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CHAIN-BRANCHING EXPLOSIONS IN MIXING LAYERS* 

ANTONIO L. SANCHEZt, AMABLE LINAN*, AND FORMAN A. WILLIAMS^ 

Abstract . The chain-branching process leading to ignition in the high-temperature hydrogen-
oxygen mixing layer is studied by application of a novel WKB-like method when, as is typically 
the case, two branching radicals cannot be assumed to maintain steady state. It is shown that 
the initiation reactions, responsible for the early radical buildup, cease being important when the 
radical mass fractions reach values of the order of the ratio of the characteristic branching time to 
the characteristic initiation time, a very small quantity at temperatures of practical interest. The 
autocatalytic character of the chain-branching reactions causes the radical concentrations to grow 
exponentially with downstream distance in the process that follows. It is shown that the transverse 
radical profiles that emerge can be described by exponential series of the WKB type in inverse powers 
of the streamwise coordinate. The analysis reveals that, because of the effect of radical diffusion, 
the rate of radical growth is uniform across the mixing layer in the first approximation, with the 
exponential growth in distance having the same nondimensional streamwise variation as that of a 
premixed branching explosion evaluated at the transverse location where the effective Damkoher 
number based on the flow velocity and branching rate is maximum. This functional streamwise 
variation, as well as the leading-order representation of the radical profiles, is obtained by imposing 
a condition of bounded, nonoscillatory behavior on the solution. The resulting radical profiles peak 
at the location of maximum local Damkohler number and decay exponentially to the sides. Analysis 
of the solution in the vicinity of the maximum, which is a turning point of second order in the WKB 
expansion, yields the second-order correction to the growth rate as an eigenvalue in a linear eigenvalue 
problem. The method developed can be extended to the analysis of chain-branching explosions in 
laminar, self-similar mixing layers with an arbitrary number of branching steps adopted for describing 
the chemistry. 
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1. Introduction. The processes leading to autoignition in nonpremixed mixing 
layers have been widely studied in recent years. Both coflow and counterflow configu­
rations with the boundary-layer approximation adopted for the conservation equations 
have been considered, yielding problems that are, respectively, parabolic and elliptic 
[5, 6]. Depending on the underlying chemistry, two different explosion behaviors can 
be identified: thermal ignition and chain-branching ignition. The former, which is 
characterized by abrupt temperature increases, can be investigated with a one-step 
Arrhenius model adopted for the chemistry, whereas chain-branching processes, in 
which the radical pool increases, can be isothermal, but typically require a number of 
chemistry steps for their description. 

The study of nonpremixed spontaneous ignition in the coflow mixing layer, with 
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a one-step Arrhenius model adopted for the chemistry, was performed by Lilian and 
Crespo [6], who took advantage of the large value of the activation energy typical of 
combustion processes for their asymptotic analysis. They found that the evolution 
of reactive mixing layers is characterized by an initial quasi-frozen stage in which 
the two streams mix and begin to react, followed by a sudden explosion or thermal 
runaway that clearly identifies the ignition location. An extension of the thermal-
runaway analysis of Lihan and Crespo [6] to take into account the wake that forms 
downstream from the splitter plate initially separating the streams has recently been 
published [9]. 

Analytical studies of chain-branching explosions in both the counterflow and the 
coflow mixing layers have been conducted in recent years for hydrogen-air systems 
with free-stream temperatures above the crossover temperature at which the rate of 
the main chain-terminating reaction H + O2 -f M —* HO2 + M equals that of the 
rate-controlling branching reaction H -f O2 —* OH + O [13]. In particular, it has 
been shown that the ellipticity associated with the counterflow configuration causes 
the branch of ignited solutions to emerge as a bifurcation from the frozen state [7, 8]. 
In contrast, chain-branching ignition in coflow mixing layers is a parabolic problem 
that leads to a continuous growth of the radical pool in a self-accelerating manner 
[10, 14]. If the temperature is sufficiently above crossover, then the effect of three-
body recombination reactions, responsible for most of the heat released in H2-O2 
combustion, is negligible, and the two streams mix and react initially without signifi­
cant chemical heating. This gives rise to a thermally frozen branched-chain explosion 
[10]. In the early stages of the process, radical concentrations are very small, and the 
slow initiation steps control the process. Very soon the radical pool becomes large 
enough for the branching steps to take over, giving rise downstream to exponentially 
increasing radical concentrations. This region of autocatalytic growth, which is much 
longer than the initial initiation-controlled region, ends where the mass fractions of 
the radicals achieve their peak mole fractions, of order unity, corresponding to partial 
equilibrium of the branching reactions. Downstream from this ignition point there 
is a region of radical recombination with significant heat release which leads to the 
development of a diffusion flame, a process addressed elsewhere [11]. 

Following our previous work [10], we study here the isothermal radical-growth 
process leading to ignition in the hydrogen-air coflow mixing layer for temperatures 
above crossover with a chemistry description that includes two branching radicals not 
in steady state. Asymptotic solutions for both the initiation-controlled region and 
the region of autocatalytic growth will be obtained by considering the limits of small 
and large values of the normalized streamwise distance, respectively. Analysis of the 
region of autocatalytic growth, which determines in the first approximation the lo­
cation of the ignition point and the shape of the associated radical profiles, will be 
developed by utilizing WKB-like exponential expansions for the radical concentra­
tions in a series of decaying powers of the streamwise distance, extending the analysis 
to obtain the second-order correction to the ignition distance. Use of two branching 
radicals, which was done only at leading order in our previous work [10], is needed for 
accurate descriptions of real systems [2, 8]. It may thus be worth emphasizing that 
previous numerical and analytical studies [2, 8, 10] have demonstrated clearly that 
physically correct and accurate analytical representations of the real chemistry and 
ignition process in hydrogen-air evolving mixing layers under the high-temperature 
conditions addressed here require a treatment of the present type. 

The problem is formulated in the next section. The characteristic scales associ-
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ated with the igniting mixing layer as well as the character of the resulting solution 
are next anticipated in section 3. In section 4 we develop the asymptotic solution. 
Discussion of the results, including comparisons of the asymptotic predictions with 
results of numerical integrations of the conservation equations, is presented in section 
5. Finally, conclusions are given in section 6. 

2. Formulation. If the temperature of the coflowing streams is sufficiently above 
crossover, as is the case considered in the present study, then the effect of three-body 
recombination reactions is negligible, and the initiation reaction 

H2 + 0 2 -^ OH + OH 

and radical-branching reactions 

H + 0 2 A O H + O, 

H2 + O A OH + H, 

and 

H2 + OH A H 2 0 + H 

suffice to describe the branched-chain process of hydrogen-oxygen chemistry. Al­
though reaction 1 is slow because of its large activation energy, it must be retained 
in the mechanism to provide the first radicals when upstream diffusion is negligible, 
as is the case in the present study. In the ignition region the characteristic mass 
fractions of radicals and that of water vapor are small quantities. This causes the 
rates of the reverse reactions 2-4, proportional to products of small mass fractions, 
to be negligible compared with the forward rates retained in the analysis, which are 
linearly proportional to radical mass fractions. This holds during the radical growth 
process until the radical mole fractions increase to values of order unity such that 
the rates of the backward reactions 2-4 become comparable to those of the branching 
steps, ushering in a thin region across which the branching reactions reach partial 
equilibrium. Because of the rapid radical growth that will be seen to characterize 
the process, the backward reactions 2-4 are significant only very close to the ignition 
point, and they are consequently neglected in the analysis that follows. 

