) & = —x|x|* + sin Qt,

we prove that as Q@ — 0

19 if0<a<l,
(1.6) AQ) ~{ —20ImQ ifa=1,
CoQ3ar1  ifa> 1.

The constants C; and Cy are explicit definite integrals that depend on a but not on
Q. These asymptotic results are shown to agree with numerical calculations of A(f2).
Section 5 deals with (1.3) in the limit of large Q. We find that
wE?

1.7 AQ) ~ —

(1.7) @~

as ) — oo. In this case it does not matter whether F'(z) has a zero derivative some-
where. In section 6 we indicate how to extend our results to more general systems,
including higher-dimensional systems. Finally, in section 7 we apply the theory to
explain (and in some cases, correct) the numerical observations of Luse and Zangwill
[14] on mean-field kinetic Ising models of magnetic spin systems.

2. Preliminaries. We consider differential equations of the form
(2.1) &= —F(z)+ EsinQt,

where E and Q are positive constants and F(z) is a strictly increasing, continuously
differentiable function that contains the interval [—FE, F] in its image.

Physically, (2.1) can be interpreted as the equation of motion for a heavily over-
damped particle subject to a restoring force —F(z) and a periodic drive of strength
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FE and frequency 2. One expects intuitively that after transients decay, such a system
will always settle down to a forced oscillation of period 27/2. This is the content of
the following lemma.

LEMMA 2.1. For any Q there is a 27 /Q-periodic solution z(t) to which all other
solutions are attracted.

Proof. First we show that such a periodic solution exists, by finding a fixed
point of the Poincaré map. Let X (xg,t) denote the solution of (2.1) that satisfies
X (20,0) = zo and let P(zg) = X(zo,27/Q) denote the Poincaré map. Then P is
continuous since X is a continuous function of 2y and t. To show that P has a fixed
point, it suffices to show that P maps some closed interval into itself. Specifically, let
xy, and zy be numbers such that F(zr) = —F and F(xy) = E. If 2(t) is a solution
of (2.1), x(t) is increasing whenever z(t) < zr and decreasing whenever x(t) > xy.
Therefore P(xzy) > x5, and P(zy) < zy, and so by continuity there exists a fixed
point z* = P(z*) in the interval [z, zy]. Hence z(t) = X (z*,t) is a 27 /Q-periodic
solution.

To show that all other solutions of (2.1) are attracted to z(t), let y(¢) be another
solution. Then

(2.2) i—y=—1[F(z) - F(y).
Since F'(z) is strictly increasing, 2 — g < 0if z—y >0and 22—y >0if 2 —y <0,
implying that y(¢) approaches z(t) monotonically. d

Throughout this paper, we will be concerned with the area of the dynamical
hysteresis loop for the system (2.1). This area is defined as the area enclosed by the
planar curve (EsinQt, z(t)) and is given by

(2.3) A(Q) = /Oé' EQ cos Ot z(t)dt

It is instructive to begin with the special case where F'(x) is linear. The general
solution of (2.1) for F(x) = cx is given by

E : —ct
(2.4) z(t) = Tia [csin Qt — Qcos Q] + Be™ <,

where B depends on the initial conditions. For ¢ > 0, all solutions are attracted to
the 27 /Q-periodic solution

E .
(2.5) z(t) = P [csin Qt — Q cos Q] .

In this case, the area of the dynamical hysteresis loop can be found explicitly for all
Q. The result is
E?1Q)

(2.6) AQ) = 5705

Thus A(Q) oc Q as Q — 0 and A(Q) o« Q71 as Q — oo.

Figure 2.1 plots A(Q) for F(z) = x with E = 1. For comparison, and to hint
at what to expect when F(x) is nonlinear, we have also plotted A(2) for F(x) =
x3, as obtained by numerical integration. Note that the low-frequency behavior is
qualitatively different—the graph starts with a vertical slope for cubic F—but the
high-frequency behavior is essentially the same. The goal of the following sections is

to explain these asymptotic results for a broad class of functions F(z).
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area

frequency

F1a. 2.1. Dynamical hysteresis area A(Q2) versus frequency Q for (2.1) with E = 1. Solid line,
F(x) = x; dashed line, F(z) = x3.

3. Small ©Q: Generic case. In this section we study the low-frequency behavior
of A(Q) for system (2.1), in the case where F'(x) is strictly positive. This is the generic
case, given our assumption that the system does not have static hysteresis.

The strategy is to consider driving the system at a frequency Q < €y, where Qg
is the slowest intrinsic relaxation rate at any point in the hysteresis loop. For such
slow forcing, it suffices to use a quasi-static approximation for the limit cycle.

PROPOSITION 3.1. Consider the system (2.1) and let
(3.1) Qo = min  F'(z).

—E<F(z)<E
Suppose that Qg > 0. Then for Q < Qg the area of the dynamical hysteresis loop is
proportional to 2.

Proof. Introduce the scaled variables y = Qoz/FE and 6 = Qt. Then the system

becomes

dy _ —G(x) +sinf

3.2 = "7

(3:2) do € ’

where € = Q/Qy and G(y) = F((E/Q)y)/E. The hypotheses imply that € < 1 and
. i "(y) = 1.

