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Abstract. A simple nonlinear beam model is derived from basic principles. The assumption
upon which the derivation is based is that axial motions are of second order compared with transverse
motions of the beam. The existence of solutions is established. Issues concerning the uniqueness and
nonuniqueness of solutions are examined with regard to buckling behavior. The numerical treatment
of problems with nonunique solutions is presented. The results of buckling calculations are presented.
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1. Introduction. The objectives of this work are to (i) present in one place
a physical derivation of a simple extension of the classic linear beam equation to a
model which can capture nonlinear effects such as buckling, (ii) derive an associated
variational principle that submits itself to analysis for existence, uniqueness, and
nonuniquenss, and (iii) describe some of the numerical results in which nontrivial
solutions are obtained. The study of elastic structures such as beams and plates is,
to a large extent, dominated by linear models. Even the most familiar model used to
predict the onset of buckling in elastic beams subject to longitudinal forces is a linear
one. Nevertheless, it is well understood that incorporation of both “pre-buckling” and
“post-buckling” phases into a single model requires the proposed model, at the least,
to account for nonlinear geometric effects.

There are numerous models of this sort in the literature, of course, such as [2],
[3], [4], [5], [6], [7], [8], [10], [11], and [13]. In this respect, our primary “point of
departure” is to assume that “in line” or “in plane” displacements are of the same
order as the square of the transverse and/or shearing displacements generally admit-
ted into linear models of the same structures. The development of these models has
been given new emphasis by recent developments in “formation theory,” the delib-
erate modification of the configuration of an elastic body by means of attached or
imbedded actuators [14]. We will not pursue such a study in this paper, leaving that
work for another article. The objective here is to present a derivation of the model
from first principles and to indicate how the model may be useful for the analysis of
“buckling”-type bifurcation problems, not only with regard to prediction of “critical”
loads initiating such bifurcation, already possible with the standard linear model, but
also permitting studies of the progressive growth of the buckling phenomenon as the
load is increased beyond the critical buckling load.

In section 2, we derive a set of geometrically nonlinear equations for the elastic
beam. These equations compare with those presented in [10]. Here, however, deriva-
tions, although ad hoc, are based on explicitly stated fundamental principles. Then,
in section 3, we demonstrate existence and uniqueness of solutions from a variational
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NONLINEAR BEAM THEORY 1395

Fig. 2.1. Beam configuration.

standpoint. Questions of uniqueness of equilibria particularly related to buckling phe-
nomena are further developed in sections 4 and 5. Section 6 is devoted to reporting
the results of several numerical experiments.

2. Geometrically nonlinear beam equations. Let us consider an elastic
beam of length L, with uniform cross section, occupying the region 0 ≤ x ≤ L, −k ≤
y ≤ k, −h ≤ z ≤ h in R3, as shown in Figure 2.1.

In equilibrium the elastic axis coincides with the x-axis. The displaced elastic axis,
or “neutral curve,” admitting both transverse or lateral and in line displacements, is
described by [

xd
yd

]
=

[
x+ ξ(x)
η(x)

]
,(2.1)

where ξ(x) and η(x) are (at least) piecewise C1 and C2 functions, where x ∈ (0, L).
Such a deformation results in an infinitessimal stretching or contraction of the neutral
curve in the form, with ′ denoting the derivative with respect to x,

ds = [(1 + ξ′)2 + (η′)2]1/2 dx.(2.2)

If E is Young’s modulus, the potential energy due to the stretching of the neutral
curve is given by

VN =
1

2
EA

∫ L

0

[[(1 + ξ′)2 + (η′)2]1/2 − 1]2dx.(2.3)

Our basic assumption, described in section 1, is that ξ and ξ′ are of the same
order as η2 and η′2, respectively, the higher powers in each case being of a lower order
of magnitude. This assumption allows us to begin our analysis by developing an
expression for the potential energy due to compression/dilation parallel to the elastic
axis. The cross-sectional area being

A = 4kh,
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1396 DAVID L. RUSSELL AND LUTHER W. WHITE

Fig. 2.2. Displaced coordinates. (1) ψ(x), (2) (x + ξ(x) − ysin(ψ(x)), η(x) − ycos(ψ(x))), (3)
(x+ ξ(x), η(x)).

that energy can be expressed in terms of the length differential:

VN =
1

2
EA

∫ L

0

{[(1 + ξ′)2 + (η′)2]1/2 − 1}2dx(2.4)

� (with our assumptions)

1

2
EA

∫ L

2

{
[1 + ξ′ +

(η′)2

2
] − 1

}2

dx

� Ekh

2

∫ L

0

[2ξ′ + (η′)2]2dx.

