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Abstract. Asymptotic methods based on those of geometrical optics are applied to some steady
convection-diffusion streamed flows at a high Péclet number. Even with the assumption of inviscid,
irrotational flow past a body with uniform ambient conditions, the rays from which the solution is
constructed can only be found after local analyses have been carried out near the stagnation points.
In simple cases, the temperature away from the body is the sum of contributions from each stagnation
point.
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1. Introduction. The problem of determining the temperature T (or the con-
taminant concentration) in a prescribed steady fluid flow u involves the solution of
the nondimensional equation

u ·∇T = ε∇2T,(1.1)

where, in many practical cases such as high-Prandtl-number flows, the inverse Péclet
number ε is small. In this paper we will make some remarks about the structure of
the solution in cases when the flow streams two-dimensionally, with prescribed tem-
perature T∞ (not necessarily constant) at large distances from a finite impenetrable
obstacle Γ at which certain boundary conditions are prescribed.

Problems of this type have been considered by authors too numerous to cite here,
but the papers [7, 8] are particularly relevant to our work: there u is taken to be
of constant magnitude and direction which means that the flow can penetrate the
obstacle, but the resulting asymptotic analysis reveals an interesting boundary-layer
structure near the obstacle and a downstream wake or “shadow” that is reminiscent of
the patterns of light intensity encountered in geometrical optics. Indeed the method-
ology we will adopt for solving (1.1) will be analogous to ray theory, and the principal
motivation for the methodology applies equally to geometrical optics: the few ex-
plicit solutions that are available often take the form of infinite series that converge
only slowly when the solution varies on scales much smaller than those dictated by
the geometry. These variations take the form of high-frequency oscillations in wave
propagation problems and boundary-layer behavior in diffusion problems, and the
numerical algorithms are often costly.

The main part of this paper will describe the detailed asymptotic solution of a
prototypical two-dimensional problem in which u takes a particularly simple form,
but before we embark on this we make some general remarks about the features we
expect the solution to exhibit.
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We assume from the outset that the boundary conditions at the obstacle prohibit
a solution in the form of a regular perturbation expansion in which the leading-order
temperature field satisfies

u ·∇T0 = 0 with T0 ∼ T∞ as |x| → ∞
up to and including the boundary of the obstacle. For such problems we expect the
conventional structure in which there is an “outer” solution away from the obstacle in
which T ' T0 and an “inner” thermal boundary layer that is increasingly thin as ε→
0. For example, if the temperature or heat flux is prescribed at the obstacle, we expect
the boundary-layer thickness to be O(ε1/2) or O(ε1/3) depending on whether the fluid
is inviscid or viscous, respectively. However, these orders of magnitude may change if
a heat transfer boundary condition is imposed and also in the vicinity of stagnation
and separation points on the obstacle. We will return to these complications later.

In many situations, higher-order corrections to this asymptotic scenario can be
found quite simply. Away from the boundary, T can be expanded as T ∼ T0+εT1+· · ·,
where u ·∇T1 = ∇2T0 etc., to obtain successively improved algebraically small im-
provements for small ε. These improvements account for local diffusion superimposed
on dominant convection. This calculation would go hand in hand with improved
boundary-layer corrections that match with the outer corrections at each stage of the
iteration. However, one situation in which this procedure yields no information is
when T∞ is constant, so that the fluid is nearly isothermal away from the thermal
boundary layers. In such a case the correction to T∞ is exponentially small in ε away
from these layers.1 Furthermore, because these exponentially small corrections origi-
nate at the boundary, they can only be found from a global calculation rather than the
local iteration described above, which just requires integration along the streamlines.
The question immediately arises as to which points in the boundary have the greatest
effect on the temperature correction at any point in the flow, and this is one of the
crucial aspects of the following analysis.

In section 2 we give a brief description of the application of ray theory to (1.1), and
then in section 3 we describe in detail what happens when T∞ = 0 and u is inviscid
and irrotational and the boundary is isothermal: this two-dimensional configuration
is one that is relatively simple to explain yet interesting enough to be a paradigm for
the more general situations to which we refer in the conclusion.

