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Abstract

Heat conduction in a �ne scale mixture of two conductors is examined in the presence

of a contact resistance between phases. The problem is studied rigorously in the context

of periodic homogenization. Unlike the case of perfect heat transmission between phases,

the temperature �elds studied here may converge weakly in L
2 to the homogenized

temperature. The temperature gradients converge weakly as Radon measures. The

strict ellipticity of the homogenized transport equation depends upon the geometry of

the interface. The e�ective conductivity associated with the overall heat dissipation

rate inside a composite cube is considered. It is shown that this property exhibits a size

e�ect under rescaling.
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1 Introduction

In this article we investigate the problem of heat transport for �nely mixed two phase

heat conductors with imperfect heat transmission between phases. We study the e�ect of

a thermal resistance at the two phase interface. This resistance results in a discontinuity

in the temperature across the interface. Interfacial resistance can appear as a Kapitza

resistance due to the di�erence in sound velocity and bulk density between the two phases,

see [12]. It may also arise due to imperfect bonding between phases, see [6]. To �x ideas,

we consider periodic mixtures of two isotropic heat conductors. The geometry within the

period cell can be arbitrarily speci�ed. The approach given here is rigorous and is similar in

spirit to the theory of periodic homogenization for two phase conductors with perfect heat

transmission between phases as presented in Sanchez Palencia [18] and Bensoussan, Lions,

and Papanicolaou [4].
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The composite heat conductor occupies the region 
 � R3. The conductivity of each

isotropic phase is speci�ed by �1 and �2. The period cell is the unit cube (�1;+1)3 denoted

by Q. We introduce the Q-periodic characteristic function of phase 1 given by �1(x), i.e.

�1(x) = 1 if x in phase one, �1(x) = 0 otherwise. The piecewise constant conductivity is

de�ned through

�(x) = �1�1(x) + �2(1� �1(x)): (1.1)

Rescaling the unit cell Q by the factor 1=k(k = 1; 2; 3; : : :), we obtain a family of 1=k

periodic two phase composite conductors. The regions occupied by materials one and two

are denoted by 
k
1
and 
k

2
and the associated conductivity is given by �k(x) = �(kx). The

boundary between phases is written as �k and the phase regions are distributed according

to


 = 
k
1
[ 
k

2
[ �k: (1.2)

In what follows we assume that the interface �k is Lipschitz. The temperature �eld for a

1=k periodic composite is denoted by uk and we suppose that uk = 0 on the boundary of

the composite domain 
. Across the two phase boundary the temperature jumps according

to

� �[uk] = �1ru
k
1
� n: (1.3)

Here [uk] � uk
1
� uk

2
and the subscripts indicate the side of the two-phase boundary where

the traces are evaluated. The vector n denotes the unit normal vector pointing into phase

1.

The normal component of the heat-
ux is assumed continuous across phase interfaces,

i.e.,

�1ru
k
1
� n = �2ru

k
2
� n: (1.4)

For a prescribed heat source f in L2(
) the temperature satis�es:

�1�uk = f in 
k
1
; (1.5)

�2�uk = f in 
k
2
: (1.6)

Condition (1.3) represents the e�ect of a thermal resistance at the two phase interface.

The parameter � denotes the interfacial barrier conductance. The case of perfect contact

between phases is recovered in the � =1 limit.

We introduce the function space Uk de�ned by

Uk = f j = ( 1;  2); where  1 in H
1(
k

1
);  2 in H

1(
k
2
) and  = 0 on @
g: (1.7)

The temperature uk is in Uk and the weak formulation of the imperfect heat conduction

problem (1.3) - (1.6) is given byZ

k
1
[
k

2

�k(x)ruk � r dx+ �

Z
�k

[uk][ ]ds =

Z



 fdx (1.8)

2



for all  in Uk. Existence of solution for (1.8) follows from direct transposition of arguments

given in Lene and Leguillon [14] to the context of heat conductivity and an application of

the Lax-Milgram Lemma.

In this paper we provide a homogenization theorem (Theorem 2.1) for general periodic

geometries describing the behavior of the temperatures uk in the �ne scale limit. Unlike the

perfect transmission case, a subsequence of uk converges weakly in L2(
) to the homogenized

temperature and the associated temperature gradients converge weakly in the sense of

Radon measures, see Theorem 2.1. The strict ellipticity of the homogenized transport

equation is seen to depend upon the geometry of the two-phase interface, see Section 7.

The convergence of the temperatures uk improves if one or both phases are connected.

To see this, we denote the subsets of the unit period cell occupied by materials one and two

by Q1

1
and Q1

2
respectively. We cover R3 with periodic translates of Q1

1
and denote the union

by Q�
1
. To �x ideas we make the following hypotheses on the region occupied by material

one:

(H1) Q1

1
is an open connected subset of R3 and has Lipschitz boundary.

(H2) Q�

1
is connected and has Lipschitz boundary.

With these hypotheses we show there exists a \homogenized" temperature u0 in H1

0
(
) such

that

kuk � u0kL2(
) ! 0:

Here u0 is the unique solution to the homogenized transport equation, see Theorem 2.3.

The homogenization theorems developed here agree with the behavior suggested by

recent bounds on the e�ective conductivity of composites with imperfect interface given

by Lipton and Vernescu [16]. In that work the composite consisted of the unit cube �lled

with an isotropic suspension of particles of conductivity �2 in a matrix of �1 such that

�2 > �1. For this case the lower bound given by equation (II.2.10) of [16] is seen to admit

the expansion.

~�e + O(1=S): (1.9)

Here S is the interfacial surface area. The quantity ~�e is the e�ective heat conductivity

of a suspension with the same geometry but with particles �lled by a perfectly insulating

material. In Section 3 we consider a unit cube �lled with a 1=k periodic arrangement

of particles and show that the associated e�ective property �ek has the same asymptotic

behavior as the lower bound (1.9) in the k =1 limit, see Remarks 3.5 and 3.6.