Henceforth, we identify VN with the last approximation here.
Points not on the elastic axis in equilibrium, i.e., those with y �= 0, are assumed

to have displaced coordinates, as shown in Figure 2.2, given by[
x̂
ŷ

]
= G(x, y) =

[
x+ ξ(x) − y sin(ψ(x))
η(x) − y cos(ψ(x))

]
,(2.5)

where ψ(x) is the rotation angle at x ∈ (0, L). We assume that the angle ψ(x) is
small enough so that the approximations ψ(x) ≈ tanψ(x) ≈ sinψ(x) suffice for our
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NONLINEAR BEAM THEORY 1397

analysis. Thus, with our assumptions, we may identify ψ(x) with the slope η′(x). The
deformation functions u1 and u2 are then[

u1(x, y)
u2(x, y)

]
= G(x, y) −

[
x
y

]
=

[
ξ(x)− ysin(ψ(x))

η(x)− y(1− cos(ψ(x)))

]
.

Since 1 − cosψ = O(ψ2) = O((η′)2), (2.5) reduces, with our assumptions, to
[
u1(x, y)
u2(x, y)

]
=

[
ξ(x) − y η′(x)

η(x)

]
.(2.6)

Defining the strains in the manner standard for linear elasticity [9], these are

ε11 =
∂u1

∂x
= ξ′ − y η′′, ε22 =

∂u2

∂y
= 0,(2.7)

ε12 =
1

2

[
∂u2

∂x
+

∂u1

∂y

]
=

1

2
(η′ − η′) = 0.

The corresponding stresses are

σ11 =
E

1− µ2
[ε11 + µε22] =

E

1− µ2
ε11 =

E

1− µ2
(ξ′ − yη′′),(2.8)

σ22 =
E

1− µ2
[ε22 + µε11] =

Eµ

1− µ2
ε11.

Because ε12 = ε22 = 0, the potential energy due to bending may then be expressed
as

VB =
1

2

∫ L

0

∫ k

−k

∫ h

−h

ε11σ11dxdydx(2.9)

=
1

2

∫ L

0

∫ k

−k

∫ h

−h

E

1− µ2
[ξ′ − y η′′]2dzdydx

=
E

2(1− µ2)

∫ L

0

∫ k

−k

∫ h

−h

[(ξ′)2 − 2y ξ′η′′ + y2(η′′)2]dzdydx

=
2hE

(1− µ2)

∫ L

0

[
k(ξ′)2 +

k3

3
(η′′)2

]
dx.

Assuming an applied lateral force f(x), a longitudinal force gl applied at x = L, a
distributed longitudinal force g(x), and a torque gτ applied at x = L, we may write
the total potential energy as

V (ξ, η) =
Ekh

2

∫ L

0

[2ξ′ + (η′)2]2dx +
2hE

1− µ2

∫ L

0

[
k(ξ′)2 +

k3

3
(η′′)2

]
dx

−
∫ L

0

[f(x)η(x) + g(x)ξ(x)]dx − glξ(L) − gτη
′(L).(2.10)
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1398 DAVID L. RUSSELL AND LUTHER W. WHITE

As a first step toward obtaining the equilibrium equations, we compute the first
order variation of V with respect to small displacements in ξ and η:

δV (ξ, η)(δξ, δη) = Ekh

∫ L

0

(2ξ′ + (η′)2)(2δξ′ + 2η′δη′)dx −
∫ L

0

(fδη + gδξ)dx

+
2hE

1− µ2

∫ L

0

[
2kξ′δξ′ +

2k3

3
η′′δη′′

]
dx − glδξ(L) − gτδη

′(L).

Integrating by parts and setting the resulting expression equal to zero, this becomes

2Ekh

{
[(2ξ′ + (η′)2)(δξ + η′δη)]L0 −

∫ L

0

[(2ξ′ + (η′)2)′δξ + ((2ξ′ + (η′)2)η′)′δη]dx

}

+
4hE

1− µ2

{[
kξ′δξ +

k3

3
η′′δη′ − k3

3
η′′′δη

]L
0

−
∫ L

0

[
kξ′′δξ − k3

3
η′′′′δη

]
dx

}
(2.11)

−
∫ L

0

[fδη + gδξ]dx − glδξ(L) − gτδη
′(L) = 0.

As always in problems of this type, the boundary conditions depend on the phys-
ical situation at each endpoint. For definiteness here, and because it corresponds to
the example we wish to study at some length later in the paper, we will assume the
beam to be in the cantilevered configuration. (We also study the case in which the
boundary is pinned at x = L, though less extensively, in sections 5 and 6.) Thus, at
x = 0, we assume the beam is clamped :

ξ(0) = 0, η(0) = 0, η′(0) = 0.(2.12)

At x = L, the beam is free, and we set the coefficients of the boundary variations
equal to zero in order to obtain the boundary conditions:

2Ekh

{
[2ξ′(L) + η′(L)2] +

2ξ′(L)
1− µ2

}
= gl,(2.13)

[(2ξ′(L) + η′(L)2)η′(L)] − 2k2

3(1− µ2)
η′′′(L) = 0,(2.14)

4Ek3h

(1− µ2)
η′′(L) = gτ .(2.15)

Setting the coefficients of δξ and δη in the integral terms of (2.11) equal to zero, we
obtain the equations

