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2 REACTION DIFFUSION EQUATIONS

I. Introduction. In order to understand the processes of aggregation and disper-

sal of cells or other organisms in a biological system, one needs to understand the

mechanism of communication between such cells or organisms. Cells may interact

in a variety of ways. For example, there may be long range(hormonal) interactive,

intermediate range interaction via the production and release of di�usible sub-

stances or short range interactions due to local modi�cations of the environment

such as the production and release of substances which modify the extra-cellular

matrix. There may even be contact interactions via surface recognition molecules

or cell-to-cell exchange of low molecular weight substances via gap functions.

A particularly interesting example combining several of these interactive pro-

cesses occurs in the study of fruiting bodies such as myxococcus fulvus or the

dictyostelium discoideum amoeba.

Here the fruiting body cycle begins with the development of spores which ger-

minate and develop in vegetative growth until starved of nutrients. In this latter

case the vegetative growth aggregates to form a new fruiting body to start the

cycle once more. This is a complicated process which is far from being completely

understood.

Dispersal often involves mechanisms that may include correlations in movement.

For example, the movement of an organism in response to external stimuli may

include a 'taxes' dependence on 
ux densities, avoidance phenomena or orientation

of cells. It is well accepted that dispersal in general is not simply one of random

walks (i.e. Brownian motion), but rather one of correlated or reinforced random

walks [D]. Consequently it is important to address the following questions:

(1) How are the microscopic details of detection of cells to stimuli and their re-

sponse re
ected in the macroscopic parameters of a continuous description?

(2) Is aggregation possible without long range signaling via a di�usible attract-

ant?

In their attempt to address these questions Othmer and Stevens [OS] have developed

a number of mathematical models of chemotaxis to illustrate aggregation leading

(numerically) to non-constant steady states (which appear to be stable, at least

numerically), blow up resulting in the formation of singularities (in �nite time) and

collapse or the formation of a spatially uniform steady state. In [OS], they have

recorded the results of their numerical experiments.

It is the purpose of this paper to present analytical results which support their

numerical observations as well as some additional numerical computations we have

made.

II. Problem formulation.

We consider the one space dimensional version of the Othmer-Stevens model in

this paper. If P (x; t) is the particle density of a particular species and W (x; t) is

the concentration of the \active agent", then, on some interval (0; l) they consider

the system of equations
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and where �; 
; k1; k2; �; 
r; �;D are all nonnegative constants with D;� being

strictly positive and a 6= 0: One imposes the single no 
ux boundary condition
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as well as given initial values

P (x; 0) = P0(x) � 0

W (x; 0) =W0(x) for 0 � x � l (OS4)

Since the �rst of equations (OS1) is parabolic in P we observe that P (x; t) � 0.

More importantly, perhaps is the observation that there is no di�usion term present

in the second of equations (OS1). This is in contrast to the usual chemotaxic mod-

els in which di�usion of both the population density and the chemotaxic agent

occurs, e. g. [CP,JL]. Here we have a situation in which there is in�nite speed

of propagation in P and zero speed of propagation in W: Therefore it might be

reasonable to expect some interaction of the characteristics to produce, under ap-

propriate choices of the parameters in (OS2), solutions for which P either blows

up in �nite time, collapses to spatially uniform constant or collapses to a piecewise

constant stationary solution. (The usual regularity theory for parabolic systems of

equations is not applicable here since (OS1) is strongly coupled (the �rst of (OS1)

involves a term of the form F (P;W )Wxx) and there is no di�usion in the second of

equations (0S1).

Writing out the �rst of equations (OS1) using the second we have
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The rigorous results we obtain are for some simpli�ed versions of (OS). We see that

if 
 >> W >> �, the coe�cient ofWx is nearly a=W whereas if � >> W >> 
 the

coe�cient is �a=W: These two extreme cases can be modeled by taking �(W ) =

W�a where a > 0 or a < 0: In particular, with this choice of �, throughout most

of our discussion, we will take 
r = 0, R(P;W ) = �PW ��W:We will usually take

a = �1 also.
Thus, at the outset, we shall consider the following simpli�ed version of (OS1-

OS4):

Pt = D

�
Pxx + a

�
P
Wx

W

�
x

�
Wt = �PW � �W for 0 < x < l; t > 0 (2.1)

a
Wx

W
+
Px

P
= 0 for x = 0; l; t > 0

P (x; 0) = P0(x) > 0

W (x; 0) =W0(x) > 0 for 0 � x � l:
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We shall show, among other things, that with this simpli�cation, when a = �1,
there are solution pairs (P;W ) for which P > 0 and P blows up in �nite time and

the power spectrum converges to that of the delta function in �nite time.

When a = 1, we will construct solution pairs (P;W ) for which P > 0 and P

collapses to a constant in in�nite time but exponentially fast.

We shall also construct traveling wave solutions (for a = �1) that, in the limit

of vanishing di�usivity, D appear to form \standing wave" step function solutions.

For reasons that will become clear shortly, we call the case a = �1 or a < 0 the

mixed type case and the case a = 1 or a > 0 the hyperbolic case. From the second

of equations (2.1) it follows that since W (x; 0) > 0, then W (x; t) > 0 for as long as

the solution (P;W ) exists in time.

A simple scaling argument convinces us that by writing t = l2�=�2D, x = x0`=�

and setting �0 = �=D and �0 = �=D we see that we may take D = 1 and l = � in

(2.1). If we multiply the �rst of equations (2.1) by � we see that we may replace P

by P 0 = �P . Finally, if we write W 0 = exp(�t)W we �nd that we may take � = 0:

After having completed these rescalings, we let

 (x; t) � lnW (x; t): (2.2)

We obtain the following initial-boundary value problem for  :

L �  tt � a( x t)x =  xxt for 0 < x < �; t > 0 (2.3)

a x t +  xt = 0 for x = 0; �; t > 0

 (x; 0) =  0(x)

 t(x; 0) = P0(x) =  1(x) for 0 � x � �:

The operator L de�ned by the �rst of equations (2.3) is a quasilinear second

order di�erential operator. It will be hyperbolic at a point (x; t) on a function  if

and only if

 2x + 4a t > 0 (2.4)

at (x; t): If the strict reverse inequality holds, we say that L is elliptic at this

point on  : When equality holds, we say that the point is on the parabolic line of

degeneracy for L on  : Since we require that P (x; t) =  t(x; t) > 0, we see that

(2.4) holds if a = 1 and we refer to this case as the hyperbolic case. We refer to

the case a = �1 as the mixed type case because then the discriminant in (2.4) can

change sign when  t > 0.

In Figure 1 we have sketched the \hodograph" plane for the operator L in the

mixed type case. In order to obtain the corresponding plane in the hyperbolic case,

we simply re
ect the plane in the  t = 0 axis.