In Section 3, Theorem 3.3 we demonstrate the existence of a size e�ect. That is, we

show that the e�ective conductivity of 1=k periodic composite with barrier conductance �

is identical to that of unit periodic composite with barrier conductance �=k. This result

is in sharp contrast to the invariance under rescaling enjoyed by the e�ective properties
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of periodic composites when there is perfect heat transmission between phases. In fact

it is shown in Theorem 3.4 that the e�ective conductivity is decreasing with the scale of

periodicity. Thus, given a 1 periodic local conductivity �(x) we see that pulverizing the

geometry to obtain a �ner mixture �(kx) only serves to decrease the e�ective conductivity.

Physically, this is accounted for by the increased surface area of the interface.

Earlier work of Lene and Leguillon [15] treated the case of isolated elastic inclusions in a

connected elastic matrix with slip at the two-phase interface. Unlike this presentation, they

allow the interfacial properties to change with the period of the composite. In the context of

heat conductivity, their problem corresponds to a barrier conductance that increases as the

scale of the period decreases. Their homogenization proof makes elegant use of a uniformly

bounded family of extension operators. These operators continuously extend deformation

�elds from the matrix into the inclusions. Due to the construction of these operators, their

approach is limited to matrix inclusion composites. In contrast, the approach developed

here makes no use of extension operators and applies to arbitrary periodic geometries. For

the special case when hypothesis (H1) and (H2) hold, we employ the compactness Lemma

of Allaire, Murat, and Nandakumar [1]. The lemma is used to show that the sequence fukg

converges strongly in L2 to the solution of the homogenized problem.

We emphasize that the geometric hypotheses (H1) and (H2) cover a wide range of cases,

since they allow the second phase to have connected as well as disconnected components.

The methods used in this analysis can be applied to the rigorous homogenization of

two-phase elastic structures with interfacial slip. Indeed, if the coe�cient of interfacial slip

is held �xed for all scales of periodicity, then one recovers results analagous to those given

in this paper. If the coe�cient of slip is allowed to increase inversely proportional to the

periodicity of the composite, then it is possible to extend the results of Lene and Leguillon

[15] to arbitrary two-phase, periodic, elastic composite geometries.

The paper is organized as follows: In the following Section we state the homogenization

theorems. In Section 3 we introduce correctors and de�ne the e�ective heat conductivity

tensor. We establish the homogenization theorem for the special case when the composite

domain is the unit cube and the average heat intensity is prescribed, see Theorem 3.4.

We apply these results in our treatment of periodic homogenization for arbitrary com-

posite domains. Section 4 is devoted to obtaining uniform bounds on the sequences fukg,

frukg, and f[uk]g. Apriori estimates are accomplished through a Poincar�e like inequality

for the spaces Uk, see Theorem 4.1. The weak limit M� of the sequence of heat 
ux vectors

f�krukg is shown to satisfy a macroscopic balance equation, see (4.17). In Section 5 the

two-scale limit of the temperatures fukg, denoted by u�(x; y), is shown to depend only upon

the macroscopic variable \x". In Section 6 we apply the two-scale convergence theorem of

Nguetseng [17] to identify the weak limit of the heat 
ux vectors. We conclude the proof

of the homogenization theorem for general periodic geometries in Section 7. There we dis-

cuss the link between strict elipticity of the homogenized problem and the geometry of the
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two-phase interface. It is found that these questions are intimately related to homogeniza-

tion theorems for perforated domains. We appeal to a theorem of Briane [7] for perforated

domains to show that the homogenized problem is strictly elliptic for composite geometries

satisfying (H1) and (H2).

In Section 8 we suppose material one is connected according to (H1) and (H2). We apply

the compactness Lemma of Allaire, Murat and Nandakumar [1] to establish the existence

of a strong L2 convergent sequence of temperature �elds. From this, one easily obtains

Theorem 2.3 using the methods of Sections 6 and 7.

2 Periodic Homogenization Theorems

We present two homogenization theorems. To �x ideas we begin with a homogenization

theorem for general periodic geometries. The two-phase interface is given by 
1 and the

unit cell is partitioned according to:

Q = Q1

1
[Q1

2
[ 
1 (2.1)

where the Lebesque measure of 
1 is zero. It is shown in Section 4 (see Remark 4.4) that

the solutions uk of the heat conductivity problems (1.6) are elements of the space SBV (
)

introduced by Ambrosio and DeGeorgi in [2]. The distributional gradient of uk is a Radon

measure denoted by Duk. It has the representation

Duk = rukdx� [uk]ndH2b�
k (2.2)

where ruk lies in L2(
)3 and is the absolutely continuous part of Duk with respect to 3

dimensional Lebesque measure and H2 is 2 dimensional Hausdor� measure. Since �k is

Lipschitz, dH2b�k corresponds to surface measure.

For a periodic arrangement of two conductors we introduce the symmetric tensors g1

and g2 de�ned by

g1� � � = inf
 2V 1

Z
Q1
1

jr + �j2dx (2.3)

and

g2� � � = inf
 2V 1

Z
Q1
2

jr + �j2dx (2.4)

for any � in R3. The space V 1 is de�ned as

V 1 = f � Q periodic j = ( 1;  2);  1 in H
1(Q1

1
);  2 in H

1(Q1

2
)g (2.5)

and the geometric tensors gj , j = 1; 2 represent the e�ective conductivity of a composite

with material of unit conductivity in Q1

j and a perfect insulator in the complement. The
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minimizers  1j , j = 1; 2 of (2.3) and (2.4) are unique up to a constant and satisfy the

following equilibrium equation Z
Q1
j

(r 1j + �) � r�dx = 0 (2.6)

for all � in V 1, and

g1� � � =

Z
Q1
1

jr 1
1
+ �j2dx; g2� � � =

Z
Q1
2

jr 1
2
+ �j2dx: (2.7)

We mention that the inverses of the tensors g1 and g2 are the formation factor tensors

associated with phases one and two respectively. Such tensors are routinely used in the

study of porous media, cf.,Dullien [8].