4Ekh

1− µ2
ξ′′ + 2Ekh(2ξ′ + (η′)2)′ + g = 0,(2.16)

4Ek3h

3(1− µ2)
η′′′′ − 2Ekh((2ξ′ + (η′)2)η′)′ = f.(2.17)

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



NONLINEAR BEAM THEORY 1399

It will be convenient to redefine gl, gτ , f, and g as those same quantities divided by
4Ekh. Then with

a1 =
1

1− µ2
, a2 =

2k2

3(1− µ2)
,(2.18)

we have the boundary conditions

(1 + a1)ξ
′(L) +

η′(L)2

2
= gl,(2.19)

(
ξ′(L) +

η′(L)2

2

)
η′(L) − a2η

′′′(L) = 0,(2.20)

a2η
′′(L) = gτ ,(2.21)

together with the equations

(1 + a1)ξ
′′ +

[
(η′)2

2

]′
+ g = 0,(2.22)

a2η
′′′′ −

[
(ξ′ +

(η′)2

2
)η′
]′

= f.(2.23)

3. Existence and uniqueness of solutions. We consider (2.19)–(2.23) devel-
oped in section 2. We begin our study of these equations by defining the spaces

V1 = {φ ∈ H1(0, L) : φ(0) = 0},(3.1)

V2 = {ψ ∈ H2(0, L) : ψ(0) = ψ′(0) = 0}.(3.2)

It should be noted that there are positive numbers γ0 and γ1 such that, for φ ∈ V1

and ψ ∈ V2, we have [1]

γ0 ‖ φ′ ‖ ≥ ‖ φ ‖, γ1 ‖ ψ′′ ‖ ≥ ‖ ψ ‖,(3.3)

where ‖ · ‖ denotes the usual norm for L2(0, L).
Using (2.22) and the boundary condition (2.19), we observe that, for φ ∈ V1, we

have

0 =

∫ L

0

{
(1 + a1)ξ

′ +
(η′)2

2

}′
φdx +

∫ L

0

gφdx(3.4)

=

{
(1 + a1)ξ

′(L) +
η′(L)2

2

}
φ(L) −

∫ L

0

{
(1 + a1)ξ

′ +
(η′)2

2

}
φ′dx

+

∫ L

0

gφdx

= glφ(L) −
∫ L

0

{
(1 + a1)ξ

′ +
(η′)2

2

}
φ′dx =

∫ L

0

gφdx.
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1400 DAVID L. RUSSELL AND LUTHER W. WHITE

Then, using (2.23) and the boundary condition (2.20), we further have, for all ψ ∈ V2,

0 = −
∫ L

0

{
a2η

′′′
2 −

((
ξ′ +

(η′)2

2

)
η′
)}′

ψdx +

∫ L

0

fψdx(3.5)

=

∫ L

0

{
a2η

′′′ −
((

ξ′ +
(η′)2

2

)
ψ′dx +

∫ L

0

fψdx

= (integrating the η′′′ term by parts again and using (2.21))

a2

k2
gτψ

′(L) −
∫ L

0

{
a2η

′′ψ′′ +
((

ξ′ +
(η′)2

2

)
η′
)
ψ′
}
dx +

∫ L

0

fψdx.

We introduce the functional

J(ξ, η) =

∫ L

0

{
1

2

{
a1(ξ

′)2 + a2(η
′′)2 +

(
ξ′ +

(η′)2

2

)2
}

− gξ − fη

}
dx

− a2

k2
gτη

′(L) − glξ(L),(3.6)

that is, the total potential energy functional (2.10). We compute the differential and
note that the variations δξ and δη satisfy the conditions imposed on φ and η in the
definitions of V1 and V2, respectively. Hence we observe the following.

Lemma 3.1. The satisfaction of (3.5) and (3.6) determines precisely the set of
first order necessary conditions for the minimization of J(ξ, η) over V1 × V2.

To prove the existence of a solution to the boundary value problem (3.4)–(3.5),
we prove that there exists a minimizer of J(·, ·) over V1 × V2. Now, with V1 and V2 as
in (3.1) and (3.2), let

V = V1 × V2, ω = (ξ, η), J(ω) = J(ξ, η).

Theorem 3.2. There exists a solution to the following minimization problem.
Find ω0 ∈ V such that

J(ω0) = infimum{J(ω) : ω ∈ V}.
Proof. We first show that indeed J(ω) is bounded below. Observe that

J(ω) ≥
∫ L

0

{a1

2
(ξ′)2 − gξ +

a2

2
(η′′)2 − fη

}
dx− a2

k2
gτη

′(L)− glξ(L).

Since the mappings ξ �→ ξ(L) and η �→ η′(L) are continuous linear functionals on V1

and V2, respectively, we have, for some b1 and b2,

J(ω) ≥ a1

2
‖ ξ′ ‖2 −(‖ g ‖ +b1) ‖ ξ ‖ +a2

2
‖ η′′ ‖2 −(‖ f ‖ +b2) ‖ η ‖ .

