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Abstract.

The formation of singularities of self-focusing solutions of the nonlinear Schr�odinger equation (NLS) in critical dimension
is characterized by a delicate balance between the focusing nonlinearity and di�raction (Laplacian), and is thus very
sensitive to small perturbations. In this paper we introduce a systematic perturbation theory for analyzing the e�ect of
additional small terms on self focusing, in which the perturbed critical NLS is reduced to a simpler system of modulation
equations that do not depend on the spatial variables transverse to the beam axis. The modulation equations can be
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equations, whose solutions have slowly decaying focusing-defocusing oscillations. In the special case of the unperturbed
critical NLS, modulation theory leads to a new adiabatic law for the rate of blowup which is accurate from the early stages
of self-focusing and remains valid up to the singularity point. This adiabatic law preserves the lens transformation property
of critical NLS and it leads to an analytic formula for the location of the singularity as a function of the initial pulse power,
radial distribution and focusing angle. The asymptotic limit of this law agrees with the known loglog blowup behavior.
However, the loglog behavior is reached only after huge ampli�cations of the initial amplitude, at which point the physical
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improved version of the Dawes-Marburger formula for the blowup location of Gaussian pulses.
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1. Introduction. The nonlinear Schr�odinger equation in critical dimension (CNLS)

i z +�? + j j2 = 0 ; �? =

�
@2

@x2
+

@2

@y2

�
;  (z = 0; x; y) =  0(x; y)(1.1)

is the simplest model for the propagation of a laser beam in a medium with a Kerr nonlinearity. Here
 (z; x; y) is the electric �eld envelope, z is axial distance1 in the direction of the wave propagation and
(x; y) are the coordinates in the transverse plane. In 1965, Kelley used equation (1.1) to show that for
optical beams whose power is above a critical value, \self-focusing e�ect . . . is not compensated for by
di�raction" [32]. This result was a turning point in nonlinear optics, since until that time di�raction
was believed to prevent singularity formation in optics, both linear and nonlinear, much as viscosity is
believed to prevent singularity formation in uid ow. Intensive experimental work followed, in which
self-focusing and the existence of a critical power, above which beams may collapse, were observed. For
a review of self-focusing experiments, see [66].

Self-focusing in critical NLS attracted also the attention of mathematicians, since it serves as a
simple model of nonlinear dispersive wave propagation where a solution with smooth initial conditions
can become singular in �nite time (i.e. z). A lot has been accomplished in the last thirty years (e.g.
[16, 61, 62, 69]), but the theory for CNLS self-focusing is far from complete. For example, sharp conditions
for blowup or global existence in (1.1) are still unknown.

1.1. The loglog law. Considerable e�ort has been devoted to the study of the blowup rate near the
singularity. Initially, self-focusing was analyzed by reducing CNLS to an ordinary di�erential equation for
the beam width L by assuming that the solution maintains a modulated Gaussian pro�le. This approach
was only partially successful. It predicted the existence of a critical power for self-focusing, but only up
to a constant [7] and its prediction for the axial location of the singularity was quite inaccurate. There
were also attempts to look for non-Gaussian self-similar solutions, but it gradually became clear that in
critical transverse dimension D = 2 self-focusing solutions of (1.1) are only quasi self-similar and that
the rate of focusing is determined by a delicate balance between the focusing nonlinearity and transverse
di�raction. This delicate balance in critical self-focusing, which the Gaussian ansatz cannot capture,
was at the heart of the di�culties in �nding the blowup rate of CNLS and is the reason why it took so
long until the structure and dynamics of the function  near the blowup point were �nally resolved by
Fraiman [29], and independently (and in a di�erent manner) by Landman, LeMesurier, Papanicolaou,
Sulem and Sulem [39, 43], who showed that as the beam approaches the singularity it follows the loglog
law (eq. 3.23).

1.2. The adiabatic approach. Although with the loglog law the mathematical problem of �nd-
ing the blow-up rate was �nally solved, it turned out that the loglog behavior is very hard to observe
numerically, even in careful simulations where the solution was ampli�ed by more than ten orders of
magnitude (e.g. Figure 3.5). However, the validity of CNLS as a physical model for beam propagation
breaks down much earlier, when the �eld intensity reaches the threshold for material breakdown. Even at
sub-threshold intensities, some small terms that are neglected in the derivation of (1.1) from Maxwell's
equations (e.g. non-paraxial terms [22, 68], time-dispersion [27, 44, 59] etc.) may become important,
because the delicate balance between the focusing nonlinearity and the defocusing Laplacian in critical
dimension allows for even small terms to have a large e�ect on self-focusing and even to arrest it.

It is therefore clear that even though the loglog law is established, there is still a need for a description
of CNLS self-focusing which is valid in the domain of physical interest and which can be extended to
the analysis of the e�ect of small perturbations. In the last few years a new adiabatic approach was
developed which achieves this. This approach is based on the main result of the analysis leading to the
loglog law, which is the derivation of the reduced equation (3.13) for the slow rate of radiation losses
of the focusing part of the solution. However, rather than solving this equation asymptotically, the

1Since the initial condition is given at z = 0 for all (x; y), the variable z plays the role of `time'
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adiabatic approach uses it only as a small correction to the adiabatic focusing-rate equation (3.5). This
approach was �rst used by Malkin [47] and it lead to an adiabatic law for the blowup rate of CNLS that
is accurate in physically relevant regimes. An improved adiabatic law, which becomes accurate with even
less ampli�cation and also preserves the lens transformation property of CNLS, was later obtained by
Fibich [24]. In this paper we give a detailed derivation of these laws and show that near the singularity,
Fibich's adiabatic law reduces to Malkin's adiabatic law, whose asymptotic limit is in turn the loglog law.
Thus, the three laws agree when the ampli�cation is very large but have di�erent domains of validity.

An immediate consequence of the adiabatic law is an analytic formula for the location of the singular-
ity. A previous result of this type is that of Dawes and Marburger [20, 48], derived by curve �tting values
obtained from numerical simulations with Gaussian initial conditions. We give here a new curve-�tted
formula for Gaussian initial conditions which is more accurate than either the adiabatic formula or the
one of Dawes and Marburger.

1.3. Perturbed critical self-focusing. Since the adiabatic approach is valid in regimes of physical
interest, it may be used to analyze the e�ect of small perturbations on critical self-focusing. The main
result of this paper is an extension of this approach to a general modulation theory for analyzing the e�ects
of small perturbations on self-focusing. In this modulation theory the perturbed CNLS is averaged around
a modulated Townes soliton  R [equation (4.6)] over the transverse variables, leading to a simpler system
of reduced equations (Proposition 4.1). The analysis of the reduced system of modulation equations is
further simpli�ed by distinguishing between conservative perturbations (perturbations under which the
total power (L2 norm) is conserved) and non-conservative perturbations (Proposition 4.2). It is interesting
to note that in the conservative case the modulation equations have a generic form (Proposition 4.3).

The adiabatic approach was used by Malkin to study the e�ect of a small defocusing �fth power
nonlinearity [47]. In [27], Fibich, Malkin and Papanicolaou analyzed the e�ect of small normal time-
dispersion, using for the �rst time the systematic approach presented in this paper. This approach was
also used by Fibich to analyze the e�ect of beam nonparaxiality [25] and the unperturbed CNLS [24], by
Fibich and Papanicolaou to analyze the combined e�ect of time-dispersion and nonparaxiality [28] and
by Fibich and Levy to analyze self-focusing in the complex Ginzburg-Landau limit of CNLS [26].

1.4. Outline. The paper is organized as follows. In section 2 we review the analytic theory of
existence and blowup for CNLS and use the lens transformation of critical NLS to derive a new condition
for blowup and to relate solutions of CNLS with solutions of CNLS with an additional quadratic potential
term. In section 3 we present the adiabatic approach for self-focusing in the unperturbed CNLS, derive
and compare the three laws for self-focusing, derive the formula for the location of the blowup point and
present a new empirical formula for Gaussian initial conditions. In section 4 we develop the modulation
theory for analyzing the e�ect of small perturbations of CNLS self-focusing, which is summarized by
Propositions 4.1{4.4. In section 5 we review previous applications of this approach and apply it to
several new situations (see Table 1.1).
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Perturbed CNLS Application Section

i z +�? + j j2 + � xxxx +
2

5
�2 xxxxxx = 0 �ber arrays 5.1

i z +�? + j j2 � �j j4 = 0 quintic nonlinearity 5.2

i z +�? +
1� exp(�2�j j2)

2�
 = 0 saturating nonlinearity 5.3

i z +�? +
j j2

1 + �j j2 = 0 saturating nonlinearity 5.3

i z +�? + j j2 � ��x = 0 ; ��xx + �yy = �(j j2)x Davey-Stewartson equation 5.4

i z +�? + j j2 + � zz = 0 nonparaxiality 5.5

i z +�? + j j2 + �(x2 + y2)h(z) = 0, h random randomness 5.6

i z +�? + j j2 + �1(x
2 + y2)h(z) � �2j j4 = 0, h random quintic nonlinearity+ randomness 5.6

i z +�? + j j2 � � tt = 0 time-dispersion 5.7.1

i z +�? +N = 0 ; �Nt +N = j j2 Debye relaxation 5.7.2

i z +�? + j j2 + �1 zz + �2
�
2i

n0cg
c (j j2 )t �  zt

�� �3 tt = 0 time-dispersion + nonparaxiality 5.8

Table 1.1

Perturbations of critical NLS which are analyzed in this paper using modulation theory.

2. Basic theory of self-focusing for CNLS. We begin with a review of the basic theory of self-
focusing. More details can be found in [16, 61, 62, 69, 70]. We emphasize the importance of the lens
transformation (2.16) in the analysis of critical NLS and use it to derive new results regarding blowup.

In order to understand the special character of blowup in the cubic Schr�odinger equation in two-
dimensions, it is instructive to begin with the two-dimensional NLS with a general power nonlinearity

i z +�? + �j j2� = 0 ; � = �1 ;(2.1)

where � positive/negative corresponds to the focusing/defocusing NLS, respectively. Two important
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invariants of (2.1) are the power2

N =
1

2�

Z
j j2 dx dy � N(0)(2.2)

and the Hamiltonian

H =
1

2�

�Z
jr? j2 dx dy � �

� + 1

Z
j j2�+2 dx dy

�
� H(0) ;(2.3)

where

r? =

�
@

@x
;
@

@y

�
:

We say that a solution exists at z if it has a �nite H1 norm

jj (z; �)jjH1 <1 ; jj jjH1 =

�Z
j j2 dxdy +

Z
jr? j2 dxdy

�1=2

and that  blows up at z = Zc if it exists for 0 � z < Zc and

lim
z!Zc

jj (z; �)jjH1 =1 ;

which by (2.2) is equivalent to blowup of the gradient norm

lim
z!Zc

Z
jr? j2 dxdy =1 :

From the theory for local existence of solutions of (2.1), it is known that if jj (z; �)jjH1 is bounded,
the solution exists for all z [30, 31]. As a result, when NLS is defocusing (� < 0), conservation of
the Hamiltonian implies that

R jr? j2 dxdy is bounded and the solution exists globally. Since we are
interested in singularity formation, from now on we restrict ourselves to the case of focusing NLS � = 1.

Because of the minus sign in the Hamiltonian of the focusing NLS, its conservation does not prohibitR jr? j2 dxdy from growing to in�nity. To see that this can indeed happen, we note that solutions of
(2.1) satisfy the variance identity [75]

Vzz � 8H � 8(� � 1)

2�(� + 1)

Z
j j2�+2dxdy ; V ( ) =

1

2�

Z
(x2 + y2)j j2 dxdy :(2.4)

From the variance identity (2.4), the invariance of the Hamiltonian (2.3) and the uncertainty principle

N2( ) � V ( )

Z
jr? j2 dxdy ;

it follows that for � � 1 the condition

H(0) < 0(2.5)

is su�cient for blowup in a �nite z.
In the supercritical case � > 1, sharper conditions for blowup can be obtained [36, 73] and singularity

formation is characterized by dominance of self-focusing over wave di�raction, resulting in a �nite z
blowup which is stable under small perturbations. Conversely, for � < 1, the subcritical case, there is no

2In the nonlinear optics context, the L2 norm corresponds to the power of the laser beam

5



�nite z blowup and the solution exists globally [69], as in the case of solitons in the cubic NLS in one
transverse dimension. In the physically important case of critical self-focusing � = 1 which we study here,
wave di�raction and self-focusing are nearly balanced and blowup is extremely sensitive to perturbations
and to changes in the initial condition (a physical argument that explains the role of criticality in the
balance between nonlinearity and di�raction is given at the beginning of section 4). A necessary condition
for blowup in critical NLS (1.1) is that

N(0) � Nc ;(2.6)

where Nc
�= 1:862 is the critical power for self-focusing. More precisely, there is no blowup when N < Nc

but for any � � 0, there exist solutions with N = Nc + � for which there is �nite z blowup [76].
The proof of these results makes use of the Gagliardo-Nirenberg inequality

jjf jj2�+22�+2 � C� jjrf jj2�2 jjf jj22 ; 0 < �(2.7)

which holds for any function on 2-dimensional space that has square integrable derivatives. Speci�cally,
by combining

jj jj22 = H +
1

� + 1
jj jj2�+22�+2 ;(2.8)

the invariance of the Hamiltonian and the Gagliardo-Nirenberg inequality, we obtain an estimate for the
L2 norm of the gradient of solutions of NLS:

jj jj22 � H +
C�
� + 1

jjr jj2�2 jj jj22 :(2.9)

When � < 1 this gives a bound for the L2 norm of the gradient of the solution, since the L2 norm of
the solution and H are constants. When � = 1, the critical case, the optimal constant C� can be used
to get a bound for the L2 norm of the gradient of the solution provided that N(0) < Nc. The optimal
constant in the Gagliardo-Nirenberg inequality is obtained when f = R (the waveguide solution of the
next section), in which case (2.7) becomes an equality [76].

We note that if in equation (2.1) the transverse Laplacian is in D dimensions, the subcritical, critical
and supercritical cases correspond to the product �D being less than, equal, or greater than 2, respectively.
For this reason, the case D = 2 for NLS with cubic nonlinearity is called `critical dimension'.