We are using quotes around the word \hodograph" because the partial di�eren-

tial equation in (2.4) is really a third order equation. We shall sometimes refer to

this plane as the \pseudo hodograph" plane. We shall call the \characteristics" in

this plane, where they exist, \pseudo characteristics". Our philisophical point of

view here is that  xxt is, in some sense, a damping term which does not really a�ect
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Figure 1. Pseudo hodograph plane for the mixed type case a = �1.

the overall structure of the solution except to delay the formation of the singularity

in the case of blow up or to dampen oscillatory behavior in the case of collapse.

Finally, we want to consider (OS1) in the special case in which W >> 
 >> �:

In particular, we consider the system

Pt = D

�
Pxx + a

�
P
Wx

W 2

�
x

�
Wt = �PW � �W for 0 < x < �; t > 0 (2.5)

a
Wx

W 2
+
Px

P
= 0 for x = 0; �; t > 0

P (x; 0) = P0(x) > 0

W (x; 0) =W0(x) > 0 for 0 � x � �:

The �rst of these equations also results from (OS1) when we take �(W ) =

exp (� a
W
):

III. Solutions which blow up in �nite time. We show in this section that in

the mixed type case, some solutions of (2.3) with P (x; t) � 0 blow up in �nite time.



6 REACTION DIFFUSION EQUATIONS

We compute the power spectrum of these solutions and we show that the blow

up occurs on the parabolic boundary of the hyperbolic region in the \hodograph"

plane.

In this context, let us look at the data used in [OS]. The authors choseW (x; 0) =

constant > 0, which constant we see by a simple scaling argument, we may take

as unity. They also took P (x; 0) = 1+ " cos(2x): (They actually used [0; 1] as their

interval but this is not important for our purposes.) This motivates us to look for

a solution of the �rst two equations in (2.3) with a = �1 in the form

 = t+ u: (3.1)

Then u must satisfy

utt + uxx � uxxt = �(uxut)x for 0 < x < �; t > 0

ux(ut + 1) = uxt for x = 0; �; t > 0: (3.2)

We attempt, for �xed integer N > 0 and c real, to write u(x; t) in the form

u(x; t) =

1X
n=1

an exp(cNnt) cos(Nnx): (3.2.1)

(Notice that this function is harmonic in the variables (x; ct) for any c 6= 0: ) We

see that the boundary condition in (3.2) will be automatically satis�ed and that

utt + uxx � uxxt = N2

1X
n=1

ann
2(c2 +Nnc� 1) exp(cNnt) cos(Nnx)

while

�(uxut)x = N2c

1X
n=2

X
k+l=n

kaklal exp[cN(k + l)t][sin(Nkx) cos(Nlx)]x

=
1

2
N3c

1X
n=2

X
k+l=n

kaklal exp[cN(k + l)t]�

[(k + l) cos(N(k + l)x) + (k � l) cos(N(k � l)x)]

=
1

2
N3c

1X
n=2

n

"
n�1X
k=1

k(n� k)akan�k

#
"xp(cNnt) cos(Nnx):

Thus we must have, for n = 1

a1(c
2 +Nc� 1) = 0

while for n = 2; 3; :::;

n(c2 +Nnc� 1)an =
1

2
Nc

n�1X
k=1

k(n� k)akan�k:
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Noting that if c2 = 1�Nc, we may take a1 arbitrary and then we have

2nan =
1

n� 1

n�1X
k=1

k(n� k)akan�k:

If we write an =
2"n
n

and let " = a1 = "1 we see that

"n =
1

n� 1

n�1X
k=1

"k"n�k = "n:

Therefore, if we take

c =
�N +

p
N2 + 4

2
=

2

N +
p
N2 + 4

(3.3)

we see that

 (x; t) = t+ 2

1X
n=1

1

n
"n exp(Nnct) cos(Nnx)

solves our problem as long as t < T (";N) =
�lnj"j
Nc

as then the series converges

absolutely and uniformly on compact subsets of [0; �] � [0; T ) (indeed is analytic

there). The series for the density is

P (x; t) =  t = 1 + ut = 1 + 2Nc

1X
n=1

"n exp(Nnct) cos(Nnx)

which clearly diverges if and only if t � T (";N). Moreover, for su�ciently small

j"j, P (x; 0) > 0 so that P (x; t) > 0 on the existence interval. This series can be

summed. The result is

P (x; t) = 1 +Nc(w(z) + w(z))

where w(z) = ez=(1� ez) and z = Nct+ ln "+ iNx: (Since " < 0 is allowed, we use

the principle branch of the logarithm here.) Carrying out all the algebra, we �nd

the following

 (x; t) = t� ln[1� 2"eNct cos(Nx) + "2e2Nct]

P (x; t) =  t(x; t) = 1� 2Nc"eNct
"eNct � cos(Nx)

1� 2"eNct cos(Nx) + "2e2Nct
(3.4)

with initial values

 (x; 0) = � ln[1� 2" cos(Nx) + "2]

P (x; 0) =  t(x; 0) = 1� 2Nc"
"� cos(Nx)

1� 2" cos(Nx) + "2
(3.5)

=
1 + "2 � 2"(1�Nc) cos(Nx) + (1� 2Nc)"2

1� 2" cos(Nx) + "2
:
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Of particular interest will be the trace of (3.4) in the \hodograph" plane. In

order to see what this is, we set

� =  x; � =  t

� = " exp(Nct) y = Nx (3.6)

� = e( �t)

We �nd the following formulas:

� = [1� 2� cos y + �2]�1

� = �2N��sin y (3.7)

� = 1� 2Nc� (� � cos y)�:

A somewhat tedious calculation using (3.7) yields:

c2�2 + (� � 1)2 � (2cN� )2� = 0

1

4

�
�

�N�

�2
+

�
� � 1

2Nc��
+ �

�2
= 1: (3.8)

Using the last of equations (3.7) and the �rst of equations (3.8) we �nd that

� =
1

1� �2
�
1 +

� � 1

Nc

�
=

1

(2N� )2

�
�2 +

(� � 1)2

c2

�

as long as �2 < 1. Therefore, after a little more algebra, we �nd that

�2 +
1

c2

�
� � 1� 2Nc�2

1� �2

�2

=
4N2�2

(1� �2)2
(3.9)

which is the equation of an ellipse with center at�
0; 1 +

2Nc�2

1� �2

�
(3.10.1)

and � intercepts

�� = 1� 2Ncj� j
1 + j� j

�+ = 1 +
2Ncj� j
1 � j� j : (3.10.2)

Finally, from our exact solution we �nd that

lim
t!T�

etP (x; t)

W (x; t)
= 2(1 �Nc)(1 � sgn (") cos(Nx)) (3.11)
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where W = exp( ):

Notice that the blow up points of our exact solution occur when "eNcT cos(Nx) =

1: This means that unless " < 0 when N is even, the blow up points will occur at

x = 0; �: If N is even and " < 0, the blow up points cannot occur at the ends of the

interval. In any case, blowup occurs in a �nite time T = � ln j"j=Nc.
We are now in a position to discuss our solution and its properties in the light

of the computations of Othmer and Stevens as well as our own additional compu-

tations.