Introducing the positive semide�nite tensor

c = �1g
1 + �2g

2 (2.8)

we have the following:

Theorem 2.1. Homogenization of Periodic Composites with Imperfect Interface.

For any f in L2(
) there exists a temperature �eld u� and a subsequence uk for which:

uk ! u� weakly in L2(
) (2.9)

and u� is a local solution of

� div(cru�) = f: (2.10)

Moreover, if c is positive de�nite, then u� lies in H1(
) and the distributions Duk converge

weakly to ru� in the sense of Radon measures, i.e.,

Duk ! ru�dx: (2.11)

Remark 2.2. The convergence of the distributions Duk implied by (2.11) readsZ



 � d[Duk]!
Z



 � ru�dx (2.12)

for all  in C1

c (
).

Next we assume that material one is distributed according to the hypotheses (H1) and

(H2). An application of Proposition 5.1 of Briane [7] shows that the homogenized tensor c

is positive de�nite, (see Section 7). For this case we have:
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Theorem 2.3. Given any f in L2(
) there exists u� in H1

0
(
) for which the solutions uk

of problems (1.8) converge in the following sense:

uk ! u� strongly in L2(
) (2.13)

and the distributions Duk converge weakly to ru� in the sense of Radon measures. More-

over, u� is the unique solution of

� div(cru�) = f: (2.14)

3 Correctors, E�ective Conductivity, and Homogenization of

Periodic Composites in the Unit Cube

In this Section we introduce the e�ective conductivity tensor for a 1=k periodic composite

occupying the unit cube Q. We introduce the associated temperature �elds (referred to

as correctors) and provide a homogenization theorem describing heat transport in the �ne

phase limit. This result is essential for establishing Theorems 2.1 and 2.3.

To be precise, we suppose that the cube Q is �lled with a 1=k periodic composite with

local conductivity �k(x) = �(kx). The regions occupied by materials one and two are

denoted by Qk
1
and Qk

2
respectively. The two phase interface denoted by 
k has Lebesque

measure zero and Q = Qk
1
[Qk

2
[
k (for k = 1; 2; 3 : : :). We introduce the associated function

spaces V k given by

V k = f � Q periodic j = ( 1 2);  1 in H
1(Qk

1
);  2 in H

1(Qk
2
)g (3.1)

(for k = 1; 2; : : :).

We consider �rst a composite with periodicity one and the local conductivity given by

�(x) and interfacial barrier conductance �=`, (` = 1; 2; 3 : : :). For �xed ` the temperature in

the composite can be written as the sum of a periodic 
uctuation  ` and a linear function

� �x. The constant vector � in R3 is prescribed and represents the average heat intensity as

measured by an observer outside the composite, i.e.Z
@Q

( ` + � � x)nds = � : (3.2)

See Benveniste [5]. The periodic 
uctuation  ` lies in the function space V 1 and is a solution

of the thermal equilibrium, equations:

� ` = 0 in Q1

1
[Q1

2
(3.3)

n � �1(r 
`
1
+ �) = n � �2(r 

` + �) on 
1; (3.4)

n � �1(r 
`
1
+ �) = ��=`[ `] on 
1 (3.5)
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Here n is the unit normal pointing into phase 1.

The solutions  ` of (3.3) - (3.5) exist and are unique up to a constant; this is an

application of the Lax-Milgram lemma. For future reference, the variational form of (3.3) -

(3.5) is given by Z
Q1
1
[Q1

2

�(x)(r `+ �) � r�dx+ �=`

Z

1

[ `][�]ds = 0 (3.6)

for all � in V 1.

The e�ective conductivity ~�` of the two phase composite is de�ned by

~�`� =

Z
Q

�(x)(r `+ �)dx; (3.7)

see Benveniste [5]. Introducing the Lagrangian L`( ) de�ned by

L`( ) =

Z
Q1
1
[Q1

2

�(x)jr + �j2 + �=`

Z

1

([ ])2ds; (3.8)

one has that the e�ective conductivity ~�` admits the equivalent variational representation

~�`� � � = inf
 2V 1

L`( ) (3.9)

and ~�`� � � = L`( 
`).

Remark 3.1. It is easily seen from (3.8) that the energies ~�`� � � are monotone decreasing

in ` and

~�`� � � � �1g
1� � � + �2g

2� � �: (3.10)

for the tensors g1; g2 given by (2.7) and (2.8). Moreover, since ~�`� � � is the in�mum of the

family of convex functions L`( ), it follows that ~�
`� � � is upper semicontinuous in ` and we

conclude:

lim
`!1

~�`� � � = �1g
1� � � + �2g

2� � �: (3.11)

We introduce the minimizers  1
1
,  1

2
of (2.3) and (2.4) respectively and state the following

Lemma 3.2.

r `j + � ! r 1j + �; j = 1; 2 (3.12)

strongly in L2(Q1

j)
3.

Here  `j represents the component of  ` in the phase region Q1

j , j = 1; 2.