Using the inequalities (3.3), we see that there are positive numbers α and β such that

J(ω) ≥ α ‖ ω ‖2
V −β ‖ ω ‖V .(3.7)

Then it is easy to see that J(ω) is bounded below, specifically,

J(ω) ≥ −β2

4α
, ω ∈ V.
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NONLINEAR BEAM THEORY 1401

To demonstrate the existence of a minimum, let

d = infimum{J(ω) : ω ∈ V},

and let {ωn}∞n=1 ⊂ V be a sequence such that J(ωn) → d as n → ∞. Let N be
such that

d ≤ J(ωn) ≤ d+ 1, n ≥ N.

Then, from (3.7),

d+ 1 ≥ α ‖ ωn ‖2
V − β ‖ ωn ‖V ,

from which we easily infer that

0 ≤ ‖ ωn ‖V ≤ 1

2α
[β + (β2 + 4α(d+ 1))

1
2 ]

so that {ωn}∞n=1 is a bounded sequence in V. Thus we can find a subsequence, for
which we will use the same designation, such that

ωn = (ξn, ηn) → ω0 = (ξ0, η0)

weakly in V = V1xV2. The weak convergence of {ξn}∞n=1 to ξ0 in V1 and {ηn}∞n=1 to
η0 in V2 imply, respectively, the weak convergence of {ξ′n}∞n=1 to ξ

′
0 in L

2(0, L) and
the weak convergence of {η′n}∞n=1 to η

′ in H1(0, L) and hence strong convergence in
L4(0, L). Now from the inequality in L4(0, L) resulting from the Schwarz inequality,
we have ∫ L

0

[f2 − g2]2dx =

∫ L

0

[f + g]2[f − g]2dx

≤
{∫ L

0

[f + g]4dx

} 1
2
{∫ L

0

[f − g]4dx

} 1
2

.

From this it follows that {(η′n)2}∞n=1 converges to (η
′
0)

2 strongly in L2(0, L). Thus we
see that

ξ′n +
(η′n)

2

2
→ ξ′0 +

(η′0)
2

2
,

weakly in L2(0, L). Since it is also clear that ξn(L) → ξ0(L) and η
′
n(L) → η0(L), we

have

d = liminfJ(ωn) ≥ J(ω0) ≥ d

and J(ω0) = d. We conclude that ω0 is a solution to the minimization problem.
Since any minimizing element satisfies the necessary conditions, it follows that

there is a weak solution of (2.19)–(2.23).
Corollary 3.3. There exists a solution to the boundary value problem (2.19)–

(2.23).
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1402 DAVID L. RUSSELL AND LUTHER W. WHITE

At this point, let us consider the special case arising when g = 0 and gl = gτ = 0,
i.e., when only lateral forces are present. Then we may integrate (2.22) to obtain

ξ′ = − (η′)2

2(1 + a1)

and substitute into (2.23) to obtain

a2 η
′′′′ −

[
a1(η

′)3

2(1 + a1)

]′

= f(3.8)

with boundary conditions (still in the cantilevered case)

η(0) = η′(0) = 0,(3.9)

η′′(L) =
[
a2η

′′′ − a1(η
′)3

2(1 + a1)

]
(L) = 0.(3.10)

For ψ ∈ V2, integrating the product of ψ with (3.8), then integrating by parts
with the use of ψ(0) = ψ′(0) = 0, we obtain

∫ L

0

[
a2η

′′ψ′′ +
a1(η

′)3

2(1 + a1)
ψ′
]
dx =

∫ L

0

fψdx.(3.11)

We now introduce the potential energy functional

J(η) =

∫ L

0

[
a2

2
(η′′)2 +

a1(η
′)4

8(1 + a1)
− fη

]
dx.(3.12)

The existence of a minimizer of the functional J(·) of (3.12) may be deduced from
the existence previously demonstrated or deduced directly using arguments similar to
those used previously. However, in the present case, we can prove uniqueness since
the functional J(·) is easily seen to be strictly convex.

Proposition 3.4. There exists a unique solution to the following minimization
problem.

Find η0 such that

J(η0) = infimum{J(η) : η ∈ V2}.

Corollary 3.5. There is a unique solution to the variational problem (3.11)
and thus to (3.8)–(3.10).

Remark 3.1. It should be noted that the term[
ξ′ +

(η′)2

2

]2

in (3.6) is not convex so that J(ξ, η) is not a convex functional in general, suggesting
that for g �= 0 or gl �= 0 there may exist multiple solutions such as one would anticipate,
for example, in the case of buckling in response to a longitudinally applied load. We
will discuss this in more detail in the next section.
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NONLINEAR BEAM THEORY 1403

4. Uniqueness and nonuniqueness of equilibrium states in the presence
of longitudinal loading. Let us define

−l(x) = gl +

∫ L

x

g(s)ds.(4.1)

Then l′(x) = g(x), and we have, for ξ ∈ V1,∫ L

0

g(x)ξ(x)dx =

∫ L

0

l′(x)ξ(x)dx = l(x)ξ(x) |L0 −
∫ L

0

l(x)ξ′(x)dx

= −glξ(L) −
∫ L

0

l(x)ξ′(x)dx.