. 28 Y

Let u(f) be the periodic solution of (3.2) and expand u as
(3.4) u = ug + euy + o(e).
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Substituting (3.4) in (3.2) and collecting powers of ¢, we obtain, at O(e~!)

(3.5) 0= —G(uo(0)) + sin .
At O(1)
(36) % = —G’(uo)u1,

where we have used the fact that G is differentiable. Solving for w; using (3.5)
and (3.6) yields

—cosf
(G'(uo))*

From (3.3), (3.6), and (3.7) we see that |ui| <1 and |dug/df| < 1, which shows that
the approximations made are valid.

To complete the proof we now calculate the area of the dynamical hysteresis loop.
The periodic solution of (2.1) is z = (E/Q)u and so

(37) U =

27

A(Q)

-
[ ot
~() [ o] »

2 dl‘o 2
(3.8) _QA (M>d&

where xg is defined by

(3.9) 0= —F(x0(6)) + Esino.

In going from the second to the third line of (3.8), we have used the fact that wug
depends on @ only through siné (see (3.5)) to infer that fo% cos 0 ug(0)do = 0. Since
the integral in (3.8) is independent of €2, the proposition is established. ]

As a check, it is immediate to verify (3.8) when F(x) = cx (the exact formula for
this case is (2.6)).

Tables 3.1 and 3.2 show the results of numerical calculations with £ = 1 for two
different choices of F'(z). The quantity A(€2;) is the value of the area obtained by direct
numerical integration of the full system, whereas A(£2;) is the value predicted by the
approximation (3.8). The integral in (3.8) must typically be evaluated numerically,
but fortunately not much labor is required: only one numerical quadrature is required
for each function F.

To test the predicted scaling more quantitatively, we introduce the quantity

(3.10) 3 = ln(?é?éijéffii;l))’
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TABLE 3.1

Flz)==z
i A(;) Bi Ao ()
1] 0.1 0.3110 | 0.9892 | 0.3142
2 1 0.1x2°1 | 0.1567 | 0.9973 | 0.1571
3] 0.1x272 | 0.0785 | 0.9993 | 0.0785
4 1 01x273 | 0.0393 | 0.9998 | 0.0393
51 0.1x2% | 0.0196 | 1.0000 | 0.0196
6 | 0.1 x275 | 0.0098 0.0098

TABLE 3.2

F(zx)=2% 4z

i A(;) Bi Ao (%)
1] 0.1 0.1757 | 0.9907 | 0.1773
2 1 0.1x21 | 0.0884 | 0.9975 | 0.0886
3] 0.1x272 | 0.0443 | 0.9994 | 0.0443
4| 0.1x273 | 0.0222 | 0.9999 | 0.0222
5| 0.1x2°4 0.0111 1.0000 | 0.0111
6| 01x2° 0.0055 0.0055

which approximates the exponent in the scaling law A(Q) ~ Q7. The tables show that
for both choices of F(z), the exponent § — 1 as 2 — 0, as predicted.

Remark 1. We can also allow F’(z) take the value oo in Proposition 3.1. For
example if F(z) = z3, A(Q) will still be proportional to Q.

4. Small Q: Threshold case. In section 3, we assumed that £y > 0, which is
equivalent to assuming that the system always relaxes exponentially fast, in the ab-
sence of forcing. However, this condition is violated at bifurcations of the type shown
in Figure 1.2. In physical systems, this bifurcation arises in connection with second-
order phase transitions, where the resulting subexponential relaxation is known as
“critical slowing down.” We now investigate this threshold case by studying a model
equation that captures the essential phenomena.

4.1. Asymptotic formulas.
PROPOSITION 4.1. Consider the system
(4.1) T = —x|z|* + sin Q4.

For Q < 1, the area of the dynamical hysteresis loop is given by the following asymp-
totic formulas:
Ci1Q if0<a<l,
(4.2) AQ) ~{ —20ImQ ifa=1,
CoQart  ifa> 1.
The prefactors Cy and Cy are given explicitly by definite integrals that depend on a

but not on ).
Proof. Make the change of variables § = Qt. System (4.1) becomes

dr  —zx|z|*+sind
4.3 — =

(43) do Q

The lemma in section 2 implies that (4.3) has a globally attracting periodic solution

z(0). Naively imitating the approach used earlier to prove Proposition 3.1, we seek a
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perturbation expansion of z(6) in powers of € :
(4.4) 2=20+ Q2 + V22 + .

Substituting this expansion in (4.3) and equating like powers of €2, we find

(4.5) 20(0) = sin 0 |sin 6]~ a1
and
(4.6) 21(0) = —cosf

(a+1)? [sin 9|a27f1

The form of z1 () exposes a difficulty that did not arise in the previous calculation:
the series expansion is not uniformly valid, due to the |sin é| term in the denominator
of z;. Near § = 0 and 6 = m, the expansion breaks down and boundary layers
must be inserted. Therefore the series expansion (4.4) should be regarded as an
outer expansion; it needs to be supplemented by inner expansions that are valid in
the boundary layers, and then the inner and outer solutions must be joined by a
matching procedure.