Proof: We start by showing

lim
`!1

�=`

Z

1

([ `])2ds = 0: (3.13)
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Noting as before that ~�`� � � = L`( 
`) we write

�=`

Z

1

([ `])2ds = ~�`� � � � � �
Z

Q1
1
[Q1

2

�(x)jr `+ �j2: (3.14)

From (3.11) and (3.14) it is evident that

lim
`!1

�=`

Z

1

([ `])2ds = �1g
1� � � + �2g

2� � � � lim
`!1

Z
Q1
1
[Q1

2

�(x)jr `+ �j2dx: (3.15)

Since (2.3) and (2.4) imply

�1g
1� � � + �2g

2� � � = inf
 2V 1

0
B@�1

Z
Q1
1

jr + �j2dx+ �2

Z
Q1
2

jr + �j2dx

1
CA (3.16)

we see that for all ` that

�1g
1� � � + �2g

2� � � �
Z

Q1
1
[Q1

2

�(x)jr `+ �j2dx: (3.17)

It is apparent from (3.15) and (3.17) that

lim
`!1

�=`

Z

1

([ `])2ds � 0 (3.18)

and the desired results follows immediately from the positivity of

�=`

Z

1

([ `])2ds: (3.19)

It is easy to see from (3.13) and (3.15) that

lim
`!1

Z
Q1
1
[Q1

2

�(x)jr `+ �j2dx = �1g
1� � � + �2g

2� � �: (3.20)

Noting that �(x) � min(�1; �2) > 0, it follows from (3,20) togeather with (2.3),(2,4), and

(2.7) that

lim
`!1

Z
Q1
j

jr `j + �j2dx =
Z
Q1
j

jr 1j + �j2dx: (3.21)

To �nish the proof we show r `j + � * r 1j + � weakly in L2([Q1

j ])
3. This is done in

two steps: First we show that subsequence  `Kj (with each term adjusted by a constant if

necessary) converges weakly in H1(Q1

1
) to a limit ~ 1j . From this it follows that r `Kj *

r ~ 1j weakly in L2(Q1

j)
3. Second, we pass to the limit in (3.6) noting that the solutions

 1j , j = 1; 2 of (2.6) are unique up to a constant. From this, we conclude that the whole

sequence r `j + � converges to r 1j + � weakly in L2([Q1

j ])
3.
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To show the �rst part we observe that (3.21) implies that the sequence fr `jg is uni-

formly bounded in L2(Q1

j). We focus on the phase region Q1

1
. Subtracting an appropriate

constant (if necessary) from the component  `
1
we apply Poincar�e's inequality to show that

f `
1
g` is uniformly bounded in L2(Q1

1
), hence f `

1
g` is uniformly bounded in H1(Q1

1
). From

the Rellich Kondrachov compactness theorem we conclude existence of a subsequence r `K
1

converging weakly to r ~ 1
1
with ~ 1

1
in H1(Q1

1
). We pass to the limit in the variational for-

mulation (3.6), applying (3.13) to �nd that ~ 1
1

is the solution of (2.6). From uniqueness it

follows thatr ~ 1
1
= r 1

1
and the whole sequence r `

1
converses weakly to r 1

1
. Identical

arguments can be made for the sequence f `
2
g` and the Lemma is established.

We extend our analysis to 1=k-periodic composites with scale independent interfacial

boundary conductance given by �. For prescribed heat intensity � and for a 1=k-periodic

arrangement of conductors speci�ed by �k(x) = �(kx), the associated temperature �eld is

written �k = wk + � � x. Here wk is an element of V k and �k is the solution of

r � �k(r�k) = 0 in Qk
j j = 1; 2 (3.22)

n � �1r�
k
1
= n � �2r�

k
2

on 
k; (3.23)

and

� �(�k
1
� �k

2
) = n � �1r�

k
1

on 
k: (3.24)

It is possible to write the solution �k in terms of the solution of (3.6) for a unit periodic

geometry with interfacial barrier conductance �=k. Indeed extending the solution  k of

(3.6) by periodicity to R3 we �nd that

�k = k�1( k(kx) + � � (kx)): (3.25)

This follows immediately by rescaling in (3.3) - (3.5) for ` = k. Writing y = kx we have

r�k = (ry 
k
j (kx)+ �) in Q

1

j . Here ry indicates a gradient with respect to y. We introduce

the energy associated with the corrector r�k given by

E(�k) =

Z
Qk
1
[Qk

2

�k(x)jr�kj2 + �

Z

k

([�k])2ds: (3.26)

This energy is precisely that de�ning the e�ective conductivity of a 1=k-periodic compos-

ite with interfacial barrier conductance �. We denote the e�ective conductivity for this

composite by �ek� � � and from its de�nition we have

�ek� � � = E(�k): (3.27)

We now state the following:

Theorem 3.3. Size E�ect for Periodic Composites.
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The e�ective conductivity of a composite with local conductivity �(x) and interfacial

barrier conductance �=k is identical to that of a 1=k periodic composite with local conduc-

tivity �k(x) = �(kx) and interfacial barrier conductance �, i.e.

�ek = ~�k: (3.28)

Proof: The theorem follows from (3.25) and rescaling in equation (3.26).

From Theorem 3.3 and Lemma 3.2 we have the following homogenization theorem for

periodic composites in the unit cell.

Theorem 3.4. Homogenization of the Cell Problem.

For a prescribed average intensity �:

�ek� � � � �ck+1� � � (3.29)

and

lim
k!1

�ek� � � = (�1g
1 + �2g

2)� � �: (3.30)

Moreover the associated periodic intensities

r�k =

(
ry 

k
1
(kx) + � in Qk

1

ry 
k
2
(kx) + � in Qk

2

(3.31)

r�1 =

(
r 1

1
+ � in Q1

1

r 1
2
+ � in Q1

2

(3.32)

are elements of L2(Q)3 and

r�k *
Z
Q

r�1dy; weakly in L2(Q)3; (3.33)

and

�kr�k * (�1g
1 + �2g

2)�; weakly in L2(Q)3: (3.34)

Proof: The monotonicity expressed by (3.29) follows from Remark 3.1 and Theorem 3.3.

The convergence of energies given by (3.30) is a consequence of Theorem 3.3 and (3.11).