In order to do this in a systematic fashion, we shall con�ne our discussion to the

case N = 2: Notice from the third of formulas (3.5) that if we want to compare our

choice of initial values for P (x; 0) with that used in [OS], we must take our choice

of " to be proportional �2"([OS])(1�2c) in the limit of vanishing "[OS] where this

latter quantity stands for the choice of " used by them. Since 1 > 2c, this means a

choice of a positive perturbation coe�cient by them necessitates a negative choice

by us. Of course, the data for the exact solution agrees with the Othmer-Stevens

data only in the limit of " = "[OS] = 0: The Othmer Stevens initial data traces

a degenerate ellipse in the \hodograph" plane while the initial data for the exact

solution traces out a non-degenerate ellipse in that plane (set t = 0 in (3.9) then

� = " there.)

It is clear from the formula for the exact solution when N = 2 and " < 0 that

the blow up occurs exactly at the single point (�
2
; T ) and depends logarithmicly on

j"j: We note the remarkable similarity between Figures 2 and 3. We computed the

solution P (x; t) using the data from [0] for various values of "[OS] and observed

the same (approximate) relation between the blow up time and ", namely that the

blow up time is proportional to ln j"j.
The null contour line of the discriminant D(x; t) �  2x � 4 t was plotted for

both the O-S solution (Figure 4) and for the exact solution (Figure 5). In both

�gures, it is apparent that the blow up is occurring on the \parabolic"boundary.

This is indeed the case as one sees from (3.9). The initial values for the exact

solution prescribe a small ellipse inside the region in the \hodograph" where L is

elliptic. As � ! 1�, these ellipses form an expanding family, exactly one member

of which is tangent to the parabolic line of degeneracy. As the family continues to

expand, subsequent members intersect this parabola in four points. The larger �

intercept,call it �+, becomes unbounded in �nite time. On setting �2 = 4� in (3.9)

we see that one of the roots of the resulting quadratic becomes unbounded in �nite

time while the other approaches a �nite limit. Indeed, calling these roots �� and

the � intercepts ��, we have the following asymptotics:

�+ � 1 +
2cN

1� j� j � 1 + �+

�� � 1� cN � �� > 0 (3.12)

for j� j smaller than but near 1. There are, for the values ��, four corresponding

values of �� = �2p��:

We can rewrite (3.9) in the form

[c2�2 + (� � 1)2](1� �2) = 4Nc�2[� � (1� cN)]: (3.9')
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Figure 2. Blow up of P with Othmer-Stevens initial data. (D = 0:04.

See discussion following equation (3.11) for the choice of ". A precise

match with the exact solution is not possible.)

We see from this that for �xed � > 1�Nc(> 0), as � ! 1�, �2 ! +1: This has two

consequences. First, not all of the mass is concentrated at the singularity at the blow

up time. Second, The characteristics in the hyperbolic region emanating from the

point (�; �2=4) on the parabolic boundary for which j�j > 2
p
1�Nc intersect the

line � = �� at a �nite value of �: This allows us to determine the limiting behavior

of the characteristics in the hyperbolic region. In particular, these characteristics

do not all focus at the blow up point.

Finally, we note that if we examine the natural logarithm of the modulus of the

square of the cosine coe�cients of (P (x; t) � 1)=2Nc we see that these logarithms

are linear in t, their slope increases with increasing frequency n, and as t! T (";N),

these converge to zero. Precisely, they are of the form n ln j"j + nNct: This is in

conformity with the data of [OS] (Figure 6).

We conclude this discussion with some additional remarks.

Remark 3.1. The blow up in this problem is due to the nonlinear term (uxut) in the

following sense: If we compute the Fourier transform for the initial value problem

for utt + uxx = 0, we �nd that

û(�; t) =
1

2j�j (ût(�; t) + j�jû(�; t))e
j�jt +

1

2j�j (�ût(�; t) + j�jû(�; t))e
�j�jt:

If the coe�cient of ej�jt decays no faster than e�aj�j for some a > 0 as j�j ! +1,
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Figure 3. Blow up of P for exact solution with N = 2. (D = 0:04.)

the solution will blow up in a �nite time T � a: That is, the L2 norm of the solution

will become unbounded in �nite time.

However, if we consider instead the initial value problem for utt + uxx = uxxt,

we �nd

û(�; t) =
1

r+(�) � r�(�)
(ût(�; 0) � r�(�)û(�; 0))e

r+(�)t

+
1

r+(�) � r�(�)
(�ût(�; 0) + r+(�)̂(u(�; 0))e

r
�

(�)t

where

r�(�) =
1

2
(��2 �

p
�4 + 4�2):

Since r�(�) ! ��2 and r+(�) ! 0 as j�j ! +1, the solution does not lose

regularity as it does in the absence of the damping term uxxt. That is, the solution

will stay in the same smoothness class as the initial data. Therefore the �nite time

blow up must be caused by the nonlinearity.

Remark 3.2. If we had chosen the negative root for c, we would have found that

the density decays exponentially fast as t ! +1 (collapses) to a constant. The

impact of this observation is that if our initial density has any component in the

direction of the initial density of our non-global solution, then the corresponding

solution will probably blow up in �nite time. The Othmer-Stevens data bear this
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Figure 4. Sign sets for the normalized discriminant  2x�4 t for Othmer-

Stevens initial values data. (The unscaled discriminant is D2 2x�4D t.)
The normalized determinant was used in order to arti�cially enlarge the

size of the \hyperbolic" region in the physical plane for purposes of

clarity. The actual hyperbolic lobes are somewhat small but still coaless

along the line x = 0:5 at the blow up time.

out. We found this to be the case for other initial data as well which had roughly

the same \shape" as 1+" cos(2x), namely a minimum (for " > 0) and local maxima

at the endpoints.

Remark 3.3. If instead of the boundary condition  x(�; t) = 0, we have the stronger

condition  x t =  xt there, then we have for 0 � � � t

 x(�; t) =  x(�; � )e
( (�;t)� (�;�)):

This implies that if  x is nonzero at x = � at some time. Then it is of one sign.

Suppose, in addition, that the solution is elliptic on x = �: It follows that

 t(�; t) � 1

4
 2x(�; � )e

2( (�;t)� (�;�)):

It follows from this and a quadrature that  (x; t) must be non-global on x = �

in some �nite time T = T ( x(�; 0)) unless it became non-global earlier on [0; �):

Thus, if the solution is global and the normal derivative does not vanish on the

boundary, the solution must change type on the boundary.
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Figure 5. Sign sets for the normalized discriminant  2x � 4 t for exact

solution.

Remark 3.4. Other solutions can be found in various ways. For example, if the mean

value of P (x; 0) were prescribed as some other value, p, say, then with  = pt+ u,

u must satisfy

utt + puxx � uxxt = �(uxut)x for 0 < x < �; t > 0

ux(ut + p) = uxt for x = 0; � t > 0:

instead of (3.2). The values of the constant c then become

c =
�N �

p
N2 + 4p

2
=

2p

N �
p
N2 + 4p

:

From this formula we see that even for negative mean values of the solution it

is possible to have solutions which blow up in �nite time if 4p > �N2: If this

inequality fails, we will have either one real value of c for which the solution decays

exponentially in time or two complex solutions which decay exponentially in time.