2.1. Waveguide solutions and the Townes soliton. From now on we restrict our analysis to
the critical case � = 1 and D=2. Critical NLS (1.1) has radially-symmetric waveguide solutions

 (z; r) = exp(iz)R(r) ; r =
p
x2 + y2 ;(2.10)

where R satis�es the nonlinear boundary value problem

�?R�R+R3 = 0 ; R0(0) = 0 ; lim
r!1

R(r) = 0 ; �? =

�
@2

@r2
+

1

r

@

@r

�
:(2.11)

This ordinary di�erential equation has an enumerable set of solutions (see [61] and its references). Of
most interest is the solution with the lowest power (ground state), often called the Townes soliton. The
Townes soliton is positive and monotonically decreasing (Figure 2.1). In addition, it has exactly the
critical power for blowup [76] Z 1

0

R2 rdr = Nc(2.12)
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Fig. 2.1. The Townes soliton R(r).

and its Hamiltonian is equal to zero

H(R) = 0 :(2.13)

Therefore, the waveguide solution (2.10), being a borderline case for blowup, is unstable.
Some additional relations, which will be used later are (Lemma A.1):

Z 1

0

�
dR

dr

�2
rdr = Nc ;

Z 1

0

R4 rdr = 2Nc :(2.14)

The asymptotic behavior of R is given by

R(r) � ARr
�1=2 exp(�r) 1� r ;(2.15)

where

AR =
��
2

�1=2 Z 1

0

R3(r0)I0(r
0) r0dr0 �= 3:52

and I0 is the modi�ed Bessel function.
The Townes soliton plays an important role in CNLS theory and can be used to construct exact and

approximate blowup solutions, as will be seen in the following sections. Although Gaussians look roughly
like the Townes soliton (Figure 2.1), in the critical case there is no Gaussian that can satisfy the two
conditions (2.12) and (2.13) simultaneously. Therefore, Gaussians cannot capture the delicate balance
between di�raction and nonlinear focusing in critical self-focusing, which is the reason why CNLS analysis
that is based on representing the solution by a modulated Gaussian is unreliable.

2.2. The lens transformation. An important tool in the analysis of critical NLS is the lens
transformation. Let  and ~ be related through

~ (z; x; y) =
1

L(z)
 (�; �; �) exp

�
i
Lz
L

r2

4

�
; � =

x

L
; � =

y

L
; � =

Z z

0

1

L2(z0)
dz0 :(2.16)

Then, as noted by Talanov [71], if L depends linearly on z

L = 1 +
z

F
; F constant(2.17)
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Fig. 2.2. The lens transformation (2.16) with L(z) given by (2.17) and F < 0 maps the values of  in the shaded
semi-in�nite strip into the corresponding values of ~ in the shaded triangle.

and if  is a solution of (1.1) with initial condition  0, then ~ is also an exact solution of (1.1) with the
initial condition

~ 0(x; y) =  0(x; y) exp

�
i
r2

4F

�
:(2.18)

The addition of a quadratic phase term to the initial condition corresponds to adding at z = 0+ a thin
lens whose focal point is at (z = �F; 0; 0). Since z and � are related by

1

z
+

1

F
=

1

�
(2.19)

and in addition

� :=
p
�2 + �2 =

r

L
;

the lens transformation (2.16) shows that the e�ect of the lens in the di�ractive case (linear, or with cubic
nonlinearity) is to map the solution exactly as in ray optics (Figure 2.2). It is interesting to note that
the lens transformation is valid in the linear case in all dimensions but the only nonlinearity for which
the transformation will remain valid is the critical one.

The lens transformation can also be used to analyze CNLS with an additional quadratic potential
term

i ~ z +

�
@2

@x2
+

@2

@y2

�
~ + j ~ j2 ~ + ~(z)(x2 + y2) ~ = 0 :(2.20)

In the linear case this is the basic equation of Gaussian optics, which in the non-isotropic case can be
solved by the ABCD law (e.g. [80]). Let ~ (z; x; y) be a solution of (2.20) with ~(z) given, and de�ne
 (�; �; �) by the lens transformation (2.16) with a general L(z), which is not necessarily linear in z as in
(2.17). Then  (�; �; �) also satis�es CNLS with a quadratic potential term

i � +

�
@2

@�2
+

@2

@�2

�
 + j j2 + (�)(�2 + �2) = 0 ;(2.21)

where

(�) =

��L3Lzz
4

+ L4~(z(�))

�
; z(�) =

Z �

0

L2(� 0) d� 0 :

Therefore, the family of solutions of (2.20) with a general ~(z) is closed under the lens transformation
with a general L(z). If L(z) is chosen so that it satis�es the ordinary di�erential equation

Lzz = 4~(z)L

and  is a solution of CNLS (1.1), then ~ (z; x; y) satis�es the nonlinear Gaussian optics equation (2.20).
Thus, equation (2.20) can always be reduced to equation (1.1).
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2.3. Applications of the lens transformation. By applying the lens transformation to the CNLS
waveguide solution (2.10) with L = Zc � z, we get that

 ex(z; r) =
1

Zc � z
R

�
r

Zc � z

�
exp

�
i
1� r2=4

Zc � z

�
(2.22)

is an exact solution of CNLS which blows-up at Zc:

lim
z!Zc

jj exjjH1 =1 :

This solution has a linear blowup rate, L = (Zc � z), and the power concentration property

j ex(z; r)j2 ! Nc�(r) ; as z ! Zc :

However, it is unstable [61, 76] since N( ex) = Nc, and it has not been seen in numerical experiments.
We can also use  ex to construct exact blowup solutions of

i z +�? + j j2 + �(x2 + y2) = 0 ; � constant,(2.23)

by de�ning

~ ex(z; r) =
1

L(z)(Zc � �(z))
R

�
r

L(z)(Zc � �(z))

�
exp

�
i
1� r2=4L2(z)

Zc � �(z)

�
exp

�
i
Lz
L

r2

4

�

� =

Z z

0

1

L2(z0)
dz0 ; L = L0Re[exp(�2

p
�z)] :

Note that with a proper choice of L0 and the sign in L, this construction of exact blowup solutions for
(2.23) works for both positive and negative values of �.

The variance identity in the critical case has the form

Vzz = 8H(0) :(2.24)

Therefore, in addition to (2.5), it can be used to derive conditions for blowup whenH(0) � 0 which involve
V (0) and Vz(0) [76]. However, these conditions are not sharp, since they are based on the vanishing of
variance and typically blowup occurs well before the vanishing point of the variance [41]. Thus, the
problem of �nding sharp conditions for global existence or blowup in CNLS is still open. The following
new result rules out many potential candidates.

Proposition 2.1. Let  be a solution of (1.1) such that V ( 0) <1. Any condition which involves
only the absolute value of the initial condition j 0j cannot be su�cient for blowup.

Corollary 2.2. There is no critical threshold NTH such that

N( 0) > NTH

is a su�cient condition for blowup.
Proof of Proposition 2.1:
Assume that there is such a condition. Let  be a solution of CNLS with initial condition  0 that

satis�es this condition and V ( 0) <1. Then there exists 0 < Zc <1 such that

lim
z!Zc

Z
jr? j2 dxdy =1 :

Let ~ be the solution of (1.1) corresponding to the initial condition (2.18) with

0 < F < Zc :(2.25)
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� z

 r
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~ 

Fig. 2.3. Sketch of proof of Proposition 2.1: If  , a CNLS solution which blows up at Zc, is defocused so that the
point F is mapped to in�nity, the defocused solution ~ will not blowup.

Then ~ is given by (2.16). Since j ~ 0j = j 0j, there exists 0 < Z�c <1 such that

lim
z!Z�

c

Z
jr? ~ j2 dxdy =1 :

To see that this leads to a contradiction we �rst note thatZ
jr? ~ (z; x; y)j2 dxdy � 2

L2

Z
jr? (�(z); x; y)j2 dxdy + 2L2V ( (�(z))) :(2.26)

Since F > 0, at any �nite value of z the value of L and of L�1 are �nite. In addition, by (2.19)

0 � �(z) < F < Zc for 0 � z ;(2.27)

V ( (�(z))) is well de�ned and �nite (2.24). Therefore, the right-hand-side of (2.26) can become in�nite
only at ~Zc such that 0 � ~Zc � Z�c and

lim
z! ~Zc

Z
jr? (�(z); x; y)j2 dxdy =1 :

Clearly,

1
~Zc

+
1

F
=

1

Zc
;(2.28)

and �( ~Zc) = Zc, leading to a contradiction with (2.27).

The proof shows that any initial condition, however large its L2 norm may be, will not result in
blowup if defocused at z = 0 by a su�ciently strong defocusing lens that maps the blowup point Zc
`beyond in�nity' (Figure 2.3). The converse, of course, is not true. If the initial power is below critical,
no focusing lens can cause the solution to blowup.

2.4. Theoretical results on the nature of blowup. There is substantial numerical evidence that
near the blowup point the ground state R serves as an attractor for the radial pro�le of the solution3

j j � 1

L(z)
R
� r
L

�
as z ! Zc(2.29)

and we will be using this assumption in the asymptotic analysis of the next section. Partial support for
(2.29) can be found in the following result, due to Weinstein [78], which in the radially-symmetric case is
as follows:

3For clarity, we are considering here the radially-symmetric case with a single blowup point located at the origin. For
the possibility of multiple singularity points, see e.g. [51, 55]
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Theorem 2.3. Let  be a radially symmetric solution of (1.1) such that  0 2 H1 and
limz!Zc

R jr? j2 =1. Then, for any sequence zk ! Zc there is a subsequence zkj such that

1

L(z)
 

�
r

L(z)
; z

�
exp(i(z))! 	(r) 6� 0

in Lp for 2 < p <1, where (z) 2 [0 ; 2�). Furthermore,Z
j	j2 � Nc :

Note that in order to make (2.29) rigorous one has to show that 	 � R(r).
Relation (2.29) implies that blowup solutions of critical NLS have a unique local power concentration

property

j j2 � Nc�(r) as z ! Zc ;

namely, the amount of power which goes into the singularity is always equal to the critical power for
self-focusing, independent of the initial condition. Based on simulations and asymptotic arguments it is
also widely believed that the rate of blowup is slightly faster than a square root

(Zc � z)1=2+� � L(z)� (Zc � z)1=2 as z ! Zc ; 8� > 0 :

Partial support for this can be found in the concentration Theorems of Tsutsumi and Merle [53, 72] which
in the radial case is as follows.

Theorem 2.4. Let  be a radially symmetric solution of (1.1) that blows up at a �nite Zc.
1. If a(z) is a decreasing function from [0; Zc) to R

+ such that limz!Zc a(z) = 0 and
limz!Zc(Zc � z)1=2=a(z) = 0, then

lim inf
z!Zc

Z
r<a(z)

j (z)j2 � Nc :

2. For any � > 0, there exists a K > 0 such that

lim inf
z!Zc

Z
r<K(Zc�z)1=2

j (z)j2 � (1� �)Nc :

Note that the two Theorems (2.3-2.4) give only an upper bound on the amount of power that goes
into the singularity (� Nc). Strictly speaking, we cannot hope to prove that the power that goes into the
singularity is exactly Nc, because there are exact blowup solutions which do not satisfy it. For example,
if in the focusing waveguide solution (2.22), R is any of the non ground state solutions of equation (2.11),
the power going into the singularity is greater then Nc.

Similarly, the concentration theorem suggests an upper bound on the blowup rate L� (Zc�z)1=2��.
In fact, it has been proved [17, 52] that for z near Zc,

R jr j2 � c(Zc � z)�1=2 which implies

L � C(Zc � z)1=2 :

However, we cannot hope to prove that for all blowup solutions L � (Zc � z)1=2+� because the blowup
rate of the focusing waveguide (2.22) is L = Zc� z. Of course, these exact blowup solutions are unstable
but their mere existence helps to explain the di�culty in making a completely rigorous theory for CNLS
self-focusing.

The concentration Theorem 2.4 illustrates the fact that blowup in critical NLS is a local phenomenon,
which is why global quantities, such as N , H and the variance, cannot capture the sharp conditions for
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blowup. For example, if  0 is composed of K well-separated pulses, each of which would not blowup by
itself e.g.

 0 =

KX
k=1

0:8R(
p
x2 + (y � 100k)2) ;

then  will not blowup, although N( 0) > Nc. Similarly, if

 0 = 1:1R(
p
x2 + y2) + 0:8R(

p
x2 + (y � 100)2) ;

 would have a �nite variance when its 1:1R component blows-up, due to its 0:8R component.

3. Self-focusing in the unperturbed CNLS - an adiabatic approach. In this section we de-
scribe the local structure and dynamics of self-focusing near the blowup point. Unlike the previous section,
most of the results presented in this section have not been made rigorous at present (see section 2.4).

3.1. Derivation of reduced equations - modulation theory. Self-focusing in critical dimension
has the unique property that the amount of power which goes into the singularity is always equal to the
critical power for blowup Nc. For this to happen as the total beam power is conserved (2.2), the beam
separates into two components as it propagates4

 =  s +  back ;

where  s is the high intensity inner core of the beam which self-focuses towards its center axis and  back
is the low intensity outer part which propagates forward following the usual linear propagation mode i.e.
it di�racts and slowly diverges. This `reorganization' stage takes place almost until the singularity in
terms of the axial distance z (Figure 3.1) and is characterized by relatively slow focusing and fast power
transfer from  s to  back (non-adiabatic self-focusing). Close enough to the singularity,  s has only small
excess power above the critical one and it approaches the radially symmetric5 asymptotic pro�le (see
Figure 3.2):

 s(r; z) =
1

L(z)
V (�; �) exp

�
i� + i

Lz
L

r2

4

�
; argV (�; 0) = 0 ;(3.1)

where L(z) is a yet undetermined function that is used to rescale  s and the independent variables:

� =
r

L
;
d�

dz
=

1

L2
:(3.2)

Note that (3.1) can be viewed as a generalized lens transformation (2.16), in which nonlinear self-focusing
is replaced by a continuum of thin lenses with a variable focal length.