To find the appropriate scaling in the boundary layer near § = 0, we observe that
when |0] = O(Q%)7 all the terms Q'z; in (4.4) become of the same order. This
motivates the change of independent variables

0
4.7 = —7.
(1) 6= =
Next we determine the appropriate scale for the dependent variable. For 6 small but
not too small, so that we are still in the outer regime where (4.4) is valid, we have

2a
_a QO

=00 A — ————

(4.8) — e (gloet - L)
(a+1)?
which suggests the change of dependent variables
x

4.9 =
(4.9) -

in the layer near 6 = 0.
Then from (4.8) and (4.3), we have that for |§] < 1,

(4.10) 4w=m%m(fl)

2aF1

where y;(¢) satisfies
diy

(4.11) 7 —yilya|* + ¢
with asymptotic behavior

—arT
(412 y~ ool — L

(a+1)2
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as ¢ — Foo. Here the asymptotic behavior is determined by the requirement to match
the solution onto (4.8).
Using the same arguments but now for 6 near m, we get for |0 — 7| < 1,

(4.13) 2(6) =~y (9‘”) |

2a+1

Here ¢ = (6 — w)/Q;TTl and ys(¢) satisfies

dy2
4.14 = =— @
(4.14) 6 Y2ly2|” + ¢
with asymptotic behavior
9]~
4.15 ~ @t —

as ¢ — £oo. This implies that y1(¢) = y2(¢) since |y1(¢) — y2(¢)| is decreasing (as
seen by subtracting (4.14) from (4.11)) and y1(¢) — y2(¢) — 0 as ¢ — —oc.
Now we are in a position to calculate the area of the dynamical hysteresis loop:

27
A(Q) = / cos&z(&)d@‘
0
(416) = ‘Iouter’ + Iinner| )
where
71'—90 —90
(4.17) Toyter = / cosf z(0)dd + / cos 6 z(0)do
6o —7m+0o
and
6o w+0o
(4.18) Linner = / cosf z(0)do + / cos 6 z(0)do
—90 7T—190
with
(4.19) fo = Q37T b,

where ¢p > 1 and 6y < 1 so that we can use the formula (4.4) to calculate Iy ier
and (4.10) and (4.13) to calculate Ijpner-

After some manipulations we obtain that

10 [ . P,
Touter =~ 12 ((Sln o) =+ cos By — / (sin @) o+1 d@)

0o

40 loa 2 2
(4.20) N3 <9§“ —/ (sin@)=+T d9>

0

(421) = 3 <¢5H92a+1 _ /2 (Sin6>%+l d9>
1-a 0
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and
at2 ¢o at1
liwer = 055 [ cos (05559) ((6) + 1a(6) 49
— %0
5 ®o
(4.22) z292a++1/¢ y1(p)de.
—®o0

The relative sizes of I;jpner and Ioyuter depend on a. Let us begin with the case
a > 1. From (4.20), (4.21), and (4.22), we get

l—a
4657 .
(4.23) Louter = 1¢0 - E
—Qa
and
(4.24) Tinmer A2 Qa1 I,

where we have introduced the integral

$o
(4.25) Iy =2 lim y1(¢)de

P00/ — gy

as an approximation to 2 ff;o y1(p)do, since ¢g > 1.

We claim that I exists and that it is finite and strictly negative. To prove these
statements, we need to extract some properties of the unknown function y; (¢). Recall
that this function is defined as the solution of (4.11) with asymptotic behavior (4.12)
as ¢ — too. Let

(4.26) F(#) = lel 7

denote the leading term in the asymptotic expansion (4.12). Since f is odd,

%o

(4.27) |, f@ds=o.

From (4.12) we see that y; — f(¢) is integrable since a > 1. Therefore I exists
and is finite because of (4.27). Next, to show that I is strictly negative, we define
w(¢) = y1(¢) — f(¢) and observe that Iy = 2 [ w(¢)dp. Thus it suffices to show
that w(¢) < 0 for all ¢. We know that w(¢) < 0 for ¢ — —oo (see (4.12)), so the
graph of w(¢) either remains below the line w = 0 for all ¢, in which case we are
done, or else the graph of w(¢) crosses up through w = 0 with a nonnegative slope
at some point ¢;. But that leads to a contradiction, since w’(¢1) < 0 at any zero
crossing. To see this, note that

dw _dy, _J¢]"*
dp — do a+1 "’
From the definition of f(¢) and (4.11), dyi/d¢ = 0 at ¢ = ¢1, which implies that

w'(¢1) < 0. Hence w(¢) < 0 for all ¢ and Iy < 0, as claimed.
Now, since a > 1 and ¢ > 1, we have |Ioyter| < |Linner| and hence

(4.28)

(4.29) A(Q) ~ Qi1 ||
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At the end of this section, we will present a few results about the dependence of
Iy on a. But first let us finish the proof of Proposition 4.1.
Turning now to the case a < 1, we see from (4.20) that

9 2 2
(4.30) Towter =~ — : 5 / (sin9) T dg.
—-a? J,
Using (4.12) and (4.27),
4 a l—a
Iinner ~ - 1_ a292a++21 ¢5+1
4 iz
(431) - —medl Q

Then |louter| > |Linner| since 0y < 1, and so

(4.32) A~ — g / " (sin) = dp.
0

1—a?