2. The ray method for convection-diffusion in two dimensions. We con-
sider (1.1) with T → 0 as x2 + y2 →∞ and T = 1 on a smooth closed impenetrable
body Γ. Because an expansion in powers of ε would yield no information, we consider
the effect of applying the WKB ansatz

T = εσ exp(Φ/ε) (A0 + εA1 + · · ·) ,(2.1)

with the assumption that ε� 1. The constant σ will be chosen to make the leading-
order equation nontrivial. This technique allows the rapid exponential decay in T
characteristic of small diffusivity to be captured in the slowing varying quantities Φ
and Aj , with immediate computational and theoretical advantages. This approach is
widely used in problems in wave propagation in the frequency domain [6, 1, 2], where
−iΦ corresponds to the phase of a wave and the Aj are the amplitude coefficients:

1Indeed such exponentially small corrections occur for more general T∞ and, if ε is not too
small, then this can make an observable contribution to the temperature field, as can happen in
high-frequency wave propagation.
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there the ansatz (2.1) is applied to the Helmholtz equation or a variant and the limit
ε→ 0 corresponds to the high-frequency limit. The ansatz (2.1) may also be applied
to other equations [4] including the convection-diffusion equation [10, 9], and the
following procedure is taken from those papers.

Applying (2.1) to (1.1), we obtain at leading order

(∇Φ)
2 − u ·∇Φ = 0,(2.2)

which is the equivalent to the eikonal equation of geometrical optics. Its characteristics
are solutions of

ẋ = u− 2p,(2.3)

ṗ = − (p ·∇)u+ (∇∧u)∧p,(2.4)

Φ̇ = −p · u = −|p|2(2.5)

with p = ∇Φ and where a dot denotes differentiation along the characteristic. We
see from (2.5) that Φ decreases along a characteristic, corresponding to exponential
decay of the quantity T .

Equating higher orders in ε give the transport equations

u ·∇Aj = 2∇Φ ·∇Aj +Aj∇2Φ +∇2Aj−1 (j = 0, 1, 2, . . .),(2.6)

where A−1 ≡ 0. These may be rewritten as ordinary differential equations in the
parameter along the characteristics of (2.2), whence

Ȧj −Aj∇2Φ = ∇2Aj−1.(2.7)

If we use t to parametrize a characteristic (so that the dots in (2.3) and (2.7) represent
∂/∂t) and label the characteristics (perhaps by parametrization of the initial data)
by s, then we may calculate the Jacobian

J =
∂(x, y)

∂(s, t)
(2.8)

of the mapping from characteristic coordinates to space coordinates. This satisfies
the transport equation

J̇ = J
(∇·u− 2∇2Φ

)
,(2.9)

which in combination with (2.7) gives

∂

∂t

(
A2
jJ
)

= A2
jJ∇·u+ 2AjJ∇2Aj−1.(2.10)

Hence if the flow is incompressible, then the quantity A2
0J is conserved. (This is also

analogous to the equivalent conserved quantity in geometrical optics, where it may
be interpreted as conservation of energy in a pencil of rays.)

We see from (2.2) that curves on which Φ is constant have the vector u − p as
tangent. Since to leading order these coincide with curves of constant T , we will call
them isotherms. The tangent vector field to these curves bisects the angle formed by
the ray (with direction t = u− 2p) and the flow u at each point (see Figure 2.1).

We note that if we write t = ẋ = u−2p for the direction of a characteristic, then

t2 = u2(2.11)
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p = ∇Φ

Φ-isotherm

t, ray direction

u

α/2

α/2

Fig. 2.1. The orientation of the three vector fields u, p, and t.

and now the ray equations become

ṫ = −t∧(∇∧u) +∇
(

1

2
u2

)
, Φ̇ = −|u|2 sin2(α/2),(2.12)

where α is the angle between the ray direction t and the flow u. Hence the quantity
T decays exponentially along a ray at a rate that depends on the angle between the
ray and flow.

In the next section we will need not only this basic version of ray theory, but
also the methodology of the geometrical theory of diffraction (GTD) [6]. In simple
terms, GTD states that whenever the ansatz (2.1) breaks down (e.g., at caustics), or
whenever there is a singularity in the boundary data, an “inner” region needs to be
introduced whose solution is matched with the outer ray solution. These regions may
or may not include the thermal boundary layers referred to in the introduction, but
in any case they are analogous to those regions in optics where diffraction occurs. In
these regions, “inner” diffraction problems must be solved to provide initial data for
the ray equations (2.3)–(2.5).