The chemical scheme 1-4 can be further simplified by assuming that the OH 
radical maintains steady state everywhere, an assumption motivated by the relatively 
large rate of reaction 4 that has been numerically tested in a previous study [2]. The 
OH radicals produced by reactions 1-3 are then readily consumed by reaction 4 before 
they can be transported, so that, for instance, the overall effect of reaction 1, which 
produces two OH radicals, can be obtained by twice adding reaction 4 to reaction 1 
to give the global initiation reaction 

3H2 + 0 2 ^ 2 H + 2H20, 

with a rate given by that of the elementary reaction 1. Similarly, by adding reactions 2 
and 4 and reactions 3 and 4, one can easily derive the global branching reactions 

H2 + 0 2 " 0 + H 2 0 

and 

2H2 + 0 ^ 2 H + H 2 0 , 
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with rates given, respectively, by those of the elementary reactions 2 and 3. The 
reaction-rate constants corresponding to the elementary steps 1-3 are of the form 
kj = AjTnj exp[—Ej/(R°T)]i where R° is the universal gas constant. Updated values 
of the different reaction-rate parameters in mol/cm3, s_ 1 , K, and cal/mol are [3] 
A1 = 1.7 x 1013, A2 = 3.52 x 1016, A3 = 5.06 x 104, nx = 0, n2 = -0.7, n3 = 2.67, 
Ex = 47780, E2 = 17070, and E3 = 6290. 

We consider a laminar mixing layer consisting of two parallel streams, one of 
hydrogen diluted with nitrogen and the other of air. In the formulation, x and y will 
be the coordinates in the streamwise and transverse directions, with u and v being 
their corresponding velocity components. The air and fuel streams occupy initially the 
upper (y > 0) and lower (y < 0) sides, merging at x = 0 where mixing and reaction 
begin. The subscripts oo and — oo will denote, respectively, free-stream conditions 
on the air and fuel sides. We shall assume that density p and transport properties 
are constant, a simplifying assumption that may introduce some degree of inaccuracy 
in the calculation when the temperatures of the merging streams are different, and 
also for undilute fuel feed as shown in [8]. For the flow considered, there exist self-
similar solutions for the velocity field, the frozen react ant concentrations, and the 
frozen temperature distribution, which are obtained by use of a similarity coordinate 
V — [uoc/vY^y/x1/2 and a nondimensional stream function ^(77), such that u = u^F' 
and v = {vUoo/xY^^F' — F) /2 , where the prime denotes differentiation with respect 
to 77 and v is the kinematic viscosity of the mixture [15]. With these new variables, 
the boundary-layer equations for the thermally frozen mixing layer with TV different 
reactive species become 

(2.1) i p F " + F " ' = 0, 

(2.2) ^F-f^+k)—' 
OX X \2 Si J puoo 

and 

(2.3) 1 F 0 ' + _L0" = O, 

where 0 = (T — T^/T^ is an appropriate nondimensional temperature denned with 
respect to the air-side temperature, Pr = pcp/X is the Prandtl number, with cp being 
the specific heat at constant pressure of the mixture, and Y^ Si = ji/{pDi) and Wi 
are, respectively, the mass fraction, Schmidt number, and mass rate of production of 
species i. The transport coefficients A and Di correspond to the thermal conductivity 
of the mixture and the binary diffusion coefficient of species i. Equations (2.1)-(2.3) 
must be integrated subject to the boundary conditions F' = 1, Yi = Yioo, and 0 = 0 
at 77 = 00; F' = u-oo/uoo, Yi = l^-oo, and 6 = 9^^ = (T_oo - T^/Too at 77 = -00; 
and F = 0 at 77 = 0. In addition to the above boundary conditions, one must provide 
initial conditions for the integration of (2.2) given by the uniform free-stream profiles 
Yi = Yioo for 77 > 0 and Yi = l^-oo for 77 < 0. 

With the simplifying assumptions introduced, (2.1) is decoupled and can be in­
tegrated separately to yield the self-similar solution for the velocity profile, whereas 
the self-similar frozen solutions for the temperature and reactant profiles can be de­
termined by integration of (2.3) together with the frozen version of (2.2) with the 
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previously stated boundary conditions to yield 

(2.4) 

(2.5) 

and 

(2.6) 

l - o o e X P 
Vo2f 

II exp 

-(S0J2) fi F(rj)drj 

-(S0J2) fl F(rj)drj 

drj 

drj 

Vn2f = 1 -
l - o o e X P 

r- exp 

-(Saj2) ft F(ij)dfj 

1 -
J-ooeXP 

J-oo eXP 

-(SHj2)fJF(rj)di 

-(Pr/2) /„" F(fi)dfi 

drj 

-(Pr/2) fl F(fj)drj 

drj 

drj 

drj 

where 6-^ = (T_oo - T^/T^ and where y 0 2 / = ^o2//^o2oo and yH2/ = Y^/Y^^ 
are the frozen reactant mass fractions normalized with their corresponding free-stream 
values. Note that in the simple isovelocity case t̂ oo = ti-oo> the solution for the stream 
function reduces to F = 77, while the expressions given in (2.4)-(2.6) simplify to 

(2.7) 

(2.8) 

and 

(2.9) 

Vo2, = l - \ erfc ( 5 i f »?/2) 

y*2f = g e r f c
 ( 5 ' H { 2 ^ / 2 ) , 

A-=1-eric(Pr^V/2), 

where erfc is the complementary error function. 
Because of the autocatalytic exponential radical growth with distance that will 

be seen to characterize chain-branching ignition, the effect of reactant consumption 
is important only close to the ignition point at which the radical mole fractions reach 
values of order unity corresponding to partial equilibrium of the branching reactions. 
Hence, reactant consumption can be neglected in the first approximation when de­
termining the ignition distance. This reduces the problem to that of integrating the 
conservation equations for the chain-branching radicals with the chemical terms eval­
uated with frozen reactant concentrations and frozen temperature. To write these 
equations, it is convenient to define normalized H-atom and O-atom mass fractions 

(2.10) 

and 

(2.11) 

Vn 

Vo 

fcioo WH2 YH 

2kloo WH YHo_c 

k2oo WU2 Y0 

2klQO w0 yH ,_ 

together with a new streamwise coordinate 

(2.12) J. /?^o2oo^2oo 
£ = x 

UooW02 
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scaled with the characteristic air-side branching distance. Here, Wi denotes the molec­
ular weight of species i. In terms of the streamwise coordinate £ and the similarity 
coordinate 77, required to describe the self-similar profiles of temperature and reactant 
mass fractions, the radical conservation equations become 