Hans Weinberger observed that it also possible to construct a large family of

solutions which are both harmonic in (x; t) and blow up in �nite time. For example,

writing z = x + it; z = x� it = w, we �nd that

4uzw = �( @
@z
� @

@w
)(u2z � u2w):
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Figure 6. Power spectrum (square of even cosine coe�cients) for O-S

data. (From [OS].)

With u = F (z)+G(w):We are then led to the pair of ordinary di�erential equations

F 000(z) � 2F 0(z)F 00(z) = �

G000(w) � 2G0(w)G00(w) = ��

where � is a constant. If � = 0, we may take G(w) = F (z) and we �nd after

quadrature and taking real parts that

u(x; t) = ln[cos2(�1x� �) + sinh2(�t + �)]

for other constants �; �; �1: If we set � = m�
2
; �1 = N

2
with m;N as integers, we

�nd that ux = 0 at 0; � and that both u; ut become singular at positive t = ��=�1
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Figure 7. Initial and \�nal" pro�les for etP=W for Othmer-Stevens

initial data.

if � < 0 and at x = �(2l +m+ 1)�=N where l is such that x is in (0; �): One can

easily check that

P (x; t) = 1 + ut > 1� �1 sinh(2(�1t+ �))

cos2(�1x� �) + sinh2(�1t+ �)

for t < t: Since �1t+ � < 0 for t < olt, a mean value of unity is not possible.

If � 6= 0, we �nd that � must be purely imaginary and

u(x; t) = �2 ln j(z � c1) 12Z 1
3
(
2

3

p
�(z � c1)

3
2 )j

a family of solutions involving Bessel functions of fractional order which do not

satisfy the no 
ux boundary conditions ux = 0 at x = 0; � for any constants �; c1:

IV Collapse. In this section, we take a = 1 so that now instead of (3.2) we have

utt � uxx � uxxt = (uxut)x for 0 < x < �; t > 0

�ux(ut + 1) = uxt for x = 0; � t > 0: (4.1)

Carrying out exactly the same type of cosine series expansion as in (3.2.1) we are

led, with

c = c� =
�N �

p
N2 � 4

2
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Figure 8. Initial and \�nal" pro�les for etP=W for exact solution.

to the solution

 (x; t) = t+ ln[1 + 2"eNct cos(Nx) + "2e2Nct]

P (x; t) =  t(x; t) = 1 + 2Nc"eNct
"eNct + cos(Nx)

1� 2"eNct cos(Nx) + "2e2Nct
(4.2)

with initial values

 (x; 0) = ln[1 + 2" cos(Nx) + "2]

P (x; 0) =  t(x; 0) = 1 + 2Nc"
"+ cos(Nx)

1 + 2" cos(Nx) + "2
(4.3)

=
1 + "2 + 2"(1 +Nc) cos(Nx) + (1 + 2Nc)"2

1 + 2" cos(Nx) + "2
:

Notice that if N = 1, the solution is complex while if N = 2 there is exactly one

real value of c. In all cases, however, <(c�) < 0 and P (x; t) decays exponentially

to p = 1: This is the case of collapse.

The trace of (4.3) in the \hodograph" plane is again an ellipse for each time.

The formulas replacing (3.7), (3.9) and (3.10) are

� = [1 + 2� cos y + �2]�1 = e�( �t)

� = �2N��sin y (4.4)

� = 1 + 2Nc� (� + cos y)�:
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�2 +
1

c2

�
� � 1 +

2Nc�2

1� �2

�2

=
4N2�2

(1� �2)2
(4.5)

which is the equation of an ellipse with center at�
0; 1� 2Nc�2

1� �2

�
(4.6)

and � intercepts

�� = 1� 2Ncj� j
1 � j� j

�+ = 1 +
2Ncj� j
1 + j� j : (4.7)

where it is important to remember that as t ! +1, � ! 0: Thus, this ellipse

\collapses" to a single point.

Notice that for " close to but smaller than 1, the lower intercept, �� < 0: In other

words, we have collapsing solutions even with initial data partially in the \elliptic"

region of the \hodograph" plane. See Figure 9. This is a further illustration of the

damping e�ect of di�usion.

Figure 9. Pseudo hodograph plane for the hyperbolic case a = 1.
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Remark 4.1. Notice that if we replace a = 1 by any a > 0 and write  = pt + u,

(4.1) becomes

utt � apuxx � uxxt = a(uxut)x for 0 < x < �; t > 0

�aux(ut + p) = uxt for x = 0; � t > 0: (4.8)

where p is again the mean value of P (x; 0) =  t(x; 0), we �nd that

c = c� =
�N �

p
N2 � 4ap

2
:

We see from this that for �xed N , if ap becomes large the solution leaves the real

domain and becomes complex. This is one manifestation of our contention that

(4.1) models the formation of shocks.

V Aggregation and shock formation. In this section we show how it might be

reasonable to expect solutions of the system (OS) to possess spatially non-constant,

piecewise constant \steady state" solutions of the type indicated in Figure 10. Our

contention is based on two rather extensive observations.

Figure 10. Shock formation and aggregation for (OS), from [OS].

First, we shall argue that that the seeds of such shock formation are already

contained in the simple hyperbolic model case a > 0 considered in the preceding
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section in the \zero di�usion" limit if a ! 1; D ! 0 in such a way that aD =

const:

The second argument is intended to demonstrate that system (OS1.1-OS4) changes

\type" when the chemotaxic agent,W (x; t), becomes large. When this type change

(from elliptic to hyperbolic) occurs, the solution will \collapse" to two di�erent

values. In other words, in the second argument, the principle thesis is that (at least

after a short time) the system will, under some circumstances possess solutions

which try to blow up in �nite time because of the onset of singularity formation

reminiscent of the singularity formation of the exact solutions of Section 3, \ellip-

tic" singularity formation. However, the structure of (OS1.1-OS4) is such that at

least for some choices of parameters, the solutions of the system can \collapse" to

two di�erent constant values in two regions of the (x,t) plane and in both regions,

the mechanism for collapse is that of section 4, \hyperbolic" collapse.