Integrating (2.22) from x to L and using (2.19), we see that

(1 + a1)ξ
′(x) +

η′(x)2

2
≡ −l(x), x ∈ (0, L),(4.2)

and thus

ξ′(x) = − l(x) + η′(x)2/2
1 + a1

(4.3)

so that

a2η
′′′′ −

[−l + a1(η
′)2/2

1 + a1
η′
]′

= f.(4.4)

Assuming gτ = 0, the boundary conditions (2.12) and (2.19)–(2.21) are now replaced
by

η(0) = η′(0) = η′′(L) = 0,(4.5)

and

a2η
′′′(L) − gl + a1η

′(L)2/2
1 + a1

η′(L) = 0.(4.6)

It is easy to see that (4.4) and the boundary conditions (4.5) and (4.6) may be
given the weak formulation in V2:∫ L

0

{
a2η

′′(x)φ′′(x) +
−l(x) + η′(x)2/2

1 + a1
η′(x)φ′(x)− f(x)φ(x)

}
dx = 0(4.7)

for any φ ∈ V2. We consider the special case f ≡ 0 and introduce the functional

J(η) =

∫ L

0

{
1

2
a2η

′′(x)2 +
−l(x)η′(x)2/2 + a1η

′(x)4/8
1 + a1

}
dx.(4.8)

It is clear that η(x) ≡ 0 is a solution of (4.7) and thus is a stationary point for (4.8).
We next determine conditions under which there are nontrivial stationary points of
J(·).
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1404 DAVID L. RUSSELL AND LUTHER W. WHITE

Lemma 4.1. If ∫ L

0

x2l(x)dx = La2(1 + a1) + K0

for some K0 > 0, then there are elements η in V for which J(η) < 0.
Proof. Consider functions of the form

ηα(x) = αx2 ∈ V

for α ∈ R. A short computation shows that

J(ηα) =

[
2a2L − 2

1 + a1

∫ L

0

x2l(x)dx

]
α2 + 2a1

L5

5(1 + a1)
α4.

If l(x) is chosen, via g(x) and gl, so that∫ L

0

x2l(x)dx = La2(1 + a1) + K0, K0 > 0(4.9)

(it should be noted that, for a given positive K0, this can be done, for example, by
taking gl to be a sufficiently large negative number), then we see easily that J(ηα) < 0
for small nonzero values of α. Hence η ≡ 0 does not minimize J(η).

That a nonzero minimum must exist is demonstrated in the following theorem.
Theorem 4.2. For all piecewise continuous longitudinal “loading functions” l(x),

there exists a minimizing η0 ∈ V2 for J(η).
Proof. We first show that J(η) is bounded below. Suppose γ0 is such that, for

η ∈ V2,

γ2
0

∫ L

0

(η′′(x))2dx ≥
∫ L

0

(η′(x))2dx;(4.10)

such an inequality is easily obtained by integration. By the Schwarz inequality,[∫ L

0

(η′(x))2dx

]2

≤ L

∫ L

0

(η′(x))4dx.

Thus (cf. (4.8))

J(η) =

∫ L

0

{
1

2
a2η

′′(x)2 +
1

1 + a1
[−l(x)η′(x)2/2 + a1η

′(x)4/8]
}
dx

≥
∫ L

0

{[
a2

2γ2
0

− l(x)

2(1 + a1)

]
η′(x)2 +

a1

8(1 + a1)
η′(x)4

}
dx

≥
∫ L

0

[
a2

2γ2
0

− l(x)

2(1 + a1)

]
η′(x)2dx +

a1

8L(1 + a1)

[∫ L

0

η′(x)2dx

]2

.

Since l(x) is piecewise continuous on (0, L), we may suppose that Ml > 0 is chosen
large enough so that

Ml

∫ L

0

φ(x)2dx ≥
∫ L

0

l(x)φ(x)2dx
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NONLINEAR BEAM THEORY 1405

for any φ ∈ L2(0, L) and

Ml

1 + a1
>

a2

2γ2
0

.

Then

J(η) ≥
[
a2

2γ2
0

− Ml

1 + a1

] ∫ L

0

η′(x)2dx+
a1

8L(1 + a1)

[∫ L

0

η′(x)2dx

]2

.(4.11)

Let us set

K0 = −
{
a2

2γ2
0

− Ml

1 + a1

}
,

K1 =
a1

8L(1 + a1)
,

and

β =

∫ L

0

η′(x)2dx.