Because L is a measure of the radial width of  s, we can use it to give a more precise de�nition of
 s and  back. A possible de�nition is6

 =

8<
:

 s 0 � r � �cL(t)

 back �cL(t) � r
with 1� �c constant.(3.3)

4If N > 2Nc the beam may split into several self-focusing �laments. In this case our discussion is applicable to each
�lament.

5The convergence of non-isotropic initial conditions towards a radially symmetric pro�le around the singularity was
observed numerically in [40]

6Recall that j sj � R(�)=L has an exponential decay (2.15).
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The resulting equation for V is

iV� +�?V � V + jV j2V +
1

4
��2V = 0(3.4)

with

�(z) = �L3Lzz :(3.5)

As the beam is focusing, � & 0. In addition, we shall see that when 0 < � � 1 its rate of change is
exponentially small compared with that of the focusing (L). Therefore, if we expand V in an asymptotic
series

V � V0 + V1 + : : : ;(3.6)

the leading order solution of (3.4) is quasi-steady i.e. V0 = V0(�;�(�)). This suggests that the equation
for V0 is

�?V0 � V0 + jV0j2V0 + 1

4
��2V0 = 0 ; V 0(0) = 0 ; V (1) = 0 :(3.7)
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However, if V0 satis�es this real equation then V0 � ��1 cos(
p
��2=4) for �� ��1=2. Since

p
� � �LLz

(J.1),

 s � 1

�
exp

�
i

p
�

2
�2
�

and it is not possible to match  s with  back which has no such fast oscillations.
The di�culty is resolving the asymptotics of  s for large � was the main reason why it took so long

to determine the blowup rate of CNLS. Eventually, it was shown that for the leading order quasi-steady
solution V0 to have the correct behavior for large �, one has to add to (3.7) a term which is exponentially
small in � [39, 43]:

�?V0 � V0 + jV0j2V0 + 1

4
��2V0 � i

M

2Nc
�(�)V0 = 0 ;(3.8)

where

�(�) � 2A2
R

M
e��=

p
� ; M =

1

4

Z 1

0

r3R2(r) dr �= 0:55 :

The original asymptotics beyond all orders derivation of (3.8) is based on an analysis of (3.4) in the
supercritical case d > 2. By de�ning � = @�� + (d � 1)=�@� and allowing d to vary continuously, it
is shown that for every d > 2 there is a positive limit lim�!1 �(�) = ��(d) > 0. Taking the limit of
��(d) as d& 2 leads to the �(�) term. Parts of this derivation were later made rigorous in [34]. A clear
presentation of this derivation is given in [70].

Once it is known that V0 satis�es (3.8), we can proceed with regular perturbations and expand V0 in
an asymptotic series in �

V0(�) � R(�) + �g(�) +O(�2) ; g =
@V0
@�

�����
�=0

; 0 < � � 1 :(3.9)

The corresponding equations for R and g are (2.11) and

�?g + 3R2g � g = �1

4
�2R ; g0(0) = 0 ; g(1) = 0 :(3.10)

The leading order equation for V1 follows from (3.4), (3.6), (3.8) and (3.9):

�?V1 � V1 + 2R2V1 +R2V �1 = �i��g � i
M

2Nc
�(�)R :(3.11)

The equation for the real part of V1 is solvable, while the solvability condition for the imaginary part of
V1 is that R is perpendicular to the right-hand-side of (3.11) (Lemma F.1):Z 1

0

R

�
g�� +

M

2Nc
�(�)R

�
�d� = 0 :

Using (2.12) and Z 1

0

Rg �d� =
M

2
(3.12)

(Lemma B.1), the solvability condition leads to the important relation

�� � ��(�) :(3.13)
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With this relation, the goal of reducing CNLS self-focusing to a system of equations which do not depend
on the transverse variables [eqs. (3.2), (3.5) and (3.13)] is achieved.

In the original derivation of (3.13) in [39, 43], this relation was written as

a� � �1

a
exp(��=a) ; a = �LLz = � L

L�
:(3.14)

To see that this equation agrees with (3.13) we note that � = a2 + a� and that a� � a2 (3.14), so that
� � a2. Nevertheless, when we later extend this approach to analyze perturbed CNLS it is better to use
(3.13), because with the approximation � � a2 we add a constraint that � > 0, while in many cases of
perturbed CNLS � becomes negative.

We remark that we use the terminology modulation theory to emphasize that it is based on pertur-
bations of the (focusing part of the) solution around a modulated Townes soliton:

 s �  R :=
1

L
R(r=L) exp

�
i� + i

Lz
L

r2

4

�
:

The delicate balance between the nonlinearity and di�raction in critical self-focusing is reected in the
above analysis by the fact that self-focusing dynamics is determined from the O(�) deviation of  s from
 R.

3.2. Adiabatic self-focusing. Malkin suggested a di�erent way to derive (3.13) [46, 47]. Expansion
of V0 in an asymptotic series in � shows that � is proportional to the excess power above critical of the
focusing part of the beam (Lemma B.2):

Ns �Nc � �M ; j�j � 1(3.15)

where

Ns := N( s)

is the power of the focusing part of the beam. Note that relation (3.15), as well as adiabatic theory in
general, have O(�) accuracy, since they are based on the expansion (3.9).

When � is small, the problem of �nding the rate of power radiation of  s can be formulated in
analogy with the probability of penetration through a potential barrier and it can be solved using the
WKB method (Appendix C):

d

d�
Ns � �M�(�) :(3.16)

If we combine (3.15){(3.16), we again get (3.13)7. Thus, the small term �(�) is the rate of power radiation
of  s. In particular, near the focal point � is small and self-focusing is essentially adiabatic, that is, the
beam collapses much faster than the excess power Ns �Nc goes to zero.

The rate of change of the Hamiltonian of  s is given by (Appendix C):

d

d�
Hs � �M

L2
�(�) ; Hs := H( s) :(3.17)

From (3.15), (3.16) and (3.17) we see that as the solution approaches the blowup point,

lim
z!Zc

Ns = Nc ; lim
z!Zc

Hs = �1 :

7In [21] �(�) was calculated using a nonlinear eigenvalue formulation. Recently, Pelinovsky suggested a derivation of
the relation (3.13) from a multiple-scales argument [58].
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The rate at which Hs goes to in�nity is given by (Appendix D)

Hs � �M
2

�(�)p
�

1

L2
:

These characteristics of adiabatic self-focusing can be seen in Figure 3.3.

3.3. The loglog law. Equation (3.13) cannot be solved analytically. In order to solve it asymptot-
ically, we rewrite it as

�� =
c�
2�2

�3 exp(��) ; � =
�p
�
; c� =

2A2
R

M
:(3.18)

Integration by parts of � =
R �
�0
(���)

�1 d�� shows that

� � 2�2

c�

exp�

�3
; �� �(0)� 1 ;

and

� � log � ; � � �2

log2 �
;(3.19)

where now c� has disappeared. Using (J.1), we can rewrite (3.19) as:

A�� � �2

log2 �
A � 0 ; A =

1

L
:

The leading order solution for this equation is

A � A0 exp

�
��

log �

�
:

Therefore,

log � � log logA(3.20)

and

Zc � z �
Z 1

�

1

A2(��)
d�� � log �

2�A2
:(3.21)
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Combining (3.20) and (3.21) gives

log � � log log
1

Zc � z
;(3.22)

which together with (3.21) results in the loglog law

L �
�

2�(Zc � z)

ln ln 1=(Zc � z)

� 1

2

:(3.23)

Although mathematically correct, it turns out that the loglog law becomes applicable only for huge
and non-physical ampli�cations. This is because (3.19) becomes the leading order solution of (3.18) only
at huge focusing factors. To see why this is true, we note that (3.19) holds when �� �0 � 1. However,
from (3.18) and ���0 < ���(0) we see that a necessary, but clearly not su�cient, condition for the loglog
law to hold is that

� � �
3=2
0

�(�0)
:(3.24)

3.4. Adiabatic analysis of modulation equations. In order to derive an asymptotic law for
critical self-focusing which is valid in the domain of physical interest, we note that equations (3.5) and
(3.13) which govern self-focusing evolve on very di�erent length scales:

Lzz = � �

L3
small scale(3.25)

�z = ��(�)
L2

large scale.(3.26)

The loglog law is derived by solving (3.26) to leading order and then using (3.25). However, since the
length scale for power changes in (3.26) is exponentially long compared with the one for changes in the
focusing rate in (3.25), we should do just the opposite: First integrate equation (3.25) while ignoring the
slow changes in � (strictly adiabatic self-focusing) and only then use (3.26) in order to get the next order
correction [24]. Therefore, strictly adiabatic self-focusing is given by:

Lzz = � �

L3
; � � �0 := �(0) :(3.27)

If we multiply equation (3.27) by 2Lz, and integrate, we get

L2z =
�

L2
+ C0 ; C0 := C(0) ; C(z) := L2z �

�

L2
= (L2)zz :(3.28)

Multiplying (3.28) by L2 gives

(L2)z = �2 �� + C0L
2
�1=2

;

where the plus/minus sign correspond to the cases of initial defocusing/focusing at z = 0, respectively.
Integrating one more time and using the initial condition L(0) = L0 gives the corrected version of adiabatic
law of Fibich, �rst obtained in [24]:

L2(z) � L20 + (L2)z(0) z + C0z
2 :(3.29)

Note that equation (3.29) implies that:

(L2)zz � (L2)zz(0) :(3.30)
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If we set L(Zc) = 0 in (3.29) we get a quadratic equation for the blowup point Zc whose smaller
positive solution is [24]:

Zc �

8>><
>>:

L20p
� � L0Lz(0)

L0Lz(0) � �

no blowup L0Lz(0) > � :

(3.31)

It is instructive to compare (3.31) with the necessary and su�cient conditions for blowup (2.5{2.6).
Equation (3.31) shows that the condition � > 0 (i.e. power above critical) is necessary for blowup. This
condition is also su�cient when Lz(0) � 0. However, if the beam is initially defocusing, the necessary
and su�cient condition for blowup is � � L0Lz(0).

The expression (3.31) for Zc inherits the lens transformation property (2.28). To see this, let us
consider the case of a collimated beam ( 0 real). since in this case Lz(0) = 0, the strict adiabatic law for
 0 real is

L � L0

s
1� z2

Z2
c

; Zc =
L20p
�0

:(3.32)

If we add a lens with focal length F at z = 0 the initial condition becomes (2.18). Since this change
does not a�ect the beam radius and power at z = 0+, ~L0 = L0 and ~�0 � �0 (the tildes denote the
corresponding parameters for ~ ). However,

~Lz(0) = L0=F :

Therefore, from (3.31) we see that the blowup point for ~ is at

~Zc =
L20p

�0 � L20=F
;

which is related to Zc by

1
~Zc

=
1

Zc
� 1

F
;

showing that the adiabatic law (3.29) preserves the lens transformation property of CNLS.

3.5. Non-adiabatic e�ects. Self-focusing, as given by (3.27) or by (3.32), is strictly adiabatic i.e.
radiation losses are completely neglected. Therefore, if we are interested in maintaining the O(�) accuracy
of the adiabatic law up to the blowup point, the slow scale changes in � and C(z) must be included. This
can be done by solving the fast equation (3.25) coupled with the slow equation (3.26), as in Figure 3.4.

It may seem that we can get a more accurate asymptotic law than the strictly adiabatic one if we
replace (3.27) with its Euler approximation

Lzz = � �

L3
; � = �(0)� ��(�(0)) ;

d�

dz
=

1

L2
:(3.33)

However, this approximation is better than (3.27) only during the initial stage of self-focusing and even-
tually becomes worse than the strict adiabatic approximation (Figure 3.4B).
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3.6. Comparison of Fibich's adiabatic law, Malkin's adiabatic law and the loglog law.
The adiabatic law (3.29) can be rewritten in the form

L(z) =

q
2
p
� (Zc � z) + C(z) (Zc � z)2 :(3.34)

As z approaches the singularity point, the quadratic term becomes negligible (see Appendix E) and (3.34)
reduces to Malkin's adiabatic law [47]:

L(z) =

q
2
p
�(Zc � z) :(3.35)

Thus, (3.34) and (3.35) agree asymptotically but (3.34) is valid earlier, since in addition to the beam
power it also incorporates the focusing angle. Similarly, the asymptotic limit of (3.35) agrees with the
loglog law. To see this, note that if in the derivation of the loglog law we use (3.19) instead of (3.22)
in (3.21), we get (3.35). Therefore, the three laws are asymptotically equivalent; only their domains of
validity di�er.

In Figure 3.5 we compare the value of L from numerical simulations of CNLS (solved by the method of
dynamic rescaling, see section 6) with the predictions of the three asymptotic laws. The initial conditions
used are  0 = 1:02R(r) (power slightly above critical and close to the asymptotic pro�le) and  0 =
4 exp(�r2) (large excess power above critical). In both cases, the adiabatic laws become O(�) accurate
early on and maintain this accuracy, while the loglog law is not valid even after focusing by more than
ten orders of magnitude. The advantage of Fibich's law over Malkin's law during the initial stage can be
seen in Figure 3.5A where the initial condition is close to the asymptotic one. In Figure 3.5B the initial
conditions are not close to the asymptotic pro�le and the two adiabatic laws take longer to become valid,
at which point they are already in the domain where they agree.

In order to understand why the adiabatic laws become valid quite early and the loglog law does not,
we take a closer look at the point where their derivations become di�erent. For the adiabatic laws to be
applicable, � should be moderately small so that �(�)� 1. In contrast to this, a necessary condition for
the loglog law to be valid is (3.24). To estimate the corresponding beam width, we apply the adiabatic
approximation to L�=L � �p� to get L � exp(�p��). Therefore, a necessary condition for the loglog
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Fig. 3.7. The relative accuracy of the predictions for the location of the singularity for Gaussian initial conditions of
the formula of Dawes and Marburger (eq. 3.41, '*') and of the theoretical adiabatic formula (eq. 3.42, 'o') is around 10%.
The new empirical formula (eq. 3.43, 'x') has a 1% relative accuracy.