5.1 The \zero di�usion" limit argument. We argue as follows: First, if we

consider the initial value problem for vtt � vxx � �vxxt = 0 for � > 0, we �nd that

the Fourier transform of the solution is given by

v̂(�; t) =
1

r+(�) � r�(�)
(v̂t(�; 0) � r�(�)v̂(�; 0))e

r+(�)t

+
1

r+(�) � r�(�)
(�v̂t(�; 0) + r+(�)v̂(�; 0))e

r
�

(�)t

where

r�(�) =
1

2
(���2 �

p
�2�4 � 4�2):

which tells us that the \damping" (di�usion) term �vxxt improves, in general, the

regularity of the solution over that of the initial value problem for the equation

vtt � vxx = 0:

Now let us observe that if we set y = "�1(x�x0); � = "�1t and u = "�1v where

v is a solution of vtt� vxx� vxxt = (vxvt)x, the �rst of equations (4.1). Then, if we

let "! 0, formally, we are led to consider the initial value problem

utt � uxx = (uxut)x; �1 < x <1; t > 0

u(x; 0) = u0(x) �1 < x <1 (5.1)

ut(x; 0) = u1(x) �1 < x <1:

(We have returned to original variables in (5.1) for convenience.) We look for simple

wave solutions of (5.1), That is, if we set p = ux, q = ut, the �rst of equations (5.1)

becomes the �rst order system

qt = (pq)x + px

pt = qx (5.2)

We look for a solution of the form q = F (p)�1 so that the initial data must satisfy

u1(x) = F (u00(x))
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where we now have qt = (pF (p))px and qx = F 0(p)px = pt: These will hold if

(F 0(p))2 � pF 0(p) � F (p) = 0: (5.3)

Now (5.3) is the characteristic equation for  tt = ( x t)x, that is, for the �rst of

equations (2.3) with a = 1 and the \damping" term,  xxt; omitted. In particular,

we must have

F 0(p) =
1

2
(p �

p
p2 + 4F (p)): (5.4)

With such \characteristic" initial data, we obtain, by the method of characteristics,

the implicit solution

p(x; t) = u0(x + tF 0(p(x; t)))

where F (�) is a non-constant solution of (5.4). If we set � = x+tF 0(p), then implicit

di�erentiation yields

px(x; t) =
u00(�)

1� tu00(�)F
00(p(x; t))

: (5.5)

Thus, if there is no damping present, shocks will form in positive �nite time along

those characteristics which are strictly convex, (F 00 > 0), if and only if u00 > 0

somewhere or along strictly concave characteristics if and only if u00 < 0 somewhere.

As long as F 0(p) 6= 0, this result can be appropriately recast in terms of a condition

on u1 since u
0
0 = F�1(u1) and consequently u

0
0(x)F

00(u00) may be rewritten in terms

of u1:

Suppose we consider the initial value problem obtained by the rescaling y = "x,

� = "t but we do not scale in  in (2.3). Then we have

 tt = "( xxt + a( x t)x): (5.6)

We are interested in traveling wave solutions for (5.6). We write

 (x; t) = '(x+ ct) = '(�)

substitution of which into (5.6) yields, after a quadrature:

'00(�) = �a('0(�) � r+)('
0(�) � r�) (5.7)

where r+ + r� = c=a" and r+r� = �A=" for some constant of integration, A: If

A < 0 we will have r+ > r� > 0: Write r� = c
"a
m� and �x m�: Let A = � b2c2

4a2"
:

Then, m� +m� = 1, m+ > m� > 0 and m+m� = b2

4
, (b2 < 1). Integrating (5.7)

in the usual manner, we �nd that

P (x; t) =  t(x; t) = c'0(�) =
c2

a"

m+ +Bm�e
�

(m+�m�)c�

"

1 +Be�
(m+�m�)c�

"

(5.8)

Where B > 0 is some constant of integration. We can think of the density as a

wave front traveling to the left at speed c. (Since replacing x by �x in the original
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pde leaves it unchanged we may construct a traveling wave traveling to the right

in a similar manner.) The jump in this wave front is

[P ] � lim
�!+1

P (�) � lim
�!�1

P (�) =
c2(m+ �m�)

a"
:

Let us set � = c="; c2=" = �; with � �xed and let " ! 0, c ! 0, (and hence

�!1:) Then [P ] is �xed while

P0(�) � lim
c; "!0+

P (�) = �

�
m+ for � > 0

m� for � < 0

= �[m+H(�) �m�H(��)]:

where H(x) is the Heaviside step function, unity for x > 0 and zero for x < 0:

We can think of P0 as a zero di�usion limit of traveling wave solutions. Or we can

think of it as an intrinsic step function solution in the " = 0 limit in the rescaled

variables. It is a viscosity solution which has zero speed of travel but has a �nite

jump. We believe that these viscosity solutions are responsible for the aggregation

in the full Othmer-Stevens model.

5.2 The \change of type" argument. Here we propose an explanation of the

formation of piecewise non-constant solutions based upon the change of type of a

partial di�erential equation for W which is quasi-linear in its second derivatives

and contains a third order \damping" term DWxxt.

The rough idea is the following: The structure of the system is such that whenW

is small, (but, when � is nonzero, not too small), the system possesses an \elliptic"

instability of the sort that led to the �nite time blow up of some solutions of (3.1)-

(3.2). That is, the solution attempts to blow up in �nite time and this attempt is

due to the fact that the system has an elliptic structure very much like (3.1)-(3.2)

when P > � and W (x; t) is not too large. Moreover, the choice of initial values

taken leads to an initial boundary value problem with data at least partially in this

\elliptic" region.

However, as W increases, in any region where the relative gradient

rW
W

=

�
Wx

W
;
Wt

W

�

remains bounded, the \type" changes from elliptic to hyperbolic. When this occurs,

the system behaves like (4.1) for P > �. The system will also behave like (4.1)

when � 6= 0, forW very small and for P < �). The solution (P;W ) again collapses.

However, this collapse will not be spatially uniform because of the structure of the

characteristics in the hyperbolic region. In particular, there are two caustics in

the (x; t) plane with a pair of common vertical asymptotes in that plane with the

following properties: One of them permits the 
ux of particles from a region of low

density to a region of high density while the other prohibits the reverse 
ow but

does not allow the particle density to concentrate. There is thus collapse to two

di�erent values corresponding to these two di�erent hyperbolic regions.
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In order to make these ideas more precise, let us consider the following version

of (OS1)-(OS4).

Pt = D
@

@x

�
Px � P

�0(W )

�(W )
Wx

�

Wt =

�
P

1 + �W
� �

�
W: (5.9)

Here � is given in (OS2). We have done a little rescaling and taken 
r = 0. (For

the rescaling, we have taken �=k1 = 1; � = 1=k1:) It is understood that �; � > 0:

Writing

A(W ) � W

1 + �W

we have

P =
Wt + �W

A(W )
:

Using this in the �rst of equations (5.9), we eliminate P to �nd

LW �Wtt +D

�
2A0(W )

A(W )
+

�0(W )

�(W )

�
WxWxt

+D

�
(Wt + �W )

�
A0(W )

A(W )
+
�0(W )

�(W )

�
� �

�
Wxx

= DWxxt �D(Wt + �W )W 2
x

�
�

�
2A0(W )

A(W )
+

�0(W )

�(W )

�

+A(W )
d

dW

�
A0(W )

A2(W )
+

�0(W )

A(W )�(W )

��

+

�
(Wt + �W )

A0(W )

A(W )
� �

�
Wt: (5.10)

We can thus consider the system (OS) as an initial-boundary value problem for

W (x:t): The guiding \philosophy" will be that, in the absence of the term DWxxt,

which is, after all, not much more than a strong damping term, the behavior of

W should be governed by the structure of the second order operator L: It will be

convenient, in what follows to use the negative of the relative gradient, That is, we

set

(�; �) � �
�
Wx

W
;
Wt

W

�
:

We also introduce the following shorthand: For i = 1; 2 we write

Mi(W ) =W

�
iA0(W )

A(W )
+
�0(W )

�(W )

�
:

Let us also set

N(W ) = �WM2(W ) +W 2A(W )
d

dW

�
M1(W )

WA(W )

�
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which we recognize as W 2 times the coe�cient of D(Wt + �W )W 2
x in (5.10).