Thus inequality (4.11) yields

J(η) ≥ −K0β + K1β
2.(4.12)

The minimum of the right side of (4.12) occurs for β = K0

2K1
. The computed minimum

value there together with (4.12) then provides the lower bound

J(η) ≥ −K2
0

4K1

for any η ∈ V2. Thus we may define

d = inf{J(η) : η ∈ V2}.
Let M > d and VM denote the set of η ∈ V2 such that J(η) ≤ M.We will show

that there is another positive constant M1 such that ‖ η′′ ‖ ≤ M1. We have

J(η) =

∫ L

0

{
1

2
a2η

′′(x)2 +
1

1 + a1
[−l(x)(η′(x)2/2) + a1(η

′(x)4/8)]
}
dx

≥ a2

2

∫ L

0

η′′(x)2dx− 1

2(1 + a1)

∫ L

0

l(x)η′(x)2dx+
a1

8(1 + a1)

∫ L

0

η′(x)4dx

≥ a2

2

∫ L

0

η′′(x)2dx− 1

2(1 + a1)

[∫ L

0

l(x)2dx

] 1
2
[∫ L

0

η′(x)4dx

] 1
2

+
a1

8(1 + a1)

∫ L

0

η′(x)4dx.

Setting

K2 =
1

2(1 + a1)

[∫ L

0

l(x)2dx

] 1
2D
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1406 DAVID L. RUSSELL AND LUTHER W. WHITE

and

K3 =
a1

8(1 + a1)
,

we have for η ∈ VM

M ≥ a2

2
‖ η′′ ‖2 −K2 ‖ η′ ‖2

L4(0,L) +K3 ‖ η′ ‖4
L4(0,L) .

With γ = min{a2

2 ,K3} there follows

M ≥ γ[‖ η′′ ‖2 + ‖ η′ ‖4
L4(0,L)]−K2[‖ η′ ‖4

L4(0,L)]
1
2

≥ γ[‖ η′′ ‖2 + ‖ η′ ‖4
L4(0,L)]−K2[‖ η′′ ‖2 + ‖ η′ ‖4

L4(0,L)]
1
2 .

Then, with

δ = [‖ η′′ ‖2 + ‖ η′ ‖4
L4(0,L)]

1
2 ,(4.13)

we have

M ≥ γδ2 − K2δ,

i.e.,

γδ2 −K2δ −M ≤ 0,

from which it follows easily that

0 ≤ δ ≤ K2 + [K
2
2 + 4γM ]

1
2

2γ
≡ M1,

and from (4.13),

[‖ η′′ ‖2 + ‖ η′ ‖4
L4(0,L)]

1
2 ≤ M1,

implying ‖ η′′ ‖ ≤ M1, as we proposed to show.
Now suppose {ηk}∞k=1 is a minimizing sequence for J(η) in VM :

M ≥ J(ηk) → d.

Then we have ‖ η′′k ‖ ≤ M1, and there is a subsequence, which we continue to denote
by {ηk}∞k=1, converging weakly to a limit η0 in H

2(0, L), and thus converging strongly
to the same limit in H1(0, L) and W 1,4(0, L). From the formula (4.8) for J(η) and the
limiting behavior

liminf

∫ L

0

η′′k (x)
2dx ≥

∫ L

0

η′′0 (x)
2dx

and

lim

∫ L

0

η′k(x)
2(4)dx =

∫ L

0

η′0(x)
2(4)dx,
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NONLINEAR BEAM THEORY 1407

it follows that

d = liminf J(ηk) = J(η0).

We conclude that there is an element η0 ∈ V2 such that J(η0) = d, and the proof of
the theorem is complete.

The condition (4.9), which we may restate as

∫ L

0

x2l(x)dx > La2(1 + a1),(4.14)

serves to characterize combinations of boundary and distributed longitudinal loads
that produce nonzero equilibria. In the case of an endpoint load gl, we have l(x) ≡ −gl,
and (4.14) is true just in case

gl < − 3a2(1 + a1)

L2
.(4.15)

Clearly, when (4.14) is the case, η(x) ≡ 0 does not minimize the functional J(η).
Since J(η), by Theorem 4.2, has a minimizing η0 ∈ V2, it follows that the boundary
value problem (4.4)–(4.6) has η0 as a nonzero solution. It is nonunique because
J(η0) = J(−η0). We note that no nonuniqueness occurs as long as J(η) remains
strictly convex; in particular, this remains true as long as the quadratic part of J(η)
is a positive definite quadratic form, i.e., as long as the operator

L(η) = a2η
′′′′ − gl

1 + a1
η′′,

defined on the domain in H4(0, L) determined by boundary conditions (4.5) and
(cf. (4.6))

a2η
′′′(L) − gl

1 + a1
η′(L) = 0,

has only positive eigenvalues. For given positive values of a1 and a2, this will be true
for (negative) values of gl in some interval (−γ, 0); −γ is the classical “buckling” load.
For our nonlinear model, J(η) remains convex for gl ∈ [−γ, 0) because of the quartic
term in (4.8); nonuniqueness sets in for gl < −γ. For gl ∈ [−γ, 0), we have the “trivial”
solution η(x) ≡ 0, but it should be noted that the complete state ω = (ξ, η) �= (0, 0)
because (4.3) with η(x) ≡ 0 shows that

ξ′(x) = − gl
1 + a1

,

corresponding to a longitudinal compression varying linearly with respect to x.
In the case of a strictly distributed longitudinal load, i.e., gl = 0, it seems desirable

to restate the condition (4.14) in terms of the load distribution function g(x):

−3La2(1 + a1) >

∫ L

0

3x2

∫ L

x

g(s)dsdx =

∫ L

0

x3g(x)dx.

