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Abstract. Effects of small perturbations from a liquid-gas coexistence equilibrium (the Maxwell
states) is studied for an isothermal (or isentropic) gas-liquid phase transition in a sealed one-
dimensional finite length tube, by using a van per Waals model with a viscous-capillary regular-
ization. A matched asymptotic expansion is used to derive formally a linear system satisfied by
leading order perturbations. The linear system is solved analytically and checked against numerical
simulations. Analyses of the linear system suggest the following: (i) A gas-liquid interface approaches
its final destination (determined by mass conservation) in general in a oscillatory manner with fre-
quency determined in part by the speeds of sound in gas and liquid; (ii) Kinetic energies of small
initial perturbations will in general be dissipated in the phase transition process, and the system
approaches steady states; (iii) In some special cases (for example, the time needed for the sound
wave to travel in liquid from the interface to the tube boundary is a rational multiple of that in gas),
kinetic energies of certain small perturbations will not be dissipated (in the leading order expansion);
in fact, there are infinitely many linearly independent time periodic solutions to the linear system.

Key words. phase transition, van der Waals fluid, perturbation analysis

AMS subject classifications. 35, 65, 76

PII. S0036139999354285

1. Introduction. The van der Waals system{ut = vx,
vt = −{p(u) + ε2uxx − εκvx}x,(1.1)

with nonmonotone stress relation p and viscous-capillary regularization, has been
studied by many authors as a model for dynamical gas-liquid phase transitions in
compressible fluid undergoing isothermal motion (see, for example, [6, 8, 10, 14]).

In this paper, we consider a gas-liquid phase transition in a sealed one-dimensional
tube of length 2a, i.e., the system (1.1) on a bounded domain (−a, a), with boundary
conditions {

ux(−a, t) = ux(a, t) = 0,
v(−a, t) = v(a, t) = 0,

t > 0.(1.2)

Here v = 0 at x = ±a refers to the zero velocity and ux = 0 at x = ±a refers to the
no mass flux boundary condition. We are concerned with initial data which are small
perturbations of a gas-liquid equilibrium.

For a steady state of (1.1), v is a constant and u satisfies, for some constant Q,

ε2uxx + p(u) = Q.(1.3)
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To accommodate the gas-liquid phase transition, we assume that (1.3) has a solution
(in R) connecting a gas phase and a liquid phase. For this purpose, we assume that
the van der Waals function p(·) is a C∞((0,∞)) function satisfying, for some constants
α−, u1, α

0, u2, and α+ with α− < u1 < α0 < u2 < α+,

p′(u) < 0 for u ∈ (0, u1) ∪ (u2,∞) and p′(u) > 0 for u ∈ (u1, u2),(1.4)

p(α−) = p(α0) = p(α+) =: Q∗,
∫ α+

α−
(p(u) −Q∗)du = 0.(1.5)

The states {u | 0 < u < u1} and {u | u > u2} are called the gas phase and liquid
phase, respectively. The states p = α±, known as the Maxwell states, are the states in
which gas and liquid can stay in equilibrium. We denote c± =

√−p′(α±), the speed
of sound in α± phase.

Solutions of (1.3) on the bounded domain [−a, a] are critical points of the Cahn–
Hilliard/van der Waals energy

H(u) :=

∫ a

−a

(
ε2

2
|ux|2 + P (u)

)
dx, P (u) :=

∫ u

α−
[p(α−) − p(s)]ds

under a mass constraint
∫ a

−a
u(x)dx = m. In the one-dimensional setting, Carr,

Gurtin, and Slemrod [3] have shown that the minimizer uε is monotonic. It is also
shown in [16, 17] that as ε → 0, the solution uε (in high space dimension) converges to
a function u0 which takes only the values α− and α+ with interface between u0 = α−

and u0 = α+ having minimum area.
Work has been done both numerically and analytically on the structures of the

limit states (as ε → 0) in the dynamic setting. Numerical studies for the model in the
Eulerian coordinates with a form of artificial viscosity in [11] have shown that phase
transition takes place when initially the density is in the elliptic (or unstable) region;
i.e., u(·, 0) ∈ (u1, u2). When uniform initial states are considered, their results further
lead to a separation, for the total mass, of three ranges corresponding to unstable,
metastable, and stable regions. The system also exhibits solutions with multiple thin
layers representing phase transitions, and it exhibits that some such configurations
move with constant velocity. Existence of periodic traveling wave solutions is proved
in a more general setting in [12]. There are also theoretical results on the dynamical
stability of phase transitions lying sufficiently close to the Maxwell states on an un-
bounded domain [9]. The two-dimensional case is studied in [13], where existence of
bubble and droplet solutions is proved and their dynamical stability is investigated
numerically.

In this paper, we are interested in the stability of the stationary phase transition
from α− and α+, i.e., solutions where u ∼ α− in one region Ω− = {−a < x < s(t)}
and u ∼ α+ in another region Ω+ = {s(t) < x < a}, whereas x = s(t) is an interface
to be determined. Physically, it corresponds to the case that to the left of x = s(t)
the material is in the gas phase, whereas to its right, it is in the liquid phase. The
interface is located at x = s(t) and is moving (slowly, in the order of ε). Using matched
asymptotics, we show that the perturbations in ε order propagate in regions Ω±
according to wave equations with respective wave speed c±. The boundary conditions
for the wave equations at ∂Ω± are determined from the asymptotic matching. Unlike
the infinite domain case where perturbation can escape to spatial infinity in the form
of diffusion waves [5, 15], the waves propagate back and forth in regions Ω±, thus
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making the interfacial position oscillate around a central point which moves with
a certain velocity toward its final destination determined by the mass conservation
equation. We shall derive the law of motion for the interface and provide numerical
evidence supporting our analysis.