This formula was derived for the special case of Gaussian initial conditions  0 = c exp(�r2) by curve
�tting values of Zc obtained from simulations. For comparison, in the case of Gaussian initial conditions
L0 �

p
1=2p and the theoretical formula (3.40) becomes

Zc � 1

2p

r
M

Nc

r
1

p� 1
:(3.42)

Both (3.41) and (3.42) have a relative accuracy of around 10% in the range 1:05 � p � 2 (Figure 3.7).
Based on our numerical simulations we suggest a new empirical formula for Gaussian initial conditions

Zc = 0:1585 � (p� 1)�0:6346(3.43)

which has a relative accuracy of 1% in this range. (Figure 3.7).

4. Modulation theory for self-focusing in the perturbed CNLS. In the previous sections
we saw that self-focusing in critical NLS is controlled by the delicate balance between the focusing
nonlinearity and defocusing Laplacian. As a result, if a small perturbation is added to CNLS it will have
a large e�ect on self-focusing as soon as it becomes comparable to (�? + j j2 ), even though it is
small compared with each of these terms separately. This property is unique to critical focusing, which
is the borderline case between subcritical self-focusing where di�raction dominates and supercritical
self-focusing where nonlinear focusing dominates. Indeed, if the solution of the focusing NLS (2.1) is
self-similar i.e.  � V (r=L)=L, then �? � L�3 and j j2� � L�1�2�. Therefore, only when � = 1
nonlinearity and di�raction can remain of the same order as L & 0. In fact, di�raction and critical
nonlinearity exactly balance each other in the special case of the waveguide solution (2.22), where V = R
and � � 0. Therefore, in critical self-focusing, given by (3.1) with V � R and 0 < � � 1, di�raction and
critical nonlinearity almost completely balance each other.

4.1. Modulation theory. We have seen that the adiabatic approach is very e�ective in the analysis
of self-focusing in CNLS. In this section we extend this approach to a modulation theory for analyzing
the e�ects of various small perturbations on self-focusing. We consider a general perturbed critical NLS
of the form:

i z +�? + j j2 + �F ( ;  z;r? ;  t; : : :) = 0 ; j�j � 1 ;(4.1)

where F is an even function in x and y. Using modulation theory, the perturbed CNLS (4.1) is replaced
with a system of reduced equations which is much simpler for analysis and simulations because it is

22



independent of the transverse variables. For example, in section 5 we apply modulation theory to the
perturbations of CNLS listed in Table 1.1.

Modulation theory is valid when the following three conditions hold:
Condition 1 The focusing part of the solution is close to the asymptotic pro�le (3.1){(3.2)

 s(z; x; y; �) � 1

L(z; �)V (�; �; �; �) exp
�
i�(z; �) + i

Lz
L

r2

4

�
;(4.2)

where

� =
x

L
; � =

y

L
; �z =

1

L2

and V = R+O(�; �).
Condition 2 The power is close to critical���� 12�

Z
j s(z; x; y; �)j2 dxdy �Nc

����� 1 ;

or equivalently,

j�(z; �)j � 1 :

Condition 3 The perturbation �F is small compared with the other terms in equation (4.1):

j�F j � j�? j ; j�F j � j j3 :

The dots in the arguments of  and of the modulation parameters indicate that they may depend on
additional variables, such as t in the case of time-dispersion.

In general, at the onset of self-focusing only condition 3 holds. Therefore, if the power is above
critical the solution will initially self-focus as in the unperturbed CNLS. As a result, near the location
of the blowup point in the absence of the perturbation, conditions 1{2 will also be satis�ed. It is only
at this stage that the Laplacian and the nonlinearity almost completely balance each other, so that the
small perturbation can have a signi�cant e�ect. Therefore, one can identify at least three stages in the
evolution of self-focusing in the perturbed CNLS:
Non-adiabatic self-focusing. Self-focusing is as in the non-adiabatic stage of the unperturbed CNLS.

Only condition 1 holds.
Unperturbed adiabatic self-focusing. Self-focusing is as in the adiabatic stage of the unperturbed

CNLS. Conditions 1{3 hold.
Perturbed adiabatic self-focusing. The perturbation is small but has a signi�cant e�ect. Conditions

1{3 hold.
Note that conditions 1{3 hold in the second and third stages, both of which are therefore covered by
modulation theory. In some cases (e.g. nonparaxiality, saturating nonlinearity) one can show that the
reduced system remains valid for all z by showing that all three conditions remain satis�ed in the reduced
system. However, in other cases (e.g. small normal time-dispersion) it is unclear for how long modulation
theory remains valid and self-focusing may enter a new stage which is not covered by modulation theory.

The main result of modulation theory is the following Proposition.
Proposition 4.1. If conditions 1{3 hold, self-focusing in the perturbed CNLS (4.1) is given to

leading order by the reduced system

�z +
�(�)

L2
=

�

2M
(f1)z � 2�

M
f2 ; Lzz = � �

L3
:(4.3)
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The auxiliary functions f1 and f2 are given by

f1(z; �) = 2L(z; �)Re
�
1

2�

Z
F ( R) exp(�iS)[R(�) + �r?R(�)] dxdy

�
(4.4)

f2(z; �) = Im

�
1

2�

Z
 �RF ( R) dxdy

�
(4.5)

where

 R =
1

L
R(�) exp(iS) ; � =

r

L
; S = �(z; �) + Lz

L

r2

4
;
@�

@z
=

1

L2
:(4.6)

We note that:
� Assuming that we can carry out the transverse integration, f1 and f2 are known functions of the
modulation variables L, �, � and their derivatives.

� The reduced system (4.3) is much easier for analysis and simulations than (4.1) because it does
not depend on the transverse variables (x; y).

A proof of Proposition 4.1 is postponed until section 4.2.

4.1.1. Conservative and non-conservative perturbations. Considerable simpli�cation can be
achieved by distinguishing between conservative perturbations i.e. those for which the power remains
conserved in (4.1)

d

dz

Z
j (z; x; y; �)j2 dxdy � 0

and non-conservative perturbations.
Proposition 4.2. Let conditions 1{3 hold.
1. If F is a conservative perturbation, i.e.

Im

Z
 �F ( ) dxdy � 0 ;

then f2 � 0, and to leading order (4.3) reduces to

�L3Lzz = �0 +
�

2M
f1 ; �0 = �(0; �)� �

2M
f1(0; �) ;(4.7)

where �0 is independent of z.
2. If F is a non-conservative perturbation, i.e.

Im

Z
 �F ( ) dxdy 6� 0

then to leading order (4.3) reduces to

�z = � 2�

M
f2 ; Lzz = � �

L3
:(4.8)

Note that in both cases, non-adiabatic e�ects disappear from the leading order behavior of (4.3). The
proof of Proposition 4.2 is given in Appendix G.

A useful relation which is derived in the proof of Proposition 4.1 in section 4.2.2 is that the power of
the focusing part of the beam is given by

Ns � Nc + �M � �

2
f1 :
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Therefore, in the case of a `purely non-conservative' perturbation (i.e. f1 � 0), relation (3.15) and the
interpretation of � as the excess power above critical still hold. Similarly, the Hamiltonian of  s is given
by9 (H.5)

Hs � M

2
(L2)zz +

�f1
2L2

:

4.1.2. Generic e�ect of conservative perturbations. As we shall see in section 5, for various
conservative perturbations f1 turns out to have the generic form

f1 � �C1
L2

; C1 = constant :(4.9)

The following two Propositions cover this canonical case. The �rst deals only with adiabatic e�ects and
the second (4.4) deals with non-adiabatic e�ects when the conservative perturbation results in oscillatory
focusing-defocusing behavior.

Proposition 4.3. When self-focusing is given by (4.7) and f1 is given by (4.9) then

y := L2

satis�es the generic oscillator equation

(yz)
2 = 4�0 � �C1

M

1

y
+

4H0

M
y ;(4.10)

or equivalently

(yz)
2 =

�4H0

M

1

y
(yM � y)(y � ym) ;(4.11)

where

yM =

p
�20 + �C1H0=M2 + �0

�2H0=M
=
M�0
�H0

�
1 +O

�
�H0

�20

��
(4.12)

ym =
�C1
2M

1p
�20 + �C1H0=M2 + �0

=
�C1
4M�0

�
1 +O

�
�H0

�20

��
;(4.13)

�0 = �(0) +
�C1

2ML2(0)
; H0 � H(0) +

�C1
4

1

L4(0)
:

Let us de�ne

Lm := y1=2m ; LM := y
1=2
M :

1. If the perturbation is defocusing, i.e.

�C1 > 0 ;(4.14)

then it will arrest blow-up in (4.7), i.e. L remains positive for all z.
(a) If in addition to (4.14), �0 > 0 and H0 < 0, then

0 < Lm < LM

9except when (f1)z = f2 � 0, as in the case of the Davey-Stewartson equations (section 5.4).
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z
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z

Fig. 4.1. The leading order e�ect of the generic conservative perturbation (4.9) A: Defocusing perturbation and H0 < 0
(Proposition 4.3-1a) B: Defocusing perturbation, H0 > 0 and Lz(0) < 0 (Proposition 4.3-1bi) C: Focusing perturbation
and Lz(0) < 0 (Proposition 4.3-2). In all cases �0 > 0 (i.e. power above critical).

and L goes through periodic oscillations between Lm and LM (Figure 4.1A). The period of
the oscillations is

�Z = 2

r
MyM
�H0

E

�
1� ym

yM

�
;(4.15)

where E(m) =
R �=2
0 (1 � m sin2 �)1=2 d� is the complete elliptic integral of the second kind

[2].
(b) If in addition to (4.14), �0 > 0 and H0 > 0 , then

i. If Lz(0) < 0, self-focusing is arrested when L = Lm > 0, after which L is monotonically
defocusing to in�nity (Figure 4.1B).

ii. If Lz(0) > 0, L is monotonically defocusing to in�nity.
2. If the perturbation is focusing, i.e.

�C1 < 0

and if in addition �0 > 0 and one of the following two conditions holds (1) H0 > 0 and Lz(0) < 0
or (2) H0 < 0, then the solution of (4.7) will blow up in a �nite distance (Figure 4.1C), i.e.

9Z� such that 0 < Z� <1 and L(Z�) = 0 :

3. The location z0 of the (�rst) arrest in (1a) and (1bi) is almost the same as that of the singularity
in the unperturbed case with the same initial conditions:

z0 =

Z ym

y(0)

zy dy � Zc ; Zc given by (3.31) :

In particular, if  0 is real, then

z0 =
1

2
�Z = Zc

�
1 +O

�
�H0

�20

��
Zc given by (3.32) :

The proof of Proposition 4.3 is given in Appendix H.

4.1.3. Non-adiabatic e�ects. Proposition 4.2 shows that the exponentially small term �(�), which
plays such an important role in CNLS self-focusing, disappears from the leading order behavior of per-
turbed CNLS (in the non-conservative case the e�ect of �(�) is even smaller than the (f1)z term which
is also ignored). Nevertheless, if the leading-order e�ect of the perturbation according to Proposition 4.2
results in periodic focusing-defocusing oscillations, �(�) may provide the only mechanism for the decay of
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the oscillations. In that case, if the perturbation is conservative, in order to account for the non-adiabatic
e�ects we should use

�z +
�(�)

L2
=

�

2M
(f1)z ; Lzz = � �

L3
:(4.16)

If in (4.16) the power loss during one oscillation is small, the oscillations are slowly decreasing and the
e�ect of �(�) can be lumped into the change in Ns over one period:

�Ns := Ns(z +�Z)�Ns(z) � �M
Z z+�Z

z

�(�)

L2
dz :

In the conservative case when f1 is given by (4.9), �0 > 0 and H0 < 0 (Proposition 4.3-1a), the following
Proposition provides an estimate for �Ns (a detailed analysis of non-adiabatic e�ects is given in [47]).

Proposition 4.4. If non-adiabatic e�ects are included in the case of Proposition 4.3:1a and if
j�Nsj � Ns � Nc, the oscillations are slowly decreasing and after each cycle there is an overall power
loss due to radiation of �Ns. Most radiation occurs when y � yM and

�Ns � �M�(�M )�
�1=4
M

�
yM
ym

�1=2
;(4.17)

where

�M := �(y = yM ) = �H0

M
(yM � ym) :

For a proof of Proposition 4.4, see Appendix I. Note that non-adiabatic e�ects lead to slowly decaying
focusing-defocusing oscillations only when the change in Ns over one oscillation is small compared with
the excess power above critical (j�Nsj � Ns �Nc). From Proposition 4.4 we see that this holds when �
is moderately small, but not for a very small � since �Ns � ��1=2 as �! 0.

4.1.4. Modulation theory for multiple perturbations. In some cases, one is interested in the
combined e�ect of several small perturbations e.g. randomness and quintic nonlinearity (section 5.6)
or time-dispersion and nonparaxiality (section 5.8). Modulation theory can easily handle these cases,
since the modulation equations are linear in F . Therefore, one simply adds the contribution of each
perturbation to the modulation equations.

4.2. Proof of Proposition 4.1. In this section we derive the reduced equation (4.3) of Proposi-
tion 4.1. This derivation generalizes the one for CNLS (section 3.1).