Finally, consider the case a = 1. We have

i 9 2
Iouter ~ 79/2 (COS ) do
0o

sin 0

(4.33) ~ Qln 6y

since 0y < 1, and

®o
Iinner ~ 29/ y1(¢)d¢
—o

(4.34) ~ —Q1n .

To derive (4.34), we used (4.12) with a = 1 to approximate the integrand y;. The first
term in (4.12) integrates to zero because it is odd. Thus the dominant contribution
to the integral comes from next term in (4.12), which decays like 1/|¢| for large |9
and thereby yields the logarithmic dependence in (4.34). The asymptotic expansion
for y; is not valid for small |¢|, but that region makes only an O(1) contribution to
the integral and so is negligible in any case.

Next observe that 6y = QaFT ¢p = Q%q’)o from (4.19). So A(Q) = |Luter + Linner|
reduces to

(4.35) A(Q) ~ —;QIHQ

and this completes the proof of the proposition. ]

4.2. Calculating the prefactor Iy. We have obtained explicit asymptotic for-
mulas for A(2) when a < 1 and a = 1, but when a > 1 the scaling law (4.29) depends
on the integral Iy defined in (4.25). We calculate Iy next.

Using dominant balance in (4.11), we find that the asymptotic behavior of y; is

Gl balg| TF° a(37a+8)|g|

(4.36) Y1~ =l — (a+1)2 " 20a+13 3(a+1)°
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as ¢ — —oo and

—2a —1-4a —2—6a
1 patt S5a¢p et a(37a+ 8)¢ «t1
4.37 X Qpatl — — —

(4.37) nx9 @+1)?2 2(a+1) 3(a+1)°

as ¢ — +oo. We now choose some large positive number R. In calculating Iy we
approximate y; by (4.36) for ¢ < —R and by (4.37) for ¢ > R. For —R < ¢ < R we
find y; by numerically integrating (4.11) with initial condition

. Ret 5aReF a(37a+8)R e
4, —R)= —RatT — -
(438)  pu(=R) = =R — s T o 3(a+ 1)8

We get the following formula for Iy:

4 1 4a(37a+8) 15 "
439) Iy~ R — R 42 dg.
(489) o~ —T5 3(a + 1)5(1 + 5a) + /_R v ()¢

The error we make is O(R et ). One can improve the accuracy by increasing R or
by calculating more terms in the expansion of y;.
There are two nice limiting cases. From (4.39) we see that

2
(4.40) |1p| =~ ] asa — 1T,

As a — 400, (4.11) goes to

—+00 ify1<—1
d 9
W _ 10) if -1 <y <1,

(4.41) _
d¢ oo if 1<y,

which can be solved explicitly to yield
16
(4.42) |Io| — 3 sa— +o00.

To see this geometrically, Figure 4.1 shows the phase portrait of (4.11) for large a.
The nullcline dy; /d¢ = 0 is given by the curve y; = f(¢), which approaches a step
function as @ — +o0o. The initial condition (4.38) starts below the nullcline. Then
the flow rapidly brings the trajectory to the neighborhood of the nullcline branch
y1 = —1. The solution drifts to the right until it is released at (¢,y;) =~ (0, —1). Then
integrating dy; /d¢ = ¢ yields y; = —1 + %¢2, until y; ~ 1 when ¢ = 2. Thereafter
y1 ~ 1 for ¢ > 2. By substituting this y;(¢) into I and integrating, we obtain the
desired result (4.42).

Figure 4.2 shows a plot of |Ip| as a function of a where we took R = 2. (The
approximation (4.39) works well even if R is not very large, but from the case a = +oo,
we see that we need to take R > 2 at least.)

As a concrete example, our numerical calculations tell us that |Iy| = 81.1504 when
a = 1.025, and the approximation |Iy| ~ 2/(a — 1) implies |Iy| = 80. For large a, say
a = 40, numerical calculations give |Iy| = 5.0416 whereas (4.42) gives 5.333.

Tables 4.1 and 4.2 show some further numerical calculations to test the predicted
exponents in the scaling law (4.29). The tables have the same format as Tables 3.1
and 3.2. For F(z) = 2* and F(x) = a°, the predicted exponents are § = 3, and
0= %, respectively.
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N

dy, 4__2

2l_p
de

Fic. 4.1. Flow of (4.11) for large a.

o

F1G. 4.2. Numerical evaluation of |Io| as a function of the exponent a.