Since the measure of the interface 
k is zero it follows that r�k and r�1 are elements of

L2(Q)3. We introduce the sequence fr�1;k(x)g de�ned by r�1;k(x) = r�1(kx) and

kr�1;k(x)�r�k(x)k2L2(Q)3 =
2X
j=1

Z
Q1
j

jry 
1

j (y)� ry 
k
j (y)j

2dy: (3.35)
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It is evident from (3.35) and Lemma (3.2) that the di�erence r�1;k � r�k converges

strongly in L2(Q)3 to zero. On the other hand

r�1;k *

Z
Q

r�1dy (3.36)

weakly in L2(Q)3. For any vector �(x) in L2(Q)3 we writeZ
Q

r�k � �dx =
Z
Q

(r�k � r�1;k) � �dx+
Z
Q

r�1;k � �dx: (3.37)

Equation (3.33) follows immediately by passing to the limit in (3.37) using (3.36) and the

strong L2(Q)3 convergence of r�1;k � r�k. The weak convergence result (3.34) follows

from an identical proof noting that

�kr�1;k *

Z
Q

�(x)r�1dx = (�1g
1 + �2g

2)� (3.38)

weakly in L2(Q)3.

Remark 3.5. We consider suspensions of isolated particles of material two in a matrix of

material one. Calculation shows that the minimizer of (2.8) is of the form  1
2
= �� � x and

so g2 = 0. Hence Theorem 3.4 yields:

lim
k!1

�ek = �1g
1 (3.39)

Remark 3.6. From well known homogeneity properties (c.f. Golden and Papanicolaou

[13]), one has ~�e = �1g
1 where ~�e is the e�ective conductivity associated with the same

geometry but with a matrix of conductivity �1. Thus the convergence given by (3.30) shows

that the e�ective tensors �ek exhibit the same asymptotic behavior as the lower bound given

by (1.9).

We conclude this Section with the following useful estimate:

Theorem 3.7. There exists a constant C independent of k such that:

kk�1 k(y)kL2(Q) � k�1=2C

The proof is obtained using:

Proposition 3.8. The following Poincar�e-like inequality holds

Z
Q1
1
[Q1

2

 2dx �M

8><
>:
Z

Q1
1
[Q1

2

jr j2dx+

Z

1

([ ])2ds

9>=
>; (3.40)
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for every  in V 1 such that
R

Q1
1
[Q1

2

 dx = 0 and an appropriate constant M .

Proof: The proposition is easily established by contradiction.

From (3.13) and (3.21) it follows that

sup
k

8><
>:k�1

Z

1

([ k])2ds

9>=
>; <1; sup

k

Z
Q1
1
[Q1

2

jr kj2dx <1 (3.41)

and Theorem 3.7 follows directly from substitution of k�1 k into (3.40).

4 Estimates and the Homogenized Equilibrium Law for the

Heat Flux

To establish Theorems 2.1 and 2.3 we �nd uniform estimates for the sequence fukgk. We

use the following Poincar�e-type inequality:

Theorem 4.1. For each k = 1; 2; : : : the functions v in Uk are elements in L2(
) and

kvk2L2(
) � C

8><
>:
Z


k
1
[
k

2

jrvj2 +
Z
�K

([v])2ds

9>=
>; (4.1)

for all v in Uk.

Here the constant C is independent of the index k and

C = maxf2(diameter 
)2; 4(diameter 
)g (4.2)

Proof: Since v lies in Uk and meas (�k) = 0, it is evident that v belongs to L2(
).

Translating 
 if necessary, we enclose it in a cube centered at the origin with edge length

2a = diameter 
. For a �xed index \k" we start by considering functions v in C1(
k
1
) [

C1(
k
1
) \ Uk. We denote the pair (x2; x3) by x

0. For �xed x0 we list all values of the x1

coordinate for which the point x lies on the two-phase interface. These are denoted by

�N < �N�1 < � � ��2 < �1. Since the interfaces are assumed Lipschitz, the x1-coordinates

f�jg
N
j=1 are Lipschitz functions of x

0 and the jth component of the 2-phase interface is given

by x1 = �j(x
0); j = 1; 2 : : :N . For any point x in 
 with x0 �xed we have the identity.

v(x1; x
0) = v(x1; x

0)� v(�1; x
0) +

NX
j=1

[v(�j; x
0)]+
�

+
N�1X
j=1

v(�j; x
0)� � v(�j+1; x

0)+ + v(�N ; x
0)� � v(��; x0):

(4.3)
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Here \+" indicates a trace taken from the right of the interface and \�" is that from the

left. The point (��; x0) is chosen to lie on �
 and v = 0 there. Each term under the second

summation sign in (4.3) is written

v(�j; x
0)� � v(�j+1; x

0)+ =

�jZ
�j+1

d

dt
v(t; x0)dt: (4.4)

Extending the function v by zero outside 
 we have

v(x1; x
0) =

x1Z
�a

d

dt
v(t; x0)dt+

NX
j=1

[v(�j; x
0)]+
�

(4.5)

Application of Cauchy's inequality gives

v2(x1; x
0) � 2

0
@2a

aZ
�a

(@x1v(t; x
0))2dt+

NX
j=1

([v(�j; x
0)]+
�
)2

1
A (4.6)

Integrating (4.6) with respect to x1 and x
0 over the cube gives

Z



v2dx � 2

0
@4a2 Z




(@x1v)
2dx+ 4a

NX
j=1

aZ
�a

aZ
�a

([v(�j; x
0)])2dx0

1
A : (4.7)

On the two-phase interface x1 = �j(x
0) and we have i �nds = dx0, where i is the unit vector

along the x1 axis. Noting that ji � nj � 1 we have

Z



v2dx � 2

0
@4a2 Z




(@x1v)
2dx+ 4a

Z
�k

([v])2ds

1
A (4.8)

which implies (4.1). The estimate (4.1) is extended to Uk using standard density and trace

theorems, for H1(
k
1
) and H1(
k

2
).