The paper is organized as follows. In section 2, we perform a matched asymptotic
expansion which deduces the wave equations as well as the boundary conditions for the
first order perturbations in the outer regions. The solution to the first order equations
is studied in section 3. We show the existence and uniqueness of the solution as well
as the long-time behavior of the solutions. Results from the numerical simulations
are presented in section 4.

2. Matched asymptotic expansion. In this section, we shall use the matched
asymptotic expansion to find approximate solutions to (1.1) and (1.2) with certain
layered initial conditions, for sufficiently small positive ε.

2.1. Outline. For the reader’s convenience, we first outline our formal matched
asymptotic expansion. Details will be given in subsequent subsections.

We divide the interval [−a, a] into three regions: an interfacial region, [s(t) −
2εµ, s(t) + 2εµ]; two boundary layer regions, [−a,−a+ 2εµ] and [a− 2εµ, a]; and two
phase regions, [−a+εµ, s(t)−εµ] and [s(t)+εµ, a−εµ]. Here εµ, µ ∈ (0, 1), is a rough
estimate of the thickness of the interfacial and boundary layer regions; it of course
can be something smaller, say, ε ln2 ε.

In the phase regions, we expand the solution in an ε power series,{
u ∼ u±0 + εu±1 + ε2u±2 + · · · ,
v ∼ v±0 + εv±1 + ε2v±2 + · · · ,

(2.1)

where the signs + and − designate to the phase regions Ω+
t = (s(t), a) and Ω−

t =
(−a, s(t)). We call (2.1) the outer expansion. To reflect that we are dealing with
small perturbations from the Maxwell equilibrium states, we fix u±0 ≡ α± and v±0 ≡ 0.
Substituting the outer expansion into (1.1) and equating the coefficients of ε powers,
we obtain, for each j, a system of two differential equations for (u±j , v

±
j ). These

equations are solvable subject to appropriate initial and boundary conditions. For
each phase region, there are two boundaries, one at x = s(t) and the other at x = a,
for the + phase, and one at x = −a for the − phase. Boundary conditions are obtained
via boundary layer (at x = ±a) and inner (at x = s(t)) expansions.

At the fixed boundary, say, at x = −a, we use the stretched variable z = (x+a)/ε
and expand the solution in ε power series{

u ∼ ub0 + εub1 + ε2ub2 + · · · ,
v ∼ vb0 + εvb1 + ε2vb2 + · · · ,

(2.2)

where ubi , v
b
i are functions of (z, t). Using ∂

∂x = 1
ε

∂
∂z we derive from (1.1) systems of

differential equations for each (ubj , v
b
j). The domain for the equations is {(z, t) | z ∈

(0,∞), t ∈ (0,∞)}. Boundary conditions at z = 0 are supplied by substituting (2.2)
into (1.2), whereas boundary conditions at z = ∞ are obtained by matching the
boundary layer and outer expansions. By matching, we mean, after a substitution of
x by −a + εz, that the outer expansion produces exactly the same ε power series as
that of the boundary layer expansion. More precisely, since

u(x, t)|x=−a+εz ∼
∞∑
j=0

∂j
x

( ∞∑
i=0

εiu−i (−a, t)
)

(εz)j

j!
∼

∞∑
k=0

εk


 k∑

j=0

∂j
xu

−
k−j(−a, t)

zj

j!


,
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it is required, as z → ∞, that


ub0(z, t) − u−0 (−a, t) → 0,

ub1(z, t) − [u−1 (−a, t) + ∂xu
−
0 (−a, t)z] → 0,

· · · · · · · · ·
ubj(z, t) − [u−j (−a, t) + ∂xuj−1(−a, t)z + · · · + ∂j

xu0(−a, t) zj

j! ] → 0,
· · · · · · · · ·

(2.3)

Similar matching is also required for v and for the + phase.
The boundary layer expansion provides constraints, or boundary conditions, at

x = ±a for the outer expansions; the number of these conditions is down from four
as in (1.2) to two, since the remaining two are taken care of by the boundary layers.

In the interfacial region, we use the stretched variable z = (x − s(t))/ε and the
expansion 


u = uI0 + εuI1 + ε2uI2 + · · · ,
v = vI0 + εvI1 + ε2vI2 + · · · ,
s(t) = s0 + εs1 + ε2s2 + · · · ,

(2.4)

where uIj and vIj are functions of (z, t) and sj is a function of t, all of them being
independent of ε. As before, we can derive from (1.1) systems of equations for each
(uIj , v

I
j ). For each order j ≥ 1, the system is linear and solvable only if ṡj satisfies a

solvability condition. Also, when solvable, the solution is unique up to an additive of
a multiple of a special function being the kernel of a linear operator independent of
j. If we define the interface x = s(t) as the α0 level set of the function u, the exact
amplitude of the additive function can be uniquely determined.

As before, the outer and inner expansions are matched by requiring, as z → ∞,

(2.5)


uI0(z, t) → u+
0 (s0, t) ,

uI1(z, t) − [∂xu
+
0 (s0, t)(s1 + z)] → u+

1 (s0, t) ,

uI2(z, t) − [∂xu
+
1 (s0, t)(s1 + z) + ∂2

xu
+
0 (s0, t)(s1 + z)2/2 + ∂xu

+
0 s2] → u+

2 (s0, t).
· · · · · · · · ·

Similar matching is also needed as z → −∞ and for v. The match provides relations
between values of outer expansions from each side of the interface, which can be con-
sidered as boundary conditions for the outer expansions at x = s0(t), just completing
the systems for each order of outer expansions.

In what follows, we carry out in detail the expansions outlined here.

2.2. Outer expansion. Consider the outer expansion given in (2.1). We are
interested in the perturbations around the stationary phase jump between the Maxwell
states, so we fix

u±0 (x, t) = α±, v±0 (x, t) = 0 ∀x ∈ R1, t > 0.(2.6)

Substituting (2.1) into (1.1) and collecting powers of ε, we obtain, from the coefficients
of every power of ε, outer expansion equations for (u±i , v

±
i ) for every i ≥ 0.