4.2.1. Perturbation analysis. When condition 1 is satis�ed, the focusing part of the solution is
described by (4.2) and the corresponding equation for V is

iV� +�?V � V + jV j2V +
1

4
��2V + �L3F

�
V (�; �)

L(z)
exp(iS)

�
exp(�iS) = 0 :(4.18)

As in the case of CNLS, we expand V asymptotically for � and � small

V � V �
0 + V �

1 + � � �(4.19)

where V �
0 is quasi-steady in z, satisfying

�?V
�
0 � V �

0 + jV �
0 j2V �

0 +
1

4
��2V �

0 � i
M

2Nc
��(�)V �

0 + �w(V �
0 ) = 0 ;(4.20)

w(V �
0 ) := L3Re

�
F

�
V �
0 (�)

L(z)
exp(iS)

�
exp(�iS)

�
:
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When � = 0 this is equation (3.8), which determines V0 and �(�). We have now added the dispersive part
of the perturbation and we assume that there is a perturbed pair V �

0 and �� � � that satis�es (4.20). If
we expand V �

0 in the two small parameters � and � we have

V �
0 � R(�) + �g(�) + �h(�; �; �) + o(�; �) :(4.21)

The equations for R and g are (2.11) and (3.10) and the equation for h is

�?h+ 3R2h� h = �w(R) ; (@� ; @�)h(�; 0; 0) = 0 ; h(�; � =1) = 0 :(4.22)

Integration by parts shows that (Lemma A.1):

1

2�

Z
Rhd�d� = �1

4
f1 :(4.23)

Equation (4.3) is obtained from the solvability condition for the next order term V �
1 . The equation

for V �
1 is (4.18{4.20):

�?V
�
1 � V �

1 + 2jV �
0 j2V �

1 + (V �
0 )

2(V �
1 )
� +

1

4
��2V �

1 = �i
�
(V �

0 )� +
M

2Nc
��(�)V �

0

�
� i�L3Im [F ( ) exp(�iS)] :

Using (4.21), to principal order in � and � this equation reduces to

�?V1 � V1 + 2R2V1 +R2V �1 = �i
�
g�� + �h� +

M

2Nc
�(�)R

�
� i�L3Im [F ( R) exp(�iS)] :(4.24)

From the solvability theory of Appendix F, the equation for the real part of V1 is always solvable
when h is even, and the solvability condition for the imaginary part of V1 is that R is perpendicular to
the imaginary part of the right-hand-side of (4.24) (Lemma F.1):Z

R

"
g�� + �h� +

M

2Nc
�(�)R + �L3Im [F ( R) exp(�iS)]

#
d�d� = 0 :

Using (3.2), (3.12) and (4.23), we see that this relation is (4.3).

4.2.2. Derivation of the reduced equation (4.3) from balance of power. As in the case of
CNLS (section 3.2), we can also derive the reduced equation (4.3) from balance of power. To do that, we
multiply (4.1) by  �, subtract the conjugate equation and integrate over the transverse variables to get
an equation for the balance of power in (4.1):

@

@z

Z
j j2 dxdy = �2� Im

Z
 �F ( ) dxdy :(4.25)

The left-hand-side has two components, the focusing part  s and the non-focusing one (3.3):Z
j j2 =

Z
j sj2 +

Z
j backj2 :

The focusing part can can be approximated using

1

2�

Z
j sj2 dxdy � 1

2�

Z
0����c

jV0j2 d�d� =
Z 1

0

R2 �d�+ 2�

Z 1

0

Rg �d�+
�

�

Z
Rhd�d� + o(�; �) ;

which can be rewritten as (3.12, 4.23)

Ns � Nc + �M � �

2
f1 :

In addition, to leading order, the radiation rate is still given by (3.16). If we combine all the above and
approximate  by  R on the right-hand-side, equation (4.25) reduces to (4.3).
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4.2.3. Derivation of the reduced equation (4.3) from a variational principle. If the per-
turbed CNLS equation has a Lagrangian density, then we can derive a Lagrangian density for the modu-
lation equations by substituting the ansatz (4.2) in the action integral and integrating over the transverse
variables. For example, this has already been done for the case of time-dispersive CNLS (see Figure 1 in
[27]).

There are several problems with this approach, which is why we do not pursue it here. For one thing,
it can only be applied to perturbations of CNLS which have a variational formulation. In addition, with
this approach we can only analyze the adiabatic e�ects of the perturbation, because the non-adiabatic
term in (4.3) does not appear in the averaged Lagrangian. We �nally note that when this approach
is applied to the perturbed CNLS with the wrong ansatz (typically a Gaussian or a sech), the reduced
equation fails to capture the delicate balance of critical self-focusing and can lead to erroneous predictions.

5. Applications of modulation theory. In this section we apply modulation theory to various
perturbations of CNLS. We include several new applications and present previous applications within the
framework of modulation method.

5.1. Self-focusing in �ber arrays. In the last few years it has been suggested that faster trans-
mission in optical �bers may be achieved by using an array of coupled optical waveguides arranged on a
line in which the pulses undergo two-dimensional self-focusing. The model equation for the nth �ber is
given by

i nz � �2 
n
tt + 2j nj2 n + �( n+1 � 2 n +  n�1) = 0 ;(5.1)

where  n(z; t) is the electric �eld envelope in the nth �ber, � is the coupling coe�cient between neigh-
boring �bers, �2 is the group velocity dispersion and  is the nonlinear coe�cient. For theoretical and
numerical studies of (5.1), see e.g. [3, 4, 5, 6, 37, 79].

Let

 n =  (z; t; x = nh)(5.2)

and assume that the optical �eld is slowly varying over a number of �bers in the x direction i.e. h � 1.
If time-dispersion is anomalous (�2 < 0), substitution of the change of variables

~z = �h2z ; ~ =
1

h

�
2

�

�1=2
 ; ~y =

"
h

�
�

j�2j
�1=2#

t ;

and (5.2) in (5.1) yields (after dropping the tildes):

i z +  yy + j j2 +
 (�; x+ h)� 2 (�; x) +  (�; x � h)

h2
= 0 :(5.3)

In order to apply modulation theory to (5.3), we rewrite it as

i z +�? + j j2 +

�
 (�; x + h)� 2 (�; x) +  (�; x� h)

h2
�  xx

�
= 0 ;

which in the notation of (4.1) correspond to � = h2=12 and

F =
12

h2

�
 (�; x+ h)� 2 (�; x) +  (�; x� h)

h2
�  xx

�
:(5.4)

It is easy to see that F is conservative. In addition, we can expand

F =  xxxx +
2�

5
 xxxxxx + � � �
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Since �� 1, let us begin by considering the PNLS

i z +�? + j j2 + � xxxx = 0 ;(5.5)

i.e. the e�ect of the conservative perturbation

F =  xxxx :(5.6)

The evaluation of

f1(z) =
1

�
Re

Z
[R(�) exp(iS)]xxxx exp(�iS)[R+ �r?R] dxdy

can be simpli�ed if we note that [R exp(iS)]x � Rx exp(iS), because R = R(x=L), S = S(x
p
Lz=L) and

LLz � �1=2 � 1. Therefore,

f1(z) =
1

�

�Z
[R(�)]xxxx[R+ �r?R] dxdy

�
(1 +O(�1=2)) :

Since,

1

�

�Z
[R(�)]xxxx[R+ �r?R] dxdy

�
=

2

�L2

Z
(R��)

2 d�d� ;

Z
(R��)

2 d�d� =
3

8

Z
(�?R)

2 d�d� =
3�

4

Z
(�?R)

2 �d� ;

and (2.11, 2.14) Z
(�?R)

2 �d� = I6 � 3Nc

where10

I6 =

Z 1

0

R6 rdr ;

we have that

f1 � �C1
L2

; C1 = �3

2
(I6 � 3Nc) �= �9Nc

2
:

Thus, self-focusing is (5.5) is covered by Proposition 4.3. Since �C1 < 0, we are in the case of a focusing
perturbation (case 2 of the Proposition) that can result in a �nite-z blowup if the initial power is above
critical.

Another way to see that � xxxx is indeed a focusing perturbation is from the Hamiltonian identity
for (5.5): We multiply (5.5) by  �z , add the conjugate equation and integrate to getZ

jr? j2 � 1

2

Z
j j4 � �

Z
j xxj2 � constant :

Therefore, from the relative signs we see that when � > 0 the perturbation acts with the focusing
nonlinearity and against di�raction.

10Numerical computations show that I6 �= 6Nc. However, this is not an exact identity.
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If the initial conditions are such that there is indeed blowup in (5.5), then it is not justi�ed to
approximate (5.4) with (5.6) and we need to add the next order term in (5.4):

F =  xxxx +
2

5
� xxxxxx ;

corresponding to the PNLS

i z +�? + j j2 + � xxxx +
2

5
�2 xxxxxx = 0 :(5.7)

We can immediately see that the O(�2) term is a defocusing perturbation, by observing the relative signs
in the Hamiltonian identity for (5.7):Z

jr? j2 � 1

2

Z
j j4 � �

Z
j xxj2 + 2�2

5

Z
j xxxj2 � constant :

In order to evaluate f1 for (5.7) we note that as beforeZ
[R(�) exp(iS)]xxxxxx exp(�iS)[R+ �r?R] dxdy �

Z
[R(�)]xxxxxx[R + �r?R] dxdy

and Z
R������(R + �rR) d�d� = �3

Z
(R���)

2 d�d� :

Therefore

f1 � jC1j
L2

� C2�

L4
;(5.8)

with

C2 =
6

5�

Z
(R���)

2 d�d� > 0 :

Plugging (5.8) in (4.7) gives that self-focusing in (5.7) is given to leading order by

�L3Lzz = �0 +
�

2M

� jC1j
L2

� C2�

L4

�
:

Integrating this equation twice, as in the derivation of (4.10) in appendix H, gives

(yz)
2 =

4H0

M
y + 4�0 +

�jC1j
My

� 2�2C2
3My2

:(5.9)

From (5.9) we see that there is no blowup (y cannot go to zero) in (5.9). In addition, we can estimate
the minimum value of y from the balance of the third and forth terms on the right-hand-side of (5.9):

ym � 2C2�

3jC1j :

Likewise, if H0 < 0 the solution of (5.9) is oscillatory and we can estimate the maximum value of y from
the balance of the �rst and second terms on the right-hand-side of (5.9):

yM � M�0
�H0

:
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Therefore, we can rewrite (5.9) as

(yz)
2 =

�4H0

M

1

y2
(yM � y)(y � ym)(y � y3) ;

where

y3 =
�2C2

6H0ymyM
� � �jC1j

4M�0
< 0 :

Thus, self-focusing in (5.9) is very similar qualitatively to the generic case of Proposition 4.3. In particular,
when �0 > 0 and H0 < 0 the solution will oscillate between yM and ym.

Equation (5.9) captures the leading order behavior for (5.7), hence also for (5.3) and (5.1). In the case
of periodic oscillations in (5.9), non-adiabatic e�ects (which were neglected so far) will gradually cause the
oscillations in (5.7), (5.3) and (5.1) to decay, in a manner similar to the one covered by Proposition 4.4.
This qualitative picture agrees with the simulations of (5.1) of Aceves et al. [5, 6], where it was observed
that the initial collapse towards the central �ber is arrested, followed by oscillations of power between
the central �ber and its neighbors.

5.2. Small defocusing �fth power nonlinearity. The case of small dispersive �fth power non-
linearity

i z +�? + j j2 � �j j4 = 0 ; 0 < �� 1(5.10)

was analyzed by Malkin [47]. In the notation of modulation theory we have

F = �j j4 ;

which is conservative (f2 � 0) and

f1 � � 4I6
3L2

:

Therefore, self-focusing is covered by Proposition 4.3 with C1 = 4I6=3:

(yz)
2 =

�4H0

M

1

y
(yM � y)(y � ym) ; yM � M�0

�H0
; ym � �I6

3M�0
:(5.11)

5.3. Dispersive saturating nonlinearities. The use of equation (5.10) to model dispersive sat-
uration of the nonlinearity is sometimes criticized because as j j increases the nonlinearity changes its
sign and becomes defocusing. For this reason (5.10) is often replaced by

i z +�? +
1� exp(�2�j j2)

2�
 = 0 ; 0 < �� 1 ;(5.12)

or by

i z +�? +
j j2

1 + �j j2 = 0 ; 0 < �� 1 :(5.13)

Equations (5.12) and (5.13) can be viewed as regularizations of (5.10): The nonlinearity is approximately
the same as in (5.10) when �j j2 � 1, but it has a �nite and positive limit as j j goes to in�nity. It
turns out that these regularizations have essentially the same e�ect on self focusing as the unregularized
case (5.10). This is true only for critical NLS and to the best of our knowledge its articulation is due to
Malkin [45]:

32



Proposition 5.1.

Self-focusing in equations (5.12) and (5.13) is the same to leading order as in equation (5.10).
Proof of Proposition 5.1:
The perturbation functions F corresponding to (5.12) and (5.13) are conservative and they satisfy

F = ��j j4(1 +O(�j j2) ; provided that �j j2 � 1 :

Thus, as long as j j2 � ��1, the leading order behavior of (5.12) and (5.13) is still given by (5.11). Since
for (5.11)

y � ym � �

�
;

throughout the focusing-defocusing cycle �j j2 = O(�)� 1 and

F = ��j j4(1 +O(�)) :

We have, therefore, the important result that all small dispersive regularizations of critical NLS lead
to the same canonical focusing-defocusing e�ect.

The oscillatory behavior of solutions of (5.12) and (5.13), in accordance with (5.11), was observed in
numerical simulations of LeMesurier et al. [42]. In [74], special attention was given to the non-adiabatic
power radiation in (5.12).

5.4. Davey-Stewartson equations. The Davey-Stewartson equations (DS)

i z +�? + j j2 � ��x = 0 ; ��xx + �yy = �(j j2)x ;(5.14)

arises in the study of gravity-capillary surface waves [1]. When 0 < � � 1, the system (5.14) can be
viewed as a perturbation of CNLS with

F = ��x :

This is a conservative perturbation and

f1 = � 1

�
Re

�Z
(�R)xR(�)(R+ �r?R) dxdy

�
;

where �R is the solution of

�(�R)xx + (�R)yy = �(j Rj2)x :
Let ~�R(�; �) be the solution of

�(~�R)�� + (~�R)�� = �(R2)�(�; �) :

Then �R(x; y) = L�1 ~�R(�; �) and

f1 = � 1

�

Z
(~�R)�R(�)(R + �r?R) d�d� = constant :

Therefore, to leading order (4.16) reduces to

�z = ��(�)
L2

;

as in the case of self-focusing in the unperturbed CNLS (3.13). It follows that self-focusing in DS
follows the adiabatic law for CNLS self-focusing (3.34), which ultimately reduces to the loglog law. It is
remarkable that this perturbation has no e�ect on the blow up rate, as was �rst shown by Papanicolaou et
al. [56], who derived the asymptotically equivalent equation (3.14) for self-focusing in DS and concluded
that self-focusing in DS is given by the loglog law.
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5.5. Nonparaxiality. In the standard derivation of CNLS as the model equation for laser beam
propagation through a Kerr medium, the vectorial Maxwell equations for the propagation of a laser beam
are reduced to the vectorial Helmholtz equations in the time-harmonic case. These equations are further
reduced to the scalar Helmholtz equation for the electric �eld E�

�? +
@2

@z2

�
E + k2E = 0 ; k2 = k20(1 +

2n2
n0

jEj2)

by neglecting vectorial e�ects [19]. Introducing the slowly varying envelope form E =  exp(ik0z) for the
electric �eld leads to the nondimensional form of the Helmholtz equation [25]

� zz + i z +�? + j j2 = 0 ; � =

�
�

4�r0

�2
:(5.15)

Since the beam wavelength � is much smaller than the initial beam radius r0,

0 < �� 1 :

This suggests that � zz can be neglected, in which case (5.15) reduces to CNLS.
Neglecting � zz is called the paraxial approximation or the parabolic approximation and it is a valid

approximation for rays which propagate almost parallel to the z axis. Mathematically, this is a problematic
approximation, because a boundary value problem (Helmholtz) is replaced with an initial value problem
(NLS). Moreover, the paraxial approximation breaks down near the focal point, as was already pointed
out by Kelley [32]. Indeed, from the asymptotic form of CNLS self-focusing solution (3.1), we see that
the magnitudes of �? and j j2 are O(L�3), and that of the nonparaxial term is O(�L�5). This
suggests that the paraxial approximation breaks down when L = O(

p
�). In fact, we will now show that

the nonparaxial term does not even get to be of the same size as the other terms, because it arrests
self-focusing when it is still O(�) small compared with the CNLS terms.