Remark 2. We are now in a position to extend the result of Proposition 3.1
to the case where F’'(xz) = 0 for some x such that —E < F(x) < E. Using the
same procedure as in the proof of Proposition 4.1, we construct the outer approxi-
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TABLE 4.1
F(z) = x?
i Q A(4) | Bi Ao (§4)
1| 0.1 0.6769 | 0.7442 | 0.7594
2| 0.1x271 | 0.4041 | 0.7597 | 0.4361
3] 01x22 0.2387 | 0.7684 | 0.2505
4] 0.1x273 | 0.1401 | 0.7735 | 0.1439
51 0.1x2"% | 0.0820 | 0.7794 | 0.0826
6 | 0.1x275 | 0.0478 0.0475
Predicted exponent 3 = 0.8000
TABLE 4.2
F(z) = x®
i A(Q;) Bi Ao (%)
1] 0.1 0.9108 | 0.6380 | 0.9379
2 1 0.1x2"1 | 0.5853 | 0.6502 | 0.5909
3] 0.1x272 | 0.3729 | 0.6559 | 0.3722
4 01x23 0.2367 | 0.6599 | 0.2345
51 0.1x2"% | 0.1498 | 0.6619 | 0.1477
6 | 0.1 x275 | 0.0947 0.0931
Predicted exponent 3 = 0.6666

mation to the periodic solution z. This outer approximation will fail for 6y such that
F'(z0(00)) = 0 (see (3.9)). In this region we look at the behavior of F(x). If F(x)
behaves like F(x) ~ Esinfy + ¢ (z — z0(00)) |z — 20(00)|”, we apply Proposition 4.1
with some constant that will multiply the final formula. We do this for every 6y such
that F'(x0(0g)) = 0 and then note which terms provide the major contribution to
A(Q).

5. Large Q. In this section we study the asymptotic behavior of A(f2) as Q —
oo. Earlier results in this direction have been obtained by Rao, Krishnamurthy, and
Pandit [18].

PROPOSITION 5.1. Consider the system

(5.1) & =—F(z)+ EsinQt,

where E and 0 are positive constants and F(x) is a continuously differentiable func-
tion that is strictly increasing in a neighborhood of q, where F(q) = 0. Then for
Q > E the area of the dynamical hysteresis loop for system (5.1) is proportional to

QL

Proof. As usual, let § = Qt. Equation (5.1) becomes
dr  —F(z) + Esinf
o Q '

Let z(#) denote the periodic solution in the neighborhood of ¢, and expand z as

(5.2)

(5.3) z=zotz1tz+-

with Ziv1 < ;.

At the first approximation we have dzo/df = 0, so 2y is a constant. At the next
order,

dz1  —F(z)+ Esinf

(5.4) -5 = 9 :
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where we have approximated F(z) by F(zp). Since z is periodic in 8, we need F'(z9) =
0 and

le E .
(55) @ = 55111 9
Then zp = ¢ and
E
(5.6) a=-q cosf + C.

Going one more order in (5.2) we get

dzy F(q—i—C—%cosH)

(5.7) 0 q

By again requiring periodicity of z5, we infer that

2 E
(5.8) / F(q—l—C—cos@) de = 0.
O Q

Since F(q) =0, C exists for Q large enough and C — 0 as Q — co.
We conclude that the limit cycle is approximated by

E
(5.9) z:quCfﬁcosﬁ

and hence the area of the dynamical hysteresis loop is

2
(5.10) A(Q) = ﬂ,
Q
which proves the proposition. 0

In the analysis above, we never used the assumption that F' is locally increasing.
The point is that the periodic solution z will be stable only if F' is locally increasing;
this was shown in the lemma at the beginning of section 2.

We now compare the predicted area (5.10) against numerical computations for
two different functions F(x), using £ = 1 in both cases (see Tables 5.1 and 5.2).
As in earlier tables, A is the area computed numerically, and Ay is the analytical
approximation.

It is interesting to see that for F(x) = 2, A(Q) starts behaving like Q™! sooner
than it does for F'(z) = x. The reason is simple: in these two cases, ¢ = C' = 0 (see
the proof of Proposition 5.1), and so from (5.7), the first term we are neglecting in the
expansion of our periodic solution, namely zy, is O(Q72) for F(x) = x and O(Q™%)
for F(z) = 3.

6. Generalizations. The results obtained in the previous sections have natural
generalizations, some of which we now state without proof. These generalizations are
motivated in part by scientific applications to a bistable semiconductor laser system
[9] and to magnetic spin systems, as will be discussed in section 7. The first three
generalizations deal with low-frequency driving and the final generalization deals with
high-frequency driving.



SCALING LAWS FOR DYNAMICAL HYSTERESIS 1179

TABLE 5.1
Fz)==z
i | Q A(Q) | Bi Ao(§4)
1] 10 0.3110 | —0.9892 | 0.3142
2 | 10x2 | 0.1567 | —0.9973 | 0.1571
31 10x22 | 0.0785 | —0.9993 | 0.0785
41 10x 23 | 0.0393 | —0.9998 | 0.0393
5 | 10 x2* | 0.0196 | —1.0000 | 0.0196
6 | 10 x 25 | 0.0098 0.0098
TABLE 5.2
F(z) = 3
i | Q| A(%) Bs Ao (Q)
1|1 2.3916 | —0.6187 | 3.1416
2 | 2t 1.5576 | —0.9865 | 1.5708
3 | 22 0.7861 | —0.9998 | 0.7854
4 1 2% | 0.3931 | —1.0000 | 0.3927
5| 2% | 0.1965 | —1.0001 | 0.1963
6 | 2° 0.0983 0.0982

6.1. One-dimensional systems: Generic case. This generalization of Propo-
sition 3.1 concerns a broader class of one-dimensional systems than we have previously
considered. The periodic forcing can be nonsinusoidal and it can also appear more
implicitly than as an additive term in the differential equation. But, we retain the
earlier assumptions that the forcing is low frequency and that the system has no static
hysteresis.