3. Inviscid irrotational flow. Throughout this section, we assume that u is
such that ∇∧u = 0 and u ·n = 0 on the boundary of Γ, where n is the normal, and
that there is no circulation around Γ. This immediately enables us to make a number
of helpful observations.

First, the quantity |u| corresponds to the refractive index of the medium; if this
quantity is constant, then the rays are straight lines. Second, by Bernoulli’s theorem,
the quantity p/ρ+ 1

2u
2 is constant throughout the flow (where p is the pressure of the

fluid and ρ is the density), and hence the characteristics bend toward regions of low
pressure, just as the rays of geometrical optics bend toward regions of high refractive
index. Furthermore, we can construct a velocity potential φ and stream function ψ
such that u = ∇φ = ∇∧ψk. In the (φ, ψ) coordinate system, the problem reduces
(upon redefining x = φ, y = ψ) to

∂T

∂x
= ε

(
∂2T

∂x2
+
∂2T

∂y2

)
;(3.1)
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in other words, we may conformally map the inviscid flow past a finite body onto
uniform flow past a finite flat plate parallel to the flow u = (1, 0), and the equation
for T is also preserved by this mapping (see Figure 3.1). The boundary condition on
the plate is T = 1. The front and rear ends of the plate correspond to the stagnation
points in the flow around the original body. Without loss of generality, we choose
the ends of the plate to be at (0, 0) and (1, 0). By (2.12), it follows that in the
stream-function/velocity-potential coordinates, the characteristics (to which we will
henceforth refer as rays) are straight lines.

Of course, the mapping from (1.1) to (3.1) holds for all Péclet numbers, and an
exact solution may be found by separating the equation in elliptic coordinates and
writing the solution as an infinite sum of products of Mathieu and modified Mathieu
functions [3]. We expect the asymptotic expansion of this solution for a large Péclet
number to agree with the asymptotic solution we will obtain by direct asymptotic
methods applied to (3.1). A start has been made on such comparisons in [3], where
the surface heat flux (which is algebraic in ε) computed from the boundary layer
solutions have been compared with those resulting from the explicit eigenfunction
expansion of the solution. The agreement is good for ε < 1/2, but it is much harder
to make comparisons away from the boundary because of the slow convergence of
these series in the region where T is exponentially small. It would be interesting to
know if procedures such as the Watson transform [5], which are useful in converting
eigenfunction expansion solutions of Helmholtz equation into integrals suitable for
asymptotic computation, can be applied to the series in [3], but we know of no results
in that direction.

(a) (b)

Fig. 3.1. Inviscid irrotational flow past (a) a circular cylinder and (b) a flat plate. Curves of
constant stream-function (solid) and constant velocity potential (dashed) are shown.

For the paradigm problem (3.1) with T = 1 at the plate and T∞ = 0, we now
address the key questions of where the rays originate and what initial data they must
satisfy. First we note that if we attempt to give Φ0 = 0 as initial data on x0 = s,
y0 = 0 (0 < s < 1), then we find that p0 = 0, q0 = 0 so that none of the rays leaves the
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plate. However, following the methodology of GTD we expect rays to be generated
(“diffracted”) at points where the boundary is not smooth. Thus we will begin by
considering the inner “diffraction” problem in the vicinity of the leading edge of the
plate, whose far field should provide us with initial data for the ray equations.

3.1. Leading edge. Near the leading edge of the plate, a rescaling of the coor-
dinates

x = εx̃, y = εỹ(3.2)

results in (3.1) taking the form

∂T

∂x̃
=
∂2T

∂x̃2
+
∂2T

∂ỹ2
,(3.3)

with boundary and matching conditions

T = 1 (ỹ = 0, x̃ > 0),(3.4)

∂T

∂y
= 0 (ỹ = 0, x̃ < 0),(3.5)

T → 0 at infinity.(3.6)

Condition (3.5) results from the symmetry under reflection in the y-axis. The equation
separates in parabolic coordinates ξ̃, η̃ where x̃ = ξ̃2 − η̃2, ỹ = 2ξ̃η̃, so that