The zeroth order equations are automatically satisfied since u±0 and v±0 are con-
stants. The first order expansion equations are{

u±1 t = v±1 x

v±1 t = (c±)2u±1 x

∀x ∈ Ω±
0 (t), t > 0,(2.7)
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where c± =
√−p′(α±), Ω+

0 (t) = (s0(t), a), Ω−
0 (t) = (−a, s0(t)), and s0(t) is the

leading order interface position, to be determined by the inner expansion. Higher
order outer expansion equations, for (u±j , v

±
j ), take the form

{
u±j t

− v±j x
= · · ·

v±j t
− c2±u

±
j x

= · · · ∀ x ∈ Ω±
0 (t), t > 0, j > 1,(2.8)

where · · · represents a function depending only on expansions of order ≤ j − 1.
The outer expansion equations (2.7) and (2.8) are wave equations with wave speed

c± in the corresponding phase region Ω±
0 (t). They need supplementary conditions

such as initial and boundary conditions. The initial conditions are our choice and
are known. The boundary conditions, at ∂Ω±

0 (t) = {±a, s0(t)}, will be obtained, via
matching, from the boundary layer expansions at x = ±a and the inner expansion at
x = s0(t).

2.3. Boundary layer expansions. Due to symmetry, we present in detail only
the expansion near x = −a. We use the stretched variable z = x+a

ε and assume that
(u, v) possesses the boundary layer expansion (2.2). Substituting (2.2) into (1.1) and
collecting powers of ε gives boundary layer expansion equations for each order of the
expansion (ubj , v

b
j), j = 0, 1, . . . .

The leading order expansion equations read{
vb0z = 0(
p(ub0) + ub0zz − κvb0z

)
z

= 0
∀ z ∈ (0,∞), t > 0.(2.9)

An expansion of the boundary condition ux(−a, t) = v(−a, t) = 0 gives

ub0z(0, t) = vb0(0, t) = 0 ∀t > 0.(2.10)

The matching condition (2.3) gives, for every t ≥ 0,

vb0(z, t) → 0, ub0(z, t) → α− as z → ∞.(2.11)

Altogether, (2.9)–(2.11) give a unique zeroth order boundary layer expansion

vb0(z, t) ≡ 0, ub0(z, t) ≡ α− ∀z ∈ [0,∞), t > 0.

(ub0, v
b
0) is trivially determined since the zeroth order outer expansion has been fixed.

At the next order, the boundary layer expansion equations read{
vb1z = 0(
ub1zz − c2−u

b
1 − κvb1z

)
z

= 0
∀z ∈ (0,∞), t > 0.(2.12)

Expansion of the boundary condition (1.2) and the matching with outer expansion
give {

vb1(0, t) = 0,
ub1z(0, t) = 0,

{
limz→∞ vb1(z) = v−1 (−a, t)
limz→∞ ub1(z, t) = u−1 (−a, t) ∀ t > 0.(2.13)

Clearly, in order to obtain a solution v1
b , it is necessary and sufficiently to have

v−1 (−a, t) = 0 ∀ t > 0.
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With this condition, the unique solution of the first order boundary layer expansion is

vb1(z, t) ≡ 0, ub1(z, t) = u−1 (−a, t) ∀ z ≥ 0, t > 0.

We remark that the boundary condition v(−a, t) = 0 gives a restriction v−1 (−a, 0)
= 0 to the outer expansion, in contrast to ux(−a, t) = 0, which gives no restriction to
the outer expansion. This is due to the viscous regularization term (ε2uxx)x in (1.1).

For each j ≥ 2, the jth order boundary layer expansion equations read{
( vbj )z = · · ·
( (ubj)zz − (c−)2ubj − κvbj )z = · · ·

∀ z ∈ (0,∞), t > 0.

The boundary and matching conditions are

{
vbj(0, t) = 0,

(ubj)z(0, t) = 0,

{
limz→∞(vbj(z, t) − · · ·) = v−j (−a, t)
limz→∞(ujb(z, t) − · · ·) = u−j (−a, t) ∀ t > 0.

Here · · · are polynomials of order no larger than j− 1 and depend only on expansions
of order ≤ j−1. Integrating equation for vbj , one sees that for the jth order expansion

to have a solution, the outer expansion v−b must satisfy v−j (−a, t) = · · · , where “· · ·”
is a quantity that can be calculated from the lower order expansion. In addition,
with this constraint on v−j (−a, t), there is a unique solution (vbj , u

b
j) for each value of

u−j (−a, t).
Similarly, one can perform the boundary layer expansion at the right boundary

x = a.
We summarize the boundary layer expansion as follows:
(1) There is a unique zeroth order expansion that matches the zeroth order outer

expansion (2.6).
(2) For each j ≥ 1, there are functions g−j (t) and g+

j (t), which are uniquely
determined by expansions of order ≤ j − 1, such that the jth order boundary layer
expansion equations have a solution if and only if the outer jth order expansion
(v±j , u

±
j ) satisfies the boundary condition

v−j (−a, t) = g−j (t), v+
j (a, t) = g+

j (t) ∀ t > 0.(2.14)

When j = 1, calculation shows that g+
1 (t) = g−(t)1 ≡ 0.

(3) If the solvability condition (2.14) is satisfied, then for any given boundary
value u±j (±a, t), there is a unique solution (ubj , v

b
j) to the jth order boundary layer

expansion.
In short, the boundary layer expansion provides the boundary conditions for the

outer expansion equations (2.7) and (2.8).