Let F(z,y) be a real-valued continuously differentiable function. Let g(#) be
a periodic real-valued function with period T, whose image is the interval [yr,yy]-
Suppose that the equation

(6.1) F(z*(y),y) =0

implicitly defines a continuous function of y that we call z*(y) for vy, < y < yy.
(Equation (6.1) may have several solutions but we restrict our attention to only one
branch.) Let

(6.2) Qo= min oF

yL<y<yu %(x (y)’y)
If Qg > 0, then for Q2 < Qg the system
(6.3) &= —F(z,g(t))

has a dynamical hysteresis area proportional to £2:

g'(0)

2
Fx<x*<g<9>>,g<9>>> 0

(6.4) AQ) ~Q

b

/ " By (90)). 90)) (

where now the dynamical hysteresis area is defined as the area enclosed in the plane
by the curve

(6.5) Ca : (9(21), 2(1))
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for 0 <t < T. Here z(t) is the periodic solution of (6.3) that approaches x*(g(£2t))
as (1 — 0.
For a further generalization, one can replace Cq by a more general curve

(6.6) Ca : (h(g(2t)),5(2(1)));

where h and j are continuous real-valued functions. The scaling law A(Q) « Q will
still hold, except in some pathological cases, e.g., if h or j is a constant function. Also,
the integral that multiplies 2 will be altered slightly to include the dependence on h
and j.

6.2. Multidimensional systems: Generic case. The previous result can be
extended to the case where the system (6.3) is multidimensional; now F and z are
n-dimensional vectors. We define

(6.7) Ay = min {Re(A) : A is an eigenvalue of J(z*(y))},
where J(z*(y)) is the Jacobian matrix of F, (0F;/0x;) evaluated at z*(y). Let

6.8 Qo = in A,
( ) 0 yLISI%JlgyU v
If Qp > 0, then for Q <« Q the system (6.3) has a dynamical hysteresis area

proportional to €2, where the dynamical hysteresis area is the area enclosed by the
curve (6.6).

6.3. Threshold case. We can also extend the result of Proposition 4.1 (or

Remark 2). Suppose that there is a yo such that ‘g—i(aﬁ*(yo),yo) = 0 and that

%—i(x* (y),y) > 0 for y # yo. If near (z*(yo),yo), F behaves like
(6.9) F(z,y) ~ c1 (z — 2" (yo)) |z — 2" (y0)|* + c2 (y — o)

with ¢; > 0, ¢ and g—z(yo) different from 0, the result of Proposition 4.1 is still valid.

Furthermore, as in Remark 2, we can have more than one gy where %—I;(x* (¥0),%0) = 0.
Remark 3. We can also extend the results of Proposition 4.1 to several dimensions
if, for each y such that A\, = 0 (see (6.7)), only one eigenvalue of J(z*(y)) has real
part 0, and consequently vanishes.
This is an important case because it arises naturally at zero-eigenvalue bifurca-
tions. For instance, in section 7 we will encounter cases where F' depends on an extra
parameter u, and the system

(6.10) &= —F(z,g(),p)

has static hysteresis for p > po but not for p < po. At p = po we have a zero-
eigenvalue bifurcation. If F' is differentiable many times (for example, if F' is analytic),
we can use center manifold theory to obtain the reduced dynamics of (6.10) near
(z*(y0),yo) for p = po. The dynamics will typically be governed by an equation of
the form

(6.11) &= —c12° 4+ cQ(t — to),

where yo and ty are such that A\, = 0 and yo = g(Q2t). Then, by extending Propo-

sition 4.1 for the case of exponent a = 2, we can show that the area grows like
4

A(Q) x Q5.
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6.4. High-frequency driving. We turn now to extensions for large ). For one
dimension the system (6.3) has a dynamical hysteresis loop whose area is proportional
to Q71 as Q — oo if

T
(6.12) /O 2—5(2*, 9(8))d8 > 0,

where T is the period of g and z* is a solution of

T
(6.13) /0 P2, g(8))d0 = 0.

The condition (6.12) is not necessary but it is an easy condition to test and if it
happens to be satisfied, we know that the periodic solution is linearly stable.

In the multidimensional case, condition (6.12) has to be replaced by the require-
ment that all the solutions of the variational equation

dv

(6.14) o=

—J(2", 9(0))v

decay to 0 as § — co. Equation (6.13) stays the same but becomes a vector equation.

7. Application to magnetic spin systems. In this section, we compare our
results to the numerical observations of Luse and Zangwill [14]. For other works where
our theory applies, see [4, 9].