(2.13) ^ - ^ y (^F(r,)y'a + j-y'^j = Kl(r,) + 27«III(r?) Vo 

and 

(2.14) ^ - j j ~ (±F(r,)y'0 + j-y{j = Ku(rj) yH - 7 « m f a ) y0, 

with boundary conditions yH = y0 = 0 at £ = 0 and at r) = ±00 for £ > 0. Here, 

fc3oo W02 yH2-oo 
(2.15) 7 

feoo^H, YC O2OO 

is the ratio of the characteristic branching time of reaction II to that of reaction III, 
a quantity that depends on the degree of dilution of the fuel stream, becoming very 
large for undilute fuel feed (7 ~ 200). The functions of order unity 

(2.16) «, = e x p [ A ^ / ( l + ef)]y02fyH2f/F
f, 

(2.17) KU = exp[p20f/(l + 0f)]yO2f/F', 

and 

(2.18) KIU = exp[/330//(l + 0f)]yH2f/F\ 

where f3j = Ej/(R°T00) is the nondimensional activation energy of the elementary 
reaction j , represent reduced Damkohler numbers corresponding to reactions I-III 
evaluated with the local flow velocity and local reactant concentrations at the trans­
verse location rj. Note that (2.13) and (2.14) with F = 77 (isovelocity case) and with 
the time replacing xju^ in the definition of the nondimensional variables r\ and £ 
can also be employed to describe the branching process in the unsteady mixing layer 
that forms when two half spaces, one of air and the other of hydrogen diluted with 
nitrogen, are put into contact. 

3. Preliminary considerations. The nature of the chemistry of the explosion 
process can be demonstrated most easily by neglecting diffusion and transverse con­
vection. 

3.1. Diffusionless radical growth. With the choice of coordinates in the for­
mulation, the second of the two terms appearing in the brackets on the left-hand 
side of (2.13) and (2.14) corresponds to radical diffusion, while the first is the appar­
ent transverse convection toward the center of the mixing layer associated with the 
growth with £ of the scale used in the definition of rj. To help expose the different 
characteristic regions that appear along the chain-branching mixing layer, it is con­
venient to remove initially these two terms, thereby precluding transverse transport 
of radicals. Although this simplifying assumption may appear to hold for the radi­
cal evolution at large downstream distances because of the £ - 1 factor in these terms 
in (2.13) and (2.14), more careful study will show that transverse radical diffusion 
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plays a significant role everywhere along the igniting mixing layer, being in fact the 
dominant transport mechanism for large £. The present approximation therefore is 
primarily heuristic, designed to explore the general nature of the problem. 

Neglecting transverse transport reduces (2.13) and (2.14) to the ordinary differ­
ential equations 

(3.1) 

and 

(3.2) 
dyQ 

^(rj) +27«m(77) yQ 

i^uiv) Vn -7Kui(rj) yc 

which can be readily integrated with initial conditions yu(0) = 2/o(0) = 0 to yield 

2/H 

Vo 

(3.3) 

where 

(3.4) 

l - A - / ( 2 « „ ) 
A + - A -

1 - A+/(2/c„) 
A+ - A" 

exp(A+0 

exp(A f) 

L 27K111 

2KU 

KI 

L 27K111 

Ad 7«i: 8KU 
-f 1 

2 v y 7«i 

are the roots of the associated characteristic equation 

(3.5) A2 + 7ttmA - 27K„^in = 0. 

As can be seen, one of the roots, A+, is positive, corresponding to an exponentially 
growing solution (the first term on the right-hand side of (3.3)), while the other root, 
A - , is negative, giving an exponentially decaying contribution. 

3.2. Radical-branching regions. The simplified solution given in (3.3) readily 
allows us to identify the different regions that emerge in the chain-branching explosion. 
For convenience, the ratio e — 2ki00/k20o is used as a scale for the radical mass 
fractions. This quantity, typically extremely small with values at T^ = 1200 and 
Too = 2000 given approximately by 3.5 x 10 - 7 and 8.7 x 10 - 5 , is a measure of the 
characteristic radical mass fraction for which the rates of the initiation and branching 
steps are equal. In the early stages of the chain-branching process, i.e., for distances 
much smaller than the characteristic branching distance (£ <C 1), the rates of the 
branching reactions, which are proportional to the concentrations of radicals, are very 
small, and radical growth depends mainly on the initiation reactions. This initiation-
controlled region corresponds to radical mass fractions smaller than the quantity e 
and, consequently, to values of yu and yQ much smaller than unity. A Taylor expansion 
of (3.3) in the limit ( « 1 yields yu = K,^ and yQ = KIK,U£2/2 for the initial growth 
of the radicals. As can be observed, since the initiation reaction produces only H 
atoms, whereas O-atom growth depends exclusively on the branching reaction II, the 
function yQ remains initially smaller than yH. 
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This initiation-controlled region ends as the radical mass fractions reach small 
values of order £, for which the rates of the initiation and branching steps are approx­
imately equal. In the following intermediate region, which corresponds to values of 
yu, y0, and £ of order unity, all terms in (3.3) become equally important and must 
be retained for a correct description of the solution. As £ further increases to values 
larger than unity, the exponentially decreasing contribution as well as the particular 
solution (the third term on the right-hand side of (3.3)) have a negligible effect, so 
that the solution simplifies to 

(3.6) 
2/H 

Vo 

l - A - / ( 2 t t „ ) 
A + - A -

27«n; 

exp(A+£), 

yielding radical concentrations growing exponentially with an exponent \+(r]) given 
by (3.4). This exponent corresponds to the local branching Damkohler number asso­
ciated with the branching steps II and III considered here. Evaluation of A+ across 
the mixing layer reveals that the local branching Damkohler number is maximum at 
a certain intermediate location across the mixing layer, while A+ —> 0 as r\ —> dzoo, 
corresponding to the failure of the branching chemistry in the absence of either one 
of the two reactants. For sufficiently small values of ^-oo/^oo n ° t to be considered 
here, A+ will exhibit a second maximum on the low-velocity side of the mixing layer. 
Equation (3.6) indicates that with transverse transport neglected the radical pool in 
this region of autocatalytic growth increases at each transverse location as that of 
a premixed chain-branching explosion, giving a growth rate that is maximum at a 
certain intermediate transverse location. 