2.4. Inner layer expansion. Near the interface x = s(t), we use the stretched

variable z = x−s(t)
ε and assume that the solution (u, v) has the inner expansion of the

form (2.4). Substituting (2.4) into (1.1), we need to have

Σj ε
juIjt −

1

ε

(
Σj ε

j ṡj

) (
Σj ε

juIjz

)
∼ 1

ε
Σj ε

jvIj ,

Σj ε
jvIjt −

1

ε

(
Σj ε

j ṡj

)(
Σjε

j
)
vIjz ∼ 1

ε
∂
∂z

{
p(Σj ε

juIj ) + (Σj ε
juIj )zz − κΣj ε

jvIjz

}
.
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Expanding and collecting powers of ε we then obtain inner expansion equations for
each order j = 0, 1, . . . .

The leading order inner expansion equations are{−ṡ0uI0z = vI0z

−ṡ0vI0z = {p(uI0) + uI0zz − κvI0z}z
∀ z ∈ R1, t > 0.(2.15)

To match the outer expansion, we need, for each t > 0,

vI0(z, t) → 0, uI0(z, t) → α± as z → ±∞.

With such a requirement, the only solution to the first equation in (2.15) is

ṡ0(t) = 0, vI0(z, t) = 0 ∀ z ∈ R1, t > 0.(2.16)

We remark that ṡ0 ≡ 0 is expected since our perturbation from the Maxwell equilib-
rium states is of ε order.

With (2.16), the second equation in (2.15) and its associated boundary condition
give {

uI0zz + p(uI0) = Q∗

uI0(±∞, t) = α± ∀ z ∈ R1, t > 0,(2.17)

where Q∗ is an integration constant. Clearly, to ensure the existence of a solution,
α+ and α− must be the Maxwell states; namely, (1.5) must hold. It is easy to see
that with (1.4) and (1.5), (2.17) has a solution, unique up to a translation in z. To
modulo the translation invariance, we assume that the interface x = s(t) is indeed
defined as the α0 level set of u, i.e., at z = 0, u = α0. This gives the extra constraint
uI0(0, t) = α0, and therefore it determines a unique uI0.

In summary, there is a unique leading order inner expansion given by

s0(t) ≡ s0(0), vI0(z, t) ≡ 0, uI0(z, t) = U(z) ∀ z ∈ R1, t > 0,(2.18)

where U is the unique solution to{
U ′′(z) + p(U(z)) = Q∗ (:= p(α±) = p(α0)),

U(±∞) = α±, U(0) = α0.
(2.19)

Observe that (u := U(x/ε), v := 0) is the steady state of (1.1) in R1. From (2.18),
one sees that in leading order, the transition profile from u ∼ α− phase to u ∼ α+

phase is independent of time and is given by the Maxwell connection profile U with
an ε scaling.

With the substitution of the leading order inner expansion, the next order (first
order) inner expansion equations are{−ṡ1U(z)z = vI1z

{p′(U)uI1 + uI1zz − κvI1z}z = 0
∀ z ∈ R1, t ≥ 0.(2.20)

The matching of inner and outer expansion reads

uI1(z, t) → u±1 (s0, t), vI1(z, t) → v±(s0, t) as z → ±∞.(2.21)
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To ensure the existence of (uI1, v
I
1) with the required behavior at z = ±∞, we need a

few solvability conditions.
A pair of solvability conditions are obtained immediately by integrating the two

equations in (2.20) over R:

−ṡ1(α+ − α−) = v+
1 (s0, t) − v−1 (s0, t),(2.22)

p′(α+)u+
1 (s0, t) = p′(α−)u−1 (s0, t).(2.23)

To find the remaining solvability condition(s), we begin to solve (2.20), (2.21).
There is a unique solution for vI1 given by

vI1(z, t) = v−(s0, t) − ṡ1(t)(U(z) − α−) ∀ z ∈ R1, t > 0.

Substituting it into the second equation in (2.20) and integrating the resulting equa-
tion from −∞ to z, we obtain

L(uI1) := p′(U)uI1 + uI1zz = p′(α−)u−1 (s0, t) + ṡ1κUz.(2.24)

Since L has a zero eigenvalue with kernel Uz (as L(Uz) = 0), the above equation
has a solution if and only if the right-hand side is orthogonal to Uz in L2(R). (This
condition can be seen more directly by multiplying both side of the equation by Uz

and integrating the resulting equation over R.) That Uz ⊥ p′(α−)u−1 (s0, t) + κṡ1Uz

is equivalent to

ṡ1 =
−(c−)2u−1 (s0, t)(α

+ − α−)

κ
∫∞
∞ (Uz)2dz

.(2.25)

One can eliminate ṡ1 from (2.22) to obtain self-contained boundary conditions for the
outer expansion (u±1 , v

±
1 ) at x = s0:

v+
1 (s0, t) − v−(s0, t) = σ (c+)2u+(s0, t) = σ (c−)2u−(s0, t) ∀ t > 0,(2.26)

where

σ :=
(α+ − α−)2∫
R
U2
z (z)dz

=
(α+ − α−)2∫ α+

α−
√

2P (s) ds.
, P (u) :=

∫ u

α−
[p(α−) − p(s)] ds.(2.27)

Now (2.26), together with v±1 (±a, t) = 0 obtained from the boundary layer expan-
sion, provides the exact number of boundary conditions needed by the outer expansion
equations (2.7). With given initial values of our choice, we can uniquely solve the first
order outer expansion (u±1 , v

±
1 ). (See the next section for more details.)

Once we have (u±1 , v
±
1 ), we can use (2.25) to determine s1 and use (2.24) to find uI1.

There are infinitely many solutions of uI1, all being a special solution plus a multiple
of Uz, since L(Uz) = 0; nevertheless, a unique multiple can be found by the constraint
uI1(s0, 0) = 0, since we define x = s(t) as the α0 level set of u. This determined a
unique uI1. Knowing u±(±a, t), the first order boundary layer expansion can also be
determined. Therefore, we obtain completely all the first order expansion functions
u±1 , s1, u

I
1, u

b
1.