Luse and Zangwill [14] investigated the area of the dynamical hysteresis loop for
three related mean-field kinetic Ising models. The governing equations are

(7.1) =1 (—M + tanh {n']M + HsttD ,
T kT
. 1 nJM + H sin Qt . nJM + H sin Qt
12) =L (<t [P AN | )y
. 1
(7.3) M == (BM — CM® + HsinQt),
T

where M is the average magnetization of an Ising model with n nearest neighbors
and ferromagnetic exchange J, k is the Boltzmann constant, T is the temperature,
B and C in (7.3) are constants with B ”TJ — T, and H and 2 are the amplitude
and frequency of the applied magnetic field. It is easy to check that all three systems
have static hysteresis for T' < T,, where the critical temperature T, is given by

nJ
-

For low-frequency driving in the statically hysteretic regime, Luse and Zangwill
[14] found that all three systems obey the same scaling law:

(7.4) T, =

(7.5) A(Q) — Ag ~ H3QS

for small Q and T' < T, where Aq is the area of the static hysteresis loop. But they
were unable to determine the low-frequency behavior of A(Q2) for T' > T, i.e., in the
absence of static hysteresis.
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For high-frequency driving, the numerical results appeared to fit the empirical
scaling law

=
. A(Q) ~
(7.6) () ~ 5
independently of T, as long as {2 and % are large. The quantity v in the exponent

depends on the system:

0.3 for (7.1),
(7.7) y=< 1.1 for (7.2),
0.82 for (7.3).

In the following, we summarize the scaling laws predicted by our theory and
outline the derivation of those formulas. Because the algebraic manipulations are
similar to those shown earlier, we omit many of the intermediate steps.

7.1. Large Q. Let us focus first on the high-frequency limit 7 > 1. Equa-
tion (5.10) can be applied directly to (7.3), because the periodic forcing appears as a
simple additive term in (7.3). After appropriate rescaling of parameters, we find that

TH?
(7.8) A(Q) ~ o
for B, C, and H all much smaller than 7€, giving v = 0.8, close to the numerical
result 0.82 in (7.7).

To analyze (7.1) and (7.2), we need to supplement the techniques of section 5 with
those of section 6.4, because the periodic forcing now appears inside the argument of
a transcendental function rather than as a simple additive term. We let § = Qt and
approximate the periodic solution z by zg + 21, where 2y is a constant and

da _ Flaog(0)

(7.9) 7 E—
Here g(¢) = Esinf with
H
1 E =
(7.10) T
and
| x —tanh (pz +y) for (7.1),
(7.11) Flz,y) = { x cosh (pz + y) — sinh (ux +y) for (7.2),
where
nJ
12 = —.
(7.12) b= T

Because of periodicity of z; we have that 2 is a solution of

(7.13) /0 " (20, 9(6))d0 = 0.
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The area will then be given by

A(Q) ~ /0 7 21(9)9'(9)d0‘

[ 00

2

(7.14) =)'

e, 9(0)0)09.
0

Some work is now required to approximate this integral. The calculations are
done first for (7.1) and then for (7.2).

7.1.1. Large Q for the system (7.1). For system (7.1), the approximations
(7.9), (7.13), and (7.14) are valid for any E because tanh(z) is a bounded function.

There are two important subcases to consider: weak forcing F < 1 and strong
forcing EF > 1.

We begin with £ < 1. Then zg = 2* + O (EQ), where

(7.15) z* — tanh (uz*) = 0.

Equation (7.15) has three solutions for x> 1 (corresponding to the statically hys-
teretic case T' < T.) and one solution for p < 1 (T > T.). We are interested in the
stable periodic solutions. From (6.12), those solutions satisfy

T OF OF |
0 %(2079(9))610 ~ 27(%(2 70)

= 27 — 2mpcosh ™2 (uz*)
9L (12, 0)
dz*
dp
2* cosh™2 (puz*)
dz*
dp

= 27

(7.16) > 0.

Here we have expanded around (z*,0) since E is small and, therefore, g(6) is small.
Terms of order E? are neglected and we regard z* as a function of u given implicitly
by (7.15). We see that for p > 1 we have three different functions z;(u) with z(1) = 0,
2} (+00) = —1, z5(p) = 0 for all p, 27 is decreasing, and z5 = —z7. From (7.16) and
these observations about the behavior of the different z; (1) we infer that for p > 1,
2} () and z5(p) correspond to the stable periodic solutions and z* = 0 corresponds
to the unstable one. For p < 1 there is only one periodic solution; it is stable and
z* = 0. Expanding F(z*,y) around y = 0 and substituting (7.14) we find that the
area of the dynamical hysteresis loop is

E2
(7.17) A(Q) =~ 7;2—7_ cosh™2 (uz*)
for system (7.1) in the limits Q7 > 1 and F < 1.
Next we consider £ > 1. Then
oF

(7.18) o (090)) =1~ pcosh™(g(9))
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and so

2
oF 1

7.19 20, 9(0))do = 2 O(—)
(719) G0 gan =27 +0 ().
indicating that the periodic solution around 0 is stable. The three periodic solutions
have collapsed to only one (because it is easy to see that any other periodic solution
will be centered around a point near 0 and will be stable, but if we have more than
one stable periodic solution we need an unstable one in between). Since

) —1 if sinf >0,
(7.20) g F(0,9(0)) = { 1 if sinf <0,
we get
4F
(7.21) A~ o

Comparing our analytical results to the numerical scaling law (7.6), we see that
there is no uniform ~ for the system (7.1) independent of T. We find v = 0.8 for
H < kT (see (7.17)) whereas v = 0.2 for H > kT (see (7.21)). It is interesting that
Luse and Zangwill [14] found a value of v = 0.3 in between the two limiting values.