In this third region of autocatalytic radical growth the functions yH and yQ reach 
large values, corresponding to radical mass fractions larger than £, causing the ini­
tiation reaction to have a negligibly small rate compared to that of the branching 
steps, as can be seen from (3.1) and (3.2). Since the values of the radical mass frac­
tions corresponding to partial equilibrium of the branching reactions are typically 
of order unity, i.e., the values of yH and yQ at the ignition point are large quanti­
ties of characteristic value £_ 1 ; this third, exponentially growing stage extends over 
most of the ignition process, taking place over a long distance corresponding to £ in 
the range 1 <C £ $̂ ln[£ -1]. Therefore, although transition of the solution from the 
initiation-controlled region to the region of autocatalytic growth requires considera­
tion of both the exponentally decaying solution and the particular solution arising 
from the effect of the initiation reactions, most of the ignition history is controlled by 
the exponentially growing solution. As a consequence, if errors of order unity (small 
relative errors of order l/lnJ£ - 1]) are neglected, then one can calculate the ignition 
distance & at each transverse location r\ by taking logarithms in (3.6) to give in the 
first approximation 

0.7) 6 r- ^ 
A+ 

a simplified result that does not require investigation of the short initial period in 
which the initiation reaction is significant. It is worth remarking that the behavior 
discussed here in connection with the reduced mechanism I—III can be generalized 
to more complex chemical systems with a larger number of branching radicals not in 
steady state. In that case, the order of the corresponding characteristic equation would 
also be larger (equal to the number of branching radicals not in steady state), and 
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more than one positive real root, together with negative real roots and even complex 
roots, may in principle exist, all being important for the description of the initial 
stages of radical growth. However, as the distance increases sufficiently, the solution 
corresponding to the maximum positive real root dominates the ignition behavior, so 
that approximate expressions analogous to (3.6) and (3.7) in general can be found. 

3.3. Effect of radical diffusion. Radical diffusion, which was neglected in 
our introductory analysis, is of fundamental importance to radical growth in mixing 
layers. Its effect, which will be taken into account below in the description of the 
initiation-controlled region, is particularly important in the region of autocatalytic 
growth corresponding to large downstream distances. As previously mentioned, in a 
naive approach to solving (2.13) and (2.14) in the limit £ ^> 1, it may seem reasonable 
to discard all the transverse transport terms, which appear multiplied by the small 
factor £ - 1 , yielding, therefore, (3.6) as the solution for the large radical profiles in 
this region. This simple intuitive description fails, however, in the presence of radical 
diffusion, as can be seen by substituting the functions given in (3.6) back into (2.13) 
and (2.14). The diffusion terms, ($>SuF

/)~1y/^ and (£>SQF')~1y"i that were assumed in 
the preliminary approach to be small, are found to be larger than the terms retained in 
the analysis by a factor £. This finding exposes clearly the predominant role of radical 
diffusion, which can be easily explained from physical considerations as follows. 

With radical diffusion neglected, we have seen that, at each transverse location, 
radical concentrations grow with distance with an exponential rate proportional to the 
local effective branching Damkohler number constructed with the local flow velocity, 
reactant concentration, and temperature. Because of the exponential growth at the 
location of maximum A+, radical concentrations soon become exponentially large 
compared with radical concentrations elsewhere, thereby leading to the development 
of sharp peaks in radical profiles. The presence of steep transverse gradients at this 
location enhances radical diffusion to less populated regions, thus rapidly smoothing 
the peaks and somewhat uniformizing radical-pool growth across the mixing layer. 
The extent of this equalizing mechanism and its effect on the resulting ignition distance 
will be assessed in the following sections by means of a WKB-like asymptotic analysis 
that employs £ as an asymptotically large quantity. 

4. Radical-growth analysis. With the simplifications introduced, the evolu­
tion of the radical mass fractions yH and yQ with the downstream distance £ is given 
by integration of (2.13) and (2.14) with the aforementioned boundary conditions and 
with the functions yo2f> 2/H2/5 and 9f determined from (2.4)-(2.6). These parabolic 
equations can be integrated with a simple time-marching method in the coordinate 
£. In particular, for the computations shown below, a Crank-Nicolson procedure was 
employed in the numerical integrations, with an iterative scheme adopted for the so­
lution of the implicit nonlinear system of equations in rj that appear at each £. As 
previously mentioned, three distinct regions emerge as the flow evolves downstream: 
there is an initiation-controlled regime corresponding to yH, yQ, and £ all being small, 
an intermediate regime for £ of order unity where the effects of initiation and branch­
ing reactions are equally important, and a region of autocatalytic growth that appears 
for £ ^> 1. While analysis of the intermediate region requires numerical integration 
of the conservation equations, both the initiation-controlled region and the region of 
autocatalytic growth are amenable to analytical solution as shown below. 

4.1. Initiation-controlled region (^ < 1). For small values of the coordinate 
£, the functions yH and yQ admit asymptotic expansions in powers of £ of the form yu = 
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^ H O + C T m + ' • * and yQ = r ^ O 0 + C ^01 , where ^ H 0 , ^ c are functions of the 
coordinate 77. As previously noted, since the initiation reaction produces only H atoms, 
while the initial O-atom growth depends exclusively on branching reactions, slow in 
this region of small radical concentrations, the growth rates of the two branching 
radicals are initially different. This yields mass fractions increasing with downstream 
distance according to yH oc £ and y0 oc £2. Substituting the asymptotic expansions 
for yn and yQ into (2.13) and (2.14) and collecting terms in powers of £ yields a set 
of ordinary differential equations to be solved sequentially for the functions ^Ho> ^00 > 
• • •. In particular, the leading-order terms are obtained by integration of 

(4.1) 
F 7 J^HO + "^HC ~lpB 

and 

(4.2) - < o F^'O0 2V<c f^UYHOj 

with boundary conditions ^HOC^ 0 0 ) = ^ooCioo) = 0. When the velocity profile is 
uniform (F = ??), the solution to (4.1) can be written in terms of second-order repeated 
integrals of the error function [1] i2erfc as 

^ B 

(4.3) 

SHi erfc 
si'2 

- 0 0 

rerfc 

+5Hi2erfc 5 H 
1/2 POO 

Jin 
i2erfc 

Crl/2 

exp ( -~~ri2 ) drj 

exp [ - f ij2 1 dfj, 

with 1/02/? ya2fj and 0f evaluated from (2.7)-(2.9). Similarly, once the function ^H0 

is computed from the above expression, the solution to (4.2) can be written in terms 
of fourth-order repeated integrals of the error function [1] i4erfc in the form 

^ c 5Gi erfc 
si'2 

(4.4) 
+S'oi4erfc 

S1'2 

/ nui/jno i4erfc 
J—00 

/>oo 

/ /^II^HO i4erfc 

si'2. 

si'2. 

exp ( —77 

&O _' 

d?7 

exp ( —77 1 drj. 

The leading-order asymptotic predictions yH = £^Ho a n d Vo — £2^oo correspond­
ing to an isovelocity (F — rj) and isothermal ($-00 = 0) mixing layer are compared in 
Figure 4.1 with results of numerical integrations of (2.13) and (2.14). In this compu­
tation, as in the rest of the paper, the Schmidt numbers are taken to be 5o2 = 0.74, 
5H2 = 0.19, 5 0 = 0.48, and 5H = 0.12. As can be seen, excellent agreement in H-atom 
profiles is found even beyond the range of validity of the asymptotic expansions. This 
unexpected behavior emerges because the effect of branching on the H-atom growth 
is limited to reaction III, with a rate proportional to yQ. As a result, carrying on 
the asymptotic analysis to a higher order gives tf>H1 = 0, i.e., the second nonzero 
term in the asymptotic expansion for yu is of order £3, with a coefficient I/JH2 that 
is proportional to ij)O0. This function of order unity achieves somewhat small values, 
as can be seen in Figure 4.1. Therefore, corrections to yH = £^H0 are small even for 
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FlG. 4.1. The functions yu and yo at three different downstream locations along the isovelocity 
(F = rj), isothermal (0-oo = 0) mixing layer, determined from integrations of (2.13) and (2.14) 
(dashed lines) and from the leading-order asymptotic predictions yu = C^HO and yo = ^ipoo, with 
the functions ipuo and ?/>oo computed from (4.3) and (4.4) (solid lines). 