Under these circumstances, from our earlier remarks, there must be a nontrivial so-
lution to (4.4)–(4.6).
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1408 DAVID L. RUSSELL AND LUTHER W. WHITE

On the other hand, for all φ ∈ V2, the Gâteaux derivative of J(η) in the direction
φ at a minimizing η0 is

DJ(η0)(φ) =

∫ L

0

[
a2η

′′
0 (x)φ

′′(x)− l(x)

1 + a1
η′0(x)φ

′(x) +
a1/2

1 + a1
η′0(x)

3φ′(x)
]
dx = 0.

In the particular case when φ(x) = η0, we have

DJ(η0)(η0) =

∫ L

0

[
a2η

′′
0 (x)

2 − l(x)

1 + a1
η′0(x)

2 +
a1

2(1 + a1)
η′0(x)

4

]
dx = 0.

With (cf. (4.10)) ∫ L

0

η′′0 (x)
2dx ≥ 1

γ2
0

∫ L

0

η′0(x)
2dx,

we then must have

0 ≥
∫ L

0

{[
a2

γ2
0

− l(x)

1 + a1

]
η′0(x)

2 +
a1

2(1 + a1)
η′0(x)

4

}
dx.(4.16)

If

a2

γ2
0

≥ l(x)

1 + a1
, x ∈ [0, L],

then (4.16) implies

0 ≥
∫ L

0

[
a1

2(1 + a1)
η′0(x)

4

]
dx ≥ 0,

and we see that η0 = 0 is the only possibility.

5. Buckling in a noncantilevered beam. We have, for definiteness, carried
out the preceding analyses in the so-called cantilever configuration of the beam. In
that case, however, the nonzero equilibria which we have shown to exist for sufficiently
large negatively directed longitudinal loads, when actually computed, may be seen to
correspond to lateral displacement functions η(x), which are monotone functions of x;
when the longitudinal loading exceeds a certain level, the beam sways and “tips over”
to a nonzero configuration. This is shown in Figure 6.2 since the numerical solution of
the beam equations is discussed in section 6. What is notable for this simple model,
as compared with classical linear analysis, is the finite deformation constituting the
new equilibrium. There are many models giving finite deformation solutions in such
systems, going back to Euler, in which there are large purely transverse end loadings
resulting in nonuniqueness of finite deformation solutions; see [12].

Classical buckling studies are usually concerned with situations where both ends
are fixed. These include the case which is usually described as a “simply supported”
beam, where we have

η(0) = η(L) = 0

but do not require η′(0) = 0. In this case, the other boundary conditions applying in
the case of a longitudinal load applied at x = L (but no transverse loading there) are

ξ(0) = 0, η′′(0) = η′′(L) = 0, (1 + a1)ξ
′(L) + η′(L)2/2 = gl.
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NONLINEAR BEAM THEORY 1409

One could also consider the case where the beam is clamped at x = 0 and simply
supported at x = L. In that case, with the same loading, we have

η(0) = η′(0) = η(L) = η′′(L) = 0,(5.1)

ξ(0) = 0, (1 + a1)ξ
′(L) + η′(L)2/2 = gl.(5.2)

We will study the latter case, i.e., (5.1) and (5.2), for a simple longitudinal load
gl applied at x = L. We begin by noting that, when η(x) ≡ 0, we have (cf. (4.8))

J(ξ, 0) =
1

2

∫ L

0

[a1ξ
′(x)2 + ξ′(x)2]dx− glξ(L)

=
1

2

∫ L

0

[(1 + a1)ξ
′(x)2 − 2glξ

′(x)]dx

=
1 + a1

2

∫ L

0

{[
ξ′(x)− gl

1 + a1

]2
+

[
gl

1 + a1

]2}
dx,

showing that the minimum occurs for

ξ′(x) ≡ gl
1 + a1

, i.e., ξ(x) ≡ glx

1 + a1
.(5.3)

This state represents the “trivial” equilibrium; it can be shown to be the only equi-
librium if gl is nonnegative or negative and small. To construct, for sufficiently large
negative gl, a state (ξ0, η0) ∈ V for which J(ξ0, η0) is less than J(

xgl
1+a1

, 0), we begin
by rewriting J(ξ, η) in the form

J(ξ, η) =
1 + a1

2

∫ L

0

{[
ξ′(x)− gl

1 + a1

]2
+

(
gl

1 + a1

)2
}
dx

+
1

2

∫ L

0

{
a2η

′′(x)2 + ξ′(x)η′(x)2 +
1

4
η′(x)4

}
dx.