∂2T

∂ξ̃2
+
∂2T

∂η̃2
= 2

(
ξ̃
∂T

∂ξ̃
− η̃ ∂T

∂η̃

)
(3.7)

and the solution is

T = erfc η̃;(3.8)

the isotherms are shown in Figure 3.2.
In the limit of large η̃, we have

T ∼ 1

η̃
√
π

exp(−η̃2) =
csc(θ1/2)√

πr̃1

exp

[
x̃− r̃1

2

]
,(3.9)

where r1, θ1 are polar coordinates corresponding to x, y, and r1 = εr̃1. This means
that, in (2.1), σ = 1/2 and the matching condition that the outer ray solution must
satisfy near the leading edge is

Φ ∼ 1

2
(x− r1), A0 ∼ csc(θ1/2)√

πr1
.(3.10)

Higher-order amplitude coefficients Aj are determined by further terms in the asymp-
totic expansion of erfc.

The implication for the outer ray solution is that t = (x/r1, y/r1) and conse-
quently a family of rays emanates radially from the leading edge of the plate, as
shown in Figure 3.3. The amplitude coefficients are singular at the leading edge of
the plate, but the leading-order amplitude A0 is of the form f(θ1)/

√
r1 where the di-

rectivity function f(θ1) has been found and is analogous to a diffraction coefficient in

GTD. The behavior of A0 as r
−1/2
1 follows from the shape of the rays and (2.10). We



HIGH-PÉCLET-NUMBER CONVECTION-DIFFUSION 127

-2 -1 1 2 3 4
x

-3

-2

-1

1

2

3

y

Fig. 3.2. Isotherms in the inner region near the leading edge of the plate.

Fig. 3.3. Rays generated by the inner region at the leading edge of the plate (solid line). The
shaded region denotes the area in which the ray approximation ceases to be valid.

note that the approximation (3.10) is valid for large η̃. Consequently the directivity
is not uniform in θ1 and in particular it is inaccurate for θ1 near zero.

Note that the Green’s function of (3.1) in R2 is

T =
1

2πε
exp

[ x
2ε

]
K0

( r1

2ε

)
(3.11)
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(for a point source at the origin) which also has an asymptotic expansion (2.1) in
which

Φ =
1

2
(x− r1), A0 =

√
π

r1
, σ = −1

2
(3.12)

(as ε → 0). As in GTD, the far field has A0 independent of polar angle. Hence the
leading edge of the plate may be thought of as acting as a point source, but with
directivity of amplitude ε csc(θ1/2)/

√
π.

3.2. Thermal boundary layer. Since the ray approximation becomes singular
at θ = 0 there is a further inner region close to the top of the plate where x =
O(1), y = O(ε1/2), with y > 0. With these scalings (3.1) takes the familiar thermal
boundary-layer form

∂T

∂x
=
∂2T

∂ŷ2
+ ε

∂2T

∂x2
,(3.13)

where y =
√
εŷ. To leading order (3.13) has a similarity solution,

T = erfc

(
ŷ

2
√
x

)
,(3.14)

which matches with (3.8) in the limit x → 0, ŷ → 0. For future reference, we note
that as ŷ → 0 and x = O(1),

T ∼ 1− ŷ√
πx

+O(ŷ3).(3.15)

More important, in outer coordinates (3.14) is

erfc
y

2
√
εx
∼ 2
√
εx

y
√
π

exp

[
− y2

4εx

]
as

y√
εx
→∞,(3.16)

which matches into the near-field expansion of the ray solution (3.10). Thus no new
rays emanate from this thermal boundary layer.

3.3. Trailing edge. The solution (3.14) fails to satisfy the boundary condition
at the trailing edge of the plate. Hence there is a third inner region in the vicinity
of the trailing edge, in which we use the scalings x = 1 + εx̄, y = εȳ to obtain the
equation

∂T

∂x̄
=
∂2T

∂x̄2
+
∂2T

∂ȳ2
,(3.17)

with boundary conditions

T = 1 (ȳ = 0, x̄ < 0),(3.18)

∂T

∂ȳ
= 0 (ȳ = 0, x̄ > 0),(3.19)

T → 0 at infinity,(3.20)
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and a matching condition with the solution in section 3.2. This may be solved most
easily by observing that if we write T = 1 + ε

1
2T1, then S = ∂T1/∂ȳ satisfies the same

equation (3.17) in this region as T , but with boundary conditions

∂S

∂ȳ
= 0 (ȳ = 0, x̄ < 0),(3.21)

S = 0 (ȳ = 0, x̄ > 0)(3.22)