In order to properly analze (5.10), it is necessary to rewrite it in terms of the

relative gradient. We need to do this in order to capture the contribution of the

term DWxxt=W to the terms in the relative gradient which lead to the collapse of

the solution.

Inspection of Figure 10 suggests that the regions where the gradient of P is large

or small should play a critical role in our analysis. There are two ways in which we

can proceed in order to understand how DWxxt=W a�ects the overall dynamics.

One procedure might be to write out (5.10) in terms of the relative gradient by

means of the substitution  = � lnW if we wish to study the behavior of the

system for small W . If we wish to study the behavior for large W , write Z = 1=W

and analize the resulting equation for small Z: In either case we have

(�; �) = �rW=W = rZ=Z = r :
Then we �nd that

Wxx

W
= � xx +  2x = �Zxx

Z
+

2Z2
x

Z2

Wtt

W
= � tt +  2t = �Ztt

Z
+

2Z2
t

Z2

Wxt

W
= � xt +  x t = �Zxt

Z
+
2ZxZt

Z2

and

Wxxt

W
= � xxt +  t xx + 2 x xt �  2x t

= �Zxxt
Z

+
4ZxZxt

Z2
+

2ZtZxx

Z2
� 6Z2

xZt

Z3

Using the substitution  = � lnW we obtain

L =  tt �D(M2(W ) � 2) x xt �D[(1 �M1(W )](� �  t)) xx
= D xxt +D 2x(� �  t)[M1(W ) +N(W )] �D� 2x

+D 2x t[1�M2(W )] +  2t +  t(��  t)
WA0(W )

A(W )
(5.10.1)

where we have continued to call the second order operator L:

The operator L is said to be elliptic at a point Q = (W; �; �) if

B(Q) � D2[M2(W )� 2]2�2 + 4D[(�� �)(1�M1(W ))] < 0:

It is hyperbolic at Q if B(Q) > 0 and parabolic if B(Q) = 0: At points where it is

hyperbolic, the numbers

r� =
1

2
D[M2(W )� 2]� � 1

2

p
B(Q)
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are the characteristic directions (the negative reciprocals of the slopes of the char-

acteristic curves given by t = f�(x; c):)

At a point Q where Wx =Wt = 0, we have

B(Q) = 4D�W

�
�

1 + �W
� �

(W + �)(W + 
)

�
:

(Here and throughout the remainder of this paper we have set � = a(
 � �):)

We see from this that if a regular critical point of W occurs when W is large,

then this point will be in the hyperbolic region for L: On the other hand, for small

W , it is entirely possible that a critical point can occur in a region where L is elliptic

since the equation (5.10) and the approximates considered below are in fact third

order and the classical maximum principles do not apply. However, as we shall

see below, if maxW is su�ciently large, it must occur at a point in the hyperbolic

region.

Suppose that B(Q) = 0: Then, necessarily,

C(Q) � 4D[(1 �M1(W ))(� �  t)] � 0

with strict inequality at those points where (M2(W ) � 2)Wx 6= 0: It follows that

wherever [M2(W )�2]2 6= 0 the slopes of the characteristics emanating from a point

on the parabolic line of degeneracymust be nonzero and of the same algebraic

sign near the line of degeneracy at those points where (M2(W ) � 2)Wx 6= 0: On

the other hand, at a point where B(Q) > 0 and C(Q) > 0, the slopes will be of

opposite sign. (Of course when B(Q) > 0 and C(Q) < 0, the slopes will be of the

same algebraic sign. This is illustrated in Figure 11.

Notice also that since

��  t = P

1 + �W
> 0

the sign of C(Q) is determined only by the sign of 1�M1(W ).

It is clear that in the (�; �) plane, the vertex of the parabolic line of degeneracy

always occurs at the point (0; �) whenever the curve given by B(Q) = 0 for �xedW

is a nondegenerate parabola, i.e. whenever W is such that (M1(W )� 1)(M2(W )�
2) 6= 0: Morever, in such cases, this parbola will open downward (is concave down)

if and only if 1 �M1(W ) > 0: When this parabola opens downward, the points

(�; �) which lie in the \elliptic" region will correspond to values of the density P

which are negative and hence nonphysical.

Since

1�M1(W ) =W

�
�

1 + �W
� �

(W + �)(W + 
)

�
;

this is clearly the case for W su�ciently large. Moreover, if � = 0, this parabola

must open upward if W is su�ciently small (and positive). If � > 0 then this

parabola will open downward for small W if and only if

��
 > �:

The parabola always opens downward if the roots of the quadratic

q(W ) =W 2 + (� + 
 � �)W + (�
 � �)=�
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Figure 11. The characteristic slopes 1=r+(x; t) and =1=r�(x; t)= plotted

using the data in Figure 12.4 at time level t = 0:95. The slopes of these

characteristics are the numbers 1=r� rather than the negative reciprocals

because the characteristics in Figure 16 below are plotted for the function

W = exp(� ). Notice that near the center of the interval, the slopes

have opposite sign while near the ends they have the same sign. Put

another way, we see that to the right of x = 0:556 transport along the

normals to both characteristics is to the left while to the left of x = 0:445,

the propagation is to the right. In the interval [x = 0:445; 0:556] material

transport is to the left and to the right.

are either purely imaginary or the larger root is negative. That is, we will always

be in a \hyperbolic" region whenever � > � (or Wt < ��W if either

�(� + 
 � �)2 < 4(�
 � �) (h1)

or

�(� + 
 � �)2 � 4(�
 � �); and both � + 
 � � > 0; �
 � � � 0 (h2)

hold. Thus, under these conditions on the constants, we should expect to have

decay to a uniformly constant solution for P (x; t) independently of the nonnegative

density distribution and the (positive) value ofW (x; 0): This is illustrated in Figure

12 for condition (h1).
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Figure 12. Collapse when (h1) holds. Here W (x; 0) = 0:0025, P (x; 0) =

1� 0:3 cos(2�x). Also � = 10:0, � = 1=k1, 
r = 0:0, �1 = 10
 = 10� =

104, D = 0:036, � = 104; � = 1:01.

However, if (h1) and (h2) fail, simply forcing W (x; 0) to be su�ciently large is

insu�cient to cause collapse. Indeed, as we see in Figures 13.n and 14.n, aggregation

is possible even when the data are such that (5.10) is initially hyperbolic. In

particular, we see from Figure 14.1 that although the discriminant

D(x; t) � B(Q) � B(W (x; t); �(x; t); �(x; t))

is initially positive, it becomes negative and then changes sign once more.