£ of order unity, thereby extending the range of applicability of this leading-order 
representation. On the other hand, it can be shown that the next-order term in the 
expansion for yQ (tpoi) is nonzero, so that the leading-order expansion yQ = £,2ipoo 
exhibits inaccuracies of order £, as can be seen in Figure 4.1. 

4.2. Autocatalytic growth region (£ ^> 1). In this region of exponentially 
growing radical mass fractions, the initiation term in (2.13) is exponentially small 
and consequently can be neglected in the analysis that follows. Because of the lin­
earity of (2.13) and (2.14), the solution in the limit £ ^> 1 can be approximated by 
exponential series of the WKB type [4] of the form 

(4.5) y = exp t:J2Cn/2Gn(v) 
n=0 

Since the H-atom and O-atom mass fractions must have the same order of magnitude 
for the branching chemistry to proceed, one must choose in this approximation the 
exponentially large terms in the expansions for yn and yQ to be equal, thereby enabling 
transport and chemical terms in (2.13) and (2.14) to balance everywhere. Neglecting 
small terms in the approximated series 4.5 yields 

(4.6) 2/H Vo 
4>u(v) <I>O(V) 

expKG0(T7) + e1/2Gi(T7)], 

where the functions 0H and 4>0 carry a higher-order r\ dependence of the solution. 
Introducing the above expressions into (2.13) and (2.14) and collecting terms of the 
same order in powers of £ enables the problem to be solved sequentially as follows. 

At leading order (£) diffusion dominates, giving the single-term equation 

(4.7) G? 0. 
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This corresponds to the uniformizing effect of diffusion previously mentioned, indicat­
ing that the radical pool grows in the first approximation with uniform exponential 
rate Go, which will be determined below by carrying the analysis to a higher order. 
Since the equation that emerges at the next order (£1//2), 

(4.8) G'oG', = 0, 

is satisfied identically for any constant value of Go, one needs to investigate the 
homogeneous linear system of equations 

Go 
G[2 

SHF> 

(4.9) 

2-y Km(f>0 

ii 

Go + 7Km 
G'j 

SnF' 

0, 

0, 

with boundary conditions </>H(±oo) = 0o(±oo) = 0 that appear at order unity. 
Existence of nontrivial solutions to this problem requires that the determinant 

of the coefficient matrix associated with the above system of equations must vanish 
everywhere. This condition provides the quadratic equation for G'2 

(4.10) Gf - S0BG? + SHSo(F')2(G0 - A+)(G0 - A") = 0, 

where A±, given above in (3.4), and 

(4.11) B = Ff 

So 
+ 1 G0 + 7ttm 

are functions of the transverse coordinate 77. Equation (4.10) can be easily solved to 
yield two different solutions: 

(4.12) Gf = S0(B/2){1 ± [1 - 4(SH/S0)(F')2(Go - A+)(G0 - A~)/i?2]1/2}-

The solution corresponding to the positive square root never vanishes, thereby giving 
two G\ profiles monotonically increasing or decreasing with 77. This behavior is not 
compatible with the boundary conditions yH = y0 = 0 at 77 = ±00 and, therefore, 
these two solutions must be disregarded. 

The number of locations where the other solution for G'i vanishes, which are 
turning points of the WKB expansion [4], depends on the value of Go, as can be seen 
from (4.10). For positive values of Go corresponding to the exponential autocatalytic 
growth described here, the turning points are simply the roots of Go = A+. Hence, if 
the value of Go is larger than the maximum value that the local Damkohler number 
A+ reaches across the mixing layer, GQ, then no turning points appear, and the re­
sulting solutions for G\ either increase or decrease monotonically with 77, which is not 
acceptable as previously explained. For values of Go smaller than GQ, the solution 
would exhibit two turning points, between which the resultant radical profiles would 
be oscillatory. Since branching chemistry, with rates proportional to radical concen­
trations, prevents the development of new extrema of radical profiles, the potential 
appearance of oscillatory behaviors depends upon the initial radical growth history. 
As can be seen in Figure 4.1, the initiation reaction considered in this case causes 
the radical profiles to possess a single maximum in the initial stages of the chain-
branching explosion, thereby precluding the existence of two turning points across 
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the mixing layer. Therefore, the asymptotic solution that emerges must exhibit a 
single turning point, located at the transverse location 77* where A+ reaches its peak 
value, determined from the condition 

(4.13) 
d(A+) 

drj 
0, 

with A+ given in (3.4). Correspondingly, the leading-order exponential growth rate is 
determined by 

(4.14) G*0 = A+fa*), 

which is constant across the mixing layer and corresponds to that of the maximum lo­
cal effective Damkohler number based on the flow velocity. This indicates that radical 
diffusion does not affect the chain-branching rate in the first approximation. Although 
this convection-controlled behavior of chain-branching processes in nonpremixed mix­
ing layers was previously pointed out by Treviho and Lifian [14], their conclusion arose 
from observation of numerical integrations of the conservation equations, rather than 
from a mathematical analysis such as the one presented here. 

Once the values of 77* and GQ are obtained as indicated above, one concludes that 
Go = GQ and, with G\ denoting the value of G\ at 77 = 77*, can integrate (4.12) to 
find 

(4.15) Gi = G\ 

±S1o/2
 J\B/2)^{1 - [1 - 4(Su/So)(F')2(G*0 - A+)(GJ - A " ) / ^ ] 1 / 2 } 1 ^ , 

which gives the asymptotic form of the radical profiles. The boundary conditions 
at 77 = ±00 indicate that one must choose the solution with the positive integral to 
describe the profiles for 77 < 77* and, similarly, the negative integral as 77 —> 00, with 
transition between both solutions taking place at the turning point, 77 = 77*, where the 
radical profiles peak. The maximum value, G\ = Gi(rj*), of G\ remains undetermined 
in the integration. One needs to resolve the structure of the turning point in order to 
find this value as shown below. Although the explicit determination of the functions 
4>H and 4>0 requires carrying the analysis to the next higher order, solution to the 
homogeneous system given in (4.9) with Go = GQ provides the ratio (/>0/<frH across the 
mixing layer in the form 

(4.16) ^ = G*o-G?/&**"). 