We analyze the e�ect of small beam nonparaxiality by applying modulation theory with the pertur-
bation

F =  zz :

This perturbation is non-conservative and

f2 � Nc

�
1

L2

�
z

:

Therefore, equation (5.15) reduces to [25]

�z = �2�Nc

M

�
1

L2

�
z

:(5.16)

Although this is a nonconservative perturbation, in light of (5.16) we can still apply the results of Propo-
sition 4.3 with C1 = 4Nc to get:

(yz)
2 =

�4H0

M

1

y
(yM � y)(y � ym) ; yM � M�0

�H0
; ym � 2�Nc

M�0
:(5.17)

It is remarkable that this non-conservative perturbation leads to the same generic reduced equation as in
the previous examples of conservative perturbations.

From (5.17) and Proposition 4.3 we see that even when �0 > 0 (i.e. initial power above critical), the
solution of (5.17) does not blow up. If in addition H0 < 0, the behavior is given by focusing-defocusing
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oscillations which gradually decay because of non-adiabatic e�ects. Note that throughout the focusing-
defocusing cycle the relative magnitude of the nonparaxial term is

[� zz]

[j j2 ] =
�

L2
� �

ym
= O(�) ;

providing an a-posteriori justi�cation for treating it as a small perturbation.
The prediction of modulation theory of decaying focusing-defocusing oscillations is in qualitative

agreement with the simulations of Feit and Fleck of the Nonlinear Helmholtz equation [22] and with the
studies of [8, 68]. This suggests that the answer to the following open question:

Is there blowup in the nonlinear Helmholtz equation?

is no, or that if there is blowup in the nonlinear Helmholtz equation, it is completely di�erent from the one
of CNLS. This is an important question, since the singularity formation in CNLS is clearly non-physical,
indicating that some small terms that were neglected in the derivation of CNLS should be included in
a model of physical self-focusing which is valid at and beyond the blowup point. Since the paraxial
approximation is the last approximation in the derivation, if indeed there is no blowup in the nonlinear
Helmholtz equation, it may prove to be the physically-regularizing term, analogous to viscosity in uid
dynamics.

At present, a full picture of self-focusing in the nonlinear Helmholtz equation is still lacking. In
particular, the e�ect of back-scattering is unclear. In addition, there are no rigorous analytic results on
singularity formation in the nonlinear Helmholtz equation.

5.6. E�ect of randomness. The propagation of a narrow laser beam in a medium with impurities
can be modeled by

i z +�? + j j2 + �1(x
2 + y2)h(z) = 0 ; 0 < �1 � 1 ;(5.18)

where h(z) is a real-valued random function. The perturbation

F = (x2 + y2)h(z) 

is conservative and

f1 = 8ML4h(z) :

Therefore, in this case the reduced equation (4.7) becomes

Lzz = ��0
L3

� 4�L(z)h(z) ;

showing that the e�ect of this random perturbation becomes negligible as L& 0.
Random inhomogeneities can become important if they act in conjunction with an additional defo-

cusing perturbation which leads to oscillatory behavior. One example is defocusing quintic nonlinearity
and randomness

i z +�? + j j2 + �1(x
2 + y2)h(z) � �2j j4 = 0 ;(5.19)

whose reduced equation is

�L3Lzz = �0 + 4�1L
4h(z)� 4�2Nc

M

1

L2
:(5.20)
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Random inhomogeneities have, in general [15], the form h(z; x; y) . However, when the beam is
narrow we can expand h about the beam axis

h = h0(z) + (x; y) � r?h+ 1

2
(x; y) � rrh � (x; y) + : : : :

The linear terms can be eliminated by preliminary transformations of the transverse coordinates and the
phase [49]. If we also assume, for simplicity, that the inhomogeneities are transversely isotropic then we
get equation (5.19). We will also assume that h(z) is stationary with mean zero hh(z)i = 0, where hi is
ensemble average.

The reduced equation (5.20) can be written as a nonlinear oscillator equation with a parametrically
random, linear term:

Lzz + 4�1h(z)L(z) + U 0(L) = 0 ; U(L) =
�2Nc

ML4
� �0

2L2
:(5.21)

The e�ects of randomness in (5.21) are not easy to assess and will be analyzed elsewhere. In the following
we present some preliminary results. The potential U(L) has a minimum at Lmin = 2

p
�2Nc=M�0.

For small oscillations about this minimum we can linearize (5.21) by writing L = Lmin + �L, with
0 � �L� Lmin, to get for �L the randomly forced linear oscillator equation

�Lzz + !2�L = ~h(z) ;(5.22)

where the frequency ! is given by

! =
�
3=2
0 M

23=2�2Nc

and the random forcing by

~h(z) = �8�1
s
�2Nc

M�0
h(z) :

Note that the frequency of the small oscillations decreases with �0 but increases as �2 ! 0. The random
forcing will make the energy of the small oscillations increase on the average as z increases:

d

dz

�
1

2
(�L)2z +

!2

2
(�L)2

�
=

Z z

0

cos(!s) ~R(s)ds

where ~R(z) = h~h(z + s)~h(s)i is the covariance of the random force ~h(z). For large z the energy of the
small oscillations grows linearly

<
1

2
(�L)2z +

!2

2
(�L)2 > � z

2
R̂(!)

where R̂(!) � 0 is the power spectral density [57] of the random forcing ~h

R̂(!) =

Z 1

�1

ei!s ~R(s)ds :

Ultimately, the growth of the energy will make the linearization invalid and the full nonlinear equation
(5.21) should be considered. An important issue is to estimate the probability of escape (i.e. L ! +1)
by the random inhomogeneities. This could be done in a manner similar to the one used in [33]. The
main result should be that the amplitude of the focusing-defocusing oscillations grows until there is no
more focusing.
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5.7. Temporal e�ects. In nonlinear optics CNLS (1.1) is derived for time-harmonic laser beams
propagating in a medium with an instantaneous nonlinear polarization response. However, temporal
e�ects, such as time-dispersion and Debye relaxation, can become important in the propagation of ul-
trashort laser pulses. Since in these non-stationary cases the initial condition is given at the medium
interface z = 0 for all (x; y; t), time behaves like a third spatial variable and z plays the role of `time'. As
a result, the reduced equations and the modulation variables L, � and � depend on both z (`time') and
t (`space').

5.7.1. Small time-dispersion. The nonlinear Schr�odinger equation with small time-dispersion

i z +�? � � tt + j j2 = 0 ;  (z = 0; x; y; t) =  0(x; y; t) ; j�j � 1(5.23)

arises in the study of the propagation of ultrashort laser pulses in media with an instantaneous Kerr
nonlinearity. The correct expression for � is11

� =
r20k0k!!
T 2

where r0 is the initial pulse radius, k = !n0(!)=c is the wavenumber, n0 is the linear index of refraction,
c is speed of light and T is the pulse duration. Time-dispersion is called normal if � > 0 and anomalous
if � < 0.

If time-dispersion is anomalous, (5.23) is supercritical NLS, which has solutions that undergo 3D
collapse. However, the dynamics in the case of normal time-dispersion is more complicated because of
the opposite sign of di�raction and time-dispersion. In particular, a new phenomenon occurs in the
presence of small normal time-dispersion: A temporal splitting of the pulse into two components (see
Figure 5.1). Pulse splitting and the possibility of multi-splitting has attracted considerable interest over
the last decade, as it may provide a physical mechanism which prevents the singularity formation in
CNLS.

Zharova et al. [81] were the �rst to show that in the case of small normal time-dispersion self-focusing
is arrested at tm, the t cross-section (i.e. the plane (x; y; t = tm) of the initial peak. As a result, the
pulse undergoes a temporal split into two components. They went on to conjecture that the new peaks
would go on splitting into \progressively smaller-scale". Although in their simulations they observed two
splitting events, the reliability of their simulations is unclear. Indeed, in subsequent numerical simulations
of (5.23) [18, 27, 44, 64] secondary pulse splitting was not observed. In [44], Luther, Newell and Moloney
derived reduced equations for the evolution of the pulse at the tm cross-section which show the arrest of
self-focusing there. The validity of their reduced system was supported by a direct comparison with the
numerical solution of (5.23).

In [27], Fibich, Malkin and Papanicolaou derived the reduced system (5.24) for self-focusing in (5.23),
using for the �rst time the systematic approach of modulation theory. Here

F = � tt
is non-conservative and

f2 = � 1

2�
Im

Z
 � tt dxdy � �Nc�tt :

Therefore, from (4.8), we see that (5.23) reduces to [27]

�z =
2�Nc

M
�tt ; Lzz = � �

L3
; �z =

1

L2
:(5.24)

11We would like to thank B.A. Rockwell [63] for pointing out to us the error in the expression for � in [27]
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Fig. 5.1. As a result of small normal time-dispersion the power (�) radiates away from the center, leading to the
formation of two symmetrical peaks which continue to self-focus. Results are shown for the reduced system (5.24) with the
initial conditions L(0; t) � 1, Lz(0; t) � 0 and �(0; t) = (1:1 exp(�t2)� 1)Nc=M and � = 0:01. Although we do not observe
secondary peak splitting, the large values of � and the sharp t gradients suggest that the validity of (5.24) breaks down at
some point.

The numerical agreement of (5.24) with (5.23) was demonstrated in [27]. The reduced system (5.24)
agrees with the one of Luther, Newell and Moloney [44] at tm. However, (5.24) is valid for all t cross-
sections, not just at tm. In fact, analysis of (5.24) shows that while self-focusing is arrested in an
exponentially small neighborhood of tm, it continues elsewhere. Analysis of (5.24) also shows that peak
splitting is associated with the transition from self-similar 2D collapse to full 3D dynamics. Therefore, it
was suggested in [27] that the new peaks would not necessarily split again.

The e�ect of normal time-dispersion on the non-adiabatic radiation �(�) was calculated in [12, 13, 14].
At present, it is still unknown whether multiple-splitting occurs. A related open question is whether

the solution of (5.23) can become singular. At present, these questions cannot be investigated numerically,
since current numerical simulations cannot go much further beyond the �rst pulse-splitting. In addition,
the validity of the reduced system (5.24) after the formation of the two new self-focusing peaks is unclear.
Indeed, the large values of � and the large t gradients in Figure 5.1 after the pulse splitting violate the
assumptions under which (5.24) was derived. This may indicate that after the �rst splitting  R ceases to
serve as an attractor for  s. If so, this nulli�es the whole argument of multi-splitting `by induction'.

Recently, pulse splitting was observed experimentally by Ranka, Schirmer and Gaeta [60], some ten
years after its theoretical prediction.

5.7.2. Debye relaxation. In models for the propagation of an intense laser beam, the nonlinear
cubic term in CNLS represents an instantaneous nonlinear material polarization response. If the mecha-
nism for the induced nonlinear polarization is molecular orientation, then for su�ciently long pulses the
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frictional drag between the molecules tends to make the rotation lag behind the torque induced by the
electric �eld. The resulting model equation in this case is CNLS with Debye relaxation:

i z +�? +N = 0(5.25)

�Nt +N = j j2 ; � =
�D
T

> 0 ;(5.26)

where t is retarded time (t � z=cg), �D is the characteristic response time for dipole reorientation
(� 10�11sec for water) and T is pulse duration.

In this section we use modulation theory to address the question of whether Debye relaxation can
arrest self-focusing when 0 < �� 1. The Debye perturbation �F = (N � j j2) is conservative (f2 = 0).
From (5.26), we get that

N � j j2 � �(j j2)t :
Therefore, we approximate (5.25){(5.26) by (4.1) with

F = �(j j2)t :

Evaluation of f1 yields

f1 � CDLt
L

; CD =

Z
(r?R2)2�3 d� �= 6:43 :

Substitution in (4.7) shows that self-focusing in the presence of Debye relaxation is given by

�L3Lzz = �0 +
�CD
2M

Lt
L
:(5.27)

From this equation we see that Debye relaxation slows focusing at times earlier than the pulse peak (Lt �
0) and enhances it at later times (Lt � 0). As a result, self-focusing becomes temporally asymmetrical,
with the peak moving towards later times (Figure 5.2), as can be expected from a delay mechanism and
as was observed in numerical simulations of (5.25){(5.26) [67].