We have set, in Figures 14,n

E(x; t) � C(W (x; t); �(x; t); �(x; t)):

In the regions where D(x; t) > 0, the slopes of the characteristics of L have the

same or the opposite sign according as E < 0 or E > 0: Of course it can happen

that E = D = 0 at points in the (x; t) plane.

If P (x; 0) > 0, the sign of E is determined solely by the sign of 1 �M1(W ),

since then, by the maximum principle, P (x; t) > 0, the �nite di�erence scheme will

sometimes not properly re
ect the maximum principle. See the discussion of the

numerics in the next section.

Notice that as we decrease W (x; 0), there is a narrowing of the region of aggre-

gation as well as an increase in the maximum value of the density.
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Figure 13.1. System attempt at aggregation formation when W (x; 0) =

e7:3. Here P (x; 0) = 1� 0:3 cos(2�x). Also � = 10:0, 
r = 0:0, �1 = 
 =

� = 103, D = 0:036, � = 104, � = 0:01, � = 1=k1.

Figure 13.2. Same data as in Figure 13.1 but W (x; 0) = e5 = 148:4.
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Figure 13.3. Same data as in Figure 13.2 but W (x; 0) = e = 2:718.

Figure 13.4. Same data as in Figure 13.3 but W (x; 0) = e�2 = 0:1353.
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Figure 13.5. Same data as in Figure 13.4 but W (x; 0) = e�5 = 0:00679.

If we have D(x; t) = E(x; t) = 0 along some curve in the (x; t) plane, and if D

changes sign across this curve, then the characteristics emanating from this line of

parabolic degeneracy will have directions of opposite sign. Moreover, the condition

D(x; t) = E(x; t) = 0 will in general, only occur whenM1(W ) = 1, in which caseW

must be constant along such a curve, and Wx = 0 along that curve (except in rare

circumstances that M2(W ) = 2 along this curve also. When D(x; t) = E(x; t) = 0;

the characteristics emanating from the parabolic boundary into the \hyperbolic"

region will have vertical tangents at the parabolic boundary.

By analogy with Figures 1 and 9, we de�ne

E1(x; t) � �3D2[M2(W ) � 2]2�2 + 4D[(� � �)(1 �M1(W ))]:

The nodal line set for E1 can be thought of as the second of the two local

caustics in the \hyperbolic" region. (The �rst is the level set for E(x; t):) These

level sets play an important role in helping us to understand the local dynamics in

the hyperbolic region.

For di�erent constants but a very small initial W (x; 0), the initial density will

eventually start to form a singularity. See the �gures below.

We next make a more detailed analysis of (5.10) over the following ranges:

a. � > 0 and either 0 < W << � or W � �.

b. � = 0 and W << 1.

c. W � 
.

d. W >> 
.

(It is somewhat easier to work with (5.10) than (5.10.1) but the results below

also follow from (5.10.1) using the same asymptotic approximations.)
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Figure 14.1a. The regions of \ellipticity" (D(x; t) < 0) and \hyperbolic-

ity" (D(x; t) > 0) for the data in Figure 13 for small times. The regions

where the slopes of the characteristics have the same sign (E(x; t) > 0)

and the opposite sign (E(x; t) < 0) are also shown.

We also assume 0 � � << 
, W (x; 0 > 0 and 0 < � < 1:

Suppose �rst that � > 0 and W << �. We use the approximations

A0(W )

A(W )
=

1

W (1 + 
W )
� 1

W

�0(W )

�(W )
� �

�

:

Then (5.10) reduces to

Wtt + 2D
WxWxt

W
+D

WtWxx

W
= DWxxt +

W 2
t

W
+ 2D

�
Wt

W
+ �

��
Wx

W

�2

:

Using the substitution  = � ln(W ), this reduces to

 tt = D xxt �D� 2x: (5.11)

which is parabolic in  t � � � P = �Wt=W: Thus, if P > � on some subinterval

of the interval [0; `] initially, then  t < 0 there. But the di�erential equation tells

us that we can expect  t to increase toward zero or P to decrease toward � for a

short time on that interval. Similarly, if P < � on some initial interval we expect

P to increase toward � there. Indeed, this is what is observed numerically.
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Figure 14.1b. This is the same as Figure 13.1.a but for large times.

Notice that the second caustic has separated itself from the �rst caustic,

E(x; t) = 0.

Now as long as P > �(1 + �W ), we know that Wt > 0 and W will increase.

If W were to become unbounded in �nite or in�nite time, then, at least at some

points in the space-time strip, for example along the line x = `=2, it is reasonable to

entertain the possibility that in �nite time t0, W (`=2; t0) = �: Of course, if W does

not become unbounded in �nite or in�nite time, then eventually, P < �(1 + �W )

and W should decay to a constant (collapse).

Let us consider therefore, the situation when W � �: Then, since �� << 1, we

take

�0(W )

�(W )
� �

2
W

A0(W )

A(W )
=

1

W (1 + 
W )
� 1

W

A(W )

�
d

dW

�
A0(W )

A2(W )
+

�0(W )

A(W )�(W )

��
� � 2

W 2

�
1 +

�

2


�

If we set c = �=2
, we �nd

Wtt � W 2
t

W
+D(2 + c)

WxWxt

W 2
+D

�
(1 + c)

Wt

W
+ �c

�
Wxx

W

= DWxxt + 2D(1 + c)

�
Wt

W
+ �

��
Wx

W

�
:
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Figure 14.2. Same data as in Figure 13.2. The separation of the caustics

is now more pronounced.

Figure 14.3. Same data as in Figure 13.3. Further separation of the

caustic lines.
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Figure 14.4. Same data as in Figure 13.4. Notice how the second caustic

has now \collapsed."

Figure 14.5. Same data as in Figure 13.5. Notice the similarity of this

�gure to that of Figures 4 and 5. We have an attempt at �nite time

blow up.
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Figure 15. Initial decay for small W (x; 0) = 0:0025: Notice that the

density at �rst tends to decay to unity and then starts to increase in the

center. Here the remaining constants are as in Figure 13.4.

On setting  = ln(�=W ) we obtain

L =  tt �Dc x xt +Dc(� �  t) xx = D xxt � 2D� 2x: (5.12)

Therefore, for W � � we expect the local dynamics to be governed by

L =  tt �Dc x xt +Dc(� �  t) xx = D xxt: (5.13)

For the equations (5.12), (5.13), the discriminant becomes

(Dc)2 2x � 4Dc
P

1 + �W

which will be negative if j xj << 1. This in turn holds near a local maximum

or minimum of  (minimum or maximum of W (unless the density P is also very

small or W is very large). When W � � is small, then  t � � � P: In particular,

this means that near a point where  t changes sign but j xj2 < 4P
Dc(1+�W )

, we

can expect the onset of blow up (elliptic instability) to occur. Moreover, when the

spatial gradient is large (j xj2 > 4P
Dc(1+�W )

) we will have \hyperbolic" stability, i.

e. we may expect the solution to collapse. (Indeed, equation (5.13) possesses exact

solutions which show precisely this behavior.)
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When � = 0; the situation is similar. We now set  = � lnW and c = �=
:

Then for su�ciently small W > 0, we have, instead of (5.12)

L =  tt �Dc x xt �Dc t xx = D xxt � 2D�(1 + c) 2x (5.13)

solutions of which should behave much like solutions of

L =  tt �Dc x xt �Dc t xx = D xxt: (5.14)

That is, the � = 0, small W approximation is precisely the same as the simple

model problem (2.1) with a = 1. When we required that  t > 0 as we did in

Section 4, then we can expect that solutions of (2.1) (or equivalently (4.1)) to

collapse. However, when  t � 0, we can have blowing up solutions. We only had to

impose the sign condition on  t = P in (2.1) because P � 0 in our simple model.