4.3. Turning-point analysis. The asymptotic solution described by the series 
in (4.6) holds away from the turning point but breaks down in the vicinity of 77 = 
77*, within a thin layer of characteristic thickness £ - 1 / / 4 where second-order spatial 
derivatives previously neglected in deriving (4.9) have to be retained as can be seen 
in (4.18) and (4.19) below. In this thin layer, the H-atom and O-atom mass fractions 
admit descriptions of the form 

(4.17) £ = £ = <*PKG5 + e/2G\] *(*), 

where 0* and 0* are the unknown values of the functions (f)u and 4>0 at 77 = 77* and 
X = £1//4(7/ — 77*) is an inner coordinate that has been stretched appropriately. The 
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function \£(x) must describe the evolution of the radical profiles across this thin layer 
from exponentially growing solutions with increasing 77 for 77 < 77*, corresponding to 
the positive branch in (4.15), to the exponentially decaying profiles for 77 > 77* (the 
negative solution in (4.15)), with transition between both branches being possible 
only for a single value of G\. Introducing the expressions given in (4.17) into (2.13) 
and (2.14) yields the linear equations 

(4-18) JGS* + T 1 / 2 ( ^ * - 5 ^ 7 * ) } 4>n - {27«m*} 4>*o = 0 

and 

(4.19) - {«„*} 4>*H + |(GS + 7«in) * + T 1 / 2 ( ^ * " ~ * ) } 4>l = 0, 

where \£ represents the second derivative of the function \I/ with respect to the coor­
dinate x-

In deriving (4.18) and (4.19), small terms of order £~3/4 have been neglected. 
Nontrivial solutions to this problem exist only if the determinant of the coefficient 
matrix vanishes everywhere. It can be seen that the terms of order unity as well 
as those of order £~1//4 that emerge in the resultant characteristic equation vanish 
automatically following (4.13) and (4.14). The terms emerging at the following order 
(£ - 1 /2) yield the parabolic cylinder equation [1] 

d2^ C2 

(4.20) _ _ _ _ ( L _ + A ) * = o, 

where 

(4.21) C = [-25H(F')2(A+)"(A+ - \-)/B]V* X 

is a renormalized inner coordinate and 

<422» A=(-2BTO-A-)) ^ 

In these expressions the functions (F r)2 , (A+)/r, (A+ — A~), B, and 

(4.23) C=(2G*+7Klu)F
f, 

equal to B in the case OH — OQJ are evaluated at 77 = 77*. 
The solution to (4.20) must be nonnegative and decay exponentially to zero as 

( -^ ±00 to match with the radical profiles corresponding to the WKB expansion, a 
behavior that can be achieved only for 

(4.24) A = - 1 / 2 , 

giving an associated eigenfunction 

(4.25) * = exp(-C2/4)-

Equation (4.24), together with the definition of the parameter A given in (4.22), 
determines uniquely the negative value of G\ once the location of the turning point 
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77* has been obtained from (4.13). It must be noticed that to discriminate the solution 
A = —1/2 from the discrete set of eigenvalues that satisfy (4.20) with boundary 
conditions ^(±00) = 0, one must impose a nonnegativity constraint on the solution. 
This constraint is associated with the absence of oscillatory radical profiles, a criterion 
that is also used at leading order to determine the value of GQ. Clearly, imposing a 
nonoscillatory behavior is a key part of the asymptotic solution presented here. 

The negative value of G* reflects the influence of radical diffusion on the branching 
process, causing the maximum radical concentration to increase at a smaller rate, an 
effect not seen in the leading-order solution that becomes more pronounced for larger 
radical diffusivities (smaller values of SH and 5Q), as can be seen from (4.22). It can 
also be observed that, since radical migration from 77 = 77* toward the free streams 
depends on the sharpness of the radical profiles at the radical peaks, the value of G\ 
varies with the curvature of the Damkohler-number distribution at 77 = 77* according 
toGtoc[ - (A+)" ] 1 / 2 . 

5. Discussion of the asymptotic results. To evaluate the utility of the asymp­
totic analysis it is of interest to explain the characteristics predicted by the asymp-
totics and to compare the asymptotic results with those of numerical integrations. 

5.1. Predictions of radical growth. The asymptotic analysis predicts that 
at leading order the radical mass fractions are equal to exp[£Gg], uniform across the 
mixing layer, with corrections entering at the following order to yield exp^Gg+^^G*] 
for the maximum H-atom and O-atom mass fractions, reached at the turning point 
location 77 = 77*. Corrections of order unity, necessary to discriminate between the 
values of the two branching radicals, would necessitate carrying on the analysis to 
a higher order to compute the functions (f)H and <fr0. Since the initiation-controlled 
region also introduces changes in the resulting solution of order unity, the functions 0H 

and (j)0 necessarily contain memory effects associated with the initial region where £ is 
of order unity. One can anticipate that the required computation would then involve 
matching of the asymptotic solution corresponding to £ ^> 1 with the numerical 
profiles emerging from the intermediate region, resulting in a complicated calculation 
that is not pursued further here. 

The first-order and second-order asymptotic predictions are compared in Fig­
ure 5.1 with the peak values of yu and y0 at each downstream location obtained by 
numerical integration of (2.13) and (2.14) for the isothermal, #_oo = 0, isovelocity 
mixing layer. Values of 7 corresponding to dilute (7 = 5) and undilute (7 = 200) fuel 
feed are considered, for which 77* = 1.82299, G£ = 1.01493, and G\ = -1.20261 and 
77* = 3.41359, Gl = 1.84576, and G\ = -1.23215, respectively, as can be obtained 
from (4.13), (4.14), and (4.22). As can be seen, the effect of radical diffusion on the 
chain-branching rate, present in the second-order approximation through the negative 
value of G*, is clearly nonnegligible. 

5.2. Ignition distance. An explicit expression for the ignition distance can be 
calculated from the present results by solving exp[^Gg +£$ G*] = e~x to give in the 
first approximation 

an improved version of (3.7) that accounts for radical diffusion towards the free 
streams. Note that the above expression gives the value of the large ignition distance 
with an error of order unity, corresponding to a small relative error of order 1/ l n ^ - 1 ) . 

1 -
1 G\ 
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S 
FIG. 5.1. The evolution with downstream distance of the maximum values of the functions 

yu (circles) and yo (squares) obtained by integration of (2.13) and (2.14) for the isothermal 
(9-oo = 0), isovelocity (F = rj) mixing layer with 7 = 5 and 7 = 200, and comparison with 
the leading-order asymptotic prediction exp(Gg£) (dashed line), the second-order asymptotic predic­
tion exp(GJ£ + GJ^ 1 / 2 ) (dotted line), which apply to both yu and yo at these orders, and O-atom 
correction GJ exp(GJ£ + G J ^ 1 / 2 ) / ^ / ^ ^ * ) ] (dot-dashed line). 

As previously mentioned, higher accuracy involves carrying on the asymptotic analy­
sis to compute the functions <pu and </)0. Although this analysis is not developed here, 
the comparisons in Figure 5.1 indicate that (5.1) gives accuracies of ignition distances 
better than 10%, indicating that the second-order results emerging from the present 
study are sufficient for practical purposes. 