In order to further analyze the initial e�ect of Debye relaxation, we note that during the non-adiabatic
self-focusing and unperturbed adiabatic self-focusing stages (see section 4.1), the e�ect of Debye relaxation
is negligible and each t cross-section (i.e. the plane t = constant in the (x; y; t) space) focuses independently
in a 2D self-similar fashion

L(z; t) = L(Zc(t)� z)

with Zc(t) given by (3.31). If we use this self-similar form in (5.27), we get:

�L3Lzz = �0 � �CD _Zc(t)

2M

Lz
L

; _ :=
d

dt
:

Making a change of variable, we can rewrite this equation as

A�� = �0A+
�CD _Zc(t)

6M
(A3)� ; A =

1

L
:

If the peak power is initially at t = t0, then _Zc(t) > 0 for t > t0 and _Zc(t) < 0 for t < t0. Therefore,
we see that if the power is above critical (�0 > 0), there is blowup (A % +1) for t > t0 and arrest of
blowup for t < t0. However, one cannot apply this conclusion to (5.25{5.26) or even to (5.27), because
as self-focusing starts to deviate from that the unperturbed CNLS, the validity of the 2D self-similar
argument breaks down and the dynamics become fully 3D [i.e. (x; y; t)], as manifested by the shift of the
peak towards later times. At present, the question whether solutions of (5.25{5.26) can become singular
is still open.
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Fig. 5.2. Self-focusing in the presence of Debye relaxation according to the reduced equation (5.27) with the initial
conditions L0 � 1 and �(0) = (1:1 exp(�t2) � 1)Nc=M . While most of the pulse is defocusing (top), asymmetric self-
focusing takes place in the center, with the peak moving towards later times.

5.8. Time-dispersion and nonparaxiality. We have seen that both normal time-dispersion and
nonparaxiality can lead to self-focusing arrest. This raises the question of determining which of these two
mechanisms is dominant in self-focusing of ultrashort pulses. Similarly, if time-dispersion is anomalous,
it is enhancing self-focusing as nonparaxiality is slowing it down, and we would like to know which of the
two e�ects will ultimately prevail. Therefore, we are interested in analyzing self-focusing in the presence
of both time-dispersion and nonparaxiality.

It may seem that all we need to do is add the separate contribution of each mechanism in the
corresponding reduced equation (5.16) and (5.24). However, more careful examination of the derivation
of CNLS shows that if one retains both time-dispersion and nonparaxiality in the model, then the model
equation contains additional terms [28]:

i z +�? + j j2 + �1 zz + �2

h
2i
n0cg
c

(j j2 )t �  zt

i
� �3 tt = 0(5.28)

where

�1 =
1

4r20k
2
0

; �2 =
1

cgk0T
=

1

!0T

c

n0cg
; �3 =

k0r
2
0k!!
T 2

(5.29)

and cg is the group velocity. The dimensionless parameter �1 � (wavelength=radial pulse width)2, �2 �
(period of one oscillation/pulse duration), and �3 is a dimensionless measure of group velocity dispersion
(GVD). Note that �2 is proportional to the geometric mean of �1 and �2:

�22 = �1�3q ; q =
4

c2gk0k!!
:

Therefore, if one retains time-dispersion and nonparaxiality, the mixed term and the shock term ( zt and
(j j2 )t, respectively) should also be included in the model. Moreover, in the visible spectrum q � 1,
and the �2 terms can dominate over both time-dispersion and nonparaxiality [28].
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The reduced system corresponding to (5.29) is

�z(z; t) = �1
�

1

L2

�
z

� 2

�
1

L2

�
t

+ 3�tt ; �z(z; t) =
1

L2
; Lzz(z; t) = ��(z; t)

L3
;(5.30)

where

1 = 2�1Nc=M ; 2 = �2(6cgn0=c� 2)Nc=M ; 3 = 2�3Nc=M :

Following [27], we can analyze the initial e�ect of the three terms in (5.28) by looking at special solutions of
(5.30). Away from the focal point, the three perturbing terms in (5.28) are small and each t cross-section
of the pulse (i.e. the 2D plane t = constant in the (x; y; t) space) focuses independently with

L(z; t) = L(Zc(t)� z) ; �(z; t) = �(Zc(t)� z) ; �(z; t) = �(Zc(t)� z) :(5.31)

Here Zc(t) is the location of the focus in the (z; t) plane when �1 = �2 = �3 = 0 (3.31). Therefore,
eq. (5.30) becomes

�z = �1
�

1

L2

�
z

+ 2 _Zc

�
1

L2

�
z

+ 3(� �Zc�z + _Zc
2
�zz) ; _=

d

dt
:(5.32)

This equation can be transformed into a nonlinear Airy equation [27]

gss = sg + �g3 ; with g = L�1 > 0 :(5.33)

Here

s =
�
�0 � 3 �Zc�

��
3 �Zc

��2=3
; �0 � �(0; t) ;

� = �(1 � 2 _Zc � 3 _Zc
2
)
�
3 �Zc

��2=3
:

The initial conditions for eq. (5.33) are given at

s0(t) := s(z = 0; t) � �(0; t)
�
3 �Zc

��2=3
:

At the time t0 of the initial peak power of the pulse, Zc(t) attains its minimum, _Zc(t0) = 0 and the

evolution is given by (5.33) with � = �1
�
3 �Zc

��2=3
< 0. Because �Zc(t0) > 0, as z ! Zc and � ! +1,

s ! �1 for normal time-dispersion (�3 > 0), and both time-dispersion and nonparaxiality (�rst and
second terms on the right-hand-side of (5.33), respectively) contribute to the arrest of the blowup by
preventing g from becoming in�nite. When time-dispersion is anomalous (�3 < 0), it enhances blowup
(s ! +1) while nonparaxiality opposes it. Eventually, as s ! +1 nonparaxiality prevails and the
solution of (5.33) will decay (no blowup).

In the case of normal time-dispersion and �1 = �2 = 0, blowup is arrested only in an exponentially
small neighborhood of t0 [27], where pulse splitting occurs. In order to assess the added e�ects of
nonparaxiality and the mixed term, we note that the condition for blowup [27] in (5.33) as s ! �1 is
� > 2L2(0; t)Ai2(s0) or

3 _Zc
2
> 1 �  _Zc + 2L2(0; t)Ai2(s0)

�
3 �Zc

�2=3
where Ai(s) is the Airy function. Therefore, if nonparaxiality dominates, arrest of blowup occurs over a
much larger region (possible everywhere). If the �2 term dominates, blowup will occur when �3 > ��2= _Zc,
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i.e. only for t > t0. Note that as the solution starts to deviate from that of the unperturbed CNLS, the
2D self-similar structure (5.31) will gradually break down. Therefore, for later z this 2D self-similar
argument becomes invalid and the full 3D nature of (5.30) has to be considered.

From eq. (5.32) we see that the e�ect of the �2 term on a self-focusing pulse is a temporal power
transfer towards later times (recall that � is proportional to the excess power above critical). This will
result in an asymmetric temporal development of the pulse, with a greatly enhanced trailing portion and
a suppressed leading part, in agreement with previous results on the e�ect of the shock term [10] and of
the linear component of the �2 term [65].

6. Numerical methods. Numerical integration of self-focusing in CNLS (1.1) requires a code that
can handle the ever increasing gradients near the singularity. In the method of dynamic rescaling [50],
the independent variables and the function are dynamically rescaled in a way which is based on the
asymptotic form of the solution (3.1). In the rescaled variables the function is smooth and the problem
can be solved on a �xed grid using standard techniques. Then, the solution of CNLS is recovered from
that of the rescaled problem. Subsequent improvements to this method include the use of approximate
boundary conditions [35] and extension to the non-isotropic case [40]. The CNLS simulations in this
paper were performed using dynamic rescaling with approximate boundary conditions (for more details,
see [23]). The power of this method can be seen, for example, in Figure 3.5C, where focusing factors of
1015 were reached.

Dynamic rescaling was also applied to perturbed CNLS: Saturating nonlinearity [42], the Davey-
Stewartson equations [56] and small normal time-dispersion [27]. However, in these cases the method
becomes less successful, since it is inherently based on the special rescaling of CNLS self-focusing. Some
of the di�culties which arise are instabilities due to the use of the approximate boundary conditions
during defocusing stages and the need for (a yet unknown) additional rescaling in the t direction in the
non-stationary cases.

Another approach is to apply a split-step method (e.g. [59]): The linear parts are solved by a Fourier
transform in space, and the nonlinear part is solved by an appropriate nonlinear solver. A di�erent
approach was taken in [9], were CNLS was solved by a Galerkin �nite-element method.

6.1. Numerical comparison of CNLS and adiabatic theory. In order to compare the numerical
solution of a perturbed CNLS with its corresponding reduced system, one needs to be able to recover the
values of L, � and � from  . In the case of dynamic rescaling, one solves for the rescaled function u and
for �L, which are related to  through

 =
u(��; ��)

�L
; u � exp

�
i�2(��)�� + i

�Lz
�L

r2

4

�
�R(���) :

The bars denote the (numerical) values of L, � etc in dynamic rescaling. In general, these values are
di�erent from the ones used in the asymptotic theory where � � 1. The modulation variables can be
recovered using [23]:

� = argu(� = 0) ; L = �L
R(0)

ju(0)j ; a � �a

�
R(0)

ju(0)j
�2

; Lz � � �a
�L

R(0)

ju(0)j
and

Hs � 1
�L2

Z ��c

0

�
ju��j2 � 1

2
juj4

�
�d� :

Although � can be recovered by using (3.5), a better way, which does not involve numerical z derivatives,
is to use

� � 1

M

�Z ��c

0

juj2 �d��Nc

�
:(6.1)
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Note, however, that this approximation has only O(�) accuracy. Therefore, near the singularity a more
accurate approximation is

� � a2 ;(6.2)

which has a theoretical exponential accuracy in �. However, since the last approximation is not valid at
the early stages of self-focusing, in the numerical comparison of the adiabatic laws with NLS simulations
(Figures 3.5{3.6), we recover � using (6.1) at the early stages of self-focusing and switch to (6.1) for the
advanced stages of the blowup.

When we apply modulation theory for non-stationary perturbations of CNLS, the question arises as
to how to represent t cross-sections whose power is much smaller than Nc, since modulation theory was
derived for j�j � 1. The simplest approach is to use (3.15) for all t cross-sections. If we do that, then

lim
t!�1

�(t) =
�Nc

M
�= �3:38 :

Fortunately, this approximation is quite reasonable, since as t! �1 the propagation is determined only
by linear di�raction, in which case

Lzz =
4

L3

(see, for example, eq. (39) of [7]), corresponding to

lim
t!�1

�(t) = �4 :

A related question is which value to use for L0(t) for jtj large. We cannot use (3.39), since then

lim
t!�1

L0(t) =1 :

One possibility is to set L0(t) � 1.
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Appendix A. Perturbation analysis for P � R+ �h.

In this Lemma we use regular perturbations to evaluate several integrals which arise when we average
over the transverse variables. In the case of perturbed CNLS, the results of this Lemma are applied with

P = V0(�; �;� = 0; �) :

In Appendix B we apply this Lemma for the case of unperturbed CNLS with P = V0(�;�), but in that
case we have to be more careful with the domains of integration.

Lemma A.1.

1. Let R(�) be the solution of (2.11). Then the following identities hold:Z 1

0

R2 �d� =

Z 1

0

(r?R)2 �d� = 1

2

Z 1

0

R4 �d� :(A.1)
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2. Let P (�; �) 2 H1 satisfy the equation

�P � P + P 3 + �w(P ) = 0(A.2)

with w(P ) real. Then

H(P ) =
�

2�

Z
w(P )[P + (�; �) � r?P ] d�d� :(A.3)

In addition, if we expand

P (�; �) = R(�) + �h(�; �) +O(�2) ; j�j � 1 ;

then the equation for h is (4.22) andZ
Rh�d�d� =

Z
(R3h�r?Rr?h) d�d� = �1

2

Z
w(R)[R + �r?R] d�d� :(A.4)

Therefore,

H(P ) =
�

2�

Z
w(R)[R + (�; �) � r?R] d�d� +O(�2) :

Proof:
If we multiply (A.2) by P and integrate by parts, we get:

�
Z
(r?P )2 �

Z
P 2 +

Z
P 4 + �

Z
w(P )P = 0 :(A.5)

Similarly, if we multiply (A.2) by (�; �) � r?P and integrate by parts, we get:Z
P 2 � 1

2

Z
P 4 + �

Z
w(P )(�; �) � r?P = 0 :(A.6)

Adding (A.5) and (A.6) gives (A.3).
If we multiply (2.11) by P and integrate by parts, we get

�
Z
r?Rr?P �

Z
PR+

Z
PR3 = 0 :(A.7)

The O(1) and O(�) equations in (A.5) are respectively:

�
Z
(r?R)2 �

Z
R2 +

Z
R4 = 0 ;(A.8)

�2
Z
r?Rr?h� 2

Z
Rh+ 4

Z
R3h = �

Z
w(R)R :(A.9)

The O(1) and O(�) equations in (A.6) are respectively:Z
R2 � 1

2

Z
R4 = 0 ;(A.10)

2

Z
Rh� 2

Z
R3h = �

Z
w(R)(�; �) � r?R :(A.11)
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The O(1) and O(�) equations in (A.7) are respectively:

�
Z
(r?R)2 �

Z
R2 +

Z
R4 = 0 ;(A.12)

�
Z
r?Rr?h�

Z
Rh+

Z
R3h = 0 :(A.13)

From (A.8{A.13), we get (A.1) and (A.4).

Appendix B. Perturbation analysis for V0 � R+ �g.
In this Appendix we derive the modulation approximations to various integrals which arise when we

derive the reduced equations for CNLS from balance of power. Modulation theory for CNLS is based on
the ansatz for the focusing part of the solution

 s(r; z) � 1

L
V0(�;�) exp(i� + i

Lz
L

r2

4
) ; � =

r

L
;

where V0 is quasi-steady. As we have seen, if V0 is de�ned by (3.7), then to the right of the turning point
at �b = 2��1=2 (see section C), V0 is oscillatory

V0 � 1

�
cos

�
��2

4

�
:

Therefore, with this de�nition it is not possible to match  s with  back. Moreover, V0 is not even in L2,
as
R1
0
jV0j2 �d� diverges.

In order to take care of this problem we need to rede�ne V0. One possibility is to have V0 de�ned for
all �, in which case one has to add a small term to (3.7) which will correct its behavior for large �. In this
case, the equation for V0 is (3.8). Alternatively, we can consider V0 to be the solution of (3.7), restricted
to the domain 0 � � � �c, where 1 � �c < �b (e.g. �c = ��1=2). If we adopt this approach, then  s is
also de�ned only for 0 � � � �c, as in eq. (3.3).