7.1.2. Large €2 for the system (7.2). Now we repeat the calculations above
but for system (7.2). The approximations (7.9), (7.13), and (7.14) are found to be
valid only for Q7 > €. In this regime, (7.13) implies that

(7.22) 20 — tanh(pzo) = 0.
For E < 1, arguments similar to those used earlier show that
wE? .
(7.23) A(Q) ~ Q—(cosh(uzo) — zg sinh(pzo)).
T

However, for Q1 < e the situation is different. In this case (7.9) is not valid. If
x < -1, F(z,y) <0andif x > 1, F(z,y) > 0. As a consequence the periodic solution
z(0) (and there is only one) satisfies —1 < z < 1. Dominant balance shows that

Z_{ 1 if0<f<m Ef>1and E(m—0)>1,

(7.24) 1 if —m<0<0,|E6 > 1and |E(x+0)| > 1,

where we have neglected terms of order e~ .
The asymptotic behavior of z when (7.24) is not valid is given by x(E6) for 6 < 1
and —x(E(0 — m)) for 6 — 7 <« 1, where x satisfies

dr - L—Hewﬂﬁ _ L"_le*uw7¢
do 21QF 21QF

with boundary conditions x — —1 as ¢ — —o0.
Then the leading order approximation to the area is

(7.25)

+o
(7.26) A(Q) =2 ¢lim z(¢p)dp = O(In(27QE)).
000 J—¢o
To derive this result, we argue that (7.25) shows that x is not close to 1 or —1 for a
distance of order In(27QF); then we use similar techniques to those used in the proof
of Proposition 4.1.
We see that the dependence on H implied by (7.6) is incorrect.
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7.2. Small Q. We now analyze the models in the low-frequency limit Q7 < 1.

Assume first that T' < T, so that all three systems have static hysteresis. Jung,
Gray, Roy, and Mandel [11] showed analytically that the scaling law (7.5) is correct for
system (7.3). Those authors also argued that the scaling law should hold more gener-
ally, consistent with the numerical results of Luse and Zangwill [14] for systems (7.1)
and (7.2).

For the threshold case u = 1 (i.e., T = T.), we can rescale the systems so that
Proposition 4.1 applies. We find that when 72 < F, the area of the dynamical
hysteresis loop for both systems (7.1) and (7.2) is

(7.27) A(Q) ~ |I](27)F (rQE)3

where Iy is defined in (4.25) and computed in section 4.2. The area for system (7.3)
with 7Q <« H and Q) <« C is given by

(7.28) A(Q) ~ |I|C~3 (rQH)5 .

Finally, when p < 1 (i.e., T > T.) we are in a position to apply the generalization
discussed in section 6.1. For all three systems, the area of the hysteresis loop is
proportional to € in the low-frequency limit. Specifically, if 7@ <« FE (and also
7Q < |B| for (7.3)), the area of the dynamical hysteresis loop is

(7.29) A(Q) ~ IO,

where the prefactor I depends in a complicated way on the system and the parameters
H and E, as follows. For the system (7.1),

2m h2 E si
(7.30) I=IL= EQ/ cosh” (uz1 (0) + F sin 6) 5 cos” 0df.
0 (cosh®(uz1(0) + Esin®) — )
For (7.2),
5 [T 1 — 2z5(0) tanh(uz2(0) + Esinf) cos? 0
[=L=E . —
o (1 —p+ pzo(0) tanh(puze(9) + Esinf))” cosh(uzz(0) + E'sin0)
(7.31)
Last, for (7.3),
2m 2
(7.32) I=1I;=H? / cos” 0 Sdo
o (=B+3C(23(0))%)

In the integrals above, z; and zo are the same periodic function, defined implicitly by

2(0) —tanh(pz(0) + Esin @) = 0. The function z3 satisfies Bzz — C(23)3 + H sin = 0.
To clarify the dependence on E in the integrals I; and Is, let us consider two

limiting cases. When £ < 1, I = I =~ 7wE?/(1 — u)?. However, for E > 1,

cosh® (uy(¢) + ¢)

(cosh?(uy(¢) + ¢) — )"
where y(¢) — tanh(uy(¢) + ¢) = 0, and

(734) I, ~ 2E / 1~ y(9) tanh(uy(9) + 0)
1 — p+ py(¢) tanh(uy(o) + ¢))

)

+oo
(7.33) I ~2E /

5 cosh ™ (uy(¢) + ¢)do.



1186 G. H. GOLDSZTEIN, F. A. BRONER, AND S. H. STROGATZ

Thus we find that for both (7.1) and (7.2) the area goes like A ~ E?Qr for small E
and like A ~ EQr for large E.

Turning now to the integral I3, we find that I3 ~ 7H?/B? when H < 1, whereas
for H > max{1,C, |B|},

~ o d¢
(7.35) I~ 2H / = (B=3C(ys(9))?)?

where Bys(¢) — C(y3(¢))® + ¢ = 0. Hence the area for (7.3) scales as A ~ H2Qr for
small H and A ~ HQr for large H.

do,
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