We obtain the necessary estimates given by

Theorem 4.2. The sequence of temperatures fukg satisfy the estimates

sup
k

kukkL2(
) <1; (4.9)

sup
k

krukkL2(
k
1
[
k

2
) <1; (4.10)

sup
k

Z
�k

([uk])2ds <1; (4.11)

and

sup
k

k�krukkL2(
k
1
[
k

2
) <1 (4.12)
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Proof: For the choice  = uk in (1.8) we obtainZ


k
1
[


K
k2

�kjrukj2dx+ �

Z
�k

([uk])2ds =

Z



ukfdx: (4.13)

We introduce the parameter � = min(�; �1; �2); estimate the right-hand of (4.13) using

Cauchy's inequality and apply Theorem (4.1) to �nd:

0
B@ Z


k
1
[


k
2

jrukjdx+ �

Z
�k

([uk])2ds

1
CA
1=2

� ��1
p
CkfkL2(
): (4.14)

It is evident that (4.9) - (4.11) follow immediately. The estimate (4.12) is obtained noting

that max(�1; �2) � �(x) > 0, and applying (4.10).

Remark 4.3. Noting that meas(�k) = 0 it follows immediately that frukg and f�krukg

are elements of L2(
)3. From Theorem 4.2 it follows that frukg and f�krukg are uniformly

bounded sequences in L2(
)3.

Remark 4.4. It is easily seen from Theorem 4.2 that uk lies in the space SBV (
). The

distributional gradient of uk in BV (
) is a Radon measure denoted by Duk. The abso-

lutely continuous part is precisely ruk and the singular part is con�ned to the two-phase

interface and given by �[uk]ndH2b�k. Summarizing, the distributional gradient has the

representation

Duk = rukdx� [uk]ndH2b�
k: (4.15)

Here dH2b�k is 2 dimensional surface measure on �k. The space SBV has been applied to

problems in continuum mechanics involving interfaces by several authors (see for example

[3],[11]).

We now �nd the asymptotic equilibrium law for the heat 
ux. From Remark 4.3 we

can �nd a subsequence f�k
0

ruk
0

g of heat 
ux vectors converging weakly in L2(
)3 to the

vector �eld M� in L2(
)3.

We observe that the space H1

0
(
) lies in the intersection of all the spaces Uk. Choosing

 in H1

0
(
) we have [ ] = 0 on phase interfaces and for every element in f�k

0

ruk
0

gk0 we

have: Z



�k
0

ruk
0

� r dx =

Z



 fdx: (4.16)

Passing to the limit we �ndZ



M� � r dx =

Z



 fdx; for any  in H1

0
(
): (4.17)

Equation (4.17) gives the homogenized equilibrium law for the heat 
ux. To �nish the

proofs of Theorems 2.1 and 2.3 we identify M�; this is the goal of Sections 5 and 6.
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5 Characterization of the Two Scale Limit of the Tempera-

tures

The estimates given in the previous Section together with the two scale convergence in-

troduced by Nguetseng [17] are used to characterize the two scale limit of the sequence of

temperature �elds fukg.

We introduce the space L2p of Q-periodic functions in L
2

loc
(R3).

De�nition 5.1. A sequence of functions fvkg in L2(
;L2p) two scale converges to the limit

v� in L2(
;L2p) if Z



vk(x)w(kx)�(x)dx!
Z


�Q

v�(x; y)w(y)�(x)dxdy (5.1)

for all w in L2p and � in C
1

c (
).

We observe from the de�nition that two scale convergence implies weak L2(
) conver-

gence of the sequence fvkg to the function
R
Q

v�(x; y)dy.

From Theorem 4.2 the sequence fukg is uniformly bounded in L2(
). It follows from the

two scale convergence Theorem of Nguetseng [17] that there exists a two scale convergent

subsequence (also denoted by fukg) converging to u�(x; y) in L2(
;L2p).

The limit is characterized in the following

Theorem 5.2. The two scale limit is a function of the macroscopic variable only, i.e.

u�(x; y) = u�(x): (5.2)

Proof: For any Q-periodic vector �eld  in H1(Q)3 and for any function � in C1c (
) one

has the identity: Z



uk(div  (kx))�(x)dx=

Z
�k

[uk]n � (kx)�(x)ds

�
Z



uk (kx) � r�dx�
Z



�(x) (kx) � rukdx:

(5.3)

Setting y = kx we have div (kx) = k divy  (ky) where divy is the divergence with respect

to the y-variable. Substitution into (5.3) givesZ



uk(divy (kx))�dx

= k�1

8<
:
Z
�k

[uk]n �  (kx)�(x)ds�

Z



uk (kx) � r�dx�

Z



�(x) (kx) � rukdx

9=
; :

(5.4)
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We apply Cauchy's inequality to the �rst term in (5.4) together with the estimate (4.11)

and rescaling to obtain

����k�1
Z
�k

[uk]n �  (kx)�(x)ds

����� k�1=2Ck�kL1(
)

0
B@Z

1

j j2ds

1
CA
1=2

: (5.5)

From estimates (4.9) and (4.10) it follows that the last two terms in (5.4) are of order k�1.

Passing to a subsequence if necessary in (5.4) and applying the two-scale limit theorem of

Nguetseng [17] gives: Z

�Q

u�(x; y)divy (y)�(x)dxdy = 0; (5.6)

for any periodic  function in H1(Q), and the theorem is proved. It follows form the remark

after De�nition 5.1 that the subsequence fukg converges weakly in L2(
) to the temperature

u�(x).

6 The Constitutive Relation for Heat Conduction in Fine

Phase Mixtures

In this Section we �nd the linear constitutive law relating the weak limit of the heat 
ux

vectors M� to the weak limit of the temperatures u�(x). The constitutive law describes

heat transport in the �ne phase mixture. Under suitable hypothesis on the geometry of the

mixture, we show that the weak limit of the temperatures u�(x) lies in the space H1(
).