(where we have differentiated (3.18) along the boundary and applied (3.17) to obtain
(3.21)). Matching with (3.15) as x→ −∞, we see that we require

S → − 1√
π

as x̄→ −∞.(3.23)

This problem may be separated and solved in parabolic coordinates (ξ̄, η̄) (with x̄ =
ξ̄2 − η̄2, ȳ = 2ξ̄η̄) as for the leading edge, resulting in

S =
∂T1

∂ȳ
= − 1√

π
erf η̄ +

Cη̄

π(ξ̄2 + η̄2)
exp(−η̄2)(3.24)

for arbitrary constant C. Integrating, we find

T1 = − ȳ√
π

erf η̄ − 2

π
ξ̄ exp(−η̄2) +

C + 1√
π

exp(x̄) erf ξ̄ +A(x̄)(3.25)

where A is arbitrary. However A(x̄) vanishes for x̄ 6 0 from (3.18) and T1 is an
analytic function of (x̄, ȳ), so A ≡ 0, and we must choose C = −1 to satisfy the
requirement that T1 grows subexponentially as x̄ → +∞. Consequently we have the
solution

T = 1−
( ε
π

)1/2
(
ȳ erf η̄ +

2ξ̄√
π

exp(−η̄2)

)
.(3.26)

The outer limit of this, letting x̄, ȳ = O(ε−1), is

T = 1− ε−1/2

√
π
y − ε

π

ξ

η2
exp(−η2/ε) (1 +O(ε)) .(3.27)

Here y is the original outer Cartesian coordinate and ξ and η are now parabolic
coordinates on the outer scale defined by x− 1 = ξ2 − η2, y = 2ξη.

Let us now try to unscramble the ray theory implications of (3.27). We can
identify the first term in (3.27) with that in (3.15). Indeed this identification allows
us to think of a ray on which Φ = 0 that propagates downstream from the leading
edge.

The presence of the second term in (3.27) is more troublesome and the fact that
it is of O(ε−1/2) necessitates the introduction of an intermediate matching region
y = O(

√
ε), x− 1 = O(

√
ε), in which (3.26) has the form

T ∼ 1− ŷ√
π
− ε3/4

π

ŷ

2η̂3
exp(−ε−1/2η̂2)

(
1 +O(ε1/2)

)
,(3.28)

where η̂ = ε−1/4η. In the intermediate region, with scaled coordinates x− 1 = ε1/2x̂,
y = ε1/2ŷ, the scaled field equation is

∂T

∂x̂
= ε1/2

(
∂2T

∂x̂2
+
∂2T

∂ŷ2

)
(3.29)
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and so, in an expansion T ∼ T0 + ε1/2T1 + · · ·, the leading-order solution, T0, is
independent of x̂. Now (3.14) implies the matching condition T ∼ erfc(ŷ/2) as x̂ →
−∞, and hence

T0 ∼ erfc

(
ŷ

2

)
.

Thankfully the third term on the right-hand side of (3.28) automatically satisfies
(3.29). Hence the solution in the intermediate region ŷ = O(1), x̂ = O(1) is

T = erfc

(
ŷ

2

)
+O(ε1/2)− ε3/4

π

ŷ

2η̂3
exp(−ε−1/2η̂2)

(
1 +O(ε1/2)

)
.(3.30)

Now if we take the outer limit we find

T = 1 +O(ε)− ε

π

ξ

η2
exp(−η2/ε) (1 +O(ε)) ,(3.31)

and we have succeeded in identifying where and how to write the local solution near
the trailing edge in a form that can be used to match with the outer ray solution.
Equations (3.30) and (3.31) look rather unusual in that we have neglected terms of
algebraic order while including exponentially small ones, but the exponentially smaller
terms correspond to the ray from the trailing edge.