The general jth (j ≥ 2) order inner expansion equations read{
(ṡju

I
j − vIj )z = · · ·

(L(uIj ) − κvIjz)z = · · ·
∀ z ∈ R, t > 0.
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The interface and matching conditions are

uIj (0, t) = 0, lim
z→±∞(uIj (z, t) − · · ·) = u±j (s0, t), lim

z→±∞(vIj (z, t) − · · ·) = v±j (s0, t).

Here · · · are functions depending only on expansions of order ≤ j − 1.
To ensure the existence of a unique solution (uIj , v

I
j ), the boundary value (u±j (s0, t),

v±j (s0, t)) of the jth order outer expansion at x = s0 needs to satisfy the solvability
conditions (for inner expansion)

(2.28)

(c+)2u+
j (s0, t) − (c−)2u−j (s0, t) = · · · , ṡj [α

+ − α−] + [v+
j (s0, t) − v−(s0, t)] = · · · ,

and the jth order interface position expansion ṡj needs to satisfy

ṡj =
p′(α−)u−j (s0, t)(α

+ − α−)

κ
∫∞
∞ (Uz)2dz

+ · · · .(2.29)

Here again, · · · represents known functions if lower order expansions are found.
One can eliminate ṡj from (2.28) and (2.29) to obtain self-contained boundary

conditions for (u±j , v
±
j ) at x = s0:

v+
j (s0, t) − v−j (s0, t) = σ (c+)2u+

j (s0, t) + · · · = σ (c+)2v−j (s0, t) + · · · ∀ t > 0.

With these two conditions and the boundary conditions (2.14), we can solve uniquely
the jth order outer expansion (u±j , v

±
j ) from (2.8) after we provide initial conditions

for them. Once we find the outer expansion of jth order, we can determined uniquely
all the other jth order expansions and, if necessary, go on to the next order expansion.

2.5. The approximate solution. Let k ≥ 1 be an integer representing the
order of approximation we need. For j from 0 to k, we use the matched asymptotic
expansion aforementioned to find successively the outer, interface position, inner, and
boundary layer expansions. We take the finite sums



ub(z, t) = Σk
j=0 ε

jubj
′,

uo±(x, t) = Σk
j=1 ε

ju±j ,

uI(z, t) = Σk
j=1 ε

juIj ,

S(t) = Σk
j=1 ε

jsj

and similar sums for v.
Since ub, uo±, and uI match in their overlap regions, we can glue them to obtain

a kth order approximation solution. For example, we can glue uo+ and uI via

ζ(x−S(t)
εµ ) uo+(x, t) +

[
1 − ζ(x−S(t)

εµ )
]
uI(z, t)|z=(x−S(t))/ε, εµ ≤ x− S(t) ≤ 2εµ,

where ζ(s) is a cutoff function satisfying

ζ(s) = 1 if s ≥ 2 and ζ(s) = 0 if s < 1.

We believe that the approximate solution so constructed approximates the true
solution. We expect that rigorous verification can be made by employing the method
used for the verification of matched asymptotic expansions in any space dimensions
by Alikakos, Bates, and Chen [1] for the Cahn–Hilliard equation, by Caginalp and
Chen [2] for the phase field equations, and by de Mottoni and Schatzman [7] for the
Allen–Cahn equation. The method was recently summarized by Chen in [4].
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3. Solutions to the first order expansion. Since we are interested in the
effect of small initial perturbation of (1.1) from its steady state and also the bound-
ary effect, in this section we study in detail the solutions to our first order formal
expansion.

We collect the equations for (u±1 , v
±
1 ):

(P1)




u±1t = v±1x, x ∈ Ω±
0 , t > 0,

v±1t = (c±)2u±1x, x ∈ Ω±
0 , t > 0,

v+
1 (s0, t) − v−1 (s0, t) = σ(c±)2u±1 (s0, t),

v+
1 (a, t) = v−1 (−a, t) = 0,

u1(x, 0) = u0(x), v±1 (x, 0) = v±0 (x), x ∈ Ω±
0 ,

where Ω+
0 = (s0, a), Ω−

0 = (−a, s0), s0 ∈ (−a, a) is a fixed constant, and σ is as in
(2.27).

Once we find (u±1 , v
±
1 ), the first order perturbation of interface position function

s1(t) can be obtained by integrating the ODE

ṡ1(t) =
σ (c−)2 u−1 (s0, t)

α− − α+

(
=

σ (c+)2 u+
1 (s0, t)

α− − α+

)
.(3.1)

Although (P1) is a linear problem, we find that the problem is nonstandard, and
the phenomenon that the solution provides is quite rich. Hence, we shall use three
different but quite elementary methods to study problem (P1):

(i) an energy method to give uniqueness and asymptotic behavior of solutions;
(ii) a constructive method to provide the existence of solutions;
(iii) a separation of variables method to supplement more detailed behavior of the

solution.
For convenience, we define functions

c(x) =

{
c+ x ∈ (s0, a],
c− x ∈ [−a, s0), (u1, v1) =

{
(u+

1 , v
+
1 ) x ∈ (s0, a], t ≥ 0,

(u−, v−) x ∈ [−a, s0), t ≥ 0.
(3.2)

As (c±)2u±1 is continuous across x = s0, we denote the common value at x = s0 by
c2u1.

3.1. Energy estimates. Denote Ω = (−a, s0) ∪ (s0, a). For solutions of (P1),
we can calculate

d

dt

∫ a

−a

(c2u2
1 + v2

1)dx = 2

∫
Ω

(c2u1u1t + v1v1t) = 2

∫
Ω

(c2u1v1x + c2v1u1x)

= [c2u1v1]
s0−
s0+ = −2σ(c2u1(s0, t))

2,

d

dt

∫
Ω

(c4u2
1x + c2v2

1x)dx = 2

∫
Ω

(c4u1xu1tx + c2v1xv1xt) = 2

∫
Ω

(c2v1tu1tx + c2u1tv1xt)

= c2u1t[v1t]
s0−
s0+ = −(c2u1t(s0, t))

2,

d

dt

∫
Ω

u1dx =

∫
Ω

v1x dx = −[v1]
s0+

s−0
= −(α+ − α−)ṡ1(t).