To this end we introduce:

Theorem 6.1. For all test �elds � in the space C1

c (
) and for all vectors � in R3 we have:Z



u�c� � r�dx = �

Z



�M� � �dx: (6.1)

Here c is the constant tensor introduced in Section 1 given by

c = �1g
1 + �2g

2: (6.2)

It is evident from the de�nition of the tensors g1 and g2 (see equations (2.7) and (2.8)) that

the tensor c is positive semide�nite.

Remark 6.2. Theorem 6.1 delivers the homogenized constitutive law:

M� = cru�: (6.3)

It is evident from Theorem 6.1 that heat is transported only along directions perpendicular

to the kernel of c and that u� has L2 directional derivitaves for all such directions.
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The de�niteness of c depends upon the geometry of the composite as addressed in

Section 7. When c is positive de�nite we have:

Corollary 6.3. The limit u� lies in H1(
) and the distributional gradient of u�(x) is given

by

@xiu
� =M� � c�1ei; i = 1; 2; 3 (6.4)

where ei, i = 1; 2; 3 denotes an orthonormal system in R3. Moreover the distributional

gradients for the sequence fukg converge weakly in the sense of Radon measures, to ru�,

i.e.,

Duk * ru�dx: (6.5)

Proof of Theorem 6.1: The structure of this proof follows that of Tartar [19] for perfectly

bonded two-phase conductors. Extending the corrector �k de�ned in Section 2 by periodicity

to R3 we introduce a test � in C1

c (
) and set  = ��k in the variational formulation (1.8)

to obtain Z

k
1
[
k

2

�k(x)ruk � r(��k) + �

Z
�k

[uk] [�k]�ds =

Z



��kfdx (6.6)

Noting that the equation div(�kr�k) = 0 holds in the sense of regular distributions in each

phase we multiply by �uk and integrate by parts using appropriate Green's Theorem [20]

to obtain

�

Z

k
1
[
K

2

r(�uk) � �kr�kdx+

Z
�k

[uk]n � �kr�k�ds = 0: (6.7)

In view of the jump condition (3.24) we write (6.7) asZ

K
1
[
k

2

(ukr� � �kr�k + �ruk � �kr�k)dx+ �

Z
�k

[uk] [�k]�ds = 0: (6.8)

Subtracting (6.8) from (6.6) givesZ

k
1
[
k

2

�k�k(x)ruk � r�dx�

Z

k
1
[
k

2

ukr� � �kr�kdx =

Z



��kfdx: (6.9)

Noting that meas(�k) = 0 and in view of Remark 4.3 we may write (6.9) asZ



�k�k(x)ruk � r�dx�
Z



ukr� � �k(x)r�kdx =
Z



��kfdx: (6.10)

We now identify the limit of each term in (6.10) as k goes to 1 Recalling that �k =

k�1 k(kx) + � � x, elementary estimates show that there exists a constant C� such that

k�k � � � xkL2(
) = kk�1 k(kx)kL2(
) � C�kk
�1 k(y)kL2(Q): (6.11)
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It is evident from (6.11) and Theorem 3.7 that �k ! � �x strongly in L2(
). Recalling that

the sequence �kruk converges weakly in L2(
)3 to M� we �nd that the �rst term satis�es

lim
k!1

Z



�k(x)ruk � r��kdx =

Z



(M� � r�)� � xdx: (6.12)

Passing to the limit in the last term gives

lim
k!1

Z



��kfdx =

Z



�� � xfdx: (6.13)

To pass to the limit in the middle term of (6.10) we enlist the aid of a simple modi�cation

of Theorem 2 introduced in Nguetseng [17].

Proposition 6.5. Given the sequences fgkg, fwkg such that kgkk � C, gk two scale

converges to g0(x; y) and wk ! w1 strongly in L2p(Q) then:Z



gkv(x)wk(kx)dx!

Z

�Q

g0(x; y)v(x)w1(y)dxdy (6.14)

for all functions v in C1

c (
).

Proof: As k tends to in�nity elementary estimates show there exists a constant C� indepen-

dent of k for which

kwk(kx)� w1(kx)kL2(
) � C�kwk(y)� w1(y)kL2(Q): (6.15)

From the hypothesis on fwkg and (6.15) is evident that

lim
k!1

kwk(kx)� w1(kx)kL2(
) = 0: (6.16)

We write����
Z



gkvwk(kx)dx�

Z

xQ

g�(x; y)vw1(y)dxdy

���� �
����
Z



gkv(wk(kx)� w1(kx))dx

����+
����
Z



gkvw1(kx)dx�

Z

xQ

g�(x; y)vw1(y)dxdy

����:
(6.17)

The �rst term on the right hand side of (6.17) vanishes due to (6.16) and the uniform

L2 bound on fgkg. The second term vanishes as the sequence gk two scale converges to

g�(x; y) and the Proposition is established.

Passing to a subsequence if necessary we have from Theorem 5.2 that the two-scale limit

of uk is u�(x). On the other hand �k(x)r�k = �(kx)(ry 
k(kx)+�) and from Lemma (3.2)

it follows that

�(y)(ry 
k(y) + �)! �(y)(ry 

1 + �) (6.18)
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strongly in L2(Q)3. It is evident that the sequences fukg and f�k(x)r�kg satisfy the

hypothesis of Proposition 6.5. Thus applying the Proposition to the middle term we �nd

lim
k!1

Z



ukr� � �k(x)r�kdx =

=

Z

xQ

u�(x)r� � �(y)(ry 
1 + �)dxdy

=

Z



u�(x)c� � r�dx:

(6.19)

Here we have used that c de�ned by (2.8) admits the representation

c� = �1

Z
Q1
1

(ry 
1

1
+ �)dy + �2

Z
Q1
2

(ry 
1

2
+ �)dy: (6.20)

Thus we obtain Z



(M� � r�)� � xdx�
Z



u�(x)c� � r�dx =
Z



�� � x fdx (6.21)

and the theorem follows in view of (4.17).