Taking ξ(x) as in (5.3), we have

J

(
xgl
1 + a1

, η

)
=

1

2

Lg2
l

1 + a1

+
1

2

∫ L

0

{
a2η

′′(x)2 +
gl

1 + a1
η′(x)2 +

1

4
η′(x)4

}
dx,(5.4)

the first term here being J( xgl
1+a1

, 0). We satisfy the boundary conditions with any of
the choices

ηα(x) = α(x2 − x3/L), α real.(5.5)

If (5.5) is substituted for η(x) in (5.4), we see that J has the form

J

(
xgl
1 + a1

, ηα

)
=

Lg2
l

2(1 + a1)
+ pα2 + qα4,
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1410 DAVID L. RUSSELL AND LUTHER W. WHITE

where calculation shows that

p = 2a2L +
11gl

3(1 + a1)
L3.

We will have

J

(
xgl
1 + a1

, ηa

)
< J

(
xgl
1 + a1

, 0

)

for sufficiently smalll nonzero α if p is negative, i.e., if

gl < − 6

11L2
a2(1 + a1).

Most of the conclusions drawn in the previous section for the cantilever case can be
obtained, with appropriate modifications, in this case as well; we will not pursue these
results formally in the interests of brevity.

6. Numerical experiments. In this section, we present calculations to obtain
approximations of nontrivial solutions of the boundary value problems (2.19)–(2.23).
Toward this end, we consider the differential equation with f = 0 given by

a2η
′′′′ +

(
l

1 + a1
η′
)′

−
(

a1

2(1 + a1)
(η′)3

)′
= 0 in (0, L)

and essential boundary conditions at x = 0

ξ(0) = η(0) = η′(0) = 0

along with the free boundary conditions at x = L

η′(L) = 0,

[(
ξ′ +

(η′)2

2

)
η′ − a2η

′′′
]
(L) = 0

or with pinned boundary conditions at x = L

η(L) = η′′(L) = 0

that have been discussed in previous sections. Define the Hilbert spaces

V = {φ ∈ H2(0, L) : η(0) = η′(0) = 0}
and

V0 = {φ ∈ V : η(L) = 0}
and the functional

j(η) =

∫ L

0

{
a2

2
η′′(x)2 − l(x)

2(1 + a1)
η′(x)2 +

a1

8(1 + a1)
η′(x)4

}
dx.

The longitudinal force at x = L has been included in l. In fact, we take l = gl.
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NONLINEAR BEAM THEORY 1411

Fig. 6.1. Eta for beam pinned at x = L for different values of gl1.

We consider the minimization of the functional j over subspaces of V and V0 to
obtain buckling deformations. Let L = 1, and let (0, 1) be divided into N subintervals
of equal length. Let {Bk}Mk=1 be cubic B-splines defined with respect to the partition
and such that they satisfy the boundary conditions at x = 0. It is also convenient
for the free case to include the condition that B′′

k (1) = 0 as well. Of course, in the
pinned case, Bk(1) = 0 is imposed as an essential boundary condition. It follows that
in both cases the number of basis elements M equals N ; cf. [15]. Let V N and V N

0 =
span{Bk}Mk=1 in the appropriate cases. Define the M ×M matrices

(G2)ij = a2

∫ 1

0

B′′
i (x)B

′′
j (x)dx

and

(G1)ij =
1

(1 + a1)

∫ 1

0

B′
i(x)B

′
j(x)dx

and the functional on RM

F (c) =
a1

2(1 + a1)

∫ 1

0

(
M∑
i=1

ciBi(x)

)4

dx,

where c = col(c1, . . . , cM ). The functional j(·) is given as
j(c) = c∗(G2 − glG1)c + F (c).
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Fig. 6.2. Cantilevered beam displacement for gl1 = 2.

Since the partial derivative of F (c) with respect to ck is given by

DkF (c) =
2a1

1 + a1

∫ 1

0

(
M∑
i=1

ciBi(x)

)3

Bk(x)dx,

the corresponding partial derivative of j(·) is given by
Dkj(c) = [(G2 − glG1]k + DkF (c)

for k = 1, . . . ,M. A steepest descent method is used to minimize j(c) over RM .
Setting the beam thickness = 0.1, µ = 0.25, and taking N = 8, we choose gl

such that G2 − glG1 has a negative eigenvalue. If

gl > π2a2(1 + a1),(6.1)

then it is possible for there to be negative eigenvalues. Thus we set

gl = gl1π
2a2(1 + a1).(6.2)

The steepest descent iterations are initialized by an eigenvector associated with the
negative eigenvalue. Figure 6.1 shows, for the purpose of comparison, the graphs of
η for the case in which the boundary is pinned at x = L for various values of the
longitudinal force factor gl1 . Figure 6.2 portrays the finite element approximation of
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the beam displacement x+ξ(x) versus η(x) for a beam in a cantilevered configuration
as discussed in section 5 in the case when gl1 = 2. The value gl1 = 2 is chosen for the
aesthetic appearance of the graph. To obtain this result, it is necessary to approximate
the solution of the boundary value problem (2.12), (2.19), and (2.22) for ξ after the
approximation for η has been obtained. Piecewise linear elements on the same mesh
as is used in solving for η are used for this approximation.
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