It is of interest to express the ignition distance in the original physical variables. 
When the effect of radical diffusion is neglected, use of (2.12), (2.15), (2.17), (3.4), 
and (4.14) in (5.1) yields for the ignition distance Xi 

(5.2) 
M*(l + va+c)ln[fc2oo/(2fclc 

4pk*2(Y*2f/W02) 

where 

(5.3) c — 
8 < Sk*2Y*2f/WQ 

7«fn * ^ H * 2 / / W H 2 

is the relevant measure of the ratio of rates of the elementary branching steps 2 and 3. 
As before, the star (*) denotes here the values of the different functions at 77 = 77*. 
When the hydrogen stream is undiluted, c is small, and (5.2) becomes 

(5.4) 
u* ln[fc2oo/(2fcioo) 
2pk*2(Y0*2f/W02) 

corresponding to evaluation of (3.7) at the position in the mixing layer where the 
growth rate of radicals is maximum. In this limit, step 3 is sufficiently rapid that the 
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growth rate is controlled by the rate of step 2, and in comparison with the order-of-
magnitude estimate Xi = ^V[P^2(^o2 / /^o2)] , the present analysis contributes the 
influence of the initiation step (the logarithmic term) and the factor of two in the 
denominator. Within the accuracy of the development, the ratio &2oo/(2&ioo) m the 
logarithmic term can equally well be replaced by fcj/^fcj), the ratio evaluated at the 
position where the growth rate is maximum, as expected physically. In the opposite 
limit in which c is large, (5.2) becomes 

/* KN r = u*\n[k2oo/(2kloo)} 
1 ' ' % ^ ^ ( ^ . / W O J ^ ^ H ^ / ^ H J ] 1 / 2 ' 

with the effective radical growth rate in the denominator being the geometric mean 
of the rates of the elementary steps 2 and 3. This occurs because when the effective 
rate constant for step 2 is large compared with that of step 3, as could be found when 
the oxidizer stream is pure oxygen and the hydrogen stream is highly diluted, the 
chemical-kinetic situation is fundamentally different from that of the opposite limit. 
For small c the O atom achieves steady state, giving a chain-branching step for H 
equivalent to step I, at a rate proportional to the H-atom concentration [12], but for 
large c the mechanism of steps I, II, and III do not permit an H-atom steady state. 
With c large, the rate of the rapid step II is proportional to the H-atom concentration, 
requiring step III also to occur if step II is to proceed; since the H-atom concentration 
is proportional to the rate of step III, the effective rate of step II then involves the 
product of the rate constants for steps 2 and 3, resulting in (5.5). 

The first correction to (5.2) for the effect of radical diffusion can be expressed as 
Xi — x°(l + A/6), where x\ denotes the value given in (5.2), and 

f 5 6 ) b = [-ttmCVl + (8/Q/(7ttm) ~ 1 ) P [ ( S H
 l + V ) + (S-1 - S-^/VTTc] 

[ ' } «f„{ln[fc2oo/(2fci00)]}F /*(vTT^-l) 

Here use has been made of (3.4), (4.11), (4.14), and (4.22)-(4.24). The second-
derivative factor illustrates the dependence of the diffusion effect on the curvature of 
the profile at the position of maximum growth rate; for example, in the limit of small 
c, this factor reduces to —AK,"*/^. The correction y/b increases in proportion to the 
square root of the diffusion coefficients of the radicals and varies inversely with the 
square root of the local convection velocity, proportional to Ff*. The functional de­
pendences of the increase in the ignition distance caused by tranverse radical diffusion 
can thus be extracted from the present results. 

5.3. Effect of fuel dilution. To investigate the 7 dependence of the solution, 
we plot in Figure 5.2 the variation of Gj$, G\ and 77* with 7 in the isovelocity, isother­
mal mixing layer. As can be seen from (3.4), for very dilute fuel feed (7 <C 1) 
the branching Damkohler number across the mixing layer becomes small according 
to A+ ~ (27ttnftni)1^25 peaking at an intermediate location given in this case by 
77* ~ 0.875. The corresponding values of GQ OC 7 1 / 2 and G\ oc 71 /4 are also small, 
indicating that branching is very limited when 7 «C 1, as could have been anticipated 
by observing in (2.13) and (2.14) that the growth of H-atoms, which are needed for 
O-atom branching through the overall step II, is proportional to 7. 

A very different behavior is obtained in the case 7 ^> 1, for which the branching 
Damkohler number given in (3.4) reduces in the first approximation to A+ ~ 2«n , a 
function that increases to A+ = 2 as the oxidizer boundary is approached. This simple 
description corresponds to the assumption of steady state for O, which readily follows 
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y 
FIG. 5.2. The variation of GJ, — G\ and rj* with 7 as obtained from (4.13), (4.14), and (4.22) 

for the isovelocity (F — rj), isothermal (#_oo = 0) mixing layer. 

from (2.14) in the limit 7 ^> 1, giving small O-atom mass fractions yQ — «n/(7«m)2/H. 
This assumption breaks down far on the fuel side, as the H2 concentration becomes 
small enough to limit the rate of reaction III, causing A+ to decrease eventually to zero 
for 77 —> 00. Anticipating that at the turning point the value of JKU1 remains large, one 
may introduce in (4.13) the approximate expression A+ ~ 2/%[l — 2/%(7/%I)

-1] corre­
sponding to the first two terms in a Taylor series expansion of (3.4) for (7/̂ 111) ~~1 <C 1, 
to yield in the first approximation 77* = [41n(7)/(5H2 + SQ^]1^2 for the isothermal 
case considered here. Using this estimate in (3.4), one can show that the departures 
from A+ = 2 at this location are small, of order ^-'S'O2/(<S'H2+<S'O2)> Similarly, one can 
see that the curvature of the A+ profile at 77 = 77* is an asymptotically small quan­
tity of order [111(7)] 7-'S'O2/(<S'H2+#O2)> Although radical diffusion is limited by this 
reduced curvature, causing the value of G* computed from (4.22) to be a small quan­
tity of order [/n(7)]1/2

 7~5°2/[2('S'H2+<S'O2)]? the effect is partially mitigated because 
of the large diffusivity of H radicals, an effect that appears through the dependence 
G* oc (5 H ) - 1 / 2 . As a result, although G\ decreases to zero as 7 —> 00, it remains of 
order unity for realistic values of 7 corresponding to undilute fuel streams (7 ~ 200), 
and radical diffusion therefore must be included for an accurate description of radical 
growth. 