When we proceed to construct a ray solution from the outer limit of (3.30), we
find that the first term of (3.30) tends precisely to the expression for the ray from the
leading edge, (3.9). However the last term corresponding to the ray from the trailing
edge is unchanged from (3.27) and may be written as

Φ =
1

2
(x− 1− r2), A0 = −cot θ22 csc θ2

2

π
√
r2

, σ = 1,(3.32)

Fig. 3.4. Rays generated by the inner region at the trailing edge of the plate (solid line). The
shaded region denotes the area in which the ray approximation ceases to be valid.

where r2, θ2 are polar coordinates centered on the trailing edge x = 1, y = 0. This
corresponds to a fan of rays emanating from the trailing edge, as shown in Figure 3.4.
Its leading-order amplitude coefficient A0 is negative, and hence its effect on the
solution is subtractive, reflecting the fact that the temperature is lower than that for
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a semi-infinite plate. The expression for A0 is singular along y = 0, x > 1 and this
will be smoothed with a further matching region in the next section. The coefficient

of r
−1/2
2 in the expression for A0 corresponds to a diffraction coefficient in GTD [6],

just as (3.10) did for the leading edge. Other than the directivity function being
different, the main difference between the two rays is σ: the “diffracted” contribution
from the front is O[ε1/2 exp(−r1 sin2(θ1/2)/ε)] at a distance R1 and angle θ1 from
the leading edge, while that from the rear is O[ε exp(−r2 sin2(θ2/2)/ε)]. Note that
the contribution from the leading edge is always exponentially dominant over the
contribution from the trailing edge, except on the line y = 0, x > 1 where the leading-
edge ray is algebraically dominant over the trailing-edge ray by a factor proportional to
ε1/2. However, both ray approximations are nonuniform in this wake or “penumbral”
region and consequently we must analyze it locally.

3.4. Wake behind trailing edge. In the region x− 1 = O(1), y = O(
√
ε), we

may again use the scaled variable ŷ = y/
√
ε. Then T satisfies (3.13) to leading order.

We write

X =
x− 1

4
, Y =

ŷ

2
.

Then in the region X > 0, Y > 0 we are solving

∂T

∂X
=
∂2T

∂Y 2

to lowest order, with boundary conditions

T = erfcY on X = 0,
∂T

∂Y
= 0 on Y = 0.

Then Ť , the cosine transform in Y of T , satisfies ŤX = −p2Ť with boundary condition

Ť =
1

p
erfi
(p

2

)
exp

[
−p

2

4

]
when X = 0,

where erfi(z) = −i erf(iz) is the imaginary error function. Then the solution is

Ť =
1

p
erfi
(p

2

)
exp

[
−p2

(
X +

1

4

)]
,

so inverting the transform gives

T =
1

2
√
πX

∫ ∞
0

exp

[
− s2

4X

]
(erfc(s+ Y ) + erfc |Y − s|) ds(3.33)

=
1

2
√
πX

∫ ∞
−∞

exp

[
− (s+ Y )2

4X

]
erfc |s| ds(3.34)

which is

T =
1√

π(x− 1)

∫ ∞
−∞

exp

[
− (2
√
εs+ y)2

4ε(x− 1)

]
erfc |s| ds.(3.35)

in outer variables. Now if Y = 0 then the integral in (3.34) may be evaluated exactly:

T =
2

π
tan−1 1

2
√
X

=
2

π
tan−1

√
1

x− 1
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which has asymptotic behavior

T ∼ 1

π
√
X

+O(X−3/2), X →∞.

For Y → ∞ (X = O(1)) we consider the asymptotics of (3.34). Writing the integral
in this as∫ ∞

0

erfc s exp

[
− (s+ Y )2

4X

]
ds+

(∫ ∞
−∞
−
∫ 0

−∞

)
erfc s exp

[
− (s− Y )2

4X

]
ds,(3.36)

we find we can integrate the first and third integrals in (3.36) by parts: the leading-
order contributions cancel while the next orders double up to give

− 16√
π

X2

Y 2
exp

[
− Y

2

4X

]
,

where the remaining integral is O(Y −3).
The second integral may be approximated using the method of steepest descent.

Since we expect the main contribution to come from s = O(Y ), we may replace erfc s
with its large-argument asymptotic expansion, giving a maximum contribution at
s = s0 = Y/(4X + 1). Consequently the leading-order asymptotic approximation to
the integral is

2
√
X(4X + 1)

Y
exp

[
− Y 2

4X + 1

]
.

Finally the asymptotic approximation to (3.33) is

T ∼
√

4X + 1√
πY

exp

[
− Y 2

4X + 1

]
− 8X3/2

πY 2
exp

[
− Y

2

4X

]
(3.37)

which, in original variables, is

T ∼ 2√
π
ε1/2

√
x

y
exp

[
− y2

4εx

]
− 4ε

π

(x− 1)3/2

y2
exp

[
− y2

4ε(x− 1)

]
and both terms are in ray form. Substituting with η̃ ∼ y/(2√εx), η̄ ∼ y/(2√ε(x− 1))
matches each term with the outer limit of the leading and trailing edge inner solutions
(3.9) and (3.27) exactly.