Lemma B.1. Let V0(�) be the solution of (3.7). Then

H(V0) :=

Z �c

0

jrV0j2 �d�� 1

2

Z �c

0

jV0j4 �d� = ��
4

Z �c

0

�2V 2
0 �d�+ fterms exponentially small in �g :

In addition, if we expand

V0 � R(�) + �g(�) +O(�2) ; j�j � 1 ;(B.1)

the equations for R and g are (2.11) and (3.10) andZ 1

0

Rg �d� =
M

2
; N(V0) :=

Z �c

0

jV0j2 �d� = Nc + �M +O(�2) :

Proof:
Use Z �c

0

V 2
0 =

Z 1

0

R2 + 2�

Z 1

0

Rg +O(�2)

and Lemma A.1 with P = V0, � = �, w = (1=4)�2V0 and h = g. Note that in the domain [0 �c] the
expansion (3.9) is uniform in � and V0, R and g are all exponentially decreasing. Therefore, the error of
replacing �c with in�nity in integrals is exponentially small in �.
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Lemma B.2. Let

 s(r; z) =
1

L
V0(�;�) exp(i� + i

Lz
L

r2

4
) ; � =

r

L
:

Then:

N( s) :=

Z L�c

0

j sj2 rdr = Nc + �M +O(�2) :(B.2)

Proof:
This follows from Lemma B.1.

Appendix C. WKB calculation of the rate of power and Hamiltonian radiation.
In this Appendix we derive (3.16) and (3.17). Let us rewrite equation (3.4) as

iV� +�?V � UV = 0 ; U = 1� jV j2 � 1

4
��2 :(C.1)

The radiation rates for the power and Hamiltonian of  s are given by

d

dz
N( s) =

d

dz

Z L�c

0

j j2 rdr(C.2)

d

dz
H( s) =

d

dz

Z L�c

0

�
j rj2 � 1

2
j j4

�
rdr :

When 0 < � � 1,

V � R(�) ; 0 � �� ��1=2 ;(C.3)

and the potential U has two turning points: �a = O(1) and �b � 2=
p
�. Since in the classically inaccessible

region [�a; �b] the solution V has an exponential decay, if we set �c in (C.2) to be just past the second
turning point to the right i.e. 0 < �c � �b � 1 (rather than 1� �c < �b, as in Appendix B), this would
only result in an exponentially small change in the values of Ns and Hs.

If we di�erentiate (C.2), use (1.1) and integrate by parts, we get:

d

dz
N( s) = j j2LLz�2c + (i � rL�c + c:c: ) ;

d

dz
H( s) = j rj2LLz�2c �

1

2
j j4LLz�2c + [iL�c( 

�
r rr � j j2 � r) + c:c: ] :

Using (3.1), these equations can be rewritten in terms of V :

d

dz
N( s) =

1

L2
(i�cV

�V� + c:c: )(C.4)

and

d

dz
H( s) = �Lz�

2
c

L3
jV�j2 � L2z�

3
c

4L2
(iV V �� + c:c ) +

Lz�
2
c

2L3
jV j4 + �c

L4
(iV �� V�� + c:c )(C.5)

�Lz�c
2L3

(jV j2)� + Lz�
2
c

2L3
(V �V�� + c:c )� �c

L4
(ijV j2V �V� + c:c ) :

In order to �nd the asymptotic behavior of V for � > b, we rewrite (C.1) as

iV� + �2�sV � UV = 0 ; U = 1� jV j2 � s2 ; s = �� ; � =
�1=2

2
� 1 :(C.6)
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Since for CNLS V� = o(�), we can use the stationary version of (C.6):

�2�sV � UV = 0 :(C.7)

In terms of the new independent variable s, the turning points are at sa = O(�) and sb � 1. Using (C.3)
and

R(�) � AR exp(��)��1=2 ; �� 1 ;

we get that

V � AR exp(�s=�)(s=�)�1=2 ; � � s� 1 :(C.8)

When s� �, the nonlinearity becomes negligible. Application of WKB to (C.7) shows that

V � Cw
s1=2p1=2

exp

�
+
i

�

Z s

1

p(r) dr

�
; p = (�2U)1=2 �

p
s2 � 1 ; �2=3 � s� 1 ;(C.9)

from which it follows that

V � Cw
s

exp

�
+i
s2

2�

�
; s� 1 :(C.10)

Only the term with the plus sign in the exponent was used in (C.9) and (C.10) in order to ensure that
 s � V=L exp(ir2Lz=4L) has no rapid oscillations as it connects to  back. The connection formula for
(C.9) beyond the turning point at sb (e.g. [11, chapter 10], [38, chapter 7]) gives

V � Cw exp(�i�=4)
s1=2jpj1=2 exp

�
�1

�

Z s

1

jp(s0)j ds0
�
; jpj �

p
1� s2 ; � � s < 1 ; s� 1� �2=3 :

In particular, when � � s� 1, jpj � 1 and

V � Cw exp(�i�=4)
s1=2

exp

�
�1

�

�Z 0

1

p
1� s2 ds+ s

��
; � � s� 1 :(C.11)

The value of Cw is determined by matching (C.11) with (C.8) and using
R 1
0

p
1� s2 ds = �=4 :

Cw = AR�
1=2 exp

�
� �

4�

�
exp

�
+i
�

4

�
:(C.12)

Combining (C.6), (C.10) and (C.12) gives

V � 21=2AR�
�1=4��1 exp

�
� �

2
p
�
+ i

�

4
+ i

�1=2

4
�2
�
; �� ��1=2 :(C.13)

If we substitute (C.13) into (C.4), we get that in the domain of validity of (C.13) the rate of power
radiation is independent of �:

d

dz
Ns � �2A2

R

L2
exp(��=

p
�) ;

which is (3.16). However, if we substitute (C.13) into (C.5), the result will depend on �. Therefore, in
order to estimate (C.5) we need the asymptotic behavior of V just to the right of the second turning
point sb = 1 (C.9):

V � Cw
21=4(s� 1)1=4

exp

�
+i

21=2

�

Z s

1

(s0 � 1)1=2 ds0
�
; �2=3 � s� 1� 1 :(C.14)
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If we substitute (C.14) into (C.5) and use � � �LLz=2 and �2=3 � s� 1, we get that for leading order

d

dz
Hs � �2A2

R

L4
exp(��=

p
�) ;

which is (3.17).

Appendix D. Asymptotic growth of Hs.
In order to estimate the rate at which Hs growths in the adiabatic regime, we use (3.17) and the

adiabaticity of � to write

Hs � �M�(�)

Z z 1

L4(z0)
dz0 :

If we use (3.35) and integrate, we get

Hs � �M�(�)

4�

1

Zc � z

or

Hs � �M�(�)

2
p
�

1

L2
:

Appendix E. Derivation of (3.35).
We �rst note that by (3.13,3.28,J.1) and using � � a2, we have that

C(z) =
a2 � �

L2
=
�a�
L2

� �(�)

2
p
�L2

:

Using this and (3.35), we have that

C(z)(Zc � z)2

2
p
�(Zc � z)

� �(�)(Zc � z)

4�L2
� �(�)

8�3=2
� 1 ;

showing the consistency of the adiabatic law (3.35) being the limit of the adiabatic law (3.34) near the
singularity.

Appendix F. Solvability conditions for V1.
In the derivation of the reduced equations from a solvability condition for V1 we use the following

result:
Lemma F.1. Let V1 = S + iT be the solution of

�?V1 � V1 + 2R2V1 +R2V �1 = p(x; y) + iq(x; y) ;(F.1)

where S; T; p; q are real and R(r) is the positive solution of �?R + R3 � R = 0. Then the solvability
condition for S is that

R
pr?R = 0 and the solvability condition for T is that

R
qR = 0.

From Lemma F.1 it immediately follows that
Corollary F.2. If p is an even function, the equation for the real part of V1 in (F.1) is always

solvable.
The proof of Lemma F.1 follows from the the following result, which is given in [77], but not proved

there for L+ for the 2d case. Here we give a proof which can be generalized to all dimensions and powers
of nonlinearity.
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Lemma F.3. Let

L+ = (�? + 3R2 � 1) ; L� = (�? +R2 � 1) ;

where

�? =
d2

dr2
+

1

r

d

dr

be operators on

B =
�
f 2 C2[0 1) j fr(0) = 0; f(1) = 0

	
:

Then
1. L+ is a self-adjoint operator with null space N(L+) = spanfRrg.
2. L� is a self-adjoint operator with null space N(L�) = spanfRg
Proof:
We can easily see that Rr is in the null space of L+ by di�erentiating the equation for R. Hence, we

can use Rr to �nd the second independent solution u by considering

u = vRr

From L+u = 0, the equation for v is:

2vr(Rr)r + vrrRr +
d� 1

r
vrRr = 0

This equation can be easily solved, and we get that

u = Rr

Z r 1

(r0)d�1[Rr]2
dr0

For large r, R � r�1=2e�r and u diverges. Hence, u is not in N(L+).
The proof for L� is similar.

Appendix G. Proof of Proposition 4.2.
When f2 6� 0, dimensional argument shows that

[(f1)z]

[f2]
=

[L2]

[Z]
� �1=2 � 1 :

Therefore, the leading order behavior of (4.3) is given by (4.8). Since in this case the accuracy of the
approximation is O(�1=2), there is no point in keeping the �(�) radiation term.

When f2 � 0 (4.3) becomes (4.16). For leading order we can neglect the �(�) term and integrate
(4.16) to get equation (4.7).

Appendix H. Proof of Proposition 4.3.
If (4.9) holds, we can multiply (4.7) by �2Lz=L3 and integrate to get

L2z =
�0
L2

� �C1
4M

1

L4
+D ; D = constant(H.1)

or

y2z = 4�0 � �C1
M

1

y
+ 4Dy :(H.2)
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Although the value of D can be obtained directly from (H.1), it is more instructive to obtain it by
deriving (H.2) from Hamiltonian balance. To do so, we multiply (4.1) by  �z , add the conjugate equation
and integrate, to get an equation for balance of Hamiltonian in (4.1):

@

@z
H( ) =

�

2�

Z
[ �zF ( ) + c:c:] dxdy :(H.3)

The right-hand-side of (H.3) can be approximated using (3.12), (3.17) and (4.23):

1

2�

Z
[ �zF ( ) + c:c:] dxdy �

�
1

2L2

�
z

f1 +
2

L2
f2 :

Therefore, in the generic conservative case (4.9), (H.3) reduces to

Hz � ��C1
4

�
1

L4

�
z

:

Simple integration gives

H = H0 � �C1
4

1

L4
; H0 � H(0) +

�C1
4

1

L40
:(H.4)

We note that

H( ) = H( s) +H( back) ; H( s) �ML2z +
H(V0)

L2
:

In addition, from Lemmas A.1 and B.1 we have

H(V0) � ��M +
1

2
�f1 :

Therefore12,

Hs � M

2
(L2)zz +

�f1
2L2

;(H.5)

which in the case of (4.9) becomes

H( s) � M

2
(L2)zz � �C1

2L4
:(H.6)

Substituting (H.6) in (H.4), multiplying by 4yz=M and integrating again gives

y2z = ��C1
M

1

y
+

4H0

M
y + constant :

Comparison of this equation with (H.2) gives (4.10), which can be rewritten as (4.11).
1. From (4.10) we see that if �C1 > 0 then y (or L) cannot go to zero.

(a) If �0 > 0 and H0 < 0 then 0 < ym < yM . To evaluate �Z we note that

�Z =

r
M

�H0

Z yM

ym

r
y

(yM � y)(y � ym)
dy :

Substituting (y � ym)=(yM � ym) = cos2 u gives (4.15).

12except when (f1)z = f2 � 0, in which case (L2)zz is as small as the terms neglected in Lemma B.1
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(b) When �0 > 0 and H0 > 0, (4.10) can be written as

y2z =
4jH0j
M

1

y
(y + jyM j)(y � ym) :

2. In this case ym < 0.
3. The location of (�rst) arrest is

z0 = �
Z ym

y(0)

1

2

r
M

�H0

r
y

(yM � y)(y � ym)
dy � 1

2

Z y(0)

0

�
�0 +

H0

M
y

��1=2
dy = Zc :

When  0 is real, then Lz(0) = 0, and y(0) = yM .

Appendix I. Proof of Proposition 4.4.
In this Appendix we estimate the value of

�Ns � �M
Z z+�Z

z

�(�)

L2
dz ;

following [25] (actually, the expression derived here is somewhat more accurate than the one in [25]). We
�rst note that from (J.1) and (4.11) we have

� =
1

4
(yz)

2 � 1

2
yyzz = �M

�
1� 2

yM=y � 1

yM=ym � 1

�
;(I.1)

where

�M := �(zM ) = �H0

M
(yM � ym)

and zM is the location such that

y(zM ) = yM and z � zM � z +�Z :

Let us rewrite �Ns as

�Ns � �M�(�M )

Z z+�Z

z

1

y(z)
exp[�Mh(z)] dz ;

where

�M :=
�p
�M

; h(z) = 1�
p
�M=� :

Since �M � 1, we can approximate the integral using Laplace's method for integrals (e.g. [11, 54]):Z z+�Z

z

1

y(z)
exp[�Mh(z)] dz � 1

yM
�
�1=2
M

r ��
2hzz(zM )

:

Since �z(zM ) = 0,

hzz(zM ) =
1

2�M
�zz(zM ) :

Similarly, since yz(zM ) = 0, from (I.1) we have

�zz(zM ) =
2�Mym
y2M

yzz(zM ) :
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Di�erentiating (4.11) gives

yzz(zM ) =
2H0

M

�
yM � ym
yM

�
= �2�M

yM
:

Therefore,

hzz(zM ) = �2�Mym
y3M

and �Ns is given by (4.17).

Appendix J. Useful relations.
The following relations are useful in analysis of the reduced modulation equations:

� = �L3Lzz = 1

4
(yz)

2 � 1

2
yyzz =

A��

A
= a2 + a� ;(J.1)

�z = �1

2
yyzzz ;(J.2)

where

y = L2 ; A =
1

L
; a = �LLz = �L�

L
:
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