The results presented in Figure 5.1 indicate also that for the two cases considered, 
both corresponding to large values of 7 typical of hydrogen-air combustion, the peak 
value of yQ remains smaller than that of yu everywhere, with the difference becoming 
more pronounced for increasing 7. This behavior can be explained by observing that 
in the limit 7 —> 00, the value of <j)0 at the turning point, assumed in the analysis 
to be of order unity, becomes smaller than the corresponding value of </>H by a factor 
J-SQ2/(SH2 +<Sb2)5 a s c a n b e calculated from (4.16). This ratio could be implemented 
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FIG . 5.3. A comparison for 7 = 5 (£ = 20) and 7 = 200 (£ = 15) of the radical profiles obtained 
from integrations of (2.13) and (2.14) normalized with the maximum H-atom mass fraction (solid 
lines) with the asymptotic results (dashed lines) corresponding to the leading-order representation 
exp[^1/2(G?i(r7) — G*)] for H atoms and modified representation (4>o/(f>n) exp^1/2(Gi(rj) — G*)] for 
O atoms. 

in the analysis to give an improved prediction for O-atom growth, as is done in 
Figure 5.1, where the dot-dashed curves are obtained by multiplying the second-order 
prediction of radical peaks, e x p ^ G g + £ / ^i]? by t n e r a ^ ° ^ O / ^ H = Go/[27ttm(r7*)], 
determined by evaluating (4.16) at rj = 77*. 

5.4. The shape of the radical profiles. The shape of the radical profiles 
appears in the asymptotic analysis at order £1//2 through the 77 dependence of G\ 
exhibited in (4.15), with corrections of order unity (small relative corrections of order 
£~1//2), which are neccesary to differenciate between yn and yQl entering at the next 
order through the functions 0H and (j)0. The analysis at order £1//2 predicts that both 
radicals peak at 77 = 77*, yielding profiles, normalized with their maximum values, 
given in the first approximation by exp[£1//2(Gi(r?) — GJ)], with Gi(r?) given in (4.15). 
This representation shows in particular that, although radical diffusion prevents the 
formation of peaks in radical profiles at leading order, sharp peaks located at rj = 77* 
appear at order £1//2, with an inner structure described by (4.25). 

Figure 5.1 indicates that in the cases considered ignition is achieved for values 
— 1/2 

of £ that are only moderately large. Therefore, the small corrections of order ^ ' 
that enter the profile shapes through the functions 0H and (j)0 may be significant 
at ignition. To investigate further this possible effect, which will be shown to be 
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important for 0 atoms, one can evaluate the ratio 0O/</>H given in (4.16) to show tha t 
it increases with increasing 77, approaching a finite value 0O/</>H = [GQ(1 — S ' H / S ' O ) ] - 1 

as rj —> 00. Because of the higher difFusivity of H-atoms, the O-atom mass fraction 
decreases on the fuel side much faster than the H-atom mass fraction, with their ratio 
cj)0/(j)n — K,U[GQ(1 — Sn/S0) - h 7 ] _ 1 —» 0 as rj —» —00. Therefore, the corrections to 
the shape of the O-atom profile entering through </)0 can be anticipated to be more 
important than those affecting the H-atom profile, with the effect being enhanced for 
large values of 7. In particular, the maximum of y0> which is located at rj = rj* for 
£ —-> 00, will lie farther into the oxidizer s tream for finite values of £. 

Although the functions 0H and (j)0 are not computed here, higher-order correc­
tions to the leading-order representation of the radical pool can be incorporated by 
using (4.16) to modify the O-atom profile, while employing exp[£1//2(Gi(ry) — G*)] as 
the representation of the normalized H-atom profile. The results are plotted in Fig­
ure 5.3, where the profiles obtained by numerical integration of (2.13) and (2.14) (nor­
malized with the maximum H-atom mass fraction at £ = 20 for 7 = 5 and at £ = 15 
for 7 = 200) are compared with the asymptotic predictions exp[£1 / / 2(Gi(^) — G*)] for 
the H-atom profile and (<j>0/<j)H) exp[£1//2(Gi(ry) — GJ)] for the O-atom profile. As can 
be seen, both the shapes and the ratio between the maximum values of yn and yQ 

are captured by the analysis. It is also remarkable tha t memory effects also appear 
at this finite distances in the H-atom profiles, tha t are seen to peak to the left of the 
turning point, as corresponds to a solution tha t evolves from the initiation-controlled 
profiles shown in Figure 4.1. These memory effects are, however, not extremely large 
at the values of £ in Figure 5.3. 

6. Conc lus ions . This s tudy has shown tha t histories of the development of 
branched-chain explosions in high-temperature mixing layers can be described well by 
asymptotic methods. As the initially nonpremixed react ants flow downstream from 
a splitter plate and inter diffuse, several different regions can be identified. There is 
a short chain-initiation region in which chain-carrying radicals are formed from the 
initial reactants, followed by a long autocatalytic chain-branching region in which 
chain-carrier concentrations increase exponentially with downstream distance, then a 
short region in which radical-radical interaction cause the chain carriers to rapidly 
a t ta in partial equilibrium, with nearly constant mass fractions of order unity, prior to 
onset of significant exothermicity. The ignition distance is controlled mainly by the 
long region of autocatalytic radical growth. 

Asymptotic expansions about the initial s tate and also for the long-time develop­
ment of the autocatalytic growth demostrate tha t diffusion, convection, and finite-rate 
chemistry all remain important throughout the explosion history, with diffusive loss of 
radicals becoming increasingly predominant as the ignition point is approached. The 
regular expansions for the initiation period are expressible in terms of integrals of er­
ror functions, while methods of the W K B type are needed to describe the asymptotic 
behavior in the autocatalytic region. In the latter approach, a turning point of the 
second order occurs at the transverse location where the chain-carrier concentrations 
are maximum. Although the analysis is given only for hydrogen-oxygen mixing layers 
in which H and O atoms are the only intermediate chemical species not satisfying a 
chemical-kinetic steady state, the methods clearly can be generalized to account for 
any number of independent chain carriers and branching steps, resulting in the same 
type of reactive mixing-layer structure just prior to ignition. Although the parabolic 
partial differential equations tha t describe these explosions in mixing layers can now 
readily be handled by numerical integration, the asymptotic methods are helpful for 
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providing scaling and formulas that yield parametric dependences of reaction-region 
structures, chain-carrier evolution and ignition distances. 

It is worth mentioning that a variant of the method developed here was recently 
applied in [12] to study the hydrogen-oxygen chain-branching process in the mixing 
layer when ignition occurs in the wake that appears associated to the boundary layers 
of the merging streams. The analysis, which required only consideration of a single 
radical not in steady state, was carried to a higher order, revealing that the third term 
in the asymptotic expansion for the radical mass fraction is a switchback logarithmic 
term, which is also expected to emerge in the present analysis, thereby slightly mod­
ifying the expression for the asymptotic expansion given in (4.5). Since it was found 
[12] that this logarithmic term does not depend on the transverse coordinate //, we can 
conclude that this higher-order correction would not modify the shape of the radical 
profiles shown in Figure 5.3, its effect entering only as a relatively small correction in 
the prediction for the peak radical mass fractions, which can be anticipated to be of 
the form exp[Gg£ + G^1 / / 2 + G\ ln(£)]. Although the value of G\ was not determined 
above, the two-term expansion exp[Gj$£ + Gf £1//2] calculated here clearly suffices to 
provide sufficient accuracy in the cases covered by the present analysis, as can be seen 
in Figure 5.1. 

[10] 

[11 

[12; 

[13; 

[14; 

[15' 
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