Integration over t then gives, for every t > 0,
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(3.3)∫ a

−a

(c2u2
1 + v2

1)(x, t)dx + 2

∫ t

0

(c2u1(s0, τ))2dτ =

∫ a

−a

(c2u2
1 + v2

1)(x, 0)dx,

(3.4)∫
Ω

(c4u2
1x + c2v2

1x)(x, t)dx + 2

∫ t

0

(c2u1t(s0, τ))2dτ =

∫
Ω

(c2u2
1x + v2

1x),

(α+ − α−)s1(t) +

∫ a

−a

u1(x, t)dt = (α+ − α−)s1(0) +

∫ a

−a

u1(x, 0)dx.(3.5)

With these energy identities, we can now prove the following.

Theorem 3.1. Assume that u0, v0 ∈ H1(Ω). Then (P1) has at most one solution.
In addition, if there is a solution, the solution satisfies

lim
t→∞ c2u1(s0, t) = 0,(3.6)

lim
t→∞ s1(t) = s1(0) + 1

α+−α−

∫ a

−a

u0(x) dx.(3.7)

Existence of a solution will be given in the next subsection.

Proof. The uniqueness follows from the linearity of problem (P1) and the first
energy identity (3.3). (With an appropriate definition of weak solutions, one can
actually show that weak solutions are unique if initial data is only in L2.)

Next we prove (3.6). From (3.3) and (3.4),

∫ ∞

0

[(c2u1(s0, t))
2 + (c2u1t(s0, t))

2]dt < ∞.

It then follows that for any t2 > t1 ≥ 0,

|(c2u1(s0, t2))
2 − (c2u1(s0, t1))

2| ≤ 2

∫ t2

t1

|c2u1| |c2u1t|(s0, τ) dτ

≤
∫ ∞

t1

{(c2u1)
2 + (c2u1t)

2)(s0, τ)} dτ.

This implies that limt→∞ c2u1(s0, t) exists. As
∫∞
0

(c2u1(s0, t))
2 dt is finite, this limit

must be zero. This proves (3.6).

Next we prove (3.7). From the mass conservation (3.5), we need only to show
that

lim
t→∞

∫ a

−a

u1(·, t) = 0.(3.8)

To this end, we need a few steps.

Since supt≥0 ‖u1(·, t), v1(·, t)‖H1(Ω) is bounded, the ω-limit set of {(u(·, t), v(·, t))}t>0

is nonempty. Let (u0, v̂0) be any point in the ω-limit set; namely, there exists a se-
quence {tj}∞j=1 such that as j → ∞, tj → ∞ and (u1(·, tj), v1(·, tj)) → (u0, v̂0)

strongly in L2((−a, a)) and weakly in H1(Ω).

Consider the initial value problem (P1) with initial value (u0, v̂0). Denote the solu-
tion by (u, v̂) (existence to be shown in the next subsection). Then as (u1(·, tj), v1(·, tj))
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→ (u(·, 0),u(·, 0)), applying (3.3) to the difference between (u1(·, tj + ·), v1(·, tj + ·))
and (u, v̂), we obtain

(3.9)

lim
j→∞

{
sup
t>0

∫ a

−a

[c2(u(·, t) − u1(·, tj + t))]2 +

∫ ∞

0

[c2(u(s0, t) − u1(s0, tj + t))]2 dt

}
= 0.

It then follows from (3.6) that

u(s0−, t) = u(s0+, t) ≡ 0 ∀t ≥ 0.

With this boundary condition, we then can completely solve for (u, v̂) from the wave
equations in (−a, s0) × (0,∞) and (s0, a) × (0,∞) separately. The resulting solution
must be continuous across x = s0 since u(s0±, t) = 0 and [v̂(s0, t)]

s0+
s0− = c2u(s0, t) = 0.

Consequently, (u, v̂) solves the wave equations on (−a, a) × (0,∞).
In terms of Fourier’s expansion, (u, v̂) can be written as a superposition of waves

of the form (eλtφ(x, λ), eλψ(x, λ)), where (φ, ψ, λ) solves the eigenvalue problem

ψ′ = λφ, c2φ′ = λ2ψ, x ∈ (−a, a)

with boundary conditions ψ(−a) = ψ(a) = 0. Observe that every eigenfunction
of nonzero eigenvalue satisfies

∫ a

−a
φdx = 1

λ

∫ a

−a
ψ′ = 0. Also, when λ = 0, the

only solution is ψ ≡ 0 and φ = constant. As u(s0, t) ≡ 0, in the superposition
of u, the special eigenfunction (φ = const, ψ ≡ 0, λ = 0) is not contained. Hence∫ a

−a
u(x, t) dx = 0 ∀ t ≥ 0. In view of (3.9), we obtain (3.8), which in turn, by (3.5),

implies (3.7). This completes the proof.

3.2. Construction of the solution. The general solution to the PDEs in (P1)
is given by{

u±1 (x, t) = F (±c±t + x− s0) + G(±c±t± a− x),

v±1 (x, t) = ±c±[F (±c±t + x− s0) −G(±c±t± a− x)],
x ∈ I±0 , t ≥ 0.

Note that to find (u+
1 , v

+
1 ), we need only find (F (ξ), G(ξ)) ∀ ξ > 0, and to find

(u−1 , v
−
1 ), we need only find (F (ξ), G(ξ)) ∀ ξ < 0. Altogether, we need only find

(F (ξ), G(ξ)) ∀ ξ ∈ R.
The initial condition gives the definition of F,G for ξ ∈ (−a− s0, a− s0):{

F (ξ) = 1
2 [u0(s0 + ξ) + v0(s0 + ξ)/c±],

G(ξ) = 1
2 [u0(±a− ξ) + v0(±a− ξ)/c±],

± ξ ∈ (0, a∓ s0).(3.10)

The boundary condition v±1 (±a, t) = 0 gives the relation

F (±ξ ± a− s0) = G(±ξ) ∀ ξ > 0.(3.11)

This relation allows us to define F in (−l1 − (a+ s0),−(a+ s0))∪ (a− s0, l2 + a− s0),
as long as we know the value of G in interval (−l1, l2), where l1 and l2 can be any
positive constants.