The genesis of the ray solution for the problem is summarized in Figure 3.5. The
thermal boundary layer and wake can be thought of as rays tangent to the x-axis.
All the other rays form the two distinct families that originate from inner regions of
dimension O(ε) near the leading and trailing edges, but those at the trailing edge
have to penetrate an intermediate region of size O(ε1/2) before they can be matched
to the outer ray solution.

It is now a straightforward task to relate this scenario to irrotational flow past
any body that can be mapped to the plate. For example, for a circular cylinder of
unit radius, for which the conformal mapping to the plate is

ζ(z) = z +
1

z
.(3.38)

The ray paths are shown in Figure 3.6. As for the plate, there exists a thermal
boundary layer on the cylinder and there is a thermal wake within O(ε1/2) of the
downstream stagnation streamline.
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O(ε) O(ε)

flow u

2 rays

plate

O(ε1/2) O(ε1/2)

Fig. 3.5. The two rays present at every point in the domain of the problem.

Fig. 3.6. Rays for the circular cylinder in uniform inviscid irrotational flow. Each point is the
intersection of two rays, one from each stagnation point.

4. Discussion and generalization. The analysis of section 3 shows that rays
of the outer solution for the temperature can only be generated at the upstream and
downstream stagnation points on a smooth, isothermal body. In fact, we expect the
same result to apply even if the body has corners on it at which the flow speed is zero
or infinite, just as long as it can be mapped into a flat plate. We can even cater to
separated Helmholtz flows, such as that past a flat plate at right angles to a stream as
in Figure 4.1(a). We must now impose a boundary condition across the free surface
of the flow, which we take to be a zero flux condition,

∂T

∂n
= 0 on the free surface.
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(a) (b)

Fig. 4.1. (a) A separated flow (solid streamlines, dashed curves of constant velocity potential)
past a flat plate at right angles to the flow. (b) Rays for this flow: one family from stagnation point
(dashed) and one from each separation point (solid).

This means that the structure of the solution is unchanged from section 3 because
we may conformally map the flow to that shown in Figure 3.1(b), but with a branch
cut extending from the trailing edge of the plate parallel to the flow. The edges
of the regions immediately above and below the branch cut correspond to the free
surfaces extending from the upper and lower edges, respectively, of the plate. Since
the solutions which we found in sections 3.3 and 3.4 already satisfy ∂T/∂n = 0 across
the line y = 0 for x > 1, they are also the corresponding inner solutions in the
corresponding regions of the separated flow. Consequently the ray solution is also as
constructed for the unseparated case. Each separation point generates a fan of rays
whose trajectories are straight in stream-function/velocity-potential coordinates (but
curved in space coordinates), as shown in Figure 4.1(b).

The introduction of a sufficiently small circulation around Γ poses no difficulties
to our theory. Even though the flow field can no longer be mapped one-to-one to the
uniform stream of Figure 3.1(b), the local behavior near the leading and trailing stag-
nation points on a smooth body will be as in Figure 3.6. However, if the circulation is
so great that a region of closed streamlines appears, a very different scenario emerges.
Now a regular expansion is possible inside the region of closed streamlines, which
suggests that T is linear in ψ (the stream function) there, with a thermal boundary
layer on the separating streamline and an inner region near the stagnation point. We
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would expect rays again to originate from the stagnation point, but now rays traveling
into the region of closed streamlines reflect from the body as in geometrical optics.
Thus there are again two rays through each point: one directly from the stagnation
point, and one which has first been reflected.

A more difficult generalization is to viscous flow. The thermal boundary layers
will still not generate any extra rays, but the inner problems near the stagnation
points will now be more difficult to solve.

Finally we remark that our method should apply to nonisothermal bodies. Of
particular mathematical interest would be cases where either the body temperature or
the heat flux was so rapidly varying that log T changed byO(ε−1) on the body, or when
the heat transfer coefficient was O(ε−1). In either case we would have the possibility
that rays from the body could penetrate the interior of the flow and completely change
the scenario in Figures 3.5 and 3.6.
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