However, now we do not have the sign requirement on  t since here  t � � � P:

The operator L is of mixed type for arbitrarily small positive W:

In contrast to the discriminant for (5.13) we now have as the discriminant the

quantity

(Dc)2 2x + 4Dc t:

We conclude from this that when � = 0 we can expect an \elliptic" singularity

to try to form near  x = 0 if  t � ��P < 0 while we expect \hyperbolic" collapse

to occur near  x = 0 if  t � � � P > 0. This is precisely the situation for the

initial data taken in (OS). One has a unique local positive maximum of P � � at

the center of the interval and a local negative minimum of P �� at the ends of the

interval.

In the case thatW � 
, a computation similar to that leading to equation (5.13)

leads us to the following approximating equation (where now  = � lnW )

L =  tt �D(c2 � 2) x xt �D((1 � c1)(� �  t)) xx = D xxt: (5.15)

where now for n = 1; 2

cn =
n

1 + �

+

�

2

:

This equation also has exact solutions. If we write  = �t + v then we see that

� �  t = �vt � P=(1 + �
): Thus, if 1 � c1 > 0, the exact solutions will tend

to collapse for P > 0 while if 1 � c1 < 0, we should expect further attempt at

singularity formation as then (5.15) will be of mixed type for positive P . We have

1� c1 =
�


1 + �

� �

2

:

Numerical experiment bears this out.

Finally, we turn to the caseW >> 
: In order to see more precisely what happens

when W is large, we use the approximations

A � 1

�
A0(W )

A(W )
� 1

�W 2

�0(W )

�(W )
� �

W 2



36 REACTION DIFFUSION EQUATIONS

and set

mi =
i

�
+ � for i = 1; 2:

Then our approximating equation for W becomes

Wtt +m2D
Wx

W 2
Wxt+D

�
m1

Wt

W 2
� �

�
Wxx

= DWxxt +

�
Wt

W 2
� �

�
Wt �m2�D

�
Wt

W 2
+

�

W

�
W 2
x :

We now set Z = 1=W , (�; �) = �rW=W = rZ=Z: For Z small

P � �(Wt + �W ) =
��

Z
� �Zt

Z2

so that

LZ � Ztt � 4D�Zxt �D[(m2 � 2)�Z + �]Zxx

= DZxxt + [Dm2�
2(� � �) � ��]Z + (6D�2� �mt�

2)Z

(5.17)

which becomes, upon neglecting the quadratic and higher order terms in the vari-

ables Z; �; �,

LZ � Ztt � 4D�Zxt �D�Zxx = DZxxt (5.18)

for which B(Q) � 4D� > 0: Thus, when Z and its relative gradient are small,

we can expect hyperbolic collapse as the characteristics have slopes of opposite

sign. The mechanism for this is easily understood if we neglect the mixed second

derivative term in (5.18). Then we have

LZ � Ztt �D�Zxx = DZxxt (5.19)

A short calculation with Fourier series shows us that every solution of this equa-

tion which is square integrable in a half strip [a; b] � (0;1) must be the sum of a

linear function of t plus a term which decays exponentially fast. Since Z is to be

small, this linear function must be constant. This suggests that ifW reaches a large

maximum value at (`=2; t0), say, we can expect that P � �(1+�W ) to decrease for

times t > t0 and to propagate away from the line of symmetry x = `=2: We expect

hyperbolic collapse of P to a (large) constant value.

In order to summarize the preceeding discussion more concisely, it is helpful to

think of (5.10) rewritten in terms of the relative gradient. However, as remarked

above, that is a rather messy equation. Therefore we shall content ourselves with

a discussion based upon the approximate form of (5.10) (which actually contains

(5.13),(5.14),(5.15) and (5.18) as special cases):

L =  tt �D(M2(W ) � 2) x xt �D((1 �M1(W ))(� �  t)) xx = D xxt:

In Figure 15 we have indicated how the characteristics might �t together in the

physical plane based on the observations of this section.
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Figure 16. Schematic sketch of the characteristics in a generic case

such as Figure 13.3. The regions 1,2,3 correspond to the regions so

numbered in Figure 9. The nodal lines forE;E1 should coaless at in�nity

in the continuous problem. In each of the regions 1 the slopes of the

characteristics are of the same sign. We expect that the nodal lines for

E;E1 coaless to produce the \walls" observed by Othmer and Stevens

but in�nity, rather than in �nite time. This is only supposition, however.

VI Remarks on numerics. We used a very simple explicit �nite di�erence march-

ing scheme to compute the various Matlab generated �gures below. Because of this,

we have used a time scale for our problem which is shorter than that of Othmer

and Stevens (Figure 10) by a factor of 10. In spite of this, we found that for rather

small values of W (x; 0); (Figures 17.n, 18) that the numerically computed values

of P (x; t) become negative. This is a contradiction of the maximum principle. The

reason for this apparent contradiction lies in the fact that the nonlinear analog

the Courant-Lewy-Friedrichs condition, which is now a solution dependent condi-

tion, breaks down in �nite time. Numerical experiments show that this breakdown

occurs somewhat before P becomes negative. For example, in Figure 17.1 it was

found that the CFL condition fails at around t = 0:83: Further experimentation

shows that as we let �x! 0 in such a way that �t=(D(�)x2 < 0:5, these negative

\islands" recede o� to in�nity. (Inspection of Figures 1.n in reverse order shows



38 REACTION DIFFUSION EQUATIONS

this experimentally.) (The nodal line for P is o�set from that for E in Figures 17

and Figure 18 for the following reason: Since the Matlab program generates P over

a grid of size N in the x direction, then it generates B over a grid of size N � 2 in

the x direction because it uses central di�erences to evaluate � = �Wx=W . Notice

in Figures 17.n that as the step size �x = h decreases, the level sets of E and P

coalesce as the nodal line for P moves o�. This little apparent programming glitch

is a useful visual aid!)

Figure 17.1. Same data as in Figure 13.4 but for a longer time. Here

�x = h = 0:005; �t = 0:002.
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Figure 17.2. Same data as in Figure 13.4. Here �x = h = 0:006667; �t =

0:002.

Figure 17.3. Same data as in Figure 13.4. Here �x = h = 0:01; �t =

0:002.



40 REACTION DIFFUSION EQUATIONS

Figure 18. Same data as in Figure 13.5. \Beyond blowup". The numer-

ical scheme develops an instability which is manifested in the negative

values that P (x; t) assumes near the \blow up point".
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