The interface condition σ(c+)2u+
1 (s0, t) = σ(c−)2u−1 (s0, t) = v+

1 (s0, t) − v−1 (s0, t)
gives

σ(c+)2[F (c+t) + G(c+t + a− s0)] = σ(c−)2[F (−c−t) + G(−c−t− a− s0)]

= [c+F (c+t) + c−F (−c−t)] − [c+G(c+t + a− s0) + c−G(−c−t− a− s0)] =: Q(t).
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Solving this system gives

G(±ξ ± a− s0) =
2[c+F (c+ξ/c±) + c−F (−c−ξ/c±)]

(c±)2(σ + 1/c+ + 1/c−)
− F (±ξ) ∀ξ > 0,(3.12)

ṡ1(t) =
Q(t)

α+ − α− =
2σ [c+F (c+t) + c−F (−c−t)]
(α− − α+)(σ + 1/c+ + 1/c−)

∀ t > 0.(3.13)

One can use an induction argument to show that (3.10), (3.11), and (3.12)
uniquely define (F (ξ), G(ξ)) ∀ ξ ∈ R1, thereby proving the following existence theo-
rem.

Theorem 3.2. For every (u0, v0) ∈ H1(Ω), problem (P1) admits a unique solu-
tion.

Though we have an explicit solution, it is hard to see its asymptotic behavior, as
t → ∞, such as those provided in Theorem 3.1. Nevertheless, in some special cases,
it can be quite useful. Consider, for example, the special case when

(a− s0)/c
+ = (a + s0)/c

− =: T.(3.14)

Namely, the sound waves in the α+ phase and α− phase take the same amount of
time T to travel from the interface (x = s0) to the container’s boundary (x = ±a).

Under assumption (3.14), we can directly verify, for every t > 0,

Q(t + T ) = θ Q(t), θ :=
c+ + c− − σc+c−

c+ + c− + σc+c−
∈ (−1, 1).

It then follows that for each integer n,

Q(t + nT ) = θn Q(t).

Consequently, Q(t) exponentially approaches zero as t → ∞. From this, we conclude
from ṡ1(t) = 1

α−−α+Q(t) that s1(t) approaches a limit exponentially fast.
A further special noteworthy case is

σc+c− = c+ + c− ⇐⇒ σ = 1/c+ + 1/c− ⇐⇒ θ = 0.(3.15)

In this case, Q ≡ 0 ∀ t > T ; namely, the interface reaches its final destination at time
T and does not move thereafter. (This does not mean that the system enters a steady
state at time T since (u±1 , v

±
1 ) may not be zero.)

Also, one sees that when θ < 0, i.e., σ > 1/c+ + 1/c−, Q(t), and also ṡ1, changes
sign infinitely many times; that is to say, the interface oscillatorily reaches its final
destination.

On the other hand, if σ < 1/c− + 1/c+, then θ > 0, and for initial data satisfying
Q(t) ≥ 0 in (0, T ) (which is equivalent to [u0(s0 + c+t) + u0(s0 + c−t) + v0(s0 +
c+t)/c+ + v0(s0 − c−t)/c−] ≥ 0 ∀ t ∈ [0, T ]), Q(t) ≥ 0 and ṡ1 ≤ 0 ∀ t > 0; namely,
the interface approaches its final destination monotonically.

We remark that condition (3.15) depends only on the state function p = p(u).

3.3. A separation of variable approach. In order to find more detailed be-
havior of solutions of (P1), we decompose solutions into their Fourier modes. Hence,
ignoring initial conditions, we seek special solutions of the form

u1 = eλtφ(x, λ), v1 = eλtψ(x, λ), ṡ1t = σ
α−−α+ (c+)2φ(s0+, λ)eλt.
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Substituting this form into the system, we see that it is a special solution if and only
if (φ, ψ, λ) solves the eigenvalue problem

(EVP)




ψ′ = λφ, x ∈ Ω := (−a, a) \ {s0},
c2φ′ = λψ, x ∈ Ω,
ψ(−a) = ψ(a) = 0,
ψ(s0+) − ψ(s0−) = σ(c+)2φ(s0+) = σ(c−)2φ(s0−).

Theorem 3.3. Let T± = (a ∓ s0)/c
± be the time needed for the sound wave to

travel from the interface x = s0 to the boundary x = ±a in the α± phase. Consider
the eigenvalue problem (EVP) for (λ, φ, ψ). The following holds:

(1) All eigenvalues have nonpositive real part;
(2) There is a real eigenvalue if and only if

σ < 1/c+ + 1/c−.

If the above holds, then there is only one real eigenvalue, and it is strictly
negative.

(3) Assume that T+/T− = p/q is a rational number with indivisible odd inte-
gers p and q. Then there are infinitely many pure imaginary eigenvalues,
and the corresponding eigenfunctions (φ, ψ) satisfy c2φ, ψ ∈ C1([−a, a]), and
φ(s0+) = φ(s0−) = 0.

(4) Assume either that T+/T
− is an irrational number or T+/T− = p/q with

indivisible integers p and q, one of them being even. Then all eigenvalues
have negative real part, and every eigenfunction (φ, ψ) has the property that
φ(s0±) �= 0.

We remark that for any real eigenvalue, the corresponding ṡ1 does not change
sign, so as t → ∞, s1(t) tends to its limit monotonically.

Proof. One notices that λ = 0 is not an eigenvalue.
The general solutions to the ODEs in (EVP) with the boundary conditions ψ(±a)

= 0 are {
ψ(x) = c±A± sinh[λ(x∓ a)/c±],

φ(x) = A± cosh[λ(x∓ a)/c±],
± (x− s0) ∈ (0, a∓ s0),

where A± are arbitrary constants. For (φ, ψ, λ) to be a nontrivial solution to (EVP),
we need only |A+| + |A−| > 0 and

σA+(c+)2 cosh[λT+] = σA−(c+)2 cosh[λT−]

= −c+A+ sinh[λT+] − c−A− sinh[λT−].(3.16)

We consider two cases: (i) cosh[λT+] cosh[λT−] = 0, (ii) cosh[λT−] cosh[λT+]
�= 0.

First we consider case (i). Then either cosh[λT+] = 0 or cosh[λT−] = 0. Suppose
cosh[λT+] = 0. Then we cannot have A− = 0 since it would imply from (3.16)
that A+ = 0. Hence, cosh[λT−] = 0. Similarly, if cosh[λT−] = 0, we can derive
cosh[λT+] = 0. Thus,

cosh[λT+] = cosh[λT−] = 0.(3.17)

Now suppose there is a λ satisfying the above condition. Then | sinh[λT+]| = | sinh[λT−]|
= 1 and we can simply take A− = 1 and A+ = −c− sinh[λT−]/(c+ sinh[λT+]) to ob-
tain a solution to (EVP); in other words, (3.17) is a sufficient condition for λ to be
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an eigenvalue. As we shall see later, case (ii) will not produce any pure imaginary
eigenvalues, and we conclude that λ is a pure imaginary eigenvalue if and only if (3.17)
holds. If (3.17) holds, then the corresponding eigenfunction (ψ, φ) has the property
that φ(s0±) = 0 and both c2φ and ψ are in C1([−a, a]).

Now we solve (3.17). Since the only solution to cosh[z] = 0 is z = i[π/2 + kπ] for
all integers k, we must have, for some integers k and l, λT+ = i(π/2 + kπ)/T− and
λT− = i(π/2 + lπ). This implies that T+/T− = (1 + 2k)/(1 + 2l) = p/q, where p and
q are odd integers indivisible to each other.

Now assume that T+/T− = p/q is a rational number where p and q are odd
integers not divisible to each other. Then it is easy to check that all solutions of
(3.17) are given by

λ = λn =
n p π

2T+
i =

n q π

2T− i, n = ±1,±3,±5, . . . .

This proves assertion (3).

Next we consider case (ii): cosh[λT+] cosh[λT−] �= 0. Then we must have A∓ �= 0.
Hence, we can without loss of generality take A± = (c±)−2 cosh[λT±] and conclude
that λ is an eigenvalue if and only if

σ + 1
C+ tanh[λT+] + 1

C− tanh[λT−] = 0.(3.18)

From this equation, we immediately obtain the second assertion (2) of the theorem.

Write λ = µ+ i ω where µ and ω are real. Then (3.18) is equivalent to find (µ, ω)
such that 


sin(2ωT−)

c−[cos2(ωT−)+sinh2(µT−)]
+ sin(2ωT+)

c+[cos2(ωT+)+sinh2(µT+)]
= 0,

σ + sinh(2µT+)
2c+[cos2(ωT+)+sinh2(µT+)]

+ sinh(2µT−)
2c−[cos2(ωT−)+sinh2(µT−)]

= 0.
(3.19)

From this, the remaining assertions of the theorem follow. This completes the proof
of the theorem.

Once the eigenvalue problem is solved, the solution to (P1) can be written as a
Fourier series. We omit the details.

We remark that when T+/T− is irrational, there is no negative upper bound
for the real part of all eigenvalues; namely, the dissipation is there, but it can be
arbitrarily small. Nonetheless, we can still conclude that the functions (u, v̂) in the
proof of Theorem 3.1 are actually identically zero, i.e., u = v̂ ≡ 0, so that all solutions
approach a trivial limit as t → ∞. Therefore, we have the following result.

Theorem 3.4. (1) Assume that either T+/T− is irrational or T+/T− = p/q with
indivisible integers p and q, one of them being even. Then all solutions to problem
(P1) satisfy

lim
t→∞u±1 = lim

t→∞ v±1 = 0, lim
t→∞ s1(t) = s0 +

1

α+ − α−

∫ a

−a

u(·, 0).

(2) Assume that T+/T− = p/q for some indivisible odd integers p and q. Then
the boundary value problem wave equations in (P1) admit infinitely many linearly in-
dependent time periodic solutions (u1, v1) satisfying c2(·)u1(·, t), v1(·, t) ∈ C1([−a, a])
and u1(s0±, t) = 0 ∀ t ∈ R.
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4. Numerical results. We solve (1.1) with a second order finite difference
method. p(u) is chosen to be the van der Waals equation of state

p(u) =
1

u− 0.25
− 0.9

u2
.

The Maxwell states are α+ = 1.405065 and α− = 0.494273. The corresponding wave
speeds are c+ = 0.317204, c− = 1.36113. We start with initial condition

{
u(x, 0) = α+e4x+α−e−4x

e4x+e−4x ,

v(x, 0) = 0.01e−4x2

,

where u(x, 0) is a small perturbation around a phase jump connecting α+ and α−.
When x is positive and large, u(x, 0) is close to α+. When x is negative and large,
u(x, 0) is close to α−. Figures 1 and 2 show that the perturbation in the region Ω+

is traveling with wave speed c+ and the perturbation in the region Ω− is traveling
with wave speed c− (which is much faster than c+). When a perturbation reaches the
boundary, it is reflected back and travels in the opposite direction. The interface also
moves back and forth slightly and eventually approaches a steady state.
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Fig. 1. Evolution of u(x, t). Circles represent values a and b.
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Fig. 2. Continuation of Figure 1.
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