Equation (6.4) of Corollary 6.3 follows from Theorem 6.1 by choosing � = c�1ei. To

establish the convergence we note that uk lies in BV (
) and for any  in C1

c (
)Z



uk div dx = �
Z



 � d[Duk]: (6.22)

The Corollary follows from the weak convergence of uk to u�.

7 Stationary Thermal Transport Equation for Fine Phase

Mixtures

The homogenized equation for heat transport follows immediately from the results of the

last Section and from (4.17). Indeed, u� is seen to be a solution of the homogenized problem:Z



cru� � r dx =
Z



 fdx (7.1)

for all  in H1

0
(
), and Theorem 2.1 follows.

The positivity of the tensor c is governed by the geometry of the two phase interface.

As an example we consider an isotropic suspension of particles. We assume that Q1

1
is the

connected matrix, that Q1

2
is the particle phase and that the particles are isolated. We
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observe that this geometry satis�es the hypotheses (H1) and (H2) and note as in Remark

3.7 that g2 = 0. Thus,

c = �1g
1: (7.2)

For isotropic suspensions particles for which there exists a positive lower bound on the

inter-particle distance, the estimates of Bruno [8] and Torquato and Rubinstein [21] show

that g1 is positive and the positivity of c follows

As a second example we consider a laminar geometry with layer normal given by e1 and

thickness of phase one and two given by �1 and �2 respectively (�1 + �2 = 1). Calculation

shows that the matrices g1 and g2 are diagonal and given by

g1 =

0
BB@

0

�1

�1

1
CCA ; g2 =

0
BB@

0

�2

�2

1
CCA (7.3)

and the resulting tensor c = �1g
1 + �2g

2 is not positive de�nite. The local conductivity of

the 1 periodic laminate is written �(x). Thus if one considers a sequence of successively

�ner laminates �(kx) with associated temperature �elds uk, it is no longer evident that the

limit temperature �eld u� belongs to H1(
). However from Theorem 6.1 it does follow that

the distributions @x2u
� and @x2u

� are elements of L2(
).

More generally, the recent result of Briane [7] can be applied to establish positivity of

the tensor c for any composite satisfying (H1) and (H2). Application of Proposition 5.1 and

Remark 5.2 in [7] to the tensor g1 shows that it is positive and the positivity of c follows.

8 Strong Convergence of Temperatures for Connected Phase

Geometries

In this section we suppose material one is connected according to the hypotheses (H1) and

(H2). We observe that the region occupied by material two (i.e., Q1

2
) may have a �nite

number of connected and disconnected components.

We state the following:

Theorem 8.1. There exists a limit u� inH1

0
(
) and a subsequence fuk

0

g such that uk
0

! u�

strongly in L2(
).

Proof: We recall that for each k = 1; 2; : : : the temperature uk lies in Uk given by (1.7),

i.e., uk = (uk
1
; uk

2
), uk

1
in H1(
k

1
), uk

2
in H1(
k

2
) with uk

1
= 0 on @
k

1
\ @
 and uk

2
= 0 on

@
k
2
\@
. Moreover we have from (4.9) and (4.10) that kuk

1
kH1(
k

1
) � C where the constant

C does not depend upon k. We introduce ~uk
1
de�ned by ~uk

1
= (uk

1
; 0).

Noting that we have satis�ed the hypotheses of the Compactness Lemma of Allaire,

Murat, and Nandakumar, (see Lemma A.3 of [1]) we apply it to �nd a subsequence ~uk
0

1
for
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which there exists a function u� in H1

0
(
) such that:

~uk
0

1
* �1u

� weakly in L2(
): (8.1)

Here �1 is the volume fraction of conductor one in the composite. Moreover, Lemma A.3

of [1] asserts that for any sequence vk
0

in L2(
k
0

1
) for which ~vk

0

= (vk
0

1
; 0)* �1v weakly in

L2(
), that: Z


k0

1

uk
0

1
vk

0

1
dx!

Z



�1u
�vdx: (8.2)

From (8,1) and (8,2) it is evident that

kuk
0

1
� u�kL2(
k

1
) ! 0: (8.3)

Next, we appeal to Lemma 6 of Lene and Leguillon [15] which states that for all  = ( 1;  2)

in Uk there exists a constant C independent of k, such that

k 2k
2

L2(
k
2
)
� C

0
B@k 1k2L2(
k

1
)
+ k�1

Z
�k

([ ])2ds+ k�2
Z


k
1
\
k

2

jr j2dx

1
CA : (8.4)

Noting that  = (uk
0

1
� u�; uk

0

2
� u�) lies in Uk0 and application of (8.4) gives

kuk
0

2
� u�k2

L2(
k
0

2
)
� C

0
@kuk0

1
� u�k2

L2(
k
0

1
)
+ k�1

Z
�k

([uk
0

� u�])2ds+

k�2
Z


k
1
\
k

2

jruk
0

� ru�j2dx

1
CA

(8.5)

From (8.3) and the estimates (4.10) and (4.11), it follows that the right-hand side of (8.5)

vanishes in the limit as k0 tends to in�nity, hence,

kuk
0

2
� u�kL2(
k0

2
)
! 0: (8.6)

From (8.3) and (8.6) it follows that uk
0

converges strongly in L2(
) to u�.

We remark that arguments identical to those given in Sections 6 and 7 show that the

function u� solves the local equation (2.14). Uniqueness of the solution follows from the

strict ellipticity of the operator r�cr. It is evident that the whole sequence fukg converges

to u� in L2(
) and Theorem 2.3